WEIGHTED NORM INEQUALITIES FOR SINGULAR INTEGRAL OPERATORS

C. Pérez

Departmento de Matemáticas
Universidad Autónoma de Madrid
28049 Madrid, Spain

Abstract

For a Calderón-Zygmund singular integral operator T, we show that the following weighted inequality holds

$$
\int_{\mathbb{R}^{n}}|T f(y)|^{p} w(y) d y \leq C \int_{\mathbb{R}^{n}}|f(y)|^{p} M^{[p]+1} w(y) d y
$$

where M^{k} is the Hardy-Littlewood maximal operator M iterated k times, and $[p]$ is the integer part of p. Moreover, the result is sharp since it does not hold for $M^{[p]}$.

We also give the following endpoint result:

$$
w\left(\left\{y \in \mathbb{R}^{n}:|T f(y)|>\lambda\right\}\right) \leq \frac{C}{\lambda} \int_{\mathbb{R}^{n}}|f(y)| M^{2} w(y) d y .
$$

1 Introduction and statements of the results

A classical result due to C. Fefferman and E. Stein [4] states that the HardyLittlewood maximal operator M satisfies the following inequality for arbitrary $1<$ $p<\infty$, and weight w

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}|M f(y)|^{p} w(y) d y \leq C \int_{\mathbb{R}^{n}}|f(y)|^{p} M w(y) d y \tag{1}
\end{equation*}
$$

where C is independent of f. A weight w in \mathbb{R}^{n} will always be a nonnegative locally integrable function.

The study of weighted inequalities like the above, for other operators has played a central rôle in modern of Harmonic Analysis since they appear in duality arguments. We refer the reader to [5] Chapters 5 and 6 for a very nice exposition.

Although we could work with any Calderón-Zygmund operator (cf. §3), we shall only consider singular integral operators of convolution type defined by:

$$
T f(x)=p \cdot v \cdot \int_{\mathbb{R}^{n}} k(x-y) f(y) d y
$$

where the kernel k is C^{1} away from the origin, has mean value on the unit sphere centered at the origin and satisfies for $y \neq 0$

$$
|k(y)| \leq \frac{C}{|y|^{n}} \quad \text { and } \quad|\nabla k(y)| \leq \frac{C}{|y|^{n+1}}
$$

It is well known that the analogous version of inequality (1) fails for the Hilbert transform for all p. In [3] A. Córdoba and C. Fefferman have shown that there is a similar inequality for any T, but with $M w$ replaced by the pointwise larger operator $M_{r} w=M\left(w^{r}\right)^{1 / r}, r>1$, that is, for $1<p<\infty$

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}|T f(y)|^{p} w(y) d y \leq C \int_{\mathbb{R}^{n}}|f(y)|^{p} M_{r} w(y) d y \tag{2}
\end{equation*}
$$

with C independent of f.
The purpose of this paper is to prove weighted norm inequalities of the form (2), where $M_{r} w, r>1$, will be replaced by appropiate smaller maximal-type operators $w \rightarrow N w$ satisfying

$$
\begin{equation*}
M w(x) \leq N w(x) \leq C M_{r} w(x) \tag{3}
\end{equation*}
$$

for each $x \in \mathbb{R}^{n}$. We shall also be concern with corresponding endpoints results such as weak type $(1,1)$ and $H^{1}-L^{1}$ estimates.

Before stating our main results, we shall make the following observation. Let M^{k} be the Hardy-Littlewood maximal operator M iterated k times, where $k=$ $1,2, \cdots$. We claim that for $k=2, \cdots$, and $r>1$, there exists a positive constant C independent of w such that

$$
\begin{equation*}
M w(x) \leq M^{k} w(x) \leq C M_{r} w(x) \tag{4}
\end{equation*}
$$

for each $x \in \mathbb{R}^{n}$. The left inequality follows from the Lebesgue differentiation theorem; for the other, we let B be the best constant in Coifman's estimate $M\left(M_{r} w\right) \leq$ $B M_{r} w$, where B is independent of w. Then, it follows easily that $M^{k} w \leq B^{k-1} M_{r} w$, $k=1,2, \cdots$.

In view of this observation, it is natural to consider whether or not (2) holds for some M^{k}, with $k=2,3, \cdots$. In a very interesting paper [8], M. Wilson has recently obtained the following partial answer to this question: Let $1<p<2$, then

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}|T f(y)|^{p} w(y) d y \leq C \int_{\mathbb{R}^{n}}|f(y)|^{p} M^{2} w(y) d y \tag{5}
\end{equation*}
$$

Moreover, he shows that this estimate does not hold for $p \geq 2$, and also that when $p=2, M^{2} w$ can be replaced by $M^{3} w$. However, his method does not yield corresponding estimates for $p>2$ (cf. $\S 3$ of that paper), and $M^{2} w$ must be replaced by a much more complicated expression.
M. Wilson's approach to this problem is based on certain (difficult) estimates for square functions that he obtained in the same paper, together with a couple of related estimates for the area function, obtained essentially by S. Chanillo and R. Wheeden in [1].

In this paper we give a complete answer to Wilson's problem by means of a different method. Our main result is the following.

Theorem 1.1: Let $1<p<\infty$, and let T be a singular integral operator. Then, there exists a constant C such that for each weight w

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}|T f(y)|^{p} w(y) d y \leq C \int_{\mathbb{R}^{n}}|f(y)|^{p} M^{[p]+1} w(y) d y \tag{6}
\end{equation*}
$$

where $[p]$ is the integer part of p. Furthermore, the result is sharp since it does not hold for $M^{[p]}$.

The corresponding weak-type $(1,1)$ version of this result is the following.

Theorem 1.2: Let T be a singular integral operator. Then, there exists a constant C such that for each weight w and for all $\lambda>0$

$$
\begin{equation*}
w\left(\left\{y \in \mathbb{R}^{n}:|T f(y)|>\lambda\right\}\right) \leq \frac{C}{\lambda} \int_{\mathbb{R}^{n}}|f(y)| M^{2} w(y) d y . \tag{7}
\end{equation*}
$$

Remark 1.3: Let $1<p<\infty$, a natural question is whether (7) can be extended to the case (p, p), that is whether

$$
w\left(\left\{y \in \mathbb{R}^{n}:|T f(y)|>\lambda\right\}\right) \leq \frac{C}{\lambda^{p}} \int_{\mathbb{R}^{n}}|f(y)|^{p} M^{[p]} w(y) d y
$$

holds for some constant C and for all $\lambda>0$. At the end of section 2 we give an example showing that this inequality is false when p is not an integer; however, we do not know what happens when p is an integer.

Although we do not know whether (7) holds for $M w$ (cf. remark 1.7) we can give the following estimate. For a measure μ we shall denote by $H^{1}(\mu)$ the subspace of $L^{1}(\mu)$ of functions f which can be written as $f=\sum_{j} \lambda_{j} a_{j}$, where a_{j} are μ-atoms and λ_{j} are complex numbers with $\sum_{j}\left|\lambda_{j}\right|<\infty$. A function a is a μ-atom if there is a cube Q for which $\operatorname{supp}(a) \subset Q$, so that

$$
|a(x)| \leq \frac{1}{\mu(Q)}
$$

and

$$
\int_{Q} a(y) d y=0
$$

Theorem 1.4: Let T be a singular integral operator. Then, there exists a constant C such that for each weight w

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}|T f(y)| w(y) d y \leq C\|f\|_{H^{1}(M w)} . \tag{8}
\end{equation*}
$$

Theorem 1.1 is in fact a consequence of a more precise estimate than (6). The idea is to replace the operator $M^{[p]+1}$ by an optimal class of maximal operators. We explain now what "optimal" means.

We want to define a scale of maximal-type operators $w \rightarrow M_{A} w$ such that

$$
M w(x) \leq M_{A} w(x) \leq M_{r} w(x)
$$

for each $x \in \mathbb{R}^{n}$, where $r>1$. A stands for a Young function; i.e. $A:[0, \infty) \rightarrow[0, \infty)$ is continuous, convex and increasing satisfying $A(0)=0$. To define M_{A} we introduce for each cube Q the A-average of a function f over Q by means of the following Luxemburg norm

$$
\|f\|_{A, Q}=\inf \left\{\lambda>0: \frac{1}{|Q|} \int_{Q} A\left(\frac{|f(y)|}{\lambda}\right) d y \leq 1\right\}
$$

We define the maximal operator M_{A} by

$$
M_{A} f(x)=\sup _{x \in Q}\|f\|_{A, Q}
$$

where f is a locally integrable functions, and where the supremum is taken over all the cubes containing x. When $A(t)=t^{r}$ we get $M_{A}=M_{r}$, but more interesting examples are provided by Young functions like $A(t)=t \log ^{\epsilon}(1+t), \epsilon>0$.

The optimal class of Young functions A is characterized by the following theorem.
Theorem 1.5: Let $1<p<\infty$, and let T be a singular integral operator. Suppose that A is a Young function satisfying the condition

$$
\begin{equation*}
\int_{c}^{\infty}\left(\frac{t}{A(t)}\right)^{p^{\prime}-1} \frac{d t}{t}<\infty \tag{9}
\end{equation*}
$$

for some $c>0$. Then, there exists a constant C such that for each weight w

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}|T f(y)|^{p} w(y) d y \leq C \int_{\mathbb{R}^{n}}|f(y)|^{p} M_{A} w(y) d y \tag{10}
\end{equation*}
$$

Furthermore, condition (9) is also necessary for (10) to hold for all the Riesz transforms: $T=R_{1}, R_{2}, \cdots, R_{n}$.

We recall that the j-th Riesz transform $R_{j}, j=1,2, \cdots, n$, is the singular integral operator defined by

$$
R_{j} f(x)=p \cdot v \cdot \int_{\mathbb{R}^{n}} \frac{x_{j}-y_{j}}{|x-y|^{n+1}} f(y) d y .
$$

The proof of this theorem is given in $\S 2$, and it is based on the following inequality of E.M. Stein [7]

$$
\begin{equation*}
\int_{Q} w(y) \log ^{k}(1+w(y)) d y \leq C \int_{Q} M w(y) \log ^{k-1}(1+M w(y)) d y \tag{11}
\end{equation*}
$$

with $k=1,2,3, \cdots$.
As for the strong case, there is an estimate sharper than (7).
Theorem 1.6: Let T be a singular integral operator. For arbitrary $\epsilon>0$, consider the Young function

$$
\begin{equation*}
A_{\epsilon}(t)=t \log ^{\epsilon}(1+t) . \tag{12}
\end{equation*}
$$

Then, there exists a constant C such that for each weight w and for all $\lambda>0$

$$
\begin{equation*}
w\left(\left\{y \in \mathbb{R}^{n}:|T f(y)|>\lambda\right\}\right) \leq \frac{C}{\lambda} \int_{\mathbb{R}^{n}}|f(y)| M_{A_{\epsilon}} w(y) d y . \tag{13}
\end{equation*}
$$

Remark 1.7: For $1<p<\infty$ let us denote by B_{p} the callection of all Young functions A satisfying condition (9):

$$
\int_{c}^{\infty}\left(\frac{t}{A(t)}\right)^{p^{\prime}-1} \frac{d t}{t}<\infty
$$

for some $c>0$. Observe that $B_{p} \subset B_{q}, 1<p<q<\infty$. Then it follows easily from the proof of last theorem that we may replace A_{ϵ} by any Young function belonging to the smallest class $\cap_{p>1} B_{p}$. We could consider for instance

$$
\begin{equation*}
A_{\epsilon}(t)=t \log (1+t)[\log \log (1+t)]^{\epsilon} . \tag{14}
\end{equation*}
$$

If we let $\epsilon=0$ in (12) $M_{A_{0}}=M$ is the Hardy-Littlewood maximal operator. Since A_{0} does not belong to $\cap_{p>1} B_{p}$ we think that the estimate:

$$
\begin{equation*}
w\left(\left\{y \in \mathbb{R}^{n}:|T f(y)|>\lambda\right\}\right) \leq \frac{C}{\lambda} \int_{\mathbb{R}^{n}}|f(y)| M w(y) d y \tag{15}
\end{equation*}
$$

for some constant C, and for all $\lambda>0$, does not hold.

2 Proof of the Theorems

Proof of Theorem 1.5:

We prove first that condition (9) is sufficient for (10) to hold for any singular integral operator T.

We may assume that $M_{A} w$ is finite almost everywhere, and we let T^{*} be the adjoint operator of $T . T^{*}$ is also a singular integral operator with kernel $k^{*}(x)=$ $k(-x)$. Then, by duality (10) is equivalent to

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}\left|T^{*} f(y)\right|^{p^{\prime}} M_{A} w(y)^{1-p^{\prime}} d y \leq C \int_{\mathbb{R}^{n}}|f(y)|^{p^{\prime}} w(y)^{1-p^{\prime}} d y . \tag{16}
\end{equation*}
$$

We shall be using some well known facts about the A_{p} theory of weights for which we remit the reader to [5] Chapter 4.

To prove (16) we shall use the following fundamental estimate due to Coifman ([2]):
Let T be any singular integral operator; then for each $0<p<\infty$, and each $u \in A_{\infty}$, there exists $C=C_{u, p}>0$ such that for each $f \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}|T f(y)|^{p} u(y) d y \leq C \int_{\mathbb{R}^{n}} M f(y)^{p} u(y) d y . \tag{17}
\end{equation*}
$$

Therefore, to apply this estimate to T^{*} we need to show that $\left(M_{A} w\right)^{1-p^{\prime}}$ satisfies the A_{∞} condition.

To check this, we claim first that $\left(M_{A} w\right)^{\delta}$ satisfies the A_{1} condition for $0<\delta<$ 1. However, this is an straightforward generalization of the well known fact that $(M w)^{\delta} \in A_{1}, 0<\delta<1$, also due to Coifman (cf. [5] p. 158), and we shall omit its proof.

Now, since $w^{1-r} \in A_{r}$, for any $w \in A_{1}$ and $r>1$, we have that

$$
\left(M_{A} w\right)^{1-p^{\prime}}=\left[\left(M_{A} w\right)^{\frac{p^{\prime}-1}{r-1}}\right]^{1-r} \in \cap_{r>p^{\prime}} A_{r} \subset A_{\infty}
$$

After these observations, we have reduced the problem to showing that

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} M f(y)^{p^{\prime}} M_{A} w(y)^{1-p^{\prime}} d y \leq C \int_{\mathbb{R}^{n}}|f(y)|^{p^{\prime}} w(y)^{1-p^{\prime}} d y \tag{18}
\end{equation*}
$$

But this is a particular instance of the following characterization which can be found in [6] Theorem 4.4.

Theorem 2.1: Let $1<p<\infty$. Let A be a Young function, and denote $B=\overline{A\left(t^{p^{\prime}}\right)}$. Then the following are equivalent.
i)

$$
\begin{equation*}
\int_{c}^{\infty}\left(\frac{t}{A(t)}\right)^{p-1} \frac{d t}{t}<\infty \tag{19}
\end{equation*}
$$

ii) there is a constant c such that

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} M_{B} f(y)^{p} d y \leq c \int_{\mathbb{R}^{n}} f(y)^{p} d y \tag{20}
\end{equation*}
$$

for all nonnegative, locally integrable functions f;
iii) there is a constant c such that

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} M_{B} f(y)^{p} u(y) d y \leq c \int_{\mathbb{R}^{n}} f(y)^{p} M u(y) d y \tag{21}
\end{equation*}
$$

for all nonnegative, locally integrable functions f and u;
iv) there is a constant c such that

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} M f(y)^{p} \frac{u(y)}{\left[M_{A}(w)(y)\right]^{p-1}} d y \leq c \int_{\mathbb{R}^{n}} f(y)^{p} \frac{M u(y)}{w(y)^{p-1}} d y, \tag{22}
\end{equation*}
$$

for all nonnegative, locally integrable functions f, w and u.
Observe that (18) follows from (22) by taking $u=1$, and by replacing p by p^{\prime}.
Now we shall prove that condition (9) is also necessary for (10) to hold for all the Riesz transforms. That is, suppose that the Young function A is fixed, and that the inequality

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}|T f(x)|^{p} w(x) d x \leq C \int_{\mathbb{R}^{n}}|f(x)|^{p} M_{A} w(x) d x \tag{23}
\end{equation*}
$$

is verified for each Riesz transform $T=R_{j}, j=1,2, \cdots, n$.
Fix one of these j. As above, by duality (23) is equivalent to

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}\left|R_{j} f(x)\right|^{p^{\prime}} M_{A} w(x)^{1-p^{\prime}} d x \leq C \int_{\mathbb{R}^{n}}|f(x)|^{p^{\prime}} w(x)^{1-p^{\prime}} d x \tag{24}
\end{equation*}
$$

We shall adapt an argument from [5] p. 561. We define the cone

$$
E_{j}=\left\{x \in \mathbb{R}^{n}: \max \left\{\left|x_{1}\right|,\left|x_{2}\right|, \cdots,\left|x_{n}\right|\right\}=x_{j}\right\},
$$

so that $\mathbb{R}^{n}=\cup_{j=1}^{n}\left(E_{j} \cup\left(-E_{j}\right)\right)$. Let B be the unit ball, and consider the function $f=w=\chi_{B \cap\left(-E_{j}\right)}$. Then, (24) implies

$$
\begin{aligned}
\infty> & C \int_{\mathbb{R}^{n}}|f(x)|^{p^{\prime}} w(x)^{1-p^{\prime}} d x=C\left|B \cap\left(-E_{j}\right)\right| \geq \\
& \geq \int_{E_{j} \cap\{|x|>2\}}\left|R_{j} f(x)\right|^{p^{\prime}} M_{A} f(x)^{1-p^{\prime}} d x .
\end{aligned}
$$

Observe that for $|x|>2, M_{A} f(x) \approx A^{-1}\left(|x|^{n}\right)^{-1}$. Also, for every $x \in E_{j}$

$$
R_{j} f(x)=C \int_{B \cap\left(-E_{j}\right)} \frac{x_{j}-y_{j}}{|x-y|^{n+1}} d y \geq C \int_{B \cap\left(-E_{j}\right)} \frac{1}{|x-y|^{n}} d y \geq \frac{C}{|x|^{n}} .
$$

Therefore

$$
\int_{E_{j} \cap\{|x|>2\}} \frac{1}{|x|^{n p^{\prime}}} A^{-1}\left(|x|^{n}\right)^{p^{\prime}-1} d x \leq C\left|B \cap\left(-E_{j}\right)\right| .
$$

A corresponding estimate can be proved for E_{j}, and for each $j=1,2, \cdots, n$, by using in each case the corresponding Riesz transform. Since the family of cones $\left\{{ }^{+} E_{j}\right\}_{j=1,2, \cdots, n}$ is disjoint, we finally have that

$$
\begin{gathered}
\int_{|x|>2} \frac{1}{|x|^{n p^{\prime}}} A^{-1}\left(|x|^{n}\right)^{p^{\prime}-1} d x \approx \int_{c}^{\infty} \frac{1}{t^{p^{\prime}}} A^{-1}(t)^{p^{\prime}-1} t \frac{d t}{t} \approx \\
\int_{c}^{\infty}\left(\frac{t}{A(t)}\right)^{p^{\prime}-1} \frac{d t}{t}<\infty,
\end{gathered}
$$

since $t A^{\prime}(t) \approx A(t)$. This concludes the proof of the theorem.

Proof of Theorem 1.6:

We shall assume that $M_{A_{\epsilon}} w$ is finite almost everywhere, since otherwise there is nothing to be proved.

For $f \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ we consider the standard Calderón-Zygmund decomposition of f at level λ (cf. [5] p. 414).

Let $\left\{Q_{j}\right\}$ be the Calderón-Zygmund nonoverlapping dyadic cubes satisfying

$$
\begin{equation*}
\lambda<\frac{1}{\left|Q_{j}\right|} \int_{Q_{j}}|f(x)| d x \leq 2^{n} \lambda . \tag{25}
\end{equation*}
$$

If we let $\Omega=\cup_{j} Q_{j}$, we also have that $|f(x)| \leq \lambda$ a.e. $x \in \mathbb{R}^{n} \backslash \Omega$.
Using the notation $f_{Q_{j}}=\frac{1}{\left|Q_{j}\right|} \int_{Q_{j}} f(x) d x$, we write $f=g+b$ where g, the "good part", is given by

$$
g(x)=\left\{\begin{array}{cc}
f(x) & x \in \mathbb{R}^{n} \backslash \Omega \\
f_{Q_{j}} & x \in Q_{j}
\end{array}\right.
$$

Observe that $|g(x)| \leq 2^{n} \lambda$ a.e.

The "bad part" can be split as $b=\sum_{j} b_{j}$, where $b_{j}(x)=\left(f(x)-f_{Q_{j}}\right) \chi_{Q_{j}}(x)$.
Let $\tilde{Q}_{j}=2 Q_{j}$ and $\tilde{\Omega}=\cup_{j} \tilde{Q}_{j}$.
We have

$$
\begin{gathered}
w\left(\left\{y \in \mathbb{R}^{n}:|T f(y)|>\lambda / 2\right\}\right) \leq \\
\leq w\left(\left\{y \in \mathbb{R}^{n} \backslash \tilde{\Omega}:|T g(y)|>\lambda / 2\right\}\right)+2 w(\tilde{\Omega})+w\left(\left\{y \in \mathbb{R}^{n} \backslash \tilde{\Omega}:|T b(y)|>\lambda / 2\right\}\right) .
\end{gathered}
$$

Pick any $p>1$ such that $1<p<1+\epsilon$. Then, it follows that $A_{\epsilon}=t \log ^{\epsilon}(1+t)$ satisfies condition

$$
\int_{c}^{\infty}\left(\frac{t}{A_{\epsilon}(t)}\right)^{p^{\prime}-1} \frac{d t}{t}<\infty
$$

for some $c>0$. Thus, we can apply Theorem 1.5 with this p to the first term, together with the fact that $|g(x)| \leq 2^{n} \lambda$ a.e. Then, using an idea from [1] p. 282

$$
\begin{gathered}
w\left(\left\{y \in \mathbb{R}^{n} \backslash \tilde{\Omega}:|T g(y)|>\lambda / 2\right\}\right) \leq \frac{C}{\lambda^{p}} \int_{\mathbb{R}^{n} \backslash \tilde{\Omega}}|T g(y)|^{p} w(y) d y \leq \\
\leq \frac{C}{\lambda^{p}} \int_{\mathbb{R}^{n}}|g(y)|^{p} M_{A_{\epsilon}}\left(w \chi_{\mathbb{R}^{n} \backslash \bar{\Omega}}\right)(y) d y \leq \frac{C}{\lambda} \int_{\mathbb{R}^{n}}|g(y)| M_{A_{\epsilon}}\left(w \chi_{\mathbb{R}^{n} \backslash \tilde{\Omega}}\right)(y) d y= \\
\frac{C}{\lambda}\left(\int_{\mathbb{R}^{n} \backslash \Omega}|f(y)| M_{A_{\epsilon}} w(y) d y+\int_{\Omega}|g(y)| M_{A_{\epsilon}}\left(w \chi_{\mathbb{R}^{n} \backslash \tilde{\Omega}}\right)(y) d y\right)= \\
\frac{C}{\lambda}(I+I I)
\end{gathered}
$$

Since $I \leq \int_{\mathbb{R}^{n}}|f(y)| M_{A_{\epsilon}} w(y) d y$ we only need to estimate II:

$$
\begin{gathered}
I I \leq \sum_{j} \int_{Q_{j}}\left|f_{Q_{j}}\right| M_{A_{\epsilon}}\left(w \chi_{\mathbb{R}^{n} \backslash \bar{\Omega}}\right)(y) d y \leq \\
\sum_{j} \int_{Q_{j}}|f(x)| d x \frac{1}{\left|Q_{j}\right|} \int_{Q_{j}} M_{A_{\epsilon}}\left(w \chi_{\mathbb{R}^{n} \backslash \bar{\Omega}}\right)(y) d y .
\end{gathered}
$$

We shall make use of the following fact: for arbitrary Young function A, nonnegative function w with $M_{A} w(x)<\infty$ a.e., cube Q, and $R>1$ we have

$$
\begin{equation*}
M_{A}\left(\chi_{\mathbb{R}^{n} \backslash R Q} w\right)(y) \approx M_{A}\left(\chi_{\mathbb{R}^{n} \backslash R Q} w\right)(z) \tag{26}
\end{equation*}
$$

for each $y, z \in Q$. This is an observation whose proof follows exactly as for the case of the Hardy-Littlewood maximal operator M, cf. for instance [5] p. 159.

Then,

$$
\begin{gathered}
I I \leq C \sum_{j} \int_{Q_{j}}|f(x)| d x \inf _{Q_{j}} M_{A_{\epsilon}}\left(w \chi_{\mathbb{R}^{n} \backslash 2 Q_{j}}\right) \leq C \sum_{j} \int_{Q_{j}}|f(x)| M_{A_{\epsilon}} w(x) d x \\
\leq C \int_{\mathbb{R}^{n}}|f(x)| M_{A_{\epsilon}} w(x) d x .
\end{gathered}
$$

The second term is estimated as follows:

$$
\begin{gathered}
w(\tilde{\Omega}) \leq C \sum_{j} \frac{w\left(\tilde{Q}_{j}\right)}{\left|\tilde{Q}_{j}\right|}\left|Q_{j}\right| \leq \\
\frac{C}{\lambda} \sum_{j} \frac{w\left(\tilde{Q}_{j}\right)}{\left|\tilde{Q}_{j}\right|} \int_{Q_{j}}|f(x)| d x \leq \frac{C}{\lambda} \sum_{j} \int_{Q_{j}}|f(x)| M w(x) d x \leq \\
\leq \frac{C}{\lambda} \int_{\mathbb{R}^{n}}|f(x)| M w(x) d x .
\end{gathered}
$$

To estimate the last term we use the inequality

$$
\int_{\mathbb{R}^{n} \backslash \tilde{Q_{j}}}\left|T b_{j}(y)\right| w(y) d y \leq C \int_{\mathbb{R}^{n}} b_{j}(y) M w(y) d y
$$

with C independent of b_{j}, which can be found in Lemma 3.3, p. 413, of [5]. Now, using this estimate with w replaced by $w \chi_{\mathbb{R}^{n} \backslash Q_{j}}$ we have

$$
\begin{gathered}
w\left(\left\{y \in \mathbb{R}^{n} \backslash \tilde{\Omega}:|T b(y)|>\lambda / 2\right\}\right) \leq \frac{C}{\lambda} \int_{\mathbb{R}^{n} \backslash \tilde{\Omega}}|T b(y)| w(y) d y \leq \\
\frac{C}{\lambda} \sum_{j} \int_{\mathbb{R}^{n} \backslash \tilde{Q}_{j}}\left|T b_{j}(y)\right| w(y) d y \leq \frac{C}{\lambda} \sum_{j} \int_{\mathbb{R}^{n}}\left|b_{j}(y)\right| M\left(w \chi_{\mathbb{R}^{n} \backslash \widetilde{q}_{j}}\right)(y) d y \leq \\
\frac{C}{\lambda} \sum_{j} \int_{Q_{j}}|b(y)| M\left(w \chi_{\mathbb{R}^{n} \backslash \tilde{Q}_{j}}\right)(y) d y .
\end{gathered}
$$

Since $b=f-g$ this is at most

$$
\frac{C}{\lambda} \sum_{j}\left(\int_{Q_{j}}|f(y)| M w(y) d y+\int_{Q_{j}}|g(y)| M\left(w \chi_{\mathbb{R}^{n} \backslash \tilde{Q}_{j}}\right)(y) d y\right)=\frac{C}{\lambda}(A+B)
$$

To conclude the proof of the theorem is clear that we only need to estimate B. However

$$
\begin{gathered}
B=\sum_{j} \int_{Q_{j}}\left|f_{Q_{j}}\right| M\left(w \chi_{\mathbb{R}^{n} \backslash \bar{Q}_{j}}\right)(y) d y \leq \\
\sum_{j} \int_{Q_{j}}|f(x)| d x \frac{1}{\left|Q_{j}\right|} \int_{Q_{j}} M\left(w \chi_{\mathbb{R}^{n} \backslash Q_{j}}\right)(x) d x \leq \\
\sum_{j} \int_{Q_{j}}|f(x)| d x \inf _{Q_{j}} M\left(w \chi_{\mathbb{R}^{n} \backslash 2 Q_{j}}\right) \leq \sum_{j} \int_{Q_{j}}|f(x)| M\left(w \chi_{\mathbb{R}^{n} \backslash 2 Q_{j}}\right)(x) d x \leq \\
C \int_{\mathbb{R}^{n}}|f(y)| M w(y) d y
\end{gathered}
$$

Here we have used again that $M\left(\chi_{\mathbb{R}^{n} \backslash{ }_{2 Q}} \mu\right)(y) \approx M\left(\chi_{\mathbb{R}^{n}{ }_{2 Q}} \mu\right)(z)$ for each $y, z \in Q$.
This concludes the proof of the theorem since we always have that $M w(x) \leq$ $M_{A} w(x)$ for each Young function A and for each x.

Proof of Theorem 1.1:

Let us assume that $M^{[p]+1} w$ is finite almost everywhere, since otherwise (6) is trivial. Let A be the Young function

$$
A(t)=t \log ^{[p]}(1+t) .
$$

A simple computation shows that A satisfies condition (9), which is the hypothesis of Theorem 1.5. Then, Theorem 1.1 will follow if we prove the pointwise inequality

$$
\begin{equation*}
M_{A} w(x) \leq C M^{[p]+1} w(x) . \tag{27}
\end{equation*}
$$

Recall that M_{A} is defined by $M_{A} f(x)=\sup _{x \in Q}\|f\|_{A, Q}$, where

$$
\|f\|_{A, Q}=\inf \left\{\lambda>0: \frac{1}{|Q|} \int_{Q} A\left(\frac{|f(y)|}{\lambda}\right) d y \leq 1\right\} .
$$

Then, it is enough to prove that there is constant C such that for each cube Q

$$
\|f\|_{A, Q} \leq \frac{C}{|Q|} \int_{Q} M^{[p]} w(x) d x
$$

By assumption, the right hand side average is finite, and by homogeneity we can assume that is equal to one. Then, by the definition of Luxemburg norm we need to prove

$$
\frac{1}{|Q|} \int_{Q} A(w(y)) d y=\frac{1}{|Q|} \int_{Q} w(y) \log ^{[p]}(1+w(y)) d y \leq C .
$$

But this is a consequence of iterating the following inequality of E.M. Stein [7]

$$
\begin{equation*}
\int_{Q} w(y) \log ^{k}(1+w(y)) d y \leq C \int_{Q} M w(y) \log ^{k-1}(1+M w(y)) d y \tag{28}
\end{equation*}
$$

with $k=1,2,3, \cdots$.
To conclude the proof of the theorem, we are left with showing that for arbitrary $1<p<\infty$, the inequality

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}|T f(x)|^{p} w(x) d x \leq C \int_{\mathbb{R}^{n}}|f(x)|^{p} M^{[p]} w(x) d x \tag{29}
\end{equation*}
$$

is false in general. To prove this assertion we consider the Hilbert transform

$$
H f(x)=p v \int_{\mathbb{R}} \frac{f(y)}{x-y} d y
$$

Then, by duality (29) is equivalent to

$$
\begin{equation*}
\int_{\mathbb{R}}|H f(x)|^{p^{\prime}} M^{[p]} w(x)^{1-p^{\prime}} d x \leq C \int_{\mathbb{R}}|f(x)|^{p^{\prime}} w(x)^{1-p^{\prime}} d x . \tag{30}
\end{equation*}
$$

Let $f=w=\chi_{(-1,1)}$. A standard computation shows that

$$
M^{k} f(x) \approx \frac{\log ^{k-1}(1+|x|)}{|x|}, \quad|x| \geq e
$$

for each $k=1,2,3, \cdots$. Then, we have

$$
\begin{gathered}
\int_{\mathbb{R}}|H f(x)|^{p^{\prime}} M^{[p]} w(x)^{1-p^{\prime}} d x \geq C \int_{x>e}\left(\frac{1}{x}\right)^{p^{\prime}}\left(\frac{\log ^{[p]-1}(x)}{x}\right)^{1-p^{\prime}} d x \approx \\
\approx \int_{x>e} \log ^{([p]-1)\left(1-p^{\prime}\right)}(x) \frac{d x}{x}=\infty,
\end{gathered}
$$

since $([p]-1)\left(1-p^{\prime}\right)+1 \geq 0$. However, the right hand side of (30) equals $\int_{\mathbb{R}} f(y) d y=$ $2<\infty$.

Proof of Theorem 1.2:

As above, we shall assume that $M^{2} w$ is finite almost everywhere. For $0<\epsilon<1$ set as before $A_{\epsilon}(t)=t \log ^{\epsilon}(1+t)$. Then, the inequality

$$
\int_{Q} w(y) \log ^{\epsilon}(1+w(y)) d y \leq C \int_{Q} M w(y) d y
$$

whose proof is analogue to that of (28) using that the derivative of $A_{\epsilon}(t)$ is less than of $1 / t$, implies exactly as in the proof of Theorem 1.1 that

$$
M_{A_{\epsilon}} w(x) \leq C M^{2} w(x) .
$$

This concludes the proof of Theorem 1.2.

Proof of Theorem 1.4: By an standard argument, it is enough to show that there is a costant C such that

$$
\int_{\mathbb{R}^{n}}|T a(y)| w(y) d y \leq C
$$

for each $M w$-atom a. To prove this, suppose that $\operatorname{supp}(a) \subset Q$ for some cube Q. Then

$$
\int_{\mathbb{R}^{n}}|T a(y)| w(y) d y=\int_{3 Q}|T a(y)| w(y) d y+\int_{\mathbb{R}^{n} \backslash 3 Q}|T a(y)| w(y) d y=I+I I .
$$

Now, II is majorized, as in the proof of Theorem 1.6, by using Lemma 3.3, p. 413 of [5]

$$
I I \leq C \int_{\mathbb{R}^{n}}|a(y)| M w(y) d y \leq \frac{C}{M w(Q)} \int_{Q} M w(y) d y=C
$$

where C is independent of a.
Fir I we use the fact that any singular integral operator $T: L^{\infty}\left(Q, \frac{d x}{|Q|}\right) \rightarrow$ $L_{L_{\text {exp }}}\left(Q, \frac{d x}{|Q|}\right)$. Then

$$
I=|3 Q| \frac{1}{|3 Q|} \int_{3 Q}|T a(y)| w(y) d y \leq C|Q|\|T a\|_{L_{\text {exp }, 3 Q}}\|w\|_{L \log L, 3 Q} \leq
$$

$$
\leq C|Q|\|a\|_{\infty, 3 Q} \frac{1}{|3 Q|} \int_{3 Q} M w(y) d y \leq C
$$

by (28) and by the definition of $M w$-atom. This finishes the proof of Theorem 1.4.

We shall end this section by disproving inequality

$$
\begin{equation*}
w\left(\left\{y \in \mathbb{R}^{n}:|T f(y)|>\lambda\right\}\right) \leq \frac{C}{\lambda^{p}} \int_{\mathbb{R}^{n}}|f(y)|^{p} M^{[p]} w(y) d y \tag{31}
\end{equation*}
$$

from remark 1.3, whenever p is greater than one but not an integer.
Consider $T=H$ the Hilbert tranform as above. For $\lambda>0$, we let $f=\chi_{\left(1, e^{\lambda}\right)}$, and $w=\chi_{(0,1)}$. Then for $y \neq 1, e^{\lambda}$

$$
H f(y)=\log \left|\frac{y-1}{y-e^{\lambda}}\right| .
$$

When $y \in(0,1)$ we have

$$
|H f(y)|=|\log | \frac{y-1}{y-e^{\lambda}}| |=\log \frac{e^{\lambda}-y}{1-y}>\log e^{\lambda}=\lambda .
$$

Then, assuming that (31) holds for all λ we had

$$
\begin{gathered}
1=\int_{0}^{1} w(y) d y \leq w(\{y \in(0,1):|H f(y)|>\lambda\}) \leq \\
\leq \frac{C}{\lambda^{p}} \int_{\mathbb{R}}|f(y)|^{p} M^{[p]} w(y) d y=\frac{C}{\lambda^{p}} \int_{1}^{e^{\lambda}} M^{[p]} w(y) d y \approx \\
\approx \frac{1}{\lambda^{p}} \int_{1}^{e^{\lambda}} \log ^{[p]-1} w(y) d y \approx \lambda^{[p]-p} .
\end{gathered}
$$

By letting $\lambda \rightarrow \infty$ we see that this a contradiction when p is not an integer.
There is another argument due to S . Hofmann, and is as follows. Since p is not an integer we can find an small $\epsilon>0$ such that $[p]<p-\epsilon<p<p+\epsilon<[p]+1$. Then, (31) implies that M is at once of weak type ($p-\epsilon, p-\epsilon$) and ($p+\epsilon, p+\epsilon$) with respect to the weights $\left(w, M^{[p]} w\right)$. Then, by the Marcinkiewicz interpolation theorem M is of strong type (p, p) with respect to the weights $\left(w, M^{[p]} w\right)$. But this is a contradiction as shown in Theorem 1.1.

3 Calderón-Zygmund operators

In this section we shall state our main results for the more general CalderónZygmund operators.

We recall the definition of a Calderón-Zygmund operator in \mathbb{R}^{n}.
A kernel on $\mathbb{R}^{n} \times \mathbb{R}^{n}$ will be a locally integrable complex-valued fuction K, defined on $\Omega=\mathbb{R}^{n} \times \mathbb{R}^{n} \backslash$ diagonal. A kernel K on \mathbb{R}^{n} satisfies the standard estimates, if there exist $\delta>0$ and $C<\infty$ such that for all distinct $x, y \in \mathbb{R}^{n}$ and all z such that $|x-z|<|x-y| / 2$:
(i) $\quad|K(x, y)| \leq C|x-y|^{-n}$;
(ii) $\quad|K(x, y)-K(z, y)| \leq C\left(\frac{|x-z|}{|x-y|}\right)^{\delta}|x-y|^{-n}$;
(iii) $\quad|K(y, x)-K(y, z)| \leq C\left(\frac{|x-z|}{|x-y|}\right)^{\delta}|x-y|^{-n}$.

We say that a linear and continuous operator $T: C_{0}^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ is associated with a kernel K, if

$$
\langle T f, g\rangle=\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} K(x, y) g(x) f(y) d x d y
$$

whenever $f, g \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ with $\operatorname{supp}(f) \cap \operatorname{supp}(g)=\emptyset$.
We say that T is a Calderón-Zygmund operator if the associated kernel K satisfies the standard estimates, and if it extends to a bounded linear operator in $L^{2}\left(\mathbb{R}^{n}\right)$.

Theorem 3.1: Let $1<p<\infty$, and let T be a Calderón-Zygmund operator. Then, there exists a constant C such that for each weight w

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}|T f(y)|^{p} w(y) d y \leq C \int_{\mathbb{R}^{n}}|f(y)|^{p} M^{[p]+1} w(y) d y \tag{32}
\end{equation*}
$$

and there exists another constant C such that for all $\lambda>0$

$$
\begin{equation*}
w\left(\left\{y \in \mathbb{R}^{n}:|T f(y)|>\lambda\right\}\right) \leq \frac{C}{\lambda} \int_{\mathbb{R}^{n}}|f(y)| M^{2} w(y) d y \tag{33}
\end{equation*}
$$

The proof of Theorem 3.1 is essentially the same as Theorems 1.1 and 1.2 , after observing that the adjoint T^{*} of any Calderón-Zygmund operator T is also a Calderón-Zygmund operator with kernel $K^{*}(x, y)=K(y, x)$.

There are corresponding results to Theorems 1.2, 1.4, 1.5, and for 1.6 for any Calderón- Zygmund operator. We shall omit the obvious statements.

Acknowledgements. I am very grateful to Prof. M. Wilson for sending me a preprint of his work [8], and also to Prof. S. Hofmann for interesting conversations concerning Wilson's problem.

References

[1] S. Chanillo, R. L. Wheeden, Some weighted norm inequalities for the area integral, Indiana Univ. Math. J. 36 (1987), 277-294.
[2] R. Coifman, Distribution function inequalities for singular integrals, Proc. Acad. Sci. U.S.A. 69 (1972), 2838-2839.
[3] A. Córdoba and C. Fefferman, A weighted norm inequality for singular integrals, Studia Math. 57 (1976), 97-101.
[4] C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107-115.
[5] J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted norm inequalities and related topics, North Holland Math. Studies 116, North Holland, Amsterdam, (1985).
[6] C. Pérez, On sufficient conditions for the boundedness of the HardyLittlewood maximal operator between weighted L^{p}-spaces with different weights, preprint (1990).
[7] E. M. Stein, Note on the class L $\log L$, Studia Math. 32 (1969), 305-310.
[8] J. M. Wilson, Weighted norm inequalities for the continuos square functions, Trans. Amer. Math. Soc. 314 (1989), 661-692.

