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L. Bernal-González, M.C. Calderón-Moreno and J.A. Prado-Bassas

Abstract

In this paper, we show that for a wide class of operators T –including infi-

nite order differential operators, and multiplication and composition operators–

acting on the space H(D) of holomorphic functions in the unit disk D, we have

that most functions f ∈ H(D) enjoy the property that Tf has maximal radial

cluster set at any boundary point.
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1 Introduction and notation

Throughout this paper Z will stand for the set of all integers, N is the set of

positive integers, N0 := N ∪ {0} and C is the complex plane. As usual, B(a, r) will
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denote the euclidean open ball centered at the point a ∈ C with radius r > 0, and

D = B(0, 1) is the unit open disk and T the unit circle. If G ⊂ C is a complex domain

(:= connected, nonempty open subset of C) then ∂G will stand for its topological

boundary, while H(G) denotes the Fréchet space of holomorphic functions on G,

endowed with the topology of the local uniform convergence in G. In particular

H(G) is a Baire space. Let K(G) be the family of all compact subsets of G, K1(G)

be the family of compact subsets K of G such that no connected component of G\K
is relatively compact in G, and K2(G) be the family of compact subsets K of G

such that C \K is connected. It holds that K2(G) ⊂ K1(G) ⊂ K(G) and that each

K ∈ K(G) is contained in some L ∈ K1(G) (see [9]).

The essential background on cluster sets can be found in [8]. Let us recall some

notions. Let G be a domain of C, F : G→ C be a function and A be a subset of G.

The cluster set of F along A is the set

CA(F ) = {w ∈ C : there exists a sequence {zn}∞n=1 ⊂ A tending to

some point of ∂G such that limn→∞ F (zn) = w}.

Moreover, if t0 ∈ ∂G, then the cluster set of F along A at t0 is the set

CA(F, t0) = {w ∈ C : there exists a sequence {zn}∞n=1 ⊂ A tending to t0

such that limn→∞ F (zn) = w}.

It is clear that both CA(F ) and CA(F, t0) are closed subsets of C and that CA(F ) =⋃
t0∈∂G

CA(F, t0). If A = G then the subscript “A” and the expression “along A” are

usually omitted. A special important case occurs when G = D, t0 ∈ T and A is the

radius A := {ut0 : u ∈ [0, 1)}; then we can define the radial cluster set as the set

C%(F, t0) := CA(F ) = CA(F, t0).

It is an interesting problem to get a holomorphic function with maximal cluster

sets, that is, equal to C. Given a complex domain G, a sequence (an)n ⊂ G without

limit points in G and a complex sequence (wn)n, then an interpolation theorem due

to Weierstrass (see [14, Theorem 15.13]) provides a function f ∈ H(G) such that

f(an) = wn (n ∈ N). By choosing as (wn)n an enumeration of the set Q[i] := Q + iQ
of rational complex numbers, a function f ∈ H(G) with maximal cluster set along

(an)n is obtained. Several authors have shown (see for instance [12], [13], [2]) that
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there is a residual set (:= a set with complement of first Baire category) of functions

f ∈ H(G) such that for each j ∈ Z, C(f (j), t) = C for all t ∈ ∂G (f (j) is the derivative

of order j of f if j ≥ 0; if G is simply connected and j < 0, then f (−j) denotes any fixed

antiderivative of order −j of f in G), while in [3] the first author proves that for each

non-relatively compact subset A of G the set {f ∈ H(G) : CA(f (j)) = C for all j ≥ 0}
is also residual. In particular, if G = D and t0 ∈ T is prefixed, then we obtain the

existence of a residual set of functions with maximal radial cluster set at one prefixed

point t ∈ ∂G is provided. By using Baire’s theorem, it can be also obtained a residual

set of functions f ∈ H(D) such that C%(f
(j), t) = C for all j ≥ 0 and all t belonging to

a prefixed dense countable subset of T, while Tenthoff [16] provides a dense subset M

of H(D) such that C%(f
(j), t) = C for all j ≥ 0, all f ∈ M and all t ∈ T. This result

can be also obtained as a consequence of [7, Theorem 5] if one takes into account that

the polynomials are dense in H(D). Finally, in [6], it is shown, as a special instance

of [6, Theorem 2.1], that there is a dense linear manifold of functions with maximal

radial cluster sets at any point of T. In addition, it is observed in [6, Section 3] that,

as a consequence of Collingwood’s maximality theorem, there is a residual subset of

functions f ∈ H(D) satisfying that C%(f, t0) is maximal for all t0 belonging to some

residual subset of T depending on f . In view of these results, the next question arises:

Does a residual set M ⊂ H(D) exist such that C%(f, t) = C for all function

f ∈M and all boundary point t ∈ T?

In this paper we are concerned with looking for operators T acting on H(D)

for which there exists a residual set of functions whose images under T have maxi-

mal radial cluster sets at any boundary point t ∈ T. Examples of such operators

–including infinite order differential operators, multiplication operators and compo-

sition operators– are furnished. The identity operator T = Id will be one of the

operators having the mentioned maximality property, so answering the above pro-

posed question extensively.
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2 Operators generating maximal radial cluster sets

In this section we are going to state our main result about maximality of radial

cluster sets. However, a more general situation can be studied by replacing each

function f ∈ H(D) to the action Tf of an operator T : H(D) → H(D) on f . But

before this we need some preliminar definitions, both of which were similarly stated

in [5], see also [4]. By an operator on H(G) we mean a continuous (not necessarily

linear) selfmapping T : H(G) → H(G), where G is a domain of C.

Definition 2.1. LetG ⊂ C be a complex domain and T : H(G) → H(G) an operator.

We say that T is locally stable near the boundary if for each K ∈ K(G) there exists

a compact subset M ∈ K(G) such that for each compact subset L ∈ K2(G) with

L ⊂ G \M , each function f ∈ H(G) and each positive number ε > 0, there exist a

compact subset L′ ∈ K2(G) with L′ ⊂ G \K and a positive number δ > 0 such that

[g ∈ H(G) and ‖f − g‖L′ < δ] implies ‖Tf − Tg‖L < ε.

Definition 2.2. Let G ⊂ C be a complex domain, T : H(G) → H(G) an operator

and A ⊂ H(G). We say that T has locally dense range at A near the boundary if

there exists a compact subset S ∈ K(G), such that for each f ∈ A, each compact

subset L ∈ K2(G) with L ⊂ G\S and each positive number ε > 0, there is a function

F ∈ H(G) such that ‖TF − f‖L < ε.

Of course, if the set A is contained in the range of an operator T on H(G), then T

has dense range at A. In particular, if T has dense range (that is, at A = H(G)) then

T has locally dense range at H(G). Examples of these situations will be found later.

We are now ready to state our main theorem. For the sake of simplicity, we delete

the sentence “near the boundary” in the notions defined in the last two definitions.

Theorem 2.1. Let G ⊂ C be a domain and {Aα}α∈I and {Bβ}β∈J be two families of

subsets of G satisfying the following properties:

(a) For every α ∈ I, the set Aα is relatively compact in G.
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(b) For every K ∈ K(G) there exist α ∈ I and L ∈ K2(G) such that Aα ⊂ L ⊂
G \K.

(c) For all α ∈ I and all β ∈ J , Aα ∩Bβ 6= ∅.

Let T : H(G) → H(G) be a continuous operator satisfying the next two properties:

(P) T is locally stable.

(Q) T has locally dense range at the constant functions.

Then the set M := {f ∈ H(G) : Tf(Bβ) = C for all β ∈ J} is residual in H(G).

Proof. Let (qk)k be an enumeration of Q[i] such that each number in Q[i] occurs

infinitely many times in the sequence. Since Q[i] is dense in C, the family {Vk : k ∈ N}
is an open basis for the topology of C, where Vk := B(qk, 1/k). Due to (c), we

can select a point zαβ ∈ Aα ∩ Bβ for every pair (α, β) ∈ I × J . Then, trivially,

Cα := {zαβ : β ∈ J} ⊂ Aα (α ∈ I) and {zαβ : α ∈ I} ⊂ Bβ (β ∈ J). Let us denote

by δa the point evaluation functional

δa : f ∈ H(G) 7→ f(a) ∈ C,

which is linear and continuous.

From the definition of M , we observe that M ⊃M1, where

M1 :=
⋂
k∈N

Sk

and

Sk :=
⋃
α∈I

⋂
β∈J

(δzαβ
◦ T )−1(Vk) (k ∈ N).

The point is the trivial inclusion
⋂
β∈J

⋃
α∈I

Dαβ ⊃
⋃
α∈I

⋂
β∈J

Dαβ, which is true for any

family {Dαβ : α ∈ I, β ∈ J} of sets.
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Firstly, we will prove that every Sk is an open subset ofH(G). For this, it is enough

to show that for a fixed α ∈ I, the intersection
⋂
β∈J

(δzαβ
◦T )−1(V ) is an open subset of

H(G) for each open complex subset V ⊂ C. This, in turn, is fulfilled as soon as one

proves the equicontinuity of the family {δz ◦ T : z ∈ Cα}(= {δzαβ
◦ T : β ∈ J}) (see

[15]). Indeed, given ε > 0 then, evidently, |(δz ◦ T )(f)| = |Tf(z)| < ε for all z ∈ Cα

and all function f belonging to the 0-neighborhood U := {f ∈ H(G) : ‖Tf‖Cα
< ε});

note that U is certainly a 0-neighborhood because T is continuous and, by (a), the set

Aα (so Cα) is relatively compact in G; this shows the equicontinuity of {δz : z ∈ Cα}.
Thus, the Sk’s (k ∈ N) are open and M1 is a Gδ-subset.

Consequently, since H(G) is a Baire space, it suffices to demonstrate that every

fixed Sk is dense in H(G). Fix a positive number η > 0, a function g ∈ H(G) and

a compact subset K ∈ K1(G). Because of the family {D(g,K, η) : g ∈ H(G), K ∈
K1(G) and η > 0} (where D(g,K, η) := {h ∈ H(G) : ‖h − g‖K < η}) is an open

basis for the topology of H(G), our goal is to see that

Sk ∩D(g,K, η) 6= ∅. (1)

Fix then k ∈ N, g ∈ H(G), K ∈ K1(G) and η > 0, and let M be the compact

subset of G given by the local stability of T when applied on the compact set K.

Due to (b) and the fact that Cα ⊂ Aα (α ∈ I) we can find an element α ∈ I and a

compact set L ∈ K2(G) for which Cα ⊂ L ⊂ G \ (M ∪ S), where S ∈ K(G) is the

compact set given by (Q). On the other hand, since L ⊂ G \ S, we can find for each

k ∈ N a function Fk ∈ H(G) such that

‖TFk − qk‖L < 1/2k. (2)

Since L ⊂ G \M , there exist from (P) a compact set L′ ∈ K2(G) with L′ ⊂ G \K
and a positive number δk > 0 such that

[h ∈ H(G) and ‖Fk − h‖L′ < δk] implies ‖TFk − Th‖L < 1/2k. (3)
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By construction, L′ ∩ K = ∅, so we may choose open subsets O1, O2 of G with

O1 ∩ O2 = ∅, K ⊂ O1 and L′ ⊂ O2. Consider the sets E := L′ ∪K ∈ K1(G) (this

fact is crucial, and it is true because K ∈ K1(G) and L′ ∈ K2(G)) and O := O1 ∪O2,

and the function F : O → C defined as

F (z) :=

{
g(z) if z ∈ O1

Fk(z) if z ∈ O2.

It is clear that F ∈ H(O) and that E ⊂ O. Consequently, Runge’s approximation

theorem [14, Chapter 13] guarantees the existence of a rational function h(z) with

poles outside G (so h ∈ H(G)) such that ‖F − h‖E < min{η, δk}. In particular, we

obtain ‖g − h‖K ≤ ‖F − h‖E < η, so h ∈ D(g,K, η).

On the other hand, ‖Fk − h‖L′ ≤ ‖F − h‖E < δk; whence, by (3), we get ‖TFk −
Th‖L < 1/2k, and by (2) and the triangle inequality one obtains ‖Th− qk‖L < 1/k.

But this implies |Th(zαβ) − qk| < 1/k for all β ∈ J because Cα ⊂ L. Therefore

h ∈
⋂
β∈J

(δzαβ
◦ T )−1(Vk), so h ∈ Sk. Consequently, h ∈ D(g,K, ε) ∩ Sk and (1) is

satisfied.

As a consequence of this theorem, we get our desired result about radial cluster sets

via operators. Of course, the identity operator Id satisfies (P) and (Q), so the next

statement applies on Id, so solving the original problem proposed in the Introduction.

Theorem 2.2. Let T be a continuous operator on H(D) satisfying properties (P) and

(Q) of Theorem 2.1. Then there exists a residual set of functions f ∈ H(D) such that

C%(Tf, t) = C for all t ∈ T.

Proof. Firstly we define

ant :=

{ (
1− 1

2n

)
t if =(t) ≥ 0(

1− 1
2n+1

)
t if =(t) < 0,

where =(z) denotes the imaginary part of the complex number z ∈ C.
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Choose now I := N, J := T, G := D, An := {ant : t ∈ T} (n ∈ N) and

Bt := {ant : n ∈ N} (t ∈ T). Then it is easy to see that the families {An}n∈N and

{Bt}t∈T satisfy the hypothesis of Theorem 2.1. Hence the set

M := {f ∈ H(D) : {Tf(an,t) : n ∈ N} = C for all t ∈ T}

is residual in H(D). Since anjt → t (j → ∞) for all t ∈ T and all subsequence

(nj)j ⊂ N, the residuality of M implies the residuality of the greater set {f ∈ H(D) :

C%(Tf, t) = C for all t ∈ T}.

In view of this result, from now on we will use the next definition.

Definition 2.3. Let T be a continuous operator on H(D). We say that T has the

maximal radial cluster set property (MRCS-property) if the set

M%(T ) := {f ∈ H(D) : C%(Tf, t) = C for all t ∈ T}

is residual in H(D).

Under this new notation, we have shown that an operator on H(D) satisfying

conditions (P) and (Q) has the MRCS-property.

Remark 2.3. Obviously, we always can extend Theorem 2.2 to any open ball or even

to any starlike domain. But even in the unit disk we can change radii by the family of

all rotations of any continuous curve γ in D ending at 1 and we still have this chaotic

boundary behavior under the action of an operator T satisfying (P) and(Q).

Let us give a first example of operators under whose action this behavior is in-

duced. If Φ(z) =
∑

k≥0 φkz
k is an entire function of subexponential type, that is,

for all number ε > 0 there is a constant A = A(ε) > 0 such that |Φ(z)| ≤ Aeε|z|,

or equivalently, limk→∞(k!|φk|)1/k = 0, then Φ(D) :=
∑

k≥0 φkD
k defines an linear

continuous operator on H(D) (actually on H(G) with G any domain in C) called in-

finite order differential operator, where D denotes de differential operator and D0 :=

the identity operator. Using Cauchy estimates, it is easy to check that if Φ 6≡ 0
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then Φ(D) is locally stable (in fact, we can take M = K in Definition 2.1 and L′

may be a compact set slightly grater than L) and obviously its range contains the

constant functions. Hence every non-zero infinite order differential operator has the

MRCS-property.

In particular, if for each j ≥ 0 we take Φ(z) := zj then we get that the differential

operator of order j > 0 (the identity operator if j = 0) has this property and, since a

countable intersection of residual sets is again residual, we obtain the next corollary,

that generalizes the result of Tenthoff [16] stated in the first section.

Corollary 2.4. The set {f ∈ H(D) : C%(f
(j), t) = C for all j ≥ 0 and all t ∈ T} is

residual in H(D).

Remark 2.5. Due to Fatou’s theorem on radial limits (see [10]) we cannot expect to

get functions in the Hardy space Hp with maximal radial cluster set at any boundary

point.

Observe that the antiderivative operator of order j ∈ N at a ∈ D, namely D−j
a f :=

the unique function g ∈ H(D) such that Djg = f and Dkg(a) = 0 (0 ≤ k < j), is not

locally stable, so we cannot apply Theorem 2.2. Hence, we propose the next problem:

Is the set

{f ∈ H(D) : C%(f
(j), t) = C for all j ∈ Z and all t ∈ T}

residual in H(D)?

Of course, the problem may be formulated more generally by replacing the anti-

derivatives to an integral operator T given by Tf(z) =
∫ z

a
ϕ(z, t)f(t)dt (f ∈ H(D),

z ∈ D), where ϕ satisfies adequate conditions.

3 Further examples

It is interesting to construct operators with the MRCS-property from others which

enjoy this property. In the case of algebraic operations made on an operator T
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with the MRCS-property, we should “control” the boundary radial behavior of the

“perturbating” operator. We joint together in the next theorem the main three

operations: sum, product and composition. A nice result on large linear submanifolds

is established in the last part of the assertion.

Theorem 3.1. (a) Let T, S : H(D) → H(D) be operators such that T has the

MRCS-property. We have:

(i) If for every f ∈ H(D) and every t ∈ T there exists lim
r→1−

(Sf)(rt) ∈ C, then

T + S has the MRCS-property.

(ii) If for every f ∈ H(D) and every t ∈ T there exists lim
r→1−

(Sf)(rt) ∈ C\{0},
then T · S has the MRCS-property.

(iii) If S is linear and onto then T ◦ S has the MRCS-property.

(b) Every onto linear operator S has the MRCS-property. Moreover, there is a

dense linear submanifold M ⊂ H(D) such that M \ {0} ⊂ M%(S).

Proof. Parts (i) and (ii) of (a) are very easy, so their proof is omitted. As for (iii), we

should show thatM%(T ◦S) is residual. For this, note thatM%(T ◦S) = S−1(M%(T )).

Since M%(T ) is residual, there are countably many dense open subsets Wn ⊂ H(D)

(n ∈ N) with M%(T ) ⊃
∞⋂
n=1

Wn. From the continuity of S it is derived that each

set S−1(Wn) is open. We have that M%(T ◦ S) ⊃
∞⋂
n=1

S−1(Wn), so it is enough to

prove that each set S−1(Wn) is dense. This is true because the image under S of an

open subset is again an open subset, which in turn follows from the Open Mapping

Theorem (see [15]) since S is linear and onto and H(D) is an F-space.

(b) That S has the MRCS-property follows from (iii) just by taking T = Id. As a

consequence of [6, Theorem 2.1] (see Section 1), there is a dense linear manifold M1 ⊂
H(D) with M1 \ {0} ⊂ M%(Id). Therefore M \ {0} ⊂ M%(S), where M := S−1(M1),

because M%(S) = S−1(M%(Id)). Since S is linear, M is a linear submanifold of

H(D). Finally M is dense because M1 is dense and S is an open mapping.
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We next consider the multiplication operator

Mψ : f ∈ H(D) 7→ ψ · f ∈ H(D),

where ψ ∈ H(D). The set Z(ψ) of zeros of ψ plays an important role in determining

whether Mψ has the MRCS-property.

Theorem 3.2. If ψ ∈ H(D) and Z(ψ) is finite then the operator Mψ has the MRCS-

property.

Proof. Since ψ is continuous we have that it is bounded on any compact subset of D,

from which one easily derives that Mψ is locally stable. According to Theorem 2.2, it

is suffices to show that Mψ has locally dense range at the constants. In order to see

this, let us set S := Z(ψ) –which is finite, so compact– and take a constant α ∈ C
together with a compact set L ∈ K2(D) with L ⊂ D \ S, and a number ε > 0. By

Runge’s theorem, there is a polynomial F (so F ∈ H(D)) such that∣∣∣∣F (z)− α

ψ(z)

∣∣∣∣ < ε

max
L
|ψ|

for all z ∈ L.

But this implies ‖MψF − α‖L < ε, which tells us that Mψ has locally dense range at

the constants.

Observe that if Z(ψ) is not finite then Mψ has never locally dense range at the

constants (take L = {a} with a ∈ Z(ψ)\S, where S is as in Definition 2.1). Therefore

it is not possible to apply Theorem 2.2. But this not implies that Mψ has not the

MRCS-property, as one can see from the next example.

Example 3.1. There is a function ψ ∈ H(D) with infinitely many zeros in D such

that there exists

L(θ) := lim
r→1−

ψ(reiθ) ∈ ∂D for all θ ∈ [0, 2π]. (4)

Then, trivially, M%(Id) = M%(Mψ), so M%(Mψ) is residual and Mψ has the MRCS-

property. According to Frostman [11] (see also [1, Theorem 1]), if θ ∈ [0, 2π] and

11



(ak)k is a sequence of distinct points in D \ {0} such that

∞∑
k=1

1− |ak|
|eiθ − ak|

<∞ (5)

then the corresponding Blaschke product

ψ(z) :=
∞∏
k=1

ak
ak

ak − z

1− akz
(z ∈ D)

–which is in H(D) and has infinitely many zeros– satisfies that there exists its radial

limit L(θ) ∈ ∂D. Therefore, in order that (4) can be fulfilled, it is enough to find

a sequence ak as before such that (5) holds for all θ ∈ [0, 2π]. For this, choose

ak := 1
2
(1 + ei/k

2
) (k ∈ N). This is a “good” sequence if one takes into account that

after a computation of two finite Taylor expansions it is seen that 1−|1
2
(1−eit)| ≈ t2/8

and |1− eit| ≈ t as t→ 0. The last approximation covers the “worst” case θ = 0. As

for θ 6= 0, the elementary geometrical inequality |eiθ − 1
2
(1 + ei/k

2
)| > | sin θ

2
| for all

k ≥ k0(θ) ∈ N (use that (1/2)(1 + ei/k
2
) tends to 1) solves the problem.

Note that the zeros of ψ in he last example have tangencial approximation to the

boundary. Hence, the following natural question arises:

Is there any function ψ with infinitely many zeros on a prescribed radius

such that Mψ has the MRCS-property?

Now we deal with composition and superposition operators. Given ϕ ∈ H(D,D) :=

{g ∈ H(D) : g(D) ⊂ D} we define the (right) composition operator Cϕ as

Cϕ : f ∈ H(D) 7→ f ◦ ϕ ∈ H(D).

Let us remember that an application ψ : X → X on a topological space X is said to

be proper when the preimage of every compact is also compact. With this definition

we can state suitably our result about composition operator.

Theorem 3.3. If ϕ ∈ H(D) is proper, then Cϕ has the MRCS-property.
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Proof. The result follows immediately from Theorem 2.2 because if ϕ is proper, it is

easy to check that Cϕ is locally stable, and it is obvious that all constants are in the

range of Cϕ.

In particular, the rotation operator Rα : f(z) ∈ H(D) 7→ f(eiαz) ∈ H(D) and

in general the composition operator generated by an automorphism of D have the

MRCS-property.

Finally we consider the superposition (or left composition) operators. If ϕ is an

entire function, the superposition operator Lϕ : H(D) → H(D) is defined as

Lϕ(f) = ϕ ◦ f.

In this case we only have to suppose that ϕ is non constant to get a complete cha-

racterization, which ends this paper.

Theorem 3.4. Let ϕ be an entire function. Then the superposition operator Lϕ

generated by ϕ has the MRCS-property if and only if ϕ is non constant.

Proof. Using the little Picard theorem (see [15]) it is easy to check that Lϕ has locally

dense range at the constants. Moreover, Lϕ is locally stable since it is continuous on

H(D). Hence by Theorem 2.2 the operator Lϕ has the MRCS-property. On the other

hand, it is trivial that if ϕ is constant then all cluster sets are constant, so Lϕ has

not the MRCS-property.

Acknowledgement. The authors are grateful to D. Vukotić and M. J. Mart́ın-Gómez

for their helpful comments about Blaschke products in Example 3.1.
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