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Requisitos para la Mención
Internacional en el T́ıtulo de Doctor

La memoria de tesis doctoral que presentamos cumple los siguientes requisitos para la optar
a la Mención Internacional en el Tı́tulo de Doctor:

• Durante el peŕıodo de investigación del Doctorado, el doctorando ha realizado una estancia
de investigación de tres meses fuera de España en una institución de enseñanza superior
o centro de investigación de prestigio realizando trabajos de investigación directamente
relacionados con su tesis. En concreto, entre el 25 de septiembre y el 23 de diciembre de
2011 fue estudiante de doctorado visitante en el grupo de investigación Kvantinformation
& Kvantoptik (KIKO), de la Stockholms Universitet, dirigido por el Prof. Dr. Mohamed
Bourennane y bajo la supervisión directa del mismo.

• Parte de la tesis doctoral, al menos el resumen y las conclusiones, se ha redactado en una
de las lenguas habituales para la comunicación cient́ıfica en su campo de conocimiento,
distinta a cualquiera de las lenguas oficiales en España (en inglés). La disertación en
defensa de la tesis, igualmente, será realizada parcial o totalmente en inglés.

• La tesis ha sido informada por un mı́nimo de dos expertos pertenecientes a alguna insti-
tución de educación superior o instituto de investigación no español. Han emitido informe
positivo acerca de la tesis doctoral y en apoyo de la Mención Internacional los profesores

– Dr. Jan-Åke Larsson, de la Linköpings Universitet, Suecia.

– Dr. Marcelo Terra-Cunha, de la Universidade Federal de Minas Gerais, Brasil.

• Formará parte del tribunal evaluador de la tesis al menos un experto con t́ıtulo de Doctor
perteneciente a alguna institución de educación superior o instituto de investigación no
español. Ha confirmado su participación el Prof. Dr. Otfried Gühne, de la Universität
Siegen, Alemania.
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La tesis que hoy concluyo con estas ĺıneas, cierra una historia que comenzó... con otra tesis
doctoral, allá por los primeros años 90 del siglo pasado, siendo yo otro yo, mucho más joven. Tras
los cursos de doctorado, aquella tesis, de temática y naturaleza bien diferentes a ésta, quedó
abruptamente interrumpida —y finalmente abandonada— antes de tomar cuerpo y densidad
por la inesperada visita de la enfermedad, que me obligó a replantearme mis prioridades. Hoy,
dos décadas más tarde, más viejo y experimentado aunque no sé si más sabio, tras un feliz
matrimonio, dos hijos, dolorosas desapariciones de familiares y amigos queridos, concursos y
oposiciones, innumerables horas de trabajo como docente, miles de alumnos, el desempeño de
un cargo académico en la universidad, cumplimiento de fechas, presión y estrés, reconocimientos
y sinsabores, azares y vicisitudes, luces y sombras, cierro una etapa y conf́ıo en abrir otra, no
necesariamente mejor, pero quizá más plena y más tranquila.

Es momento de mirar atrás con agradecimiento, y tener un recuerdo para aquellas personas
que han ayudado en el último lustro, a veces sin saberlo, a que esta tesis haya pasado de ser una
entelequia a materializarse por fin, tras un considerable esfuerzo de comprensión y compresión
(más si cabe en alguien tan proclive como el que escribe a dejarse llevar por el freneśı del verbo),
en una memoria de poco más de doscientas páginas que encierran muchos sacrificios. Sin la
influencia, consejo y apoyo expĺıcitos o impĺıcitos de esas personas, el producto final habŕıa sido
bien distinto, a buen seguro peor: cualquier demérito que aun aśı persista en esta memoria es
enteramente achacable al autor, y no a sus supervisores, colaboradores, compañeros, familiares
y amigos. Cualquier relación de éstos a buen seguro pecará de incompleta, por lo que de entrada
pido disculpas si alguien se siente postergado u olvidado, esperando con ello que sea indulgente
y no me lo tenga en cuenta.

La génesis, desarrollo y materialización de este trabajo de investigación no hubieran sido
posibles sin el est́ımulo de mi director de tesis, compañero y amigo, Adán Cabello Quintero. Soy
consciente de que yo, ya entrado en la cuarentena, algo oxidado, con obligaciones académicas
y familiares sin cuento y con muy poco tiempo disponible, no encajaba en el modelo ideal
de estudiante de doctorado full-time recién licenciado que Adán teńıa en mente cuando me
propuso el reto (“Un estudiante de doctorado debe trabajar 24 horas al d́ıa... Y si no es
suficiente, debe trabajar también de noche”, Asher Peres. Mensaje enviado por Adán por
correo-e o por Skype..., varias veces en cinco años). Le debo gratitud por atreverse, asumir el
riesgo y tener paciencia con mis otras obligaciones. Su pasión y entusiasmo contagiosos por la
Mecánica Cuántica, sus misterios, perplejidades y sorpresas, que me ha transmitido a través de
jugosas discusiones cuyo tiempo hemos robado al poco del que ya dispońıamos, han hecho posible
culminar la empresa. Hacerme part́ıcipe de sus hallazgos y avances en sus trabajos en solitario
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o con otros autores, permitiéndome intervenir en numerosas discusiones aportando mi punto de
vista, ha sido un regalo enormemente enriquecedor, que de paso me ha brindado la posibilidad
de conocer e interaccionar con algunos de los investigadores más destacados en nuestro campo
de estudio. Recuerdo en particular, con especial afecto, al Dr. Fabio Sciarrino, de la Universitá
di Roma La Sapienza, a quien Adán me presentó en la XXXIII Bienal de la RSEF en Santander,
en septiembre de 2011, con quien mantuve cordiales e interesantes conversaciones, y que me
dio buenos consejos ante mi inminente marcha a Estocolmo. Precisamente, la oportunidad
de realizar una estancia de investigación en Estocolmo se concretó gracias a Adán, merced a
sus contactos y su implicación personal en las gestiones. Otra ocasión singular que se hizo
realidad gracias a Adán fue la asistencia al FQXi Workshop on Quantum Contextuality and
Sequential Measurements, celebrado en Sevilla en noviembre de 2013. Alĺı Adán me presentó
a investigadores a quienes admiraba por sus trabajos pero a los que no conoćıa personalmente:
Marek Żukowski, Karl Svozil, Otfried Gühne, Jan-Åke larsson, Matthias Kleinmann, Dagomir
Kaszlikowski, Pawel Kurzyński, Mateus Araújo, entre otros. Todo un privilegio.

Espero, en el balance final, no haberle defraudado en exceso. Yo finalizo mi viaje enriquecido
por tantas memorables experiencias. Por todo ello y mucho más, gracias de nuevo, Adán.

Quiero manifestar mi agradecimiento a los miembros del Departamento de F́ısica Atómica,
Molecular y Nuclear de la Facultad de F́ısica de la Universidad de Sevilla, tanto a su personal
docente como de administración y servicios, porque durante el tiempo que compart́ı con ellos
en una primera etapa hace años (aquel remoto proyecto de tesis...), y recientemente en este
último quinquenio de reencuentro, siempre me han dispensado una cordial acogida. Quiero en
particular agradecer su disponibilidad, su atención y su tiempo a José Miguel Arias Carrasco,
Director del Departamento, y a Joaqúın José Gómez Camacho, mi tutor en el programa de
doctorado de F́ısica Nuclear, ambos con una agenda muy apretada en la que siempre han hecho
hueco generosamente cuando he necesitado su consejo y apoyo. Tengo un recuerdo agradecido
también para Miguel Ángel Respaldiza Galisteo, que pudo ser mi director de tesis si la rueda
de la fortuna hubiese girado de otra forma, y que presidió en diciembre de 2009 el tribunal
evaluador de mi Diploma de Estudios Avanzados en F́ısica Nuclear. Y cómo no, a Pepe Dı́az,
siempre tan servicial, por su ayuda en el laboratorio hace años, y por su interés en cómo me han
ido yendo las cosas últimamente.

Las fruct́ıferas conversaciones e intercambios “e-epistolares” (por correo-e) con mis cola-
boradores en trabajos de investigación, cuyas coordenadas mentales tanto difieren en algunos
aspectos de las mı́as para beneficio de todos, me han hecho ponerme al d́ıa, reciclarme, mo-
tivarme, mejorar, profundizar..., ¡y divertirme! Quiero recordar aqúı con cariño innumerables
charlas mantenidas a lo largo de cuatro años con Pilar Moreno Mart́ın, compañera de doctorado
en el Grupo de Investigación de Fundamentos de Mecánica Cuántica, en las que compartimos
no sólo lo meramente cient́ıfico, sino también inquietudes en un terreno más personal, aqúı en
Sevilla, en Ciudad Real y en Roma. Vaivenes de la vida tras la defensa de su tesis doctoral
han hecho que perdamos el contacto: le deseo lo mejor en sus aspiraciones de futuro. Con Lars
Eirik Danielsen, de la Universidad de Bergen (Noruega), que trabaja ahora en el ámbito pri-
vado, he mantenido contacto a distancia: ha sido un admirable colaborador, eficaz y brillante,
un auténtico especialista, de trato cordial y educado por escrito, y jucio certero. Para mı́ ha
sido un auténtico privilegio trabajar con él. En cuanto a José Ramón Portillo Fernández, “José-
Ra”, nuestro matemático residente, especialista en Matemática Discreta y Teoŕıa de Grafos, qué
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puedo decir: me he sentido en todos estos años muy identificado con su manera altamente crea-
tiva de abordar los problemas, dosificando adecuadamente orden y caos, todo ello con un fino e
irónico sentido del humor, con el que simpatizo visceralmente. Guardo gran cantidad de correos-
e que atestiguan la buena sintońıa y la sinergia positiva de nuestra colaboración, de la que yo a
buen seguro he obtenido más de lo que haya podido aportarle. Le agradezco especialmente su
apoyo y comprensión en los momentos grises que, como toda empresa de largo recorrido, tiene la
realización de una tesis doctoral. Gracias, amigo José-Ra, por el ánimo constante y el optimismo
militante. Un apartado especial merece también Carmen Santana, quien desinteresadamente,
pues es completamente ajena a nuestro campo de investigación —aunque por motivos persona-
les lo sigue de cerca—, tuvo a bien prestarnos ayuda gráfica en uno de nuestros art́ıculos: a su
experta mano con las herramientas de diseño gráfico debemos las figuras 4.1 y 4.2 de esta tesis
doctoral, por las cuales le estamos enormemente agradecidos (de la calidad de su trabajo da fe
el que la segunda de ellas acabó siendo figura de portada del volumen 45, número 28, de 20 de
julio de 2012 en la revista Journal of Physics A: Mathematical and Theoretical).

Entre el 25 de septiembre y el 23 de diciembre de 2011 realicé una estancia de investigación
de tres meses como estudiante de doctorado visitante en el grupo de investigación Kvantinfor-
mation & Kvantoptik (KIKO), de la Stockholms Universitet, dirigido por el Prof. Dr. Mohamed
Bourennane, bajo la directa supervisión de éste y de Adán Cabello. Dicha estancia, a la que
tanto debe la primera parte de esta tesis doctoral (la última, cronológicamente), fue una expe-
riencia irrepetible. Separarme tres meses de mi familia, con mis hijos en una edad cŕıtica en
que necesitaban a su padre cerca (aunque Skype haga milagros) fue una apuesta importante,
en que mi mujer jugó un papel esencial, al darme la tranquilidad necesaria para poder marchar
a Estocolmo sin inquietudes. Desde el d́ıa de mi llegada, el Prof. Bourennane fue simplemente
Mohamed, un supervisor cercano, cordial, amigable y divertido al par que duro y exigente, que
me hizo fácil la estancia: se puso completamente a mi disposición aquel primer lunes en el Al-
baNova Universitetscentrum, me presentó uno por uno a todos los miembros del grupo, y no
cejó hasta que quedé perfectamente equipado, conectado e instalado en mi silla en el extremo
izquierdo de la mesa corrida de la sala A3001, la de los PhD students, en la tercera planta del
edificio, a un tiro de piedra de su despacho. Estoy en deuda de gratitud con el Prof. Bourennane
por su inestimable apoyo y consejo, y por las numerosas discusiones sobre la Mecánica Cuántica,
sus fundamentos y aplicaciones, tanto en los muchos almuerzos compartidos con Adán Cabello
y con él en Le Due Fratelli o en el comedor del AlbaNova, como en los encuentros en el acoge-
dor seminario con cristalera orientada al oeste, mirando al lago Brunnsviken. En una de esas
ocasiones, por mediación de Adán, conoćı a Piotr Badzia̧g, y disfruté viéndoles a él, a Adán y
Mohamed discutir, discrepar y debatir los pormenores de un art́ıculo en ciernes, que a la postre
acabaŕıa presentando las tres desigualdades pentagonales de Bell. Tres temperamentos fuertes,
y toda una experiencia.

Quiero dejar constancia de mi agradecimiento a todos los miembros del grupo del Prof.
Bourennane, en especial a Hannes Hübel e Isabel Herbauts, que me obsequiaron con su agradable
compañ́ıa y cálida conversación en el almuerzo del primer d́ıa y en muchas otras ocasiones, y
se interesaron por mi situación en Estocolmo, solventando mis dudas y brindándome su tiempo
cuando necesité ayuda con trámites o con problemas informáticos de diversa ı́ndole. También
a Elias Amselem, brillante investigador, estupendo compañero, agradable y gran conversador,
con quien mantuve cordial relación desde el primer momento. Lo mismo puedo decir de Kate
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Blanchfield y Johan Ahrens, y por idénticas razones. Alley Hameedi y Muhamad Sadiq me
depararon buenos ratos de camaradeŕıa: paciente y amablemente, tuvieron a bien enseñarme el
laboratorio y mostrarme en detalle los experimentos que estaban llevando a cabo, y fueron muy
cordiales y entrañables el d́ıa de mi vuelta a casa. Con el Prof. Ingemar Bengtsson compart́ı un
interesante almuerzo en un restaurante con comida local, y una aún más interesante discusión en
compañ́ıa de Adán y Kate sobre la desigualdad de Yu-Oh, recién descubierta. He dejado para el
final al estudiante de máster Mojtaba Taslimitehrani, “Mo”: éramos casi siempre los primeros
en llegar y los últimos en irnos. Con él compart́ı té, inquietudes, charlas reposadas al mediod́ıa
y a la cáıda temprana de la noche nórdica, planes de futuro, sus desvelos con la gravitación
cuántica, y de cuando en cuando parte del recorrido diario de regreso a casa, desde el AlbaNova
hasta la estación de metro de Odengatan. Sé que anda ahora por la Chalmers University of
Technology, en Göteborg: le deseo la mejor de las suertes en su carrera investigadora, y en la
vida.

Estocolmo resultó una ciudad acogedora, lo que favoreció que no tuviese que preocuparme
de otra cosa que no fuera la investigación, con algunos momentos de ocio y esparcimiento. Ello
fue posible gracias entre otras cosas al propietario del piso en que alquilé mi habitación durante
los tres meses: Carlos Sanz, sudamericano afincado en Suecia desde hace años, un hombre
respetuoso, afable y servicial, con el que fue muy fácil entenderse. Durante el primer mes y medio
compart́ı piso con un alemán de voz grave y risa resonante, Sascha Tiede, doctor en Qúımica que
a la sazón estaba realizando un postdoc en la Stockholms Universitet. Recuerdo ńıtidamente
el d́ıa de mi llegada, a las 4 p.m. del 25 de septiembre de 2011: tal como solté la maleta,
tras las oportunas formalidades, me agarró del brazo, me metió en el metro de Bergshamra,
y me enseñó Gamla Stan en una hora y media, llevándome con la lengua fuera, según él para
aclimatarme a la ciudad cuanto antes. Lo cierto es que fue un buen compañero de piso, con el
que simpaticé desde primera hora, y al que eché de menos a su marcha. Le reemplazó un joven
y poĺıglota cocinero holandés, Cornelis van der Plas (o “Cor”, como le gustaba que le llamaran),
cuyo horario era disjunto respecto al mı́o, salvo dos d́ıas en semana, en que depart́ıamos en los
desayunos y acordábamos una mı́nima coordinación. Puedo decir que con ambos tuve suerte, y
la convivencia fue civilizada. Esta ausencia de problemas domésticos fomentó la concentración
en el piso, donde el trabajo y el estudio continuaban hasta bien entrada la noche, preparando
la jornada siguiente. En definitiva, guardo de mi estancia en Estocolmo un magńıfico recuerdo.

La estancia de investigación en el extranjero es uno de los requisitos que deben cumplirse
para que esta tesis pueda optar a la Mención Internacional en el T́ıtulo de Doctor. Otro requisito
indispensable es el informe positivo por parte de dos expertos pertenecientes a alguna institución
de educación superior o instituto de investigación extranjero. Debo manifestar mi profundo
agradecimiento a los profesores Dr. Jan-Åke Larsson, de la Linköpings Universitet (Suecia), y Dr.
Marcelo Terra-Cunha, de la Universidade Federal de Minas Gerais (Brasil), por su amabilidad
a la hora de ofrecerse para leer el manuscrito de la tesis y emitir el correspondiente informe.
Les doy las gracias, no sólo por el tono y contenido de los informes, sino por haber hecho un
hueco en sus apretadas agendas entre tránsito, vuelo y congreso, para ocuparse del trabajo de
un doctorando acuciado por plazos inminentes que cumplir, que irrumpió en sus programas de
actividades alterándolos irremisiblemente.

Ya de vuelta en Sevilla, y prosiguiendo con los reconocimientos, agradezco vivamente a
muchos compañeros del claustro de profesores de la Escuela Técnica Superior de Ingenieŕıa
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de Edificación, su interés por saber de mis progresos y su insistencia en que no decayera en
mi ánimo, cuando aún el final estaba lejos. En particular a los más persistentes en diversas
épocas: José Maŕıa Calama Rodŕıguez, Antonio Ramı́rez de Arellano Agudo, Juan Jesús Gómez
de Terreros, Enrique Herrero Gil, Amparo Graciani Garćıa, Valeriano Lucas Ruiz, Rosa Maŕıa
Domı́nguez Caballero y Juan Jesús Mart́ın del Ŕıo. Retrospectivamente, lo valoro mucho más
ahora que el final ya se vislumbra.

Me siento especialmente en deuda con todos mis compañeros del Departamento de F́ısica
Aplicada II. En la sección de Arquitectura todos merecen un hueco en estas ĺıneas: José Pablo
Baltanás, Diego Frustraglia, Rafael Garćıa-Tenorio, Francisco Gascón, Pilar Gentil, Sara Girón,
Aureliano Gómez, Guillermo Manjón, Juan Mantero, Jesús Martel, Rafael Morente, Francisco
Nieves, Juan Lucas Retamar e Ignacio Vioque, cada uno a su manera ha sido un apoyo y un
est́ımulo durante todo este tiempo. Pero he de destacar singularmente a una gran, excelente
persona: Teófilo Zamarreño Garćıa, siempre dispuesto a interesarse por mis avances, y a darme
constantemente ánimos y consejo durante años, siempre con la palabra justa, siempre tan cer-
cano. Quizá no lo sab́ıas ni lo sospechabas, Teo, pero te estoy muy, muy agradecido.

En cuanto a mis compañeros de F́ısica Aplicada II en la E. T. S. de Ingenieŕıa de Edificación...
Estas palabras no pueden hacerles justicia. Sin ellos este trabajo podŕıa haber descarrilado por
falta de tiempo, o haberse alargado sine die. Me han cubierto las espaldas en los asuntos
del d́ıa a d́ıa siempre que lo he necesitado durante los últimos dos o tres años, lo que me ha
permitido sacar más tiempo y concentrarme en esta tarea, y han soportado estoicamente mis
digresiones, limı́trofes con la obsesión monomańıaca, acerca de las luces y sombras del trabajo de
investigación, y lo han hecho con una sonrisa amable, exenta de diplomacia. Gracias (por orden
de antigüedad creciente en el grupo, que no de mérito) a Sheila López, Maŕıa Villa, Manuel Esṕın,
Adán Cabello, Miguel Galindo, Agust́ın Fernández, Helena Moreno, Paco Pontiga, Leoncio
Garćıa y Mart́ın Muñoz. Mi recuerdo más sentido a nuestro buen Antonio Ramı́rez Pérez, que
nos dejó antes de tiempo, y al que a buen seguro le habŕıa gustado verme en este trance. Todos
sois no sólo compañeros, sino amigos. A cada uno de vosotros debo algo:

Sheila y Maŕıa, que han aportado aires nuevos al grupo, me han dado valiośısimos consejos
de toda ı́ndole, y han hecho que renueve mis enerǵıas y mi ilusión en momentos de desánimo.
A las dos, gracias por ese desbordante y contagioso entusiasmo. Espero compartir con vosotras
muchos años de amistad, colaboración y compañerismo.

Manuel, en relativamente poco tiempo, se ha convertido en un auténtico amigo, merecedor
de mi más absoluta confianza y respeto. Te agradezco tu permanente y desinteresada oferta de
apoyo y ayuda, el estar al quite en todo lo que ha ido surgiendo durante la elaboración de esta
tesis, y tu aguda perspicacia en todos los problemas que te he consultado.

De Adán..., ya ha quedado dicho todo al principio: sólo deseo que sigamos colaborando y
disfrutando, más si cabe, en la docencia, la investigación y en el d́ıa a d́ıa.

Miguel, con su aparentemente despreocupada manera de tomarse lo que la vida va trayendo,
me ha enseñado a desdramatizar ante las adversidades, a asumirlas con naturalidad, y a no
tomarse a uno mismo demasiado en serio, todo un ejercicio de salud mental y una gran lección
de cara a la redacción de la memoria de la tesis. Gracias, maestro.

A ti Agust́ın, amigo fiel y constante, he de agradecerte tu bonhomı́a, tu carácter afable, y
tu absoluta e incondicional disponibilidad para todo lo que pudiera necesitar. E instarte, con
aprecio, a que pongas proa al puerto de su tesis, con buen viento.
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Helena, mi amiga desde hace más de veinte años, siempre está ah́ı, siempre tiene tiempo
que concederme aun cuando le agobien sus muchas tareas. Gracias por escucharme, aunque
últimamente sea tan pesado y me repita demasiado con mis desvelos sobre la tesis. Gracias por
la amistad que compartimos y que ha ido acendrándose con el paso del tiempo.

A Leoncio, entrañable amigo al que echamos mucho en falta en el d́ıa a d́ıa por su buen
humor contagioso, le agradezco sus sabios consejos, y la lección continua que nos da con su
manera de enfocar la vida. Sabes bien que todos, de mayores, queremos ser (y haber sido) como
tú. Gracias por recordarme, en los agobios de la tesis, cuáles eran las auténticas prioridades.

Con Mart́ın, gran amigo en horas bajas, con quien tantas cavilaciones sobre la tesis y sobre
un sinf́ın de temas he compartido antes de su retiro pasajero, mi deuda de gratitud es enorme,
imposible de saldar. Te deseo un pronto y feliz restablecimiento, que nos permita compensar el
tiempo que se fue en una nueva etapa de mayor densidad vital.

Y Paco... El pasado 31 de enero, con ocasión de una de sus providenciales actuaciones,
Adán me dijo por correo-e: “Hablamos poco de ello: Paco es estupendo”. Y llevaba toda la
razón. Va siendo hora de que quede consignado por escrito: querido Paco, contigo se rompió el
molde. Creo que todos estamos de acuerdo en que no puede haber mejor compañero. Gracias
mil, Paco, por tu tiempo, por tu entrega, por tu ayuda, por tu serenidad, por tu capacidad y
por tu pericia puesta al servicio de todos y mı́o. Esta tesis seŕıa muy distinta, lo sabes bien,
sin tus atinados consejos sobre los misteriosos caminos del LATEX y otras herramientas, cuando
nada parećıa funcionar. Y, por supuesto, tampoco seŕıa la misma tesis sin los desayunos en que
a diario la irrepetible Susana, tú y yo arreglamos el mundo. Susana, la de verbo apasionado
y preciso, mente privilegiada, mil y un intereses y temas de conversación, consejo oportuno y
buenos sentimientos. En lo práctico, le agradezco su sensato punto de vista sobre las vicisitudes
que un doctorando atraviesa en la génesis y desarrollo de una tesis doctoral, que ha sido muy
valioso para mı́. Pero me quedaŕıa muy corto limitándome sólo a eso: es mucho más lo que
hemos compartido. Sobre todas las cosas he de agradecerle... que sea como es. Gracias, amiga.

Termino con mi ćırculo más ı́ntimo:

Gracias a todos mis otros amigos, los de fuera del trabajo, y muy singularmente a Alberto
(mi amigo más antiguo) y su mujer Roćıo, y a “los seis magńıficos” de los últimos veinte años:
Eva y Pepe, Chary y Manolo, Helena y Manuel. Vosotros, quizá sin ser conscientes de ello,
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respeto, y ya desgraciadamente con irreversible nostalgia de los momentos compartidos.

In memoriam.





Contents

Agradecimientos 3

Dedicatoria 9

Requisitos para la Mención Internacional en el T́ıtulo de Doctor 15

Introducción y resumen 17

Introduction and summary 27

I Exclusivity graphs of non-contextuality inequalities 35

1 Graph-theoretic approach to quantum correlations 37

1.1 Specker’s observation and the exclusivity principle within a general framework of
operational theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.1.1 Preparations and tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.1.2 States and observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.1.3 Joint measurability of observables . . . . . . . . . . . . . . . . . . . . . . 38

1.1.4 Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.1.5 Mutual exclusivity of events . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.1.6 Specker’s observation and the E principle . . . . . . . . . . . . . . . . . . 40

1.2 Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.2.1 General correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.2.2 No-signaling correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

1.2.3 Local correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

1.2.4 Quantum correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

1.2.5 Commutativity, no-disturbance and joint measurability . . . . . . . . . . 47

1.3 Quantum contextuality. Non-contextual correlations . . . . . . . . . . . . . . . . 48

1.4 Cabello-Severini-Winter’s graph-theoretic approach to quantum correlations . . . 49

1.4.1 Exclusivity graph of an experiment . . . . . . . . . . . . . . . . . . . . . . 49

1.4.2 Compatibility and exclusivity graphs of a non-contextuality inequality . . 50

1.4.3 Correlations in theories satisfying the exclusivity principle . . . . . . . . . 52



12 CONTENTS

1.4.4 The limits of the correlations in NCHV theories, quantum theory and
theories satisfying the E principle . . . . . . . . . . . . . . . . . . . . . . . 54

1.4.5 The Lovász number as a physical limit and the set of quantum correlations 55
1.4.6 Suggested developments and connections to our work . . . . . . . . . . . . 56

1.5 Classification of contextual exclusivity graphs . . . . . . . . . . . . . . . . . . . . 58
1.5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2 Basic exclusivity graphs in quantum correlations 63
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.2 The exclusivity graph of a non-contextuality inequality . . . . . . . . . . . . . . . 64
2.3 Basic exclusivity graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.4 Basic exclusivity graphs and the dimension of the quantum system . . . . . . . . 67
2.5 NC inequalities represented by basic exclusivity graphs . . . . . . . . . . . . . . . 68
2.6 The exclusivity principle enforces the quantum violation of the NC inequalities

represented by basic exclusivity graphs . . . . . . . . . . . . . . . . . . . . . . . . 70
2.7 Appendix: Basic exclusivity graphs inside the exclusivity graphs of some NC

inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3 Quantum fully contextual correlations 75
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.2 Non-contextual content. Quantum fully contextual correlations . . . . . . . . . . 76
3.3 Graph approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.3.1 Quantum fully contextual exclusivity graphs . . . . . . . . . . . . . . . . 78
3.4 Experimental quantum fully contextual correlations . . . . . . . . . . . . . . . . 79

4 Quantum social networks 83
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.2 Quantum social networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3 Social networks with no-better-than-quantum advantage . . . . . . . . . . . . . . 88
4.4 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.5.1 Finding graphs in which QSNs can outperform CSNs . . . . . . . . . . . . 90
4.5.2 State-independent QSNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

II Graph states: Classification and optimal preparation 93

5 Introduction: Stabilizer formalism and graph states 95
5.1 Stabilizer formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1.1 The Pauli group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.1.2 Stabilized states and stabilizing operators . . . . . . . . . . . . . . . . . . 99
5.1.3 Stabilizers and stabilizer states . . . . . . . . . . . . . . . . . . . . . . . . 101
5.1.4 Unitary operations and stabilizer formalism . . . . . . . . . . . . . . . . . 102
5.1.5 Measurements in the stabilizer formalism . . . . . . . . . . . . . . . . . . 105

5.2 Graph states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108



CONTENTS 13

5.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2.2 Graph states as a “theoretical laboratory” for multipartite entanglement . 111

6 Entanglement in eight-qubit graph states 121

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.2 Criteria for the classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.2.1 Minimum number of controlled-Z gates for the preparation . . . . . . . . 122

6.2.2 Schmidt measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.2.3 Rank indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.3 Procedures and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.3.1 Orbits under local complementation . . . . . . . . . . . . . . . . . . . . . 124

6.3.2 Bounds to the Schmidt measure . . . . . . . . . . . . . . . . . . . . . . . 125

6.4 Final remarks, open problems, and future developments . . . . . . . . . . . . . . 128

7 Compact set of invariants characterizing graph states of up to eight qubits 133

7.1 Introduction and main goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.2 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.2.1 Supports and classes of equivalence related to supports . . . . . . . . . . 136

7.2.2 Invariants of Van den Nest, Dehaene, and De Moor . . . . . . . . . . . . . 136

7.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8 Optimal preparation of graph states 145

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

8.1.1 Graph states: the graph as a blueprint for preparation . . . . . . . . . . . 146

8.1.2 Preparation using only controlled-Z gates . . . . . . . . . . . . . . . . . . 146

8.1.3 Optimum preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8.2 Classification of graph states in terms of entanglement . . . . . . . . . . . . . . . 150

8.3 Optimum representative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

8.4 One-qubit gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

8.5 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

8.6 Further developments: Hypergraph states as generalizations of graph states . . . 155

9 Proposed experiment for the quantum “Guess My Number” protocol 159

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

9.1.1 Reduction of communication complexity in a nutshell . . . . . . . . . . . 160

9.2 The original Guess My Number protocol. Experimental requirements . . . . . . . 163

9.3 The modified Guess My Number protocol . . . . . . . . . . . . . . . . . . . . . . 164

9.3.1 Maximum classical probability of winning . . . . . . . . . . . . . . . . . . 165

9.3.2 Best entanglement-assisted strategy . . . . . . . . . . . . . . . . . . . . . 166

9.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Exclusivity graphs and graph states: What is the connection? 171

A connection between exclusivity graphs and graph states . . . . . . . . . . . . . . . . 171

Conclusiones 175



14 CONTENTS

Conclusions 185

Publications and contributions directly related to the thesis 193
Articles published in peer-reviewed journals . . . . . . . . . . . . . . . . . . . . . 193
Other contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Index of acronyms 197

Bibliography 199





Introducción y resumen

Esta tesis doctoral trata de diversos aspectos de la teoŕıa cuántica (TC), que abarcan desde
el campo de los fundamentos de la disciplina (en particular, la búsqueda de un conjunto de
principios que seleccionen y distingan a la TC en el panorama de las teoŕıas probabiĺısticas
generales) hasta el reino de las aplicaciones en información y computación cuánticas.

Todos los problemas que hemos abordado en nuestra investigación tienen un rasgo distintivo
común: la teoŕıa de grafos parece ser especialmente adecuada para describirlos y tratarlos. Y no
sólo eso: el lenguaje y las herramientas de la teoŕıa de grafos proporcionan una poderosa y nueva
percepción que permite arrojar luz sobre tales problemas, y representan además un importante
impulso para futuros desarrollos.

Precisamente, uno de los problemas que tuvimos que plantearnos en esta tesis, desde el primer
momento, fue decidir su t́ıtulo. El alcance de la tesis era demasido amplio como para poderlo
comprimir en un t́ıtulo que fuese significativo, preciso y relativamente corto, y esto explica
nuestra elección final: Quantum correlations and graphs, es decir, Correlaciones cuánticas y
grafos, una declaración intencionadamente de amplio espectro y algo vaga con la que intentamos
capturar los principales aspectos de nuestra investigación, quizá sin éxito.

En lo que concierne a la alusión a los grafos en el t́ıtulo, la principal razón para nuestra
concisión es la siguiente: la tesis está dividida en dos partes en las que los grafos constituyen la
herramienta matemática ubicua y versátil sobre la cual hemos basado toda nuestra investigación.
Sin embargo, hemos de hacer notar que los grafos significan cosas muy distintas y juegan papeles
bien diferentes en cada parte de la tesis. En la Parte I, que está dedicada a los grafos de
exclusividad de desigualdades no contextuales (NC), los grafos dan cuenta de experimentos
en los cuales algunas medidas se llevan a cabo sobre ciertos estados: los vértices de uno de
tales grafos representan eventos, en tanto que las aristas describen relaciones de exclusividad
mutua entre eventos, y sobre la base de dichos grafos nosotros construimos desigualdades NC y
calculamos sus valores ĺımite a partir de algunos números combinatorios propios de los grafos.
En la Parte II, que está dedicada espećıficamente a los denominados estados grafo, los grafos
por el contrario representan estados cuánticos entrelazados de muchos qubits. El grafo no sólo
proporciona una ayuda para escribir el generador del estado grafo, sino que también sirve por
aśı decir como una plantilla o gúıa para su preparación: los vértices representan qubits, y las
aristas describen subsiguientes operaciones de entrelazamiento cada una de la cuales involucra a
dos qubits. Todo esto prueba cuán fruct́ıfera y versátil llega a ser la teoŕıa de grafos cuando se
aplica a algunos problemas fundamentales en TC, lo que constituye una de la principales ideas
que alientan la tesis.

Entre estas dos partes de la tesis, en apariencia desligadas, hay no obstante una profunda
conexión, que se explica con detalle al final de la tesis, en la p. 171. En pocas palabras: hay
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una construcción que partiendo de cualquier grafo conexo de tres o más vértices que describe
a un estado grafo lleva a un grafo de mayor orden y tamaño, siendo éste último un grafo
de exclusividad cuyos vértices representan todos los posibles eventos consistentes con el grupo
estabilizador del estado grafo original, y cuyas aristas conectan eventos mutuamente excluyentes.
Tal procedimiento transcribe en términos de teoŕıa de grafos la conexión existente entre un estado
grafo y una desigualdad de Bell violada máximamente por la TC.

Otro comentario importante tiene que ver con correlaciones cuánticas, el otro elemento
que aparece con concisión en el t́ıtulo: proporcionamos una definición general de correlacio-
nes cuánticas en la Sec. 1.2.4, a la que referimos al lector para más detalle. Nosotros selec-
cionamos dos tipos de correlaciones cuánticas: correlaciones cuánticas proyectivas, y correlacio-
nes cuánticas tipo Bell. Debemos enfatizar el hecho de que en la primera parte de esta tesis,
a menos que se diga expresamente lo contrario, por correlaciones cuánticas se entenderá que
se trata de correlaciones cuánticas proyectivas, es decir, correlaciones entre los resultados de
medidas conjuntas de observables cuánticos proyectivos. Las razones para esta elección se apor-
tan en la p. 46. Por otro lado, nuestro principal interés en la segunda parte de la tesis es la
clasificación y preparación óptima de estados grafo. En este caso, las correlaciones cuánticas
(en particular, correlaciones cuánticas tipo Bell) aparecen impĺıcitamente al discutir la conexión
existente entre los grafos de exclusividad, los estados grafo y una clase de desigualdades de Bell
violada máximamente por los estados grafo.

Con todas estas consideraciones en mente, pasamos a continuación a hacer una descripción
resumida de nuestro trabajo de investigación. La tesis que presentamos, como ha quedado dicho,
está estructurada en dos partes:

1. La Parte I se titula Grafos de exclusividad de desigualdades no contextuales, y
está organizada en cuatro caṕıtulos:

• Caṕıtulo 1: Aproximación a las correlaciones cuánticas mediante teoŕıa de
grafos.

Éste es un caṕıtulo introductorio, cuyo principal propósito es proporcionar el mı́nimo
trasfondo teórico necesario para discutir los problemas y resultados de la primera
parte de la tesis, además de presentar nuestros primeros resultados más básicos.

Comenzamos en la Sec. 1.1 con una descripción concisa y autocontenida del marco
general de las teoŕıas operacionales, siguiendo las Refs. [1, 2]. Esta introducción
concluye con la definición de exclusividad mutua entre eventos, en términos opera-
cionales. Ello nos permite conectar la observación de Specker acerca de la mensura-
bilidad dos a dos y la mensurabilidad conjunta en TC con el principio de exclusividad
(E), es decir, con el hecho de que la suma de las probabilidades de un conjunto de
eventos mutuamente excluyentes dos a dos no puede exceder de 1. En la Sec. 1.2
pasamos revista a diferentes tipos de correlaciones entre resultados de medidas re-
alizadas en un sistema, según las predicciones de ciertas teoŕıas f́ısicas. Seguimos
las Refs. [3, 4, 5] en la discusión de las correlaciones locales, cuánticas, no-signaling
and generales. Nos ocupamos de dos tipos de correlaciones cuánticas: proyectivas y
tipo Bell, y seguidamente centramos nuestra atención en las correlaciones cuánticas
proyectivas, proporcionando razones para dicha elección en la primera parte de la
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tesis. En la Sec. 1.3 definimos correlaciones no contextuales, e introducimos el con-
cepto de desigualdad NC. La Sec. 1.4 se dedica a presentar la aproximación a las
correlaciones cuánticas mediante teoŕıa de grafos de Cabello-Severini-Winter (CSW),
recogida en las Refs. [6, 7], atendiendo espećıficamente a dos resultados principales
y varias propuestas de posible desarrollo ulterior de dichos autores, en las cuales
se basa nuestra investigación. Presentamos nuestros primeros resultados básicos en
la Sec. 1.5, relativos a la clasificación de los llamados grafos cuánticos contextuales
(QCG), y concluimos resumiendo las conexiones entre esta clasificación y los proble-
mas abordados en caṕıtulos subsiguientes.

• Caṕıtulo 2: Grafos de exclusividad básicos en correlaciones cuánticas.

En este caṕıtulo nos ocupamos de un problema fundamental: entender por qué la
TC viola únicamente ciertas desigualdades NC, e identificar los principios f́ısicos que
impiden violaciones mayores que las producidas por la TC.

Utilizamos, como herramienta principal a lo largo del caṕıtulo, el grafo de exclusivi-
dad de una desigualdad NC que ya se ha introducido previamente en la Sec. 1.4.2. En
la Sec. 2.3, presentamos una condición necesaria para la existencia de correlaciones
cuánticas contextuales: demostramos que la TC viola únicamente aquellas desigual-
dades NC cuyos grafos de exclusividad contienen, como subgrafos inducidos, ciclos
impares de cinco o más vértices y/o sus complementos. En la Sec. 2.4, mostramos
que se puede obtener una cota inferior de la dimensión (i. e., del número de estados
perfectamente distinguibles) del sistema cuántico utilizado para violar la desigual-
dad NC mediante la identificación de subgrafos inducidos en el grafo de exclusividad
de la desigualdad NC. El resultado de la Sec. 2.3 sugiere que las desigualdades NC
cuyos grafos de exclusividad son o bien un ciclo impar o bien su complemento son
especialmente importantes para entender la manera en que la TC viola desigualdades
NC. En la Sec. 2.5 mostramos que los ciclos impares son los grafos de exclusividad
de una familia bien conocida de desiguladades NC, y que hay también una familia
de desigualdades NC cuyos grafos de exclusividad son los complementos de los ciclos
impares. Además, caracterizamos los valores máximos no contextual y cuántico de
estas desigualdades NC y proporcionamos los estados cuánticos y las medidas que
conducen a sus violaciones cuánticas máximas. Finalmente, en la Sec. 2.6 presen-
tamos algunos resultados que ofrecen evidencias que apoyan la conjetura de que el
principio E selecciona exactamente la máxima violación cuántica de la desigualdades
NC discutidas en la Sec. 2.5. Finalizamos el caṕıtulo con material adicional en la
Sec. 2.7, en la que presentamos una tabla que cuenta el número de subgrafos de ex-
clusividad básicos inducidos en los grafos de exclusividad de algunas desigualdades
NC y demostraciones de Kochen-Specker (KS) conocidas.

• Caṕıtulo 3: Correlaciones cuánticas completamente contextuales.

Las correlaciones cuánticas son contextuales. Sin embargo, en general, nada impide la
existencia de correlaciones incluso más contextuales aún. El propósito del Caṕıtulo 3
es identificar y poner a prueba una desigualdad NC en la cual la violación cuántica
no pueda ser mejorada por ninguna hipotética teoŕıa post-cuántica, y utilizarla para
obtener experimentalmente correlaciones en las que la fracción de correlaciones no
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contextuales sea lo más pequeña posible. Tales correlaciones se generan experimen-
talmente a partir de los resultados de test secuenciales compatibles realizados sobre
un sistema cuántico de cuatro estados codificado en la polarización y el camino de un
solo fotón.

Para abordar dicho propósito, utilizamos una de las ideas clave del Caṕıtulo 1 (en
particular, las Secs. 1.4.6 y 1.5.1): la aplicación de la aproximación de CSW me-
diante teoŕıa de grafos a las correlaciones cuánticas (Ref. [7]) sobre la base de nuestra
clasificación de los QCG (Ref. [8]) permite diseñar experimentos con contextualidad
cuántica “a la carta”, mediante la selección de grafos con las propiedades deseadas.

El Caṕıtulo 3 presenta un destacado ejemplo de este programa: utilizamos el en-
foque teórico-gráfico de CSW a fin de identificar y realizar un experimento con test
cuánticos secuenciales y compatibles, que produce correlaciones con la mayor contex-
tualidad permitida por la suposición de no-disturbance (ND) (véase Ec. (1.20)), cuya
validez se asume también para teoŕıas post-cuánticas. Con ese objetivo, en la Sec. 3.2
introducimos en primer lugar una medida de contextualidad de las correlaciones, el
llamado contenido no contextual WNC, de modo que el valor WNC = 0 corresponde
a la contextualidad máxima. A continuación, mostramos cómo obtener experimen-
talmente cotas superiores medibles de WNC. Más tarde, en la Sec. 3.3, mostramos
en qué modo la teoŕıa de grafos nos permite identificar experimentos en que la cota
superior de WNC predicha por la TC es igual a cero, y aplicamos ese método para se-
leccionar un experimento para el cual WNC = 0. Esto implica a su vez utilizar nuestra
clasificación de los QCG para seleccionar un grafo con las propiedades combinatorias
deseadas, i. e., un grafo cuántico completamente contextual (QFCG). Encontramos
que hay únicamente cuatro QFCG con menos de 11 vértices, e identificamos aquél
que requiere un sistema cuántico con la dimensión mı́nima necesaria para producir la
máxima violación cuántica de la desigualdad NC asociada a dicho grafo de exclusivi-
dad. Además, proporcionamos la desigualdad NC, el estado cuántico y las medidas
conducentes a la máxima violación cuántica. Finalmente, en la Sec. 3.4, describimos
y llevamos a cabo el experimento que pone a prueba dicha desigualdad NC, y dis-
cutimos los resultados obtenidos, que ponen de manifiesto correlaciones para las que
WNC < 0.06.

• Caṕıtulo 4: Redes sociales cuánticas.

Para cerrar la primera parte de la tesis, este caṕıtulo propone una interesante apli-
cación de las ideas expuestas en los caṕıtulos precedentes. Consideramos una tarea de
teoŕıa de la información, en concreto la maximización de cierta probabilidad prome-
dio, para la cual el enfoque de CSW basado en teoŕıa de grafos constituye un marco
natural. Para dicha tarea, la TC no sólo supera a las teoŕıas clásicas, sino que también
en algunos casos no puede ser mejorada utilizando hipotéticas teoŕıas post-cuánticas.
El aspecto novedoso aqúı es que el enfoque se hace más atractivo al tender un puente
con otra disciplina, la de las ciencias sociales, en la que la teoŕıa de grafos propor-
ciona una herramienta principal en el análisis, y esta conexión abre la posibilidad a
posteriores aplicaciones insospechadas.

Enfocamos nuestra atención en las redes sociales (RS), un objeto de estudio tradi-



Introducción y resumen 21

cional en las ciencias sociales. Empezamos con la observación de que, si bien una
RS viene t́ıpicamente descrita por un grafo en que los vértices representan actores de
la red y las aristas representan el resultado de su mutua interacción, dicho grafo no
captura la naturaleza de las interacciones ni explica por qué un actor está conectado
o no a otros actores de la RS. Desde esta perspectiva, el grafo da una descripción
incompleta de la RS. El objetivo de este caṕıtulo es discutir las RS sobre la base de
las interacciones generales que pueden dar lugar a ellas.

En la Sec. 4.1 introducimos un enfoque f́ısico a las RS en que cada actor está carac-
terizado por un test śı-no sobre un sistema f́ısico. Este enfoque permite considerar
RS más generales (RSG), más allá de aquéllas generadas por interacciones basadas en
propiedades pre-existentes, como ocurre en las RS clásicas (RSC). También ponemos
de manifiesto la diferencia entre una RSG y una RSC descritas por el mismo grafo,
por medio de una tarea simple para la cual la probabilidad promedio de éxito está
acotada superiormente de manera diferente dependiendo de la naturaleza de las inter-
acciones que definen la RS. En la Sec. 4.2 introducimos las RS cuánticas (RSQ), como
un ejemplo de RS más allá de las RSC. En una RSQ, un actor i está caracterizado
por un test acerca de si el sistema está o no en un estado cuántico |ψi〉. Nosotros
demostramos que las RSQ superan a las RSC para la tarea previamente mencionada
y en ciertos grafos. Identificamos los más simples de entre dichos grafos, y mostramos
que los grafos en que las RSQ superan a las RSC son cada vez más frecuentes a medida
que crece el número de vértices. En la Sec. 4.3 consideramos grafos para los que las
RSQ superan a las RSC, pero ninguna RSG supera a la mejor RSQ, e identificamos
todos los grafos con menos de 11 vértices con esa propiedad. Es más, analizamos
también el hecho de que, mientras que la ventaja cuántica usualmente requiere la
preparación del sistema en un estado cuántico espećıfico, según crece la complejidad
de la red este requerimiento llega a ser innecesario: existen grafos para los cuales
la ventaja cuántica es independiente del estado cuántico. Nosotros identificamos el
grafo más simple de esta clase. El caṕıtulo finaliza con algunas observaciones acerca
de las posibles implicaciones prácticas de estas ideas, en la Sec. 4.4; y con un breve
apéndice con detalles técnicos acerca de las herramientas y procedimientos necesarios
para alcanzar nuestros resultados, en la Sec. 4.5.

2. La Parte II lleva por t́ıtulo Estados grafo: Clasificación y preparación óptima, y
está estructurada en cinco caṕıtulos:

• Caṕıtulo 5: Introducción: Formalismo de estabilizador y estados grafo.

Es éste un caṕıtulo introductorio, cuyo propósito es proporcionar las definiciones
principales, y el mı́nimo trasfondo teórico necesario para sentar las bases para la
discusión de los resultados de la segunda parte de la tesis. El caṕıtulo se organiza en
dos secciones:

La Sec. 5.1 se dedica a introducir el formalismo de estabilizador. Presentamos, en
una forma autocontenida y compacta, algunos conceptos básicos y definiciones junto
con la notación y las técnicas que se utilizarán en los siguientes caṕıtulos. Discuti-
mos brevemente el grupo de Pauli, y consideramos estados estabilizados y operadores
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estabilizadores, en general; y a continuación ponemos énfasis espećıficamente en los
conceptos de estabilizador y generador, y en estados de estabilizador, que serán uti-
lizados con profusión más tarde. Entre las operaciones unitarias destacamos el papel
importante de las operaciones pertenecientes al grupo de Clifford, que serán de mucha
utilidad cuando más tarde tratemos con los estados grafo y sus propiedades de entre-
lazamiento.

La Sec. 5.2 enfoca la atención sobre los estados grafo, ejemplos particulares de estados
de estabilizador que constituyen el objeto de estudio en esta parte de nuestra inves-
tigación. Presentamos una lista condensada de posibles aplicaciones de los estados
grafo en teoŕıa cuántica de la información. Se dan dos definiciones de estado grafo
en la Sec. 5.2.1: la primera constituye una receta para la preparación de un estado
grafo, que utiliza el grafo correspondiente como una plantilla o modelo. La segunda
constituye una caracterización algebraica del generador del estado grafo sobre la base
del propio grafo. En la Sec. 5.2.2 nos ocupamos de los estados grafo entendidos como
un “laboratorio teórico” para el entrelazamiento multipartito, y describimos algunos
resultados relevantes obtenidos previamente por otros autores en relación con el pro-
blema general de la clasificación del entrelazamiento en estados cuánticos puros, que
proporcionan el escenario conceptual para nuestras contribuciones. Terminamos la
exposición con un resumen sucinto acerca de la clasificación de los estados grafo de
hasta 7 qubits en clases de equivalencia bajo operaciones locales de Clifford (LC),
que fue llevada a cabo por nuestros predecesores Hein, Eisert y Briegel (HEB) en
la Ref. [9], la cual puede considerarse el punto de partida de nuestro trabajo sobre
estados grafo.

• Caṕıtulo 6: Entrelazamiento en estados grafo de ocho qubits.

En este caṕıtulo extendemos hasta ocho qubits la clasificación de los estados grafo
de acuerdo a la equivalencia LC llevada a cabo en la Ref. [9], con la que cerramos el
caṕıtulo precedente.

Van den Nest, Dehaene y De Moor (VDD) encontraron en la Ref. [10] que la aplicación
sucesiva de una transformación con una descripción gráfica simple es suficiente para
generar la clase de equivalencia completa de estados grafo bajo operaciones locales uni-
tarias (LU) pertenecientes al grupo de Clifford, también conocida como órbita. Esta
transformación simple recibe el nombre de complementación local, transformación
que en definitiva permite generar las órbitas de todos los estados grafo de n qubits
no equivalentes bajo operaciones LC; en particular, las 101 órbitas correspondientes
a los estados grafo de 8 qubits, cuya clasificación es la meta de este caṕıtulo.

Para establecer un orden entre las clases de equivalencia nosotros utilizamos los crite-
rios propuestos en las Refs. [9, 11], es decir, (a) número de qubits, (b) mı́nimo número
de puertas controlled-Z necesario para la preparación, (c) la medida de Schmidt, y
(d) los ı́ndices de rango. Estos criterios se introducen y describen en la Sec. 6.2.
En la Sec. 6.3 presentamos nuestros resultados: para cada una de estas clases de
equivalencia obtenemos un representante que requiere el mı́nimo número de puertas
controlled-Z para su preparación y mı́nima profundidad de preparación. Además,
calculamos la medida de Schmidt para la partición 8-partita, y los rangos de Schmidt
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para todas las particiones bipartitas. En la Sec. 6.4 presentamos nuestras conclu-
siones y señalamos algunos problemas pendientes, que atañen principalmente a las
limitaciones del uso de los criterios precedentes como etiquetas que distingan de forma
no ambigua entre cualquier par de clases de equivalencia bajo LC de estados grafo de
hasta ocho qubits. Este asunto es abordado en el siguiente caṕıtulo.

• Caṕıtulo 7: Conjunto compacto de invariantes que caracteriza a estados
grafo de hasta ocho qubits.

El conjunto de medidas de entrelazamiento propuesto por HEB en la Ref. [9] para
estados grafo de n qubits falla a la hora de distinguir entre clases de equivalencia bajo
operaciones LC (clases LC) que no son equivalentes entre śı, para n ≥ 7. Por tanto,
no podemos utilizar estos invariantes para decidir a qué clase de entrelazamiento
pertenece un estado grafo dado. Rećıprocamente, si dispusiésemos de un conjunto de
invariantes con esas caracteŕısticas, entonces podŕıamos utilizarlo para etiquetar de
manera no ambigua cada una de las clases.

Por otro lado, el conjunto de invariantes propuesto por VDD en la Ref. [12] distingue
entre clases no equivalentes, pero contiene demasiados invariantes (más de 2 × 1036

para n = 7) para ser práctico.

En este caṕıtulo resolvemos el problema de decidir a qué clase de entrelazamiento
pertenece un estado grafo de n ≤ 8 qubits mediante el cálculo de algunas propiedades
intŕınsecas del estado, por tanto sin necesidad de generar la clase LC completa. La
Sec. 7.1 es un resumen condensado de ideas y conceptos que ya se han presentado en
caṕıtulos previos, y que permiten seguir las discusiones subsiguientes. En la Sec. 7.2,
por conveniencia, empezamos recordando la definición de estado grafo a través de la
caracterización algebraica del generador, y repasamos el efecto de la complementación
local sobre los operadores de estabilización. Luego, en la Sec. 7.2.1, introducimos un
nuevo concepto básico del formalismo de estabilizador, a saber, el soporte de un ope-
rador de estabilización, y las clases de equivalencia relativas a los soportes. Estos
conceptos son necesarios en la Sec. 7.2.2, donde analizamos algunos de los resultados
acerca de invariantes propuestos por VDD que serán útiles en nuestra discusión. En
la Sec. 7.3 presentamos y discutimos los resultados de nuestra investigación: confir-
mamos la conjetura formulada en la Ref. [12] de que los invariantes de VVD tipo
r = 1 son suficientes para distinguir entre las 146 clases de equivalencia LC para
estados grafo de hasta ocho qubits. Además, introducimos un nuevo conjunto com-
pacto de invariantes relacionado con los propuestos por VDD, los llamados invariantes
cardinalidad-multiplicidad (C-M), y demostramos que cuatro de tales invariantes C-M
son suficientes para distinguir entre todas las clases LC no equivalentes para estados
grafo con n ≤ 8 qubits.

• Caṕıtulo 8: Preparación óptima de estados grafo.

En este caṕıtulo aprovechamos tanto la clasificación de los estados grafo en clases de
equivalencia LC (Cap. 6) como la identificación de tales clases sobre la base de un
conjunto compacto de invariantes bajo operaciones LC (Cap. 7). Mostramos cómo
preparar cualquier estado grafo de hasta 12 qubits con: (a) el mı́nimo número de
puertas controlled-Z, y (b) la mı́nima profundidad de preparación. Asumimos en
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la preparación sólo puertas de un qubit, y puertas controlled-Z. El método explota
el hecho de que cualquier estado grafo pertenece a una clase de equivalencia bajo
operaciones LC: si uno necesita preparar un estado grafo |G〉 y sabe que dicho es-
tado pertenece a una clase espećıfica, entonces uno puede preparar |G〉 mediante la
preparación del estado |G′〉, equivalente bajo operaciones LC, que requiere el menor
número de puertas entrelazadoras y la menor profundidad de preparación de esa
clase LC (Refs. [9, 11, 13]), y a continuación transformando |G′〉 en |G〉 por medio de
operaciones unitarias de un qubit.

En la Sec. 8.1, por comodidad, recordamos la definición de estado grafo en la que
se usa el grafo como una plantilla o modelo para su preparación a través de la apli-
cación de una serie de puertas controlled-Z. Definimos el concepto de profundidad
de preparación, y a continuación discutimos cómo el problema de la profundidad de
preparación está relacionado con un problema clásico en teoŕıa de grafos, el de la
determinación del ı́ndice cromático o número cromático de aristas de un grafo: el
mı́nimo número de colores requerido para conseguir un coloreado propio de aristas
del grafo.

En la Sec. 8.2, extendemos hasta 12 qubits la clasificación de los estados grafo de
acuerdo con sus propiedades de entrelazamiento (en clases LC), e identificamos cada
clase utilizando para ello únicamente un conjunto reducido de invariantes (invarian-
tes C-M). En la Sec. 8.3, proporcionamos un representante de la clase con las dos
propiedades (a) y (b), si éste existe, o en caso contrario uno con la propiedad (a)
y otro con la propiedad (b). Todos estos resultados, que ocupan varios cientos de
megabytes, se organizan en dos tablas, una para n < 12 y otra para n = 12, que se
presentan como material suplementario en la Ref. [14]. En la Sec. 8.4 explicamos cómo
obtener las puertas de un qubit necesarias, y proporcionamos como material suple-
mentario en la Ref. [15] un programa de ordenador para, dado el grafo G correspondi-
ente al estado grafo que uno desea preparar, generar una secuencia de operaciones de
complementación local que conecte G con el correspondiente (o los correspondientes)
grafo(s) óptimo(s). Finalmente, en la Sec. 8.5 ilustramos el método completo con un
ejemplo.

Como material para terminar este caṕıtulo, hemos añadido la Sec. 8.6, donde dis-
cutimos sucintamente una generalización de los estados grafo conocida como estados
hipergrafo, de la cual los anteriores constituyen un subconjunto. Tras presentar las
definiciones principales, y describir algunos de los resultados más recientes acerca de
la exploración de las propiedades de entrelazamiento y caracteŕısticas no clásicas de
los estados hipergrafo, señalamos posibles futuras extensiones de nuestras contribu-
ciones en relación con los estados grafo, en particular el análisis de la profundidad
de preparación de un estado hipergrafo dado y su posible procedimiento óptimo de
preparación.

• Caṕıtulo 9: Propuesta experimental para el protocolo cuántico “Guess My
Number”.

El objetivo de este caṕıtulo es presentar, de una manera sencilla y directa, un pro-
tocolo experimental de reducción de la complejidad de la comunicación basado en el
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uso de recursos cuánticos, conocido como el protocolo “Guess My Number” (GMN).
El punto clave radica en que los participantes en el protocolo GMN comparten un
estado cuántico entrelazado, y este estado cuántico es precisamente un estado grafo,
el estado Greenberger-Horne-Zeilinger (GHZ) de tres (o de cuatro) qubits.

En los Caps. 6–8 hemos centrado nuestra atención en los estados grafo desde el punto
de vista de la teoŕıa del entrelazamiento. También hemos presentado resumidamente
muchas de las principales aplicaciones de los estados grafo en teoŕıa cuántica de la
información en la Sec. 5.2. Entre ellas mencionamos la complejidad de la comuni-
cación, para la cual los estados grafo constituyen recursos interesantes y ventajosos
debido a su genuino entrelazamiento multipartito.

Comenzamos en la Sec.9.1.1 pasando revista de manera resumida a algunos conceptos
básicos relacionados con la complejidad de la comunicación, a fin de proporcionar el
mı́nimo trasfondo conceptual necesario. Enfatizamos el hecho de que los estados
grafo, como otros estados cuánticos entrelazados, constituyen un valioso recurso que
puede ser compartido por los participantes en aquellos escenarios correspondientes
al denominado modelo de entrelazamiento de la complejidad de la comunicación.
Nuestro propósito en las siguinetes secciones es presentar en detalle uno de esos
escenarios, que involucra un protocolo de comunicación basado en el juego GMN, con
la peculiaridad de que los participantes comparten espećıficamente un estado grafo.

Describimos el protocolo original GMN asistido por entrelazamiento para la reducción
de la complejidad de la comunicación, introducido por Steane y van Dam, en la
Sec. 9.2, y a continuación analizamos las dificultades de una realización experimental
de dicho protocolo: ésta requeriŕıa producir y detectar estados GHZ de tres qubits
con una eficiencia η > 0.70, lo que a su vez requeriŕıa detectores de un fotón de
eficiencia σ > 0.89.

Presentamos nuestra versión modificada del protocolo GMN en la Sec. 9.3: pro-
ponemos ciertos cambios que hacen que el protocolo GMN modificado sea experi-
mentalmente factible. Discutimos seguidamente la mejor estrategia clásica (que im-
plica intercambio de bits, utilizando aleatoriedad compartida), la estrategia cuántica
alternativa (intercambio de bits sobre la base del uso ingenioso de un estado grafo
compartido), y luego hacemos una comparación entre sus rendimientos para deter-
minar la ventaja cuántica respecto a la variante clásica, a través del análisis de la
probabilidad de éxito en el juego GMN. Finalmente, en la Sec. 9.4, discutimos los
requisitos de eficiencia de detección de fotones necesarios para realizar el experimento
en el laboratorio, y realizamos una propuesta experimental concreta para tal experi-
mento. En el experimento propuesto, la reducción cuántica de la complejidad de la
comunicación multipartita requeriŕıa una eficiencia η > 0.05, que se puede lograr con
detectores con σ > 0.47, para cuatro participantes, y η > 0.17 (σ > 0.55) para tres
participantes. Concluimos el caṕıtulo dando cuenta de la subsiguiente realización del
experimento por parte de Zhang et al. en la Ref. [16], con los resultados esperados: los
participantes separados entre śı que comparten el estado (grafo) entrelazado, pueden
computar una función de inputs distribuidos mediante el intercambio de menos in-
formación clásica que la requerida utilizando cualquier estrategia clásica.
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La tesis termina con una sección separada en la p. 171, donde explicamos en cierto detalle
la conexión entre las Partes I y II. En la p. 185 se recoge un resumen con las conclusiones de
la tesis. Los art́ıculos en que se basa esta tesis, junto con otras contribuciones, se relacionan
en la p. 193. Por comodidad, se proporciona un ı́ndice con los acrónimos más frecuentemente
utilizados a lo largo de la tesis en la p. 197. Finalmente, tras la bibliograf́ıa, presentamos un
anexo con los art́ıculos originales que dan soporte a la tesis.



Introduction and summary

This thesis is concerned with several topics in quantum theory (QT), that range from the
field of the foundations of the discipline (in particular, the quest for a set of principles that
single out QT from the landscape of general probabilistic theories) to the realm of applications
in quantum information and computation.

All the issues we have addressed in our research have a common flavor: graph theory seems
to be perfectly suited to describe and deal with them. And not only this: the language and
tools from graph theory provide a powerful insight that sheds light on such issues and represent
an important boost for future developments.

Incidentally, one of the problems we had to address in this thesis, from the very first moment,
was to decide its title. The scope of the thesis was too wide to be captured in a meaningful,
precise and relatively short title, and this fact accounts for our final choice: Quantum correlations
and graphs, an intentionally broad-range and somewhat vague declaration with which we try to
capture the main aspects of our research, perhaps unsuccessfully.

Concerning the allusion to graphs in the title, the main reason for our conciseness is this:
the thesis is divided into two parts where graphs constitute the ubiquitous and versatile math-
ematical tool upon which we have based all our research. However, graphs mean very different
things and play diverse roles in either part of the thesis. In Part I, which is devoted to exclu-
sivity graphs of non-contextuality (NC) inequalities, graphs account for experiments in which
some measurements are carried out on states: vertices represent events while edges describe
relations of mutual exclusivity between events, and on the basis of such graphs we construct
NC inequalities and calculate their bounds from some combinatorial numbers specific of the
graphs. In Part II, specifically devoted to graph states, graphs represent entangled multi-qubit
quantum states. The graph not only provides an aid to write the generator of a graph state,
but also serves as a blueprint for its preparation: vertices represent qubits and edges describe
subsequent entangling 2-qubit operations. This proves how fruitful and versatile graph theory
becomes when applied to some fundamental problems in QT, one of the main thrusts of the
thesis.

Nevertheless, between these apparently non-linked parts of the thesis there is in fact a pro-
found connection, which is explained in detail at the end of the thesis, on p. 171. In a nutshell:
there is a construction that maps any connected graph on three or more vertices representing
a graph state into a larger graph, which is an exclusivity graph whose vertices represent all
possible events consistent with the stabilizer group of the graph state and where mutually ex-
clusive events are adjacent. Such procedure translates into graph-theoretic terms the connection
between a graph state and a Bell inequality maximally violated by quantum mechanics.

Another important remark has to do with quantum correlations, the other concise element
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of the title: a general definition of quantum correlations is provided in Sect. 1.2.4, where we
refer the reader for further details. We single out two kinds of quantum correlations: projective
quantum correlations and Bell-type quantum correlations. We must emphasize the fact that in
the first part of this thesis, unless otherwise noted, by quantum correlations we mean projective
quantum correlations, i.e., correlations between the outcomes of jointly measurable projective
quantum observables. The reasons for this choice are given on p. 46. On the other hand, the
main concern of the second part of the thesis is the classification and optimal preparation of
graph states. In this case, quantum correlations (in particular, Bell-type quantum correlations)
are implicit when we discuss the connection between exclusivity graphs, graph states, and a
class of Bell inequalities maximally violated by graph states.

With these considerations in mind, let us give an outline of our work below. This thesis is
structured as follows:

1. Part I is titled Exclusivity graphs of non-contextuality inequalities, and is organized
in four chapters:

• Chapter 1: Graph-theoretic approach to quantum correlations.

This is an introductory chapter, whose main purpose is to provide the minimum
necessary theoretical background for discussing the problems and results of the first
part of this thesis, along with our first basic results.

We begin in Sect. 1.1 with a concise and self-contained description of the general
framework of operational theories, following Refs. [1, 2]. This introduction concludes
with the definition of mutual exclusivity of events in operational terms. This allows
us connect Specker’s observation about pairwise and joint measurability in QT with
the exclusivity (E) principle, namely, the fact that the sum of the probabilities of
a set of pairwise exclusive events cannot exceed 1. In Sect. 1.2 we review different
kinds of correlations between outcomes of measurements performed on a system, as
predicted by certain physical theories. We follow Refs. [3, 4, 5] in the discussion
of local, quantum, no-signaling and general correlations. We single out two kinds
of quantum correlations: projective and Bell-type quantum correlations, and then
focus the attention on projective quantum correlations, providing reasons for that
choice throughout the first part of the thesis. In Sect. 1.3 we define non-contextual
correlations, and introduce the concept of NC inequality. Sect. 1.4 is devoted to
presenting the graph-theoretic approach to quantum correlations by Cabello-Severini-
Winter (CSW) from Refs. [6, 7], focusing our attention on two main results and several
proposals of further development, on which our research is based. We present our
first basic result in Sect. 1.5, the classification of the so-called quantum contextual
graphs (QCGs), and we conclude summarizing the links between this classification
and the problems addressed in the subsequent chapters.

• Chapter 2: Basic exclusivity graphs in quantum correlations.

In this chapter we address a fundamental problem: to understand why QT only
violates some NC inequalities and identify the physical principles that prevent higher-
than-quantum violations.
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We use, as a main tool throughout the chapter, the exclusivity graph of an NC
inequality which was already introduced in Sect. 1.4.2. In Sect. 2.3, we present a
necessary condition for the existence of quantum contextual correlations: We prove
that QT violates only those NC inequalities whose exclusivity graphs contain, as
induced subgraphs, odd cycles on five or more vertices and/or their complements.
In Sect. 2.4, we show that a lower bound of the dimension (i.e., of the number of
perfectly distinguishable states) of the quantum system that is used to violate an NC
inequality can be obtained by identifying induced subgraphs in the exclusivity graph
of the NC inequality. The result in Sect. 2.3 suggests that NC inequalities whose
exclusivity graph is either an odd cycle or its complement are especially important
for understanding the way QT violates NC inequalities. In Sect. 2.5, we show that odd
cycles are the exclusivity graphs of a well-known family of NC inequalities, and that
there is also a family of NC inequalities whose exclusivity graphs are the complements
of odd cycles. Moreover, we characterize the maximum non-contextual and quantum
values of these NC inequalities and also provide the quantum states and measurements
leading to their maximum quantum violation. Finally, in Sect. 2.6 we present some
results that provide evidence supporting the conjecture that the maximum quantum
violation of the NC inequalities discussed in Sect. 2.5 is exactly singled out by the
E principle. We finish the chapter with additional material in Sect. 2.7, where we
present a table that counts the number of induced basic exclusivity subgraphs inside
the exclusivity graphs of some NC inequalities and Kochen-Specker (KS) proofs.

• Chapter 3: Quantum fully contextual correlations.

Quantum correlations are contextual yet, in general, nothing prevents the existence
of even more contextual correlations. The purpose of Chapter 3 is to identify and
test a NC inequality in which the quantum violation cannot be improved by any
hypothetical post-quantum theory, and use it to experimentally obtain correlations
in which the fraction of non-contextual correlations is as small as possible. Such
correlations are experimentally generated from the results of sequential compatible
tests on a four-state quantum system encoded in the polarization and path of a single
photon.

For that purpose, we use one of the key ideas of Chapter 1 (in particular, Sects. 1.4.6
and 1.5.1): the application of CSW’s graph-theoretic approach in Ref. [7] on the basis
of our classification of QCGs in Ref. [8] allows to design experiments with quantum
contextuality on demand, by selecting graphs with the desired properties.

Chapter 3 presents a remarkable example of this programme: we use CSW’S graph-
theoretic approach in order to identify and perform an experiment with sequential
quantum compatible tests, which produces correlations with the largest contextuality
allowed under the no-disturbance (ND) assumption (1.20), which is assumed to be
valid also for post-quantum theories. For this purpose, in Sect. 3.2 we first introduce
a measure of contextuality of the correlations, the so-called non-contextual content
WNC, so that WNC = 0 corresponds to the maximum contextuality. Then, we show
how to experimentally obtain testable upper bounds to WNC. Next, in Sect. 3.3, we
show how graph theory allows us to identify experiments in which the upper bound
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to WNC predicted by QT is zero, and apply this method to single out an experiment
for which WNC = 0. This implies using our classification of QCGs to select a graph
with the desired combinatorial properties, i.e., a quantum fully contextual graph
(QFCG). There are only four QFCGs with less than 11 vertices, and we identify
the one requiring a quantum system with the minimum dimension needed for the
maximum quantum violation of the NC inequality associated to the graph. Moreover,
we provide the NC inequality, the quantum state and the measurements leading to
the maximum quantum violation. Finally, in Sect. 3.4, we describe and perform the
experiment testing the NC inequality, and discuss the results obtained, which reveal
correlations in which WNC < 0.06.

• Chapter 4: Quantum social networks.

To close the first part of the thesis, this chapter proposes an appealing application of
the ideas previously presented in the foregoing chapters. We consider an information-
theoretic task, namely, the maximization of certain average probability, for which
CSW’s graph-theoretic approach is a natural framework. For this task, QT not only
outperforms classical theories, but also in some cases cannot be improved by using
hypothetical post-quantum theories. The novel point is that the approach is made
more attractive by building a bridge to another discipline, social sciences, in which
graph theory provides a major tool in the analysis, and this connection opens the
possibility of further unforeseen applications.

We focus our attention on social networks (SNs), a traditional subject of study in
social sciences. We start with the observation that, while a SN is typically described
by a graph in which vertices represent actors and edges represent the result of their
mutual interactions, the graph does not capture the nature of the interactions or
explain why an actor is linked or not to other actors of the SN. From this perspective,
the graph gives an incomplete description. The aim of the chapter is to discuss SNs
on the basis of general interactions which can give rise to them.

In Sect. 4.1, we introduce a physical approach to SNs in which each actor is character-
ized by a yes-no test on a physical system. This approach allows us to consider more
general SNs (GSNs) beyond those originated by interactions based on pre-existing
properties, as in a classical SN (CSN). We also highlight the difference between a
GSN and a CSN described by the same graph, by virtue of a simple task for which
the average probability of success is upper bounded differently depending on the
nature of the interactions defining the SN. In Sect. 4.2 we introduce quantum SNs
(QSNs) as an example of SNs beyond CSNs. In a QSN, an actor i is characterized
by a test of whether or not the system is in a quantum state |ψi〉. We show that
QSNs outperform CSNs for the aforementioned task and some graphs. We identify
the simplest of these graphs and show that graphs in which QSNs outperform CSNs
are increasingly frequent as the number of vertices increases. In Sect. 4.3 we consider
graphs for which QSNs outperform CSNs but no GSN outperforms the best QSN, and
identify all the graphs with less than 11 vertices with that property. Furthermore, we
analyze the fact that, while the quantum advantage usually requires the preparation
of the system in a specific quantum state, as the complexity of the network increases
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this requirement becomes unnecessary: there are graphs for which the quantum ad-
vantage is independent of the quantum state. We identify the simplest graph of this
kind. The chapter ends with some final remarks about possible practical implications
of these ideas, in Sect. 4.4; and a brief appendix with technical details relating the
tools and procedures needed to achieve our results, in Sect. 4.5.

2. Part II is titled Graph states: Classification and optimal preparation, and is orga-
nized in five chapters:

• Chapter 5: Introduction: Stabilizer formalism and graph states.

This is an introductory chapter, whose purpose is to provide the main definitions and
minimum necessary theoretical background to pave the way for discussing the results
of the second part of this thesis. The chapter is organized in two sections:

Sect. 5.1 is devoted to introducing the stabilizer formalism. We present, in a rather
self-contained and compact fashion, some basic concepts and definitions along with
the notation and techniques that will be used in the subsequent chapters. We briefly
describe the Pauli group, and consider stabilized states and stabilizing operators,
in general; and then we put emphasis specifically on the concepts of stabilizer and
generator, and on stabilizer states, that will be profusely used later. Among unitary
operations, the important role of the operations belonging to the Clifford group, which
will be useful when dealing with graph states and their entanglement properties, is
also highlighted.

Sect. 5.2 focuses the attention on graph states, a particular instance of stabilizer
states which constitute the subject of study in this part of our research. We present
a condensed list of possible applications in quantum information theory. Two defini-
tions of graph states are given in Sect. 5.2.1: the first is a recipe for the preparation
of a graph state, which uses the corresponding graph as a blueprint. The second one
constitutes an algebraic characterization of the graph state’s generator on the basis of
the graph. In Sect. 5.2.2 we deal with graph states as a “theoretical laboratory” for
multipartite entanglement, and describe some relevant results previously obtained by
other authors in relation to the general problem of the classification of entanglement
in pure quantum states, which provide the conceptual scenario for our contributions.
We finish the exposition with a succinct outline of the classification of graph states of
up to 7 qubits in classes of equivalence under local Clifford (LC) operations carried
out by our predecessors Hein, Eisert and Briegel (HEB) in Ref. [9], which can be
considered the starting point of our work on graph states.

• Chapter 6: Entanglement in eight-qubit graph states.

In this chapter, we extend up to eight qubits the classification of graph states accord-
ing to LC equivalence in Ref. [9] that closed the previous chapter.

Van den Nest, Dehaene, and De Moor (VDD) found that the successive application
of a transformation with a simple graphical description is sufficient to generate the
complete equivalence class of graph states under local unitary (LU) operations within
the Clifford group, also known as orbit, Ref. [10]. This simple transformation is local
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complementation, which allows to generate the orbits of all LC-inequivalent n-qubit
graph states; in particular, the 101 orbits corresponding to 8-qubit graph states,
whose classification is the goal of this chapter.

To establish an order between the equivalence classes we use the criteria proposed in
Refs. [9, 11], namely, (a) number of qubits, (b) minimum number of controlled-Z gates
needed for the preparation, (c) the Schmidt measure, and (d) the rank indexes. These
criteria are introduced an reviewed in Sect. 6.2. In Sect. 6.3 we present our results:
for each of these classes we obtain a representative which requires the minimum
number of controlled-Z gates for its preparation and minimum preparation depth,
and calculate the Schmidt measure for the 8-partite split, and the Schmidt ranks
for all bipartite splits. In Sect. 6.4 we present our conclusions and point out some
pending problems, mainly about the limitations in the use of the previous criteria as
labels that distinguish unambiguously among any pair of LC classes of equivalence of
graph states up to eight qubits. This issue is tackled in the following chapter.

• Chapter 7: Compact set of invariants characterizing graph states of up to
eight qubits.

The set of entanglement measures proposed by HEB in Ref. [9] for n-qubit graph
states fails to distinguish between inequivalent classes under LC operations if n ≥ 7.
Therefore, we cannot use these invariants for deciding which entanglement class a
given state belongs to. Reciprocally, if we have such a set of invariants, then we can
use it to unambiguously label each of the classes.

On the other hand, the set of invariants proposed by VDD in Ref. [12] distinguishes
between inequivalent classes, but contains too many invariants (more than 2 × 1036

for n = 7) to be practical.

In this chapter we solve the problem of deciding which entanglement class a graph
state of n ≤ 8 qubits belongs to by calculating some of the state’s intrinsic properties,
thus without generating the whole LC class. Sect. 7.1 is a condensed outline of
ideas and concepts already presented in foregoing chapters, allowing to follow the
subsequent discussions. In Sect. 7.2, for the sake of convenience, we start recalling
the definition of graph state through the algebraic characterization of the generator,
and review the effect of local complementation on the stabilizing operators. Then, in
Sect. 7.2.1, we introduce a new basic concept of the stabilizer formalism, namely, the
support of a stabilizing operator, and the classes of equivalence related to supports.
This concepts are necessary in Sect. 7.2.2, where we analyze some of the results about
the invariants proposed by VDD that will be useful in our discussion. In Sect. 7.3
we present and discuss the results of our research: we confirm the conjecture in
Ref. [12] that VVD’s invariants of type r = 1 are enough for distinguishing between
the 146 LC equivalence classes for graph states up to eight qubits. Moreover, we
introduce a new compact set of invariants related to those proposed by VDD, the so-
called cardinality-multiplicity (C-M) invariants, and show that four C-M invariants
are enough for distinguishing between all inequivalent classes with n ≤ 8 qubits.

• Chapter 8: Optimal preparation of graph states.

In this chapter we take advantage of both the classification of graph states in LC
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equivalence classes (Chap. 6) and the identification of such classes on the basis of a
compact set of LC invariants (Chap. 7). We show how to prepare any graph state
of up to 12 qubits with: (a) the minimum number of controlled-Z gates, and (b) the
minimum preparation depth. We assume only one-qubit and controlled-Z gates. The
method exploits the fact that any graph state belongs to an equivalence class under
LC operations: If one needs to prepare a graph state |G〉 and knows that it belongs to
one specific class, then one can prepare |G〉 by preparing the LC-equivalent state |G′〉
requiring the minimum number of entangling gates and the minimum preparation
depth of that class (Refs. [9, 11, 13]) and then transform |G′〉 into |G〉 by means of
simple one-qubit unitary operations.

In Sect. 8.1, for convenience, we recall the definition of graph state using the graph
as a blueprint for its preparation through the application of a series of controlled-
Z gates. We define the concept of preparation depth, and then discuss how the
preparation depth problem is related to an old problem in graph theory, namely,
the determination of the chromatic index or edge chromatic number: the minimum
number of colors required to get a proper edge coloring of the graph.

In Sect. 8.2, we extend up to 12 qubits the classification of graph states according
to their entanglement properties, and identify each class using only a reduced set of
invariants (C-M invariants). In Sect. 8.3, we provide a representative of the class with
both properties (a) and (b), if it exists, or, if it does not, one with property (a) and
one with property (b). All these results, which occupy several hundreds of megabytes,
are organized in two tables, one for n < 12 and one for n = 12, and presented as
supplementary material in Ref. [14]. In Sect. 8.4, we explain how to obtain the one-
qubit gates needed, and provide as supplementary material a computer program in
Ref. [15] to, given the graph G corresponding to the state we want to prepare, generate
a sequence of local complementations which connect G to the corresponding optimum
graph(s). Finally, in Sect. 8.5, the whole method is illustrated with an example.

As ending material for this chapter, we have added Sect. 8.6, where we succinctly dis-
cuss a generalization of graph states known as hypergraph states, of which the former
ones constitute a subset. After presenting the main definitions, and describing some
of the most recent results about the exploration of the entanglement properties and
nonclassical features of hypergraph states, we consider possible future extensions of
our contributions regarding graph states, in particular the analysis of the preparation
depth of a given hypergraph state and its possible optimal preparation procedure.

• Chapter 9: Proposed experiment for the quantum “Guess My Number”
protocol.

The goal of this chapter is to present, in a straightforward manner, an experimental
protocol of reduction of communication complexity based on the use of quantum
resources, known as the “Guess My Number” (GMN) protocol. The key point is that
the participants in the GMN protocol share an entangled quantum state, and this
quantum state is precisely a graph state, the 3-qubit or 4-qubit Greenberger-Horne-
Zeilinger (GHZ) state.

In Chaps. 6–8 we have focused our attention on graph states from the point of view
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of the theory of entanglement. We also outlined many of the main applications in
quantum information science in Sect. 5.2. Among them, we mentioned communication
complexity, for which graph states constitute interesting and advantageous resources
due to their genuine multipartite entanglement.

We begin in Sect.9.1.1 with a summarized review of some basic concepts relating com-
munication complexity, in order to provide the necessary background. We emphasize
that graph states, like other entangled quantum states, constitute a valuable resource
that may be shared by the participants in those scenarios corresponding to the entan-
glement model of communication complexity. Our purpose in the next sections is to
present in detail one of those scenarios, involving a communication protocol based on
the GMN game, with the peculiarity that the contestants share specifically a graph
state.

We describe the original entanglement-assisted GMN protocol for the reduction of
communication complexity, introduced by Steane and van Dam, in Sect. 9.2, and
then analyze the difficulties of an experimental realization of this protocol: it would
require producing and detecting three-qubit GHZ states with an efficiency η > 0.70,
which in turn would require single photon detectors of efficiency σ > 0.89.

Our modified version of the GMN protocol is presented in Sect. 9.3: we propose
certain changes that make the modified GMN protocol experimentally feasible. We
discuss the best classical strategy (exchanging bits and using shared randomness),
the alternative quantum strategy (exchanging bits on the basis of a clever use of the
shared graph state), and then make a comparison between their yields to determine
the quantum versus classical advantage, through the analysis of the probability of
success in the game. Finally, in Sect. 9.4, we discuss the photon detection efficiency
requirements needed to perform the experiment in the laboratory, and make a con-
crete proposal for such an experiment. In the proposed experiment, the quantum
reduction of the multiparty communication complexity would require an efficiency
η > 0.05, achievable with detectors of σ > 0.47, for four parties, and η > 0.17
(σ > 0.55) for three parties. In a final remark, we account for the subsequent re-
alization of the experiment by Zhang et al. in Ref. [16], with the expected results:
the separated parties sharing the entangled (graph) state can compute a function
of distributed inputs by exchanging less classical information than it is required by
using any classical strategy.

The thesis ends with a separate section on p. 171, where we explain in certain detail the
connection between Parts I and II. A summary of conclusions of the thesis is collected on p. 185.
The articles this thesis is based on, and other contributions, are listed on p. 193. For the sake of
convenience, an index of acronyms frequently used throughout the thesis is provided on p. 197.
Finally, after the bibliography, we present an addendum of enclosed publications, which support
the thesis.
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Chapter 1

Graph-theoretic approach to
quantum correlations

The purpose of this chapter is to provide the minimum necessary theoretical background for
discussing the results of the first part of this thesis. We will briefly present some basic concepts
and definitions, along with the notation and techniques that will be used in the subsequent
chapters. Some relevant results previously obtained by other authors, on which our research is
based, will also be described here. We will finish the exposition with some basic results of ours,
and their links to the contents and developments of the following chapters.

We begin in Sect. 1.1 with a concise and self-contained description of the general framework
of operational theories, following Refs. [1, 2]. This introduction concludes with the definition of
mutual exclusivity of events in operational terms. This allows us connect Specker’s observation
about pairwise and joint measurability in quantum theory (QT) with the exclusivity (E) prin-
ciple. In Sect. 1.2 we review different kinds of correlations between outcomes of measurements
performed on a system, as predicted by certain physical theories. We follow Refs. [3, 4, 5] in
the discussion of local, quantum, no-signaling and general correlations. In Sect. 1.3 we define
non-contextual correlations, and introduce the concept of non-contextuality (NC) inequality.
Sect. 1.4 is devoted to presenting the graph-theoretic approach to quantum correlations by
Cabello-Severini-Winter (CSW) in Refs. [6, 7], focusing our attention on two main results and
several proposals of further development, on which our research is based. We present our first
basic result in Sect. 1.5, the classification of the so-called quantum contextual graphs, and we
conclude summarizing the links between this classification and the problems addressed in the
subsequent chapters.

1.1 Specker’s observation and the exclusivity principle within a
general framework of operational theories

In this section, we formulate Specker’s observation about QT (Refs. [17, 18]) and the E
principle (Refs. [19, 20, 21]) within a general framework of operational theories and prove that
the E principle holds in any theory in which Specker’s observation holds.
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1.1.1 Preparations and tests

Preparations and tests are taken as primitive notions with the following meaning:
A preparation is a sequence of unambiguous and reproducible experimental procedures.
A test is a preparation followed by a step in which outcome information is supplied to an

observer. This information is not trivial since tests that follow identical preparations may not
have identical outcomes.

An operational theory is one that specifies the probabilities of each possible outcome X of
each possible test M given each preparation P . We denote these probabilities by p(X|M ;P ).

The presented framework is independent of the interpretation of probability used; the reader
is free to use, e.g., frequentist, propensity, or Bayesian interpretations.

1.1.2 States and observables

Two preparations are operationally equivalent if they yield identical outcome probability
distributions for either test. Each equivalence class of preparations is called a state. For instance,
the state associated with a particular preparation P1 is

ρ1 ≡ {P | ∀M : p(X|M ;P ) = p(X|M ;P1)}. (1.1)

Two tests are operationally equivalent if they yield identical outcome probability distribu-
tions for either preparation. Each equivalence class of tests is called an observable. For instance,
the observable associated with a particular test M1 is

µ1 ≡ {M | ∀P : p(X|M ;P ) = p(X|M1;P )}. (1.2)

1.1.3 Joint measurability of observables

Two observables µ1 and µ2 are jointly measurable if there exists an observable µ such that:
(i) the outcome set of µ, σ(µ), is the Cartesian product of the outcome sets of µ1 and µ2, i.e.,

σ(µ) ≡ {(Xi, Xj) | Xi ∈ σ(µ1), Xj ∈ σ(µ2)}, (1.3)

and (ii) for all states ρ, the outcome probability distributions for every measurement of µ1 or
µ2 are recovered as marginals of the outcome probability distribution of µ, i.e.,

∀ρ, ∀Xi ∈ σ(µ1) :

p(Xi|µ1; ρ) =
∑

Xj∈σ(µ2)

p((Xi, Xj)|µ; ρ), (1.4a)

∀ρ, ∀Xj ∈ σ(µ2) :

p(Xj |µ2; ρ) =
∑

Xi∈σ(µ1)

p((Xi, Xj)|µ; ρ). (1.4b)

N observables µ1, . . . , µN are jointly measurable if there exists an observable µ such that:
(i’) the outcome set of µ is the Cartesian product of the outcome sets of µ1, . . . , µN and (ii’)
for all states ρ, the outcome probability distributions for every joint measurement of any subset
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S ≡ {µi|i ∈ I} ⊂ {µ1, . . . , µN} are recovered as marginals of the outcome probability distribution
of µ. Denoting by µS an observable associated with a joint measurement of the subset S, its
outcome set by σ(µS) and one of its outcomes by XS , the condition can be expressed as

∀S, ∀ρ, ∀XS ∈ σ(µS) :

p(XS |µS ; ρ) =
∑
Xt:t/∈I

p((X1, . . . , XN )|µ; ρ). (1.5)

Joint measurability of a set of observables implies pairwise joint measurability of them (i.e.,
joint measurability of any pair of them). The converse is not necessarily true.

A joint probability distribution for N observables µ1, . . . , µN exists if, for all subsets S ≡
{µi|i ∈ I} ⊂ {µ1, . . . , µN}, for all states ρ and for all XS ∈ σ(µS), where µS is an observable
associated with a joint measurement of S, there exists a probability distribution p(X1, . . . , XN |ρ)
such that

p(XS |µS ; ρ) =
∑
Xt:t/∈I

p(X1, . . . , XN |ρ). (1.6)

If some observables are jointly measurable then there exists a joint probability distribution
for them. The existence of a joint probability distribution for some observables does not imply
that they are jointly measurable. The non-existence of a joint probability distribution for some
observables indicates the impossibility of jointly measuring them.

1.1.4 Events

We are interested in a specific type of preparations: those resulting from a test M with
outcome X on a previous preparation P . We denote these preparations by P ′ ≡ X|M ;P .

Two of these preparations are operationally equivalent if they yield identical outcome proba-
bility distributions for either subsequent test M ′. Each equivalence class of these preparations is
called an event. For instance, the event associated with a particular preparation P ′1 ≡ X1|M1;P1

is

ε1 ≡
{
P ′ | ∀M ′ : p(X ′|M ′;P ′) = p(X ′|M ′;P ′1)

}
. (1.7)

Notice that the term “event”, which is usually restricted to designate the outcome X of test
M on preparation P , here designates the state after test M with outcome X on preparation
P . The probability of an event is therefore the probability of transforming one state (e.g.,
the one associated with P1) into another (e.g., the one associated with P ′1). In a given NC
inequality (see Sect. 1.3, and Eq. (1.22)), all probabilities (of events) are probabilities of different
transformations of the same state.

1.1.5 Mutual exclusivity of events

Two events ε1 and ε2 are mutually exclusive if there exist two jointly measurable observables
µ1, univocally defined for ε1 (i.e., independent of ε2), and µ2, univocally defined for ε2, that
distinguish between them, i.e., if there exists an observable µ associated with a joint measurement
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of µ1 and µ2 such that there are X1 ⊂ σ(µ) and X2 ⊂ σ(µ) with X1 ∩X2 = ∅ such that

p(X1|µ; ε1) = 1, (1.8a)

p(X2|µ; ε2) = 1. (1.8b)

The N events of a set E = {ε1, . . . , εN} are jointly exclusive if there exists a set of N jointly
measurable observablesM = {µ1, . . . , µN} that distinguish between the events in any subset of
E .

Joint exclusivity of a set of events implies mutual exclusivity of any pair of them. The
converse is not necessarily true.

1.1.6 Specker’s observation and the E principle

Specker’s observation. Specker pointed out that, in QT, pairwise joint measurability of a set
M of observables implies joint measurability ofM, while in other theories this implication does
not need to hold (Ref. [17]). Later, Specker conjectured that this is “the fundamental theorem”
of QT (watch video in Ref. [18]).

The E principle states that any set of pairwise mutually exclusive events is jointly exclusive.
Therefore, from Kolmogorov’s axioms of probability, the sum of their probabilities cannot be
higher than 1.

Lemma: In any theory in which pairwise joint measurability of observables implies joint
measurability of observables, pairwise mutual exclusivity of events implies joint exclusivity of
events.

Proof: If the events in a set E = {ε1, . . . , εN} are pairwise exclusive, there exists a set M =
{µ1, . . . , µN} of pairwise jointly measurable observables that permits to distinguish between any
two events in E . If pairwise joint measurability ofM implies joint measurability ofM, thenM
permits to distinguish between the events in any subset of E .

The converse implication, namely, that in any theory in which pairwise mutual exclusivity
implies joint exclusivity also pairwise joint measurability implies joint measurability, is not
necessarily true.

1.2 Correlations

Any experimental scenario, where some measurements are performed on a physical system,
and for which it is desirable to avoid any assumptions regarding the kind of system or the specific
way the measurements are implemented, can be rephrased in an more abstract but equivalent
way by means of a device-independent or “black-box” (or simply box) formalism: we model the
scenario by a black box for which there are some admissible sets of inputs {M1,M2, . . . ,Mk},
chosen from a set M of possible inputs. By admissible set of inputs we mean settings or mea-
surements corresponding to some jointly measurable observables, in the sense of 1.1.3. For each
input Mj the black box returns an output aj from a set of possible outputs Aj . We can picture
this situation as some experimentalist (or team of experimentalists) in the laboratory pressing
appropriate buttons of the box to select the inputs, and then registering the results depicted
by some built-in flashing lights or mobile pointers indicating values in a dial. We must remark
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that not all possible combinations of buttons might, in principle, be pushed, depending on the
specific experiment to be modeled, which is an abstract way to describe the joint measurability
of observables.

Let us note that this formalism is able to account for more restricted scenarios, those where
a physical system is not viewed as a single entity but as a set of physical subsystems, upon which
several parties carry out measurements: in this case the black box is just a collection of black sub-
boxes, for each of which the previous description is still valid. The setting chosen by one of the
parties in the corresponding sub-box could be constrained or not by the functioning of the sub-
box and even by another party’s box’s setting selection, giving rise to sets of admissible inputs.
The sub-boxes might be space-like separated, if needed, like in Bell-type scenarios, where n space-
like separated parties have access to k measurements each, and each of these measurements has
m possible outcomes (we would assign a sub-box per party, with the appropriate number of
buttons and lights). In such a case, we admit the parties can choose their settings regardless of
the other parties’ selection.

The inner functioning of such a box (or sub-boxes) is in principle irrelevant for our pur-
poses: no matter how the outputs are produced (either by actual measurements carried out
on physical systems or by some rules derived from an unknown theory), we can assume the
inner mechanism as inaccessible in practice. That being the case, and considering that the
outcomes can be correlated in an arbitrary fashion, a general way to describe the box’s behav-
ior from the viewpoint of these correlations, independently of the physical model, is through
the joint probability distributions of the resulting outputs, conditioned on the selected inputs,
p(a1, a2, . . . , ak|M1,M2, . . . ,Mk), where {M1, . . . ,Mk} is any admissible set of inputs (note that
for sets of jointly measurable observables the existence of well defined joint probability distribu-
tions is guaranteed, according to 1.1.3).

In the following subsections we will summarize the most relevant types of correlations on
the basis of the properties fulfilled by the corresponding joint probability distributions of the
outcomes generated by such black boxes.

1.2.1 General correlations

Let us consider a physical system modeled by a black box, and let {M1, . . . ,MN} be a
jointly measurable set of inputs. Denote by aj the outcome corresponding to the measurement
Mj on the physical system.1 Without loss of generality, we will assume that there is only a finite
number of possible discrete outcomes for Mj . As we have said before, the outcomes obtained can
be arbitrarily correlated, and the joint probability distribution of the outcomes conditioned on
the settings, p(a1, a2, . . . , aN |M1,M2, . . . ,MN ), is an adequate way to describe the correlations.
These joint probability distributions must obey the positivity condition

p(a1, a2, . . . , aN |M1,M2, . . . ,MN ) ≥ 0,∀a1, . . . , aN ,∀M1, . . . ,MN , (1.9)

1This is a generalization of an scenario in which there are N parties, each of them possessing a physical system.
Party j has a finite set of different observables at disposal, among which he/she can choose one at will. Mj is the
observable (alternatively, the setting) chosen by party j, and aj is the corresponding outcome the party obtains
when measuring Mj on the physical system.
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and the normalization condition∑
a1,...,aN

p(a1, a2, . . . , aN |M1,M2, . . . ,MN ) = 1, ∀M1, . . . ,MN . (1.10)

The fact that these probabilities cannot be greater than 1 is derived from (1.9) and (1.10).
The set of all possible joint probability distributions satisfying the positivity and normal-

ization conditions constitutes a convex set, since convex combinations of them are legitimate
probability distributions too. It is useful to consider these conditioned probability distributions
as points in a large dimensional real space:2 the set of all these points is a convex polytope, that
we can refer to as the general correlations polytope, G.

In order to deal with more specific types of correlations, it is necessary to consider further
restrictions besides conditions (1.9) and (1.10). The procedure usually followed consists of
obtaining marginal probabilities for each setting and outcome from the joint probabilities (by
summing over the outcomes of the other settings), and then introducing constraints upon these
marginal probabilities motivated by more or less plausible physical considerations. For the sake
of simplicity, let us illustrate this procedure with a simple case:

Imagine two sets of inputs S1 = {A1, B1} and S2 = {A2, B2} with the following property:
the inputs in S1 are not jointly measurable, and the same is true for those in S2; nevertheless,
choosing one input from S1 and another input from S2 results in a jointly measurable pair of
inputs (we can visualize S1 and S2 as two switches with only two positions A and B, that can
be manipulated independently). Let us denote an outcome corresponding to Ai (or Bj) by ai
(or bj). If we choose the setting A1 from S1, there are two possible jointly measurable pairs
involving A1, namely {A1, A2} and {A1, B2}, and the marginal probabilities of an outcome a1

for each of the two possible settings from S2 are given by

pA2(a1|A1) =
∑
a2

p(a1, a2|A1, A2), (1.11a)

pB2(a1|A1) =
∑
b2

p(a1, b2|A1, B2). (1.11b)

The same can be said for B1 in relation to jointly measurable settings from S2, and likewise
for the marginal probabilities of outcomes corresponding to settings chosen from S2 regarding
jointly measurable settings from S1.

Note that, for general correlations (those described by joint probability distributions fulfilling
only (1.9) and (1.10)), the marginal probabilities pA2(a1|A1) and pB2(a1|A1) might be different.
In case pA2(a1|A1) 6= pB2(a1|A1), this would imply that the choice of setting in S2 could change
the marginal probability distribution of outcomes of measurements belonging to S1 (and vice
versa, by switching the roles of S1 and S2): the term signaling is conventionally used to refer to
this behavior.

It is interesting to note that signaling is often described taking for granted the existence
of two space-like separated parties {1, 2} that can choose freely between two settings from
S1 = {A1, B1} and S2 = {A2, B2}, respectively. In this scenario, space-like separation provides

2For instance, for the N-party scenario mentioned in footnote 1, we need a space of dimension d =
∏N

j=1 nMjnaj ,
where nMj and naj are, respectively, the number of settings and the number of outcomes per setting for party j.
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the joint measurability of two observables belonging to different parties: party 1 could signal
to party 2 just by selecting different settings from S1 thereby disturbing party 2’s marginal
probability distributions, and vice versa.

Nevertheless, from the point of view of this thesis, the existence of parties and the space-
like separation between them are extra assumptions that lead to a specific kind of signaling,
namely, super-luminal signaling.3 The former two-party (or multi-party) scenario is nothing but
a particular instance of the more general and less constrained framework we are considering
here, where the only assumption is the joint measurability of certain observables. Therefore,
signaling must be understood as the fact that the marginal probability distribution of outcomes
of a measurement M might be affected by different possible choices of measurements that can
be jointly performed with M , without presupposing the reason for their joint measurability.

Of course, signaling need not be the case for more restrictive types of correlations, like those
we deal with in the following subsections.

1.2.2 No-signaling correlations

Once again, consider the previous two sets of inputs S1 = {A1, B1} and S2 = {A2, B2} with
the same joint-measurability relationships between them. If the marginal probability distribu-
tions of outcomes of a measurement belonging to one of the sets do not depend on the choice of
a jointly measurable setting made in the other set, then the correlation between their outcomes
is a no-signaling correlation: so to say, both sets cannot signal to each other by means of the
choice of setting, so that no one is able to tell what setting from S2 was chosen and measured (or
whether any measurement at all was performed) by looking at the statistics of the outcomes of
measurements from S1, and vice versa. Mathematically, the marginal probabilities pM2(a1|A1)
and pM2(b1|B1) are independent of the choice M2 ∈ {A2, B2}, and analogously for pM1(a2|A2)
and pM1(b2|B2) with respect to the choice M1 ∈ {A1, B1}, namely,

pM2(a1|A1) = p(a1|A1),∀a1,∀M2 ∈ S2, (1.12a)

pM2(b1|B1) = p(b1|B1), ∀b1, ∀M2 ∈ S2, (1.12b)

pM1(a2|A2) = p(a2|A2),∀a2,∀M1 ∈ S1, (1.12c)

pM1(b2|B2) = p(b2|B2),∀b2, ∀M1 ∈ S1. (1.12d)

This is the mathematical content of the so-called no-signaling principle. Let us recall that
our only assumption here is the joint measurability between an observable selected from S1

and another observable selected from S2. When no additional assumptions are made, some
authors (see Ref. [22], v.g.) prefer to denominate this principle as no-disturbance principle,4 and

3With more detail, super-luminal signaling entails a notion of space-time structure, whereas signaling does
not: we can define the event of measuring an observable as the space-time region comprising the volume in space
where the measurement takes place and the interval of time between the choice of setting and the obtention of
the corresponding outcome. Space-like separation between such measurement events implies that the observers
who perform the measurements are sufficiently distant from each other, and the measurement processes are brief
enough so that the measurement events are outside each other’s light cone in any inertial reference frame. The
relativistic principle of constancy of the speed of light in any reference frame entails that no signal carrying
information can travel faster than light, and hence provides the threshold for super-luminal influences.

4Alternatively, Gleason’s property, like in Ref. [6], since it is the condition underlying Gleason’s theorem.
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reserve the term “no-signaling” for scenarios in which the sets of measurements S1 and S2 are
performed on space-like separated physical systems. From our point of view, such distinction is
unnecessary.

We can generalize the definition of no-signaling correlations to the case in which there are
N sets of observables S1, S2, . . . , SN : by hypothesis, let us assume that any collection of N
observables, one from each set Si, is jointly measurable (although the observables belonging
to the same set Si need not be jointly measurable). In case of no-signaling correlations, one
cannot signal to a given subset of these sets of observables from the remaining sets by changing
the latter’s selected measurement settings.5 Therefore, the marginal probability distributions
of outcomes of observables for each subset of input sets only depend on the corresponding
observables measured within the subset.

Mathematically, take any subset {S1, S2, . . . , Sp}, and select the settings A1, A2, . . . , Ap,
with Ai ∈ Si, ∀i. Then, the condition that the rest of the sets {Sp+1, . . . , SN} cannot signal to
{S1, S2, . . . , Sp} by switching their settings implies that, for all outcomes ap+1, . . . , aN :

p(a1, . . . , ap|A1, . . . , AN ) = p(a1, . . . , ap|A1, . . . , Ap). (1.13)

In fact, conditions (1.13) derive from a single statement: from a given set of observables Sk
one cannot signal to the rest of the sets {S1, S2, . . . , Sk−1, Sk+1, . . . , SN} by switching between
settings in Sk. In mathematical terms, following Refs. [3, 4] and adapting the language appro-
priately, for each k ∈ {1, . . . , N} the marginal probability distribution that is obtained when
tracing out set Sk’s outcomes is independent of what observable (Ak, Bk, etcetera) is measured
in Sk. Namely:∑

ak

p(a1, . . . , ak, . . . , aN |A1, . . . , Ak, . . . , AN ) =
∑
bk

p(a1, . . . , bk, . . . , aN |A1, . . . , Bk, . . . , AN ),

(1.14)
for all outcomes a1, . . . , ak−1, ak+1, . . . , aN and all settings A1, . . . , Ak, Bk, . . . , AN . This allows
to define the marginal probability distribution for the N − 1 sets not including set Sk,

p(a1, . . . , ak−1, ak+1, . . . , aN |A1, . . . , Ak−1, Ak+1, . . . , AN ), (1.15)

in a way which does not depend on the settings chosen in Sk, as required.

The set of joint probability distributions arising from no-signaling correlations, considered
as points in the real space, constitutes a convex polytope, the so-called no-signaling polytope,
P. The facets of P that follow from the positivity conditions (1.9) can be considered as trivial,
whereas those following from the no-signaling requirements (1.14) are non-trivial ones: a point
violating an inequality describing a non-trivial facet of P would correspond to experimental data
which cannot be reproduced using only a no-signaling model, implying the necessity of some
kind of signaling.

Obviously, P ⊂ G.

5Note again that each set Si of settings could be assigned to a different party j, space-like separated from the
others, although this restriction is not necessary.
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1.2.3 Local correlations

The set of no-signaling correlations that we have just presented can in turn be divided
into two types: local and non-local. In the black-box description, local correlations are those
generated by a local box, consisting of a collection of sub-boxes that share classical information,
i.e., the only resources at disposal are local operations and shared randomness. Usually, each
sub-box is assigned to an observer who locally chooses its settings (for instance, following certain
rules on the basis of shared randomness) and obtains the corresponding outcomes (that can be
communicated to other parties by classical means). Consequently, local correlations are those
described by joint probability distributions of the form

p(a1, . . . , aN |A1, . . . , AN ) =
∑
λ

p(λ)p(a1|A1, λ) · · · p(aN |AN , λ), (1.16)

where λ (sometimes called local hidden variable) is a random variable that stands for the infor-
mation shared among the parties; p(λ) is the probability that a particular value of λ occurs, and
p(aj |Aj , λ) is the (locally generated) probability that party j outputs aj given that the shared
random data was λ and the input was chosen to be Aj .

A model that provides only local correlations is usually called a local hidden-variable (LHV)
model. The joint probability distributions that cannot be written similarly to (1.16) correspond
to non-local correlations.

When we represent joint probability distributions satisfying (1.16) as points in a real space
we obtain the set of local correlations, which is a convex polytope, the so-called local polytope,
frequently denoted by L. Such local polytope is delimited by two kinds of facets: firstly, trivial
facets described by the positivity conditions (1.9), which are trivial facets of the no-signaling
polytope P as well. Secondly, non-trivial facets corresponding to Bell-type inequalities, whose
violation by certain point implies that such a point lies outside the local polytope, and thus
corresponds to non-local correlations. The latter facets are not facets of P.

Note that local correlations are no-signaling, since one can define their marginal probability
distributions the same way as it was done previously for no-signaling correlations, i.e., like in
(1.15). Accordingly, the set-inclusion relationship between the correlation polytopes presented
so far is L ⊂ P ⊂ G.

For a complete review of Bell inequalities, polytopes and related topics, see Ref. [23].

1.2.4 Quantum correlations

Quantum correlations constitute the main subject of this thesis. A precise definition of what
is meant by quantum correlations in our work requires us to introduce some previous concepts:

Without loss of generality, in QT we can represent the state of a quantum system by a
unit vector |ψ〉 in a Hilbert space H, and a quantum measurement Ai by a set of orthogonal

projectors {Π(Ai)
ai }ai , where each projector corresponds to an outcome ai, fulfilling Π

(Ai)
ai Π

(Aj)
aj =

δai,ajΠ
(Ai)
ai and

∑
ai

Π
(Ai)
ai = 1H. The probability of obtaining outcome ai when measurement Ai

is performed on a system in state |ψ〉 is

p(ai|Ai) = 〈ψ|Π(Ai)
ai |ψ〉. (1.17)
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Notice that, from the point of view of an observer having access only to a subspace HS of
H (i.e., H = HS

⊕
H⊥S ), the state is represented by a density operator ρ = trH⊥S

(|ψ〉〈ψ|), where

trH⊥S
denotes the partial trace over subspace H⊥S , and the measurement Ai is represented by

the positive-operator-valued measure (POVM) elements {M (Ai)
ai }ai , where M

(Ai)
ai = ΠSΠ

(Ai)
ai ΠS ,

and ΠS is the orthogonal projection taking HS
⊕
H⊥S to HS .6

Two quantum measurements Ai and Aj are compatible if and only if [Π
(Ai)
ai ,Π

(Aj)
aj ] =

0,∀ai, aj . A set of quantum measurements {A1, . . . , AN} is compatible if each pair {Ai, Aj}
is compatible. Such a set is called a context.

We define quantum correlations as those that can be written as

p(a1, . . . , aN |A1, . . . , AN ) = 〈ψ|Π(A1)
a1 . . .Π(AN )

aN
|ψ〉, (1.18)

where |ψ〉 is a quantum state in H, Π
(Ai)
ai are orthogonal projectors, and {A1, . . . , AN} is a

context.
Two types of quantum correlations are of particular interest:
(I) Projective quantum correlations: those for which all quantum measurements Ai are pro-

jective in HS .
(II) Bell-type quantum correlations: in this case, the quantum system is composed of N spa-

tially separated subsystems, and the joint Hilbert space is H = (H1
⊕
H⊥1 )⊗· · ·⊗ (HN

⊕
H⊥N ).

Quantum mechanics fulfills the no-signaling principle. Therefore, quantum correlations (1.18)
constitute a type of no-signaling correlations: the corresponding marginal probability distribu-
tions are defined in the same way as it was done in (1.15) for no-signaling correlations. Taking
now the joint probability distributions (1.18) as points in the real space, the set of quantum
correlations ends up still being a convex set but with a more subtle geometry, not a polytope
(since the number of its extremal points is not finite and, correspondingly, the number of its
bounding halfplanes is infinite): this set is usually named as the quantum set or quantum body,
and denoted by Q. Note also that, since the correlations allowed by quantum mechanics can vio-
late Bell inequalities, the set Q includes points corresponding to correlations that are non-local.
Trivially, the local polytope is a subset of the quantum set.

In a nutshell, the set-inclusion relationship between the general correlations, no-signaling
and local polytopes as defined in the previous subsections, and the quantum set we have just
introduced, is the following: L ⊂ Q ⊂ P ⊂ G. Such strict set-inclusion relationship is illustrated
in Fig. 1.1.7.

An important remark: in the following sections of this chapter, and also in the rest of this
thesis unless otherwise stated, we will focus on projective quantum correlations. Hereafter, as a
consequence, by quantum correlations we will mean correlations between the outcomes of jointly
measurable projective quantum observables. Note that these correlations are less restrictive than
Bell-type correlations. There are two fundamental reasons for this choice: (i) In Bell-type
scenarios (where the emphasis is put on non-locality) it is assumed that experiments involving

6The other way round, any POVM can be understood as a projection-valued measure (PVM), i.e., a set of
mutually orthogonal projections that sum to 1, in an enlarged Hilbert space by virtue of Neumark’s theorem. See
for instance Ref. [24], Sect. 9.6. Also Ref. [25].

7We encourage the reader to compare his figure with Fig. 1.4, where another set-inclusion relationship is
depicted, for sets of correlations associated to an arbitrary exclusivity graph G.
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Figure 1.1: Schematic representation of the inclusion relationship among the sets of general (G),
no-signaling (P), quantum (Q) and local (L) correlations, as defined in previous subsections. All
of them are polytopes, except for Q, which is in general a convex set but not a polytope. Recall
that L is delimited by trivial facets described by the positivity conditions (1.9), and non-trivial
facets corresponding to Bell-type inequalities. In the figure, the two hyperplanes delimiting L
and Q represent Bell inequalities.

space-like separated tests are more fundamental than other types of correlation experiments.
Nevertheless, apparently nothing in the rules of QT supports this assumption. In fact, quantum
correlations can also occur in experiments involving jointly measurable observables in systems
in which no parts can be identified and, consequently, where space-like separation plays no role
(Ref. [26]). (ii) The basic quantum correlations (those corresponding to basic exclusivity graphs,
see Chap. 2) do not attain their maximum values in Bell-type scenarios, whereas these maxima
are achieved in less restricted scenarios, in which parts are not taken into account, and where
only jointly measurable projective quantum observables are involved. An example can be found
in Ref. [27] (see also Sect. 1.4.5, and footnote 22, on p. 55).

1.2.5 Commutativity, no-disturbance and joint measurability

We will finish this section with a brief comment on the mutual implications between some
of the concepts presented so far, specifically with regard to QT. According to Ref. [28], two of
the main features of QT, in sharp contrast with classical physics, are the impossibility of jointly
measure some observables and the fact that measurements of different observables usually dis-
turb each other, properties that often come along with non-commutativity of the operators
representing such observables. Strictly speaking, however, no-disturbance (ND), joint measur-
ability (JM) and commutativity (COM) are different concepts. Whereas joint measurability
and no-disturbance can easily be understood in operational terms, as we have seen before,
commutativity seems to rely more on the underlying mathematical representation of quantum



48 Graph-theoretic approach to quantum correlations

observables.8 The connections between all these properties are well studied for pairs of general
quantum observables, which are given in terms of POVMs. In general, it is known that

COM⇒ ND⇒ JM, (1.19)

and that the first two implications are strict in the sense that the reverse implications do not
hold in general. Nonetheless, if the POVMs are PVMs then all three notions turn out to be
coincident with one another. Given that this thesis focuses on projective measurements, we will
use such notions as equivalent and interchangeable, unless noted otherwise.

1.3 Quantum contextuality. Non-contextual correlations

Quantum contextuality (Refs. [17, 29, 30]) refers to the fact that the predictions of quantum
mechanics cannot be reproduced assuming non-contextuality of results (i.e., that the results are
predefined and independent of other compatible tests) or, equivalently, non-contextual hidden
variable (NCHV) theories.9 By compatible tests we mean jointly measurable tests, according to
definition of joint measurability in Sect. 1.1.3 (for other definitions of compatibility, see Ref. [24],
p. 203; Ref. [31], Sect. 6.3; and also Ref. [32]). In quantum mechanics, two tests represented
by self-adjoint operators A and B are compatible when A and B commute.10 This guarantees
that the quantum predictions for compatible tests are given by a single probability measure on
a single probability space. Compatibility implies that the probability p(ai|xi) of obtaining the
result ai for the test xi is independent of other compatible tests x1, . . . , xi−1, xi+1, . . . , xn, i.e.,

p(ai|xi) =
∑

a1,...,ai−1,ai+1,...,an

p(a1, . . . , an|x1, . . . , xn), (1.20)

for all sets x1, . . . , xn of compatible tests, and where p(a1, . . . , an|x1, . . . , xn) is the joint probabil-
ity of obtaining the results a1, . . . , an for the compatible tests x1, . . . , xn, respectively. Assump-
tion (1.20) is formally equivalent to the no-signaling principle (or, alternatively, no-disturbance
principle, as some authors refer to the no-signaling principle when it involves compatible tests
—like in this case— instead of space-like separated tests; see p. 43).

The assumption of the non-contextuality of results states that the result ai of test xi is
the same regardless of other compatible tests being performed; it only depends of xi and some
hidden variables λ. This implies that the correlation among the results of compatible tests can
be expressed as

p(a1, . . . , an|x1, . . . , xn) =
∑
λ

p(λ)
n∏
i=1

p(ai|xi, λ), (1.21)

8In Ref. [28], the concept of coexistence of observables is also defined, and its implications regarding commu-
tativity, joint measurability and no-disturbance are discussed. We will set it aside, since it will not be necessary
for our purposes.

9The terms “contextuality” and “contextual” come from context, which is a set of mutually compatible ob-
servables.

10Recalling (1.19), commutativity between the self-adjoint operators implies joint-measurability of the ob-
servables represented by them. Hence, a context can be defined, alternatively, as a set of jointly-measurable
observables.
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for some common distribution p(λ). Such correlations are called non-contextual correlations.
NC inequalities are expressions of the form

S ≡
∑

Ta1,...,an,x1,...,xnp(a1, . . . , an|x1, . . . , xn)
NC

≤ ΩNC, (1.22)

where Ta1,...,an,x1,...,xn are real numbers and
NC

≤ ΩNC denotes that the maximum value of S for
any non-contextual correlations [therefore satisfying (1.21)] is ΩNC. Quantum contextuality is
experimentally observed through the violation of NC inequalities (Refs. [33, 34, 35, 36]).

Quantum non-locality (Ref. [37]) is a particular form of quantum contextuality which occurs
when the tests are not only compatible but also space-like separated. In this case, NC inequali-
ties are called Bell inequalities (Ref. [37]). In addition to applications such as device-independent
quantum key distribution (Refs. [38, 39]) and random number generation (Ref. [40]), which re-
quire space-like separation, quantum contextuality also offers advantages in scenarios without
space-like separation. Examples are communication complexity (Ref. [41]), parity-oblivious mul-
tiplexing (Ref. [42]), zero-error classical communication (Ref. [43]), and quantum cryptography
secure against specific attacks (Refs. [44, 45]).

1.4 Cabello-Severini-Winter’s graph-theoretic approach to quan-
tum correlations

The experimental violation of NC inequalities reveals contextual correlations that cannot
be explained with NCHV theories, i.e., theories in which outcomes are predefined and do not
depend on which combination of jointly measurable observables is considered. A novel approach
to quantum correlations within this general framework of contextual correlations is presented in
Refs. [6, 7]: the main feature of this approach is the use of graphs to characterize correlations
arising in three different classes of theories, namely, NCHV theories, QT, and more general prob-
abilistic theories. The first part of this thesis is directly based on this graph-theoretic approach,
and develops some of the proposals in Refs. [6, 7]: for instance, the classification of graphs
according to some of their combinatorial numbers, which consequently provides a classification
of all possible forms of quantum contextuality; or the identification of experimental scenarios
with specific correlations on demand (e.g., fully contextual quantum correlations). The afore-
mentioned reasons justify that we dedicate the present section to summarize the fundamental
concepts that underlie the graph-theoretic approach, and the main results obtained in Refs. [6, 7].

1.4.1 Exclusivity graph of an experiment

Given any correlation experiment, one can associate it with a graph G in which events are
represented by vertices and pairs of exclusive events11 are represented by adjacent vertices. We
will refer to G as the exclusivity graph of the experiment.

For example, let us consider the Clauser-Horne-Shimony-Holt (CHSH) experiment, Ref. [46],
in which there are four tests A0, B0, A1, and B1, each of them with two possible outcomes: −1

11See the operational definition of mutual exclusivity in 1.1.5. In practice, two events are mutually exclusive if
they cannot be simultaneously true: at most, one of them can occur.
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Figure 1.2: Simplified representation of the exclusivity graph of the CHSH experiment, GCHSH.
Events are represented by vertices. Here, for simplicity, sets of 4 pairwise exclusive events are
represented by 4 vertices lying on the same straight line (blue) or circumference (red), rather
than by cliques. Each vertex belongs to three cliques. Black vertices correspond to the 8 events
depicted in Fig. 1.3 (b). Figure taken from Ref. [7] and slightly modified, with permission of the
authors.

and 1. All possible pairs of them are compatible except for the pairs (A0, A1) and (B0, B1). The
experiment consists of performing the pairs of tests (A0, B0), (A0, B1), (A1, B0), and (A1, B1)
on systems in the same quantum state. The exclusivity graph of the CHSH experiment, GCHSH,
is represented in Fig. 1.2, where a vertex labeled by a, b | i, j corresponds to the event “the result
a has been obtained when measuring Ai and the result b has been obtained when measuring
Bj”. It is a 16-vertex graph with 12 cliques of size 4 (sets of 4 pairwise adjacent vertices).

1.4.2 Compatibility and exclusivity graphs of a non-contextuality inequality

As it is pointed out in Refs. [6, 7], the correlations in any NC inequality are expressed as a
linear combination of probabilities of a subset of events of the corresponding experiment. The
fact that the sum of probabilities of outcomes of a test is 1 can be used to express these correla-
tions as a positive linear combination of probabilities of events ei, S =

∑
iwip(ei), with wi > 0

(recall that in the general expression for a NC inequality (1.22), the coefficients Ta1,...,an,x1,...,xn
accompanying the probabilities are real numbers, without restrictions).

Two different graphs can be associated to any given NC inequality:

(I) On one hand, the graph in which vertices represent the observables measured in the NC
inequality and adjacent vertices represent those which are compatible (Ref. [47]). This graph is
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Figure 1.3: (a) The compatibility graph of the local observables in the CHSH experiment. (b)
The exclusivity graph GCHSH of the CHSH inequality (1.25).

the so-called compatibility graph. For example, consider the CHSH inequality in Ref. [46],

β = 〈A0B0〉+ 〈A0B1〉+ 〈A1B0〉 − 〈A1B1〉
NCHV

≤ 2, (1.23)

where 〈AiBj〉 denotes the mean value of the product of the results of measuring the observables

Ai and Bj , each of them with possible results either −1 or 1, and
NCHV

≤ 2 indicates that 2 is
the maximum value for β for NCHV theories. As we have said before, all possible pairs of
observables in the CHSH experiment are compatible except for the pairs (A0, A1) and (B0, B1).
Therefore, the compatibility graph12 is the one depicted in Fig. 1.3 (a).

(II) On the other hand, by taking into account that

± 〈AiBj〉 = 2[p(1,±1 | i, j) + p(−1,∓1 | i, j)]− 1, (1.24)

where p(a, b | i, j) is the probability of the event “the result a has been obtained when measuring

12Remarkably, there is a connection between the compatibility graph of a set of observables and the existence
of a joint probability distribution for them. In Refs. [48, 22] the authors prove that for any set of observables
whose corresponding compatibility graph is a chordal graph (i.e., a graph which does not contain induced cycles
of size greater than 3), there always exists a joint probability distribution reproducing the quantum marginals.
They also provide a graph theoretical method to construct such joint probability distribution on the basis of the
compatibility graph. Let us note that the CHSH compatibility graph of Fig. 1.3 (a) is the 4-cycle, C4, which is not
a chordal graph: this entails the lack of a joint probability distribution for the set of observables {A0, A1, B0, B1},
a reason behind the violation of the NC inequality (1.23).
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Ai and the result b has been obtained when measuring Bj ,” inequality (1.23) can be written as

SCHSH =
β

2
+ 2 = p(1, 1 | 0, 0) + p(−1,−1 | 0, 0) + p(1, 1 | 0, 1) + p(−1,−1 | 0, 1)

+ p(1, 1 | 1, 0) + p(−1,−1 | 1, 0) + p(1,−1 | 1, 1) + p(−1, 1 | 1, 1)
NCHV

≤ 3,

(1.25)

where the left-hand side is now a convex sum of probabilities of events. A new graph can be
associated to the set of events, one in which the vertices represent the events and adjacent
vertices represent events that cannot occur simultaneously (i.e., exclusive events). This is the
so-called exclusivity graph (see Ref. [6]). For example, the exclusivity graph for the CHSH
inequality (1.25), denoted as GCHSH, is depicted in Fig. 1.3 (b). Let us note that the set of 8
events appearing in (1.25) constitutes a subset of the 16 events of the whole CHSH experiment
(those corresponding to the black vertices in Fig. 1.2): GCHSH is the induced subgraph13 of
GCHSH obtained by removing all but the 8 black vertices.14 GCHSH is isomorphic to the 8-vertex
circulant (1, 4) graph, Ci8(1, 4).

Whereas in the previous CHSH example and in other NC inequalities (like, for instance,
Wright’s inequality in Ref. [49]) all probabilities have weight 1, that need not be the case in
general: in an arbitrary NC inequality, expressed as a linear combination of probabilities of
events S =

∑
iwip(ei) with wi > 0, each probability p(ei) may have a different weight wi,

and hence the exclusivity graph associated to S will be a vertex-weighted graph15 (G,w), where
G ⊆ G. For such graph, a vertex i ∈ V (G) represents an event ei such that p(ei) is in S,
adjacent vertices represent exclusive events, and the vertex weights represent the weights wi of
the probabilities p(ei).

In the following subsections we present the two main results obtained in Refs. [6, 7] on which
this part of our thesis is based.

1.4.3 Correlations in theories satisfying the exclusivity principle

Quantum theory (QT) is the most successful scientific theory of all times. However, it is still
not known how to derive it from fundamental physical principles. Recently, this problem has
been addressed from different perspectives. One consists of reconstructing QT from information-
theoretic axioms (see Refs. [50, 51, 52, 53, 54, 55]). However, these reconstructions fail to

13An induced subgraph H of a given graph F is obtained by selecting a subset of the vertices of F and their
incident edges in such a way that for any pair of vertices i and j of H, ij is an edge of H if and only if ij is
an edge of F . Alternatively, it is a subgraph obtained by deleting a subset of the vertices of F along with their
incident edges.

14Note that taking the 16 events, the normalization of the probabilities, namely,

p(1, 1 | i, j) + p(1,−1 | i, j) + p(−1, 1 | i, j) + p(−1,−1 | i, j) = 1, ∀ i, j = 0, 1, (1.26)

and no-signaling conditions between the pairs (A0, A1) and (B0, B1), namely,

p(a | i) = p(a, 1 | i, j) + p(a,−1 | i, j),∀ a = −1, 1;∀ i, j = 0, 1, (1.27a)

p(b | j) = p(1, b | i, j) + p(−1, b | i, j), ∀ b = −1, 1;∀ i, j = 0, 1, (1.27b)

determine the probabilities of the “white events” given the probabilities of the “black events”.
15A vertex-weighted graph (G,w) is a graph G with vertex set V (G) and weight assignment w : V (G)→ R+.
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capture the “physical assumptions that give rise to the theory”, according to Refs. [56, 57].
Another approach, initiated by the work of Popescu and Rohrlich in Ref. [58], tries to identify
the principles behind quantum nonlocal correlations (Refs. [59, 60, 61, 62, 63, 64, 65, 66]).
Here one problem is that principles such as information causality (Ref. [61]) and macroscopic
locality (Ref. [62]) have been proved to fail to exclude non-quantum correlations in tripartite
scenarios (see Refs. [63, 64]). However, the main limitation of this approach is that it renounces
to explain quantum correlations between experiments that are not space-like separated, while
quantum correlations are ubiquitous.

Nothing in the known rules of QT supports the previous supposition according to which
experiments with space-like separation are more fundamental than other types of correlation
experiments. As pointed out in Refs. [6, 7], a more general approach to account for quantum
correlations follows from the question of whether there exists a joint probability distribution that
gives the marginal probabilities predicted by QT, which is equivalent to the question of whether
a specific set of linear correlation inequalities is satisfied (Bell inequalities, for experiments with
space-like separated tests; and NC inequalities, for more general scenarios).

As we have said before, the experimental violation of NC inequalities reveals contextual cor-
relations that cannot be explained by NCHV theories. In this sense, QT is contextual. In order
to account for such contextual quantum correlations, QT is contrasted in Ref. [7] with NCHV
theories and with a general class of theories assigning probabilities to events, namely, probabilis-
tic theories satisfying the E principle (see 1.1.6), according to which the sum of probabilities
of any set of pairwise exclusive events cannot be higher than 1. This class has been previously
considered in Refs. [17, 49]. Specker noticed that classical theories and QT satisfy this principle,
but that there are theories that do not (Refs. [17, 1]).

Given an NC inequality S and its pertaining exclusivity graph (G,w), it is convenient to
denote by E1 those theories satisfying the E principle applied to the probabilities assigned to
the vertices of G alone (or, as it is usually said, to “one copy of G”). Here, the index 1 in E1 is
used to distinguish these theories from those satisfying the E principle applied jointly to G and
other independent graphs, Refs. [19, 20, 67, 2] (for instance, by En we would designate theories
satisfying the E principle applied to the entire set of probabilities assigned independently to the
vertices of n copies of a given graph G).

In Refs. [6, 7], the set of correlations obeying E1, denoted by E1(G), is defined as

E1(G) :=

{
p ∈ R|V |+ :

∑
i∈C

pi ≤ 1 for all cliques C

}
. (1.28)

Moreover, E1(G) is exactly the fractional stable set polytope (or clique-constrained stable set
polytope) of G, QSTAB(G), introduced in Ref. [68].

Let us emphasize that if (G,w) is the exclusivity graph of an NC inequality, then a clique
C ∈ V (G) corresponds to a set of pairwise exclusive events, and the condition

∑
i∈C pi ≤ 1

formulates the E principle (see 1.1.6) applied to one copy of G. For our purposes, the important
assertion is this: correlations obeying E1 also obey the no-signaling principle . In fact, the set
of E1-correlations, E1(G), is a proper or strict subset of P(G), the no-signaling polytope16 of

16For the proof of these statements we refer the reader to Ref. [6] (Appendix, [ii]); and also to Ref. [65], where



54 Graph-theoretic approach to quantum correlations

G. We refer the reader to Figs. 1.1 and 1.4 for a pictorial representation of the relationships of
inclusion for the different sets of correlations.

1.4.4 The limits of the correlations in NCHV theories, quantum theory and
theories satisfying the E principle

The exclusivity graph of S can be used to calculate the limits of the correlations in NCHV
theories, QT and theories satisfying E1. Three combinatorial numbers characteristic of (G,w)
provide such limits: the independence number, the Lovász number and the fractional packing
number. We give the definitions below.

Let (G,w) be a vertex-weighted graph with vertex set V , and wi the weight corresponding
to vertex i ∈ V . An independent or stable set of G17 is a set of pairwise nonadjacent vertices of
G. The independence number of (G,w), denoted by α(G,w), is the maximum of

∑
iwi taken

over all stable sets of vertices of G (Ref. [69]). When all the vertices have weight 1 (unweighted
graph) the independence number is denoted as α(G), and is equal to the cardinality of the
largest independent set of G (Ref. [70]).

An orthonormal representation (OR) in Rd of a graph G with vertex set V assigns a nonzero
unit vector |vi〉 ∈ Rd to each i ∈ V such that 〈vi|vj〉 = 0 for all pairs i, j of nonadjacent
vertices. A further unit vector |ψ〉 ∈ Rd, usually called handle (Ref. [71]), is sometimes specified
together with the OR. The definition of OR does not require that different vertices be mapped
onto different vectors nor that adjacent vertices be mapped onto nonorthogonal vectors.18 The
complement G of a graph G is the graph with vertex set V such that two vertices i, j are
adjacent in G if and only if i, j are not adjacent in G. The Lovász number of (G,w) can be
defined following Refs. [71, 72, 69] as

ϑ(G,w) := max
∑
i∈V

wi|〈ψ|vi〉|2, (1.29)

where the maximum is taken over all ORs of G and handles in any dimension.
The fractional packing number (or fractional stability number) of (G,w) (Refs. [72, 69, 68]),

denoted by α∗(G,w), is defined as

α∗(G,w) := max
∑
i∈V

wipi, (1.30)

where the maximum is taken over all pi ≥ 0 and for all cliques C of G, under the restriction∑
i∈C pi ≤ 1.19

the authors introduce the so-called local orthogonality (LO) principle —which may be seen as the E principle
restricted to Bell scenarios— and prove that, while the set of LO correlations coincides with the set of no-signaling
correlations in the bipartite case, it is strictly smaller for more than two parties. That is, the LO principle is more
restrictive than the no-signaling principle in the multipartite case. Recall that quantum correlations fulfill the E
(or LO, in Bell scenarios) principle.

17Since the adjacency relationship between vertices does not depend on the vertex weight assignment, and for
the sake of simplicity, we omit reference to weights when it is not necessary.

18If these conditions also hold, the OR is called faithful.
19Recall that, when (G,w) is the exclusivity graph of an NC inequality, this last restriction imposes that the

sum of the probabilities of any set of pairwise exclusive events in S (such sets correspond to cliques in G) cannot
exceed 1, which is the content of the E principle, in 1.1.6.
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The independence number is a lower bound of the Shannon capacity Θ(G) of a graph G
(Ref. [68]), whereas the Lovász number and the fractional packing number are upper bounds of
Θ(G). The comparison between one another gives (Ref. [71])

α(G) ≤ ϑ(G) ≤ α∗(G), (1.31)

and this relationship also holds for the weighted versions of these combinatorial numbers (Ref. [69]).

Result 1 (Ref. [7]): Given S corresponding to a Bell or NC inequality, the maximum value
of S for classical (LHV and NCHV) theories, QT, and theories satisfying E1 is given by

S
LHV,NCHV

≤ α(G,w)
QT

≤ ϑ(G,w)
E1

≤ α∗(G,w), (1.32)

where (G,w) is the exclusivity graph of S.

For example, applying Result 1 to SCHSH (1.25), whose exclusivity graph is the one in Fig 1.3
(b), one obtains α(GCHSH) = 3, ϑ(GCHSH) = 2 +

√
2, and α∗(GCHSH) = 4, which correspond

to the maximum for LHV (Ref. [46]) and NCHV theories, QT (Ref. [73]), and no-signaling20

theories (Ref. [58]), respectively.

1.4.5 The Lovász number as a physical limit and the set of quantum corre-
lations

Note that ϑ(G,w) might be only an upper bound to the maximum quantum value of S
in cases in which the particular physical settings of the experiment testing S add further con-
straints.21 A typical example of this circumstance is a Bell inequality, which is a particular
instance of NC inequality satisfied by LHV theories, where compatible settings are assumed to
correspond to different space-like separated parties (in a general NC inequality, however, compat-
ibility of measurements does not have to follow from the space-like separation of observers). This
additional constraint could prevent the maximum quantum value of S from reaching ϑ(G,w).22

In the light of this, a natural question is whether, given G, there is a NC inequality that
reaches ϑ(G).

Result 2 (Ref. [7]): For any graph G, there is always a NC inequality such that the quantum
maximum is exactly ϑ(G) and the set of quantum probabilities is exactly the Grötschel-Lovász-
Schrijver theta body TH(G) (Ref. [69]).

The proof, that we transcribe here almost literally, is the following (Ref. [7]): given G,
by definition (1.29), there is always an OR of G in Rd, {|vi〉}, and a handle |ψ〉 such that
ϑ(G) =

∑
i∈V |〈ψ|vi〉|2 [i.e, an OR of G providing ϑ(G)]. Let D be the minimum dimension d in

20Recall the previous comment about no-signaling correlations and correlations obeying E1, in 1.4.3, p. 53. For
a 2-party Bell scenario, like CHSH, E1 and no-signaling principles define the same set of correlations.

21We have dealt with a similar issue when discussing no-signaling correlations and the rather ad hoc distinction
between the no-signaling and no-disturbance principles. See p. 43.

22For example, as we have just mentioned, the maximum quantum value of SCHSH in (1.25) is equal to 2 +√
2, which is exactly ϑ(GCHSH) = ϑ[Ci8(1, 4)], and this value is achievable regardless of the possible space-like

separation between measurements Ai and Bj . On the contrary, if G is a pentagon, C5, although there exist NC
inequalities for which the maximum quantum value is ϑ(C5) =

√
5 (see Refs. [49, 74]), there is no Bell inequality

reaching ϑ(C5) (Ref. [27]).
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which this OR exists. Then, consider the following positive linear combination of probabilities
of events:

S =
∑
i∈V

P (1, 0, . . . , 0|i, i1, . . . , in(i)), (1.33)

where test i is defined as Πi = |vi〉〈vi|, with |vi〉 in the OR, test ij is Πij = |vij 〉〈vij |, with |vij 〉
in the OR, and {i1, . . . , in(i)} is the set of tests corresponding to vertices adjacent to i. Note
that 1, 0, . . . , 0|i, i1, . . . , in(i), which belongs to the same equivalence class as 1|i (see 1.1.4; both
of them are possible realizations of the same event), is a repeatable event with a well-defined
probability, even though i, i1, . . . , in(i) need not be compatible tests.

The important point is that S so defined reaches ϑ(G) when a quantum system is prepared in
the quantum state |ψ〉, and this fact identifies ϑ(G) as a fundamental physical limit for quantum
correlations.

On the other hand, in QT, the set of probabilities that can be assigned to the vertices of G
by performing tests on a quantum system is

Q(G) :=
{

(|〈ψ|vi〉|2 : i ∈ V ) : (|vi〉 : i ∈ V ) is an OR of G and |ψ〉 a handle
}
. (1.34)

If the quantum system has dimension greater than or equal to D, then Q(G) is exactly the theta
body TH(G) introduced in Ref. [69] (see Theorem 3.5 in Ref. [69] and Corollary 9.3.22 (c) in
Ref. [75]).

In other words, given any graph G, there is always a correlation experiment in which the
whole set of quantum probabilities for G can be reached, and TH(G) is such set of physical
correlations for G.

Let us note that, according to Refs. [6, 7], and for a given exclusivity graph G, the set-
inclusion relationship among the set of quantum correlations Q(G) (that is, the theta body
TH(G)), the set of classical correlations C(G) (coincident with the stable set polytope or vertex
packing polytope, STAB(G), in Ref. [69]), and the set of correlations obeying the E1 princi-
ple, E1(G) (which is exactly the fractional stable set polytope or clique-constrained stable set
polytope, QSTAB(G)), is given by

C(G) ⊆ Q(G) ⊆ E1(G), (1.35)

since STAB(G) ⊆ TH(G) ⊆ QSTAB(G) after Ref. [69]. Such relationship23 is depicted in
Fig. 1.4, which is inspired in another figure taken from Ref. [76]. Note that in Fig. 1.4 the sets
refer to a particular exclusivity graph G, whereas in Fig. 1.1 the depicted sets of correlations
are general, in the sense that they do not refer to a particular exclusivity graph G, but to every
possible correlations of each type: local, quantum, no-signaling or general.

1.4.6 Suggested developments and connections to our work

As the authors point out, Results 1 and 2 in Ref. [7] would allow to design experiments with
quantum contextuality on demand by selecting graphs with the desired relationships between

23The relation of set-inclusion among these sets may be strict or not, depending on the graph G. A direct
example: consider a perfect graph, i.e., a graph which does not contain, as induced subgraph, any cycle or
complement of a cycle with an odd number of vertices equal or greater than five. Then, STAB(G) = TH(G). In
fact, it is proven in Ref. [69] that STAB(G) = TH(G) if and only if G is a perfect graph.
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Figure 1.4: Schematic representation of the set-inclusion relationship among the theta body
TH(G), which is in general a convex set but not a polytope, and the stable set and fractional
stable set polytopes, STAB(G) and QSTAB(G). Note that the set-inclusion relationship among
these three sets may or may not be strict, depending on the combinatorial numbers characteristic
of the graph G.

α(G), ϑ(G) and α∗(G), graphs for which a general method to construct NC inequalities is
provided.

As we emphasize in Chap. 2, any experiment producing quantum contextual correlations can
be associated to an exclusivity graph G for which α(G) < ϑ(G). A graph with this property is
called there a quantum contextual graph (QCG), whereas one fulfilling α(G) = ϑ(G) is called a
quantum noncontextual graph (QNCG). According to Ref. [7], specifically, for every QCG there
is a NC inequality with classical limit given by α(G) and quantum violation given by ϑ(G).

In addition, making use of Results 1 and 2 in Ref. [7], a question such as which are the
correlations with maximum quantum contextuality can now be addressed, since it can be related
to the question of which graphs have the maximum ratio ϑ(G)/α(G) for a given number of
vertices. Similarly, all possible forms of quantum contextuality can be classified by classifying
graphs according to their combinatorial numbers.

We tackle the above-mentioned proposals in Sect. 1.5: a complete classification of QCGs up
to 10 vertices is provided, which allows to identify experimental scenarios with correlations on
demand by picking out graphs with the required properties, and classify quantum correlations
through the study of their graph combinatorial numbers.

On the other hand, for every G such that α(G) < ϑ(G) = α∗(G), there is a NC inequality
in which the maximum quantum violation cannot be higher without violating the E principle
(Ref. [7]). In Chap. 3 we refer to quantum correlations achieving α∗(G) as quantum fully con-
textual correlations. Accordingly, we can denominate such a graph as quantum fully contextual
graph (QFCG). Finding the simplest QFCGs is possible once a classification of QCGs with re-
spect to their combinatorial numbers is at disposal, by selecting the graphs fulfilling the desired
constraints. In Sect. 1.5 we identify the four simplest QFCGs on the basis of our classification.
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Moreover, in Chap. 3 we single out the QFCG for which the violation of the associated NC
inequality requires a physical system of lower dimension, and describe the experiment testing
such NC inequality and revealing experimental fully contextual quantum correlations for the
first time.

Finally, Result 2 in Ref. [7] suggests that an important question for understanding quan-
tum correlations is which is the principle that singles out TH(G) among all possible sets of
probabilities that can be assigned to the vertices of G. A way to consider such question is to un-
derstand why QT only violates some NC inequalities, and to elucidate what physical principles
prevent higher-than-quantum violations. The E principle has recently revealed as one promis-
ing candidate to accomplish the goal in Refs. [77, 19, 20, 21]. Our contribution in Ref. [78] to
this fundamental problem is the subject of Chap. 2: we prove that QT only violates those NC
inequalities whose exclusivity graphs contain, as induced subgraphs, odd cycles of length five
or more, and/or their complements. In addition, we show that odd cycles are the exclusivity
graphs of a well-known family of NC inequalities and that there is also a family of NC inequali-
ties whose exclusivity graphs are the complements of odd cycles. We characterize the maximum
non-contextual and quantum values of these inequalities, and provide evidence supporting the
conjecture that the maximum quantum violation of these inequalities is exactly singled out by
the E principle.

1.5 Classification of contextual exclusivity graphs

As we have asserted in the previous section, quantum contextuality is experimentally ob-
served through the violation of NC inequalities. For each NC inequality S(G) formulated in
terms of a positive linear combination of probabilities of events there is an associated exclusivity
graph G whose independence, Lovász and fractional packing numbers provide the limits of cor-
relations in NCHV theories, QT and theories satisfying the E principle, respectively. By virtue
of this graph-theoretic approach, the problem of singling out all NC inequalities with a quantum
violation becomes equivalent to the problem of identifying all QCGs, i.e., those graphs for which
α(G) < ϑ(G). A classification of QCGs is, therefore, a powerful tool to identify experiments of
physical relevance.

We addressed the elaboration of a classification of QCGs according to their combinatorial
numbers α(G), ϑ(G) and α∗(G). For that purpose, we generated all non-isomorphic simple
connected graphs with less than 11 vertices using nauty, Ref. [79]. There are 11989764 of them.
For each of them we calculated α(G) using Mathematica (Ref. [80]) and ϑ(G) using SeDuMi

(Ref. [81]) and DSDP (Refs. [82, 83]). There are 992398 graphs for which α(G) < ϑ(G). Then,
we calculated α∗(G) using Mathematica from the clique-vertex incidence matrix of G obtained
from the adjacency matrix of G using MACE (Refs. [84, 85]), an algorithm for enumerating all
maximal cliques.

In addition, we obtained the minimum dimensionality d(G) of the quantum system in which
the maximum quantum violation of S(G) occurs, or a lower bound of d(G), by identifying
subgraphs in G which are geometrically impossible in a space of lower dimensionality. For
example, the simplest impossible graph in dimension d = 1 consists of two non-adjacent vertices;
in d = 2, three vertices, one of them adjacent to the other two. From these two impossible graphs,
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one can recursively construct impossible graphs in any dimension d by adding two vertices linked
to all vertices of an impossible graph in d − 2. For example, if a graph contains a square (a
4-cycle), then d > 3.24

This procedure results in a list containing G, α(G), ϑ(G), α∗(G) and d(G) [or a lower bound
of d(G)]. From this list we filtered out those graphs for which α(G) = ϑ(G), i.e., QNCGs, and
kept the remaining graphs (i.e., the QCGs).

In order to organize the resulting information, we also calculated the minimum dimensionality
of a classical system reproducing the exclusivity relationships among events in S(G), i.e., the
adjacency relationships in G. Such number is given by a property of G known in graph theory
as the intersection number25 (Ref. [86]) of the complement of G, i(G). For that calculation
we employed a program based on nauty, very-nauty (Refs. [87, 88]). Then, we introduced a
measure of quantumness, given by

Q(G) =
ϑ(G)− α(G)

i(G)
, (1.36)

and a measure of how close the maximun quantum value is from the largest violation allowed
by theories satisfying E1, namely,

E(G) =
α∗(G)− ϑ(G)

i(G)
. (1.37)

We then ordered the QCGs attending to the following criteria: (i) n(G) = |V (G)|, (ii) Q(G),
(iii) (decreasing) E(G), (iv) d(G), (v) |E(G)| (number of edges of G), (vi) size of the largest
clique (subset of pairwise connected vertices), and (vii) number of cliques with the largest size.

1.5.1 Results

An ordered list containing G, α(G), ϑ(G), and α∗(G) for all graphs with less than 11 vertices
for which α(G) < ϑ(G) is provided in Ref. [8]. In Table 1.1, we present the total number of
non-isomorphic simple connected graphs for a number of vertices ranging from 2 to 10; the
number of them which are QCGs [α(G) < ϑ(G)], and for the latter, the number of those which
are QFCGs [α(G) < ϑ(G) = α∗(G)]. We can extract some conclusions:

On one hand, there are no QCGs with a number of vertices less than 5. In Fig. 1.5 we present
a sample with the 37 simplest QCGs, those corresponding to a number of vertices ranging from
5 to 7, along with data corresponding to the values of α(G), ϑ(G), d(G) or a lower bound of it
(in parentheses), and α∗(G), for each graph G. The simplest QCG is the pentagon or 5-cycle,
C5, depicted in red in Fig. 1.5, which is the exclusivity graph corresponding to the Wright and
Klyachko-Can-Binicioğlu-Shumovsky NC inequalities in Refs. [49, 74]. A careful inspection of
the figure reveals that all the graphs shown in it contain C5 as induced subgraph, with the
exception of two: the heptagon (C7) and its complement (C7), both also depicted in red. This
three graphs belong to a well-known family in graph theory: the so-called odd holes and odd

24See 2.4 for an application of this argument to the complements of odd cycles. In brief, the graph F obtained
by deleting bd/2c disjoint edges from a d-vertex complete graph Kd is an impossible subgraph in dimension d− 1.

25This number is described in detail on p. 84, in a different context.
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antiholes (see p. 65 for a definition, and a brief outline of their interest in graph theory). A
subsequent analysis of the QCGs of up to 10 vertices, the scope of our classification, suggests
that all QCGs might necessarily contain odd holes and/or odd antiholes as induced subgraphs
(Ref. [78]). The deep insight encompassed by this fact is the main thrust of Chap. 2, where we
deal with this issue in detail, and give the corresponding proof.

Table 1.1: Number of non-isomorphic simple connected graphs, QCGs and QFCGs with a
number of vertices up to 10.

Vertices Connected graphs QCGs QFCGs

< 5 10 0 0
5 21 1 0
6 112 3 0
7 853 33 0
8 11117 498 0
9 261080 16533 0
10 11716571 975330 4

On the other hand, there is no QFCG with less than 10 vertices. The simplest ones are the
four 10-vertex graphs depicted in Fig. 1.6. Given that for such graphs α(G) < ϑ(G) = α∗(G),
there is an NC inequality associated to each of them in which the maximum quantum violation
cannot be higher without violating the E principle. Achieving such maximum quantum violation
would reveal, therefore, fully contextual quantum correlations. Graph (c) in Fig. 1.6, which we
shall call S3, is the graph corresponding to the simplest NC inequality capable of revealing
fully contextual quantum correlations, from the viewpoint of the dimensionality of the required
quantum system (see Ref. [89]). Graph (d) in Fig. 1.6 is the Johnson graph J(5, 2), which is
the complement of the Petersen graph (a well-known graph in the field of graph theory; see
Fig. 4.3 (b)). J(5, 2) is the exclusivity graph corresponding to Cabello’s twin-inequality in
Ref. [90], which is the simplest NC inequality capable of revealing fully contextual quantum
correlations, from the viewpoint of the number of experiments (involving yes-no tests) needed.
Graphs (a) and (b) are essentially as graph (c) minus one or two edges, and do not outperform
(c) nor (d) regarding the number of experiments needed or the dimensionality of the quantum
system required. Graph S3 and its corresponding NC inequality, and the experiment revealing
fully contextual quantum correlations on the basis of them, is the main issue of Chap. 3, to
which we refer the reader for further details.
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No. 1 No. 2 No. 3 No. 4

No. 5 No. 6 No. 7 No. 8 No. 9 No. 10

No. 11 No. 12 No. 13 No. 14 No. 15 No. 16

No. 17 No. 18 No. 19 No. 20 No. 21 No. 22

No. 23 No. 24 No. 25 No. 26 No. 27 No. 28

No. 29 No. 30 No. 31 No. 32 No. 33 No. 34

No. 35 No. 36 No. 37

Figure 1.5: Quantum contextual graphs up to 7 vertices. In red, the pentagon or 5-cycle, C5;
the heptagon or 7-cycle, C7; and the complement of the heptagon, C7.
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Figure 1.6: The four simplest quantum fully contextual graphs. Graph (c) is S3 (see main text).
Graphs (a) and (b) are the same as (c), minus one or two edges. Graph (d) is the Johnson graph
J(5, 2), which is the complement of the Petersen graph.



Chapter 2

Basic exclusivity graphs in quantum
correlations

In this chapter we present the results obtained in Ref. [78]. Below we provide a brief summary.

Summary: A fundamental problem is to understand why quantum theory only violates some
NC inequalities and identify the physical principles that prevent higher-than-quantum
violations. We prove that quantum theory only violates those NC inequalities whose
exclusivity graphs contain, as induced subgraphs, odd cycles of length five or more, and/or
their complements. In addition, we show that odd cycles are the exclusivity graphs of a
well-known family of NC inequalities and that there is also a family of NC inequalities
whose exclusivity graphs are the complements of odd cycles. We characterize the maximum
non-contextual and quantum values of these inequalities, and provide evidence supporting
the conjecture that the maximum quantum violation of these inequalities is exactly singled
out by the E principle.

2.1 Introduction

Quantum contextuality1, namely, the fact that the quantum correlations between the results
of compatible measurements cannot be reproduced with NCHV theories (Refs. [17, 29, 30]) is
behind a wide spectrum of applications of QT to communication and computation (Refs. [91,
42, 92, 41, 93, 45]). Quantum contextual correlations are experimentally detected through the
violation of inequalities satisfied by NCHV models, called NC inequalities (Refs. [94, 74, 95,
96]). A fundamental problem is to understand why QT only violates some NC inequalities and
identify the physical principles that prevent higher-than-quantum violations of these inequalities
(Refs. [61, 62, 97, 19]).

In this chapter we investigate this problem. We will use, as a main tool throughout the
chapter, the exclusivity graph of an NC inequality which was already introduced in Sect. 1.4.2. In
Sect. 2.3, we present a necessary condition for the existence of quantum contextual correlations:
We prove that QT violates only those NC inequalities whose exclusivity graphs contain, as

1See Sect. 1.3 for a accurate definitions of quantum contextuality and NC inequalities.
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induced subgraphs, odd cycles on five or more vertices and/or their complements. In Sect. 2.4,
we show that a lower bound of the dimension (i.e., of the number of perfectly distinguishable
states) of the quantum system that is used to violate an NC inequality can be obtained by
identifying induced basic exclusivity subgraphs in the exclusivity graph of the NC inequality.

The result in Sect. 2.3 suggests that NC inequalities whose exclusivity graph is either an
odd cycle or its complement are especially important for understanding the way QT violates NC
inequalities. In Sect. 2.5, we show that each of these types of exclusivity graphs is connected to
a family of NC inequalities and provide the quantum states and measurements leading to the
maximum quantum violation. Finally, in Sect. 2.6 we present some results that suggest that
the E principle, namely, that the sum of the probabilities of a set of pairwise exclusive events
cannot exceed 1, explains the maximum quantum violation of all the NC inequalities discussed
in Sect. 2.5.

2.2 The exclusivity graph of a non-contextuality inequality

As we pointed out in some detail in Sect. 1.4.2, the correlations in any NC inequality can
be expressed as a linear combination of probabilities of a subset of events of the corresponding
experiment. The fact that the sum of probabilities of outcomes of a test is 1 (normalization con-
dition) allows us to express these correlations as a positive linear combination S of probabilities
of events ei, that is, S =

∑
iwip(ei), with wi > 0. The exclusivity graph G of the NC inequality

S is the one in which the vertices represent the events and adjacent vertices represent mutually
exclusive events (Refs. [6, 7]).

The interest of the exclusivity graph G is that the maximum value of S for NCHV theories
is exactly given by the independence number of the graph α(G) (which is the maximum number
of pairwise nonadjacent vertices in G), while the maximum value in QT is upper bounded (and
frequently exactly given) by the Lovász number of the graph ϑ(G) (Refs. [6, 7]). We refer the
reader to Sect. 1.4.4 for definitions and a precise formulation of this fact.

The important point is that any experiment producing quantum contextual correlations can
be associated to an exclusivity graph G for which α(G) < ϑ(G). Hereafter, as we previously have
done in Sect. 1.4.6, we will refer to a graph with this property as a quantum contextual graph
(abbreviated QCG), and to a graph for which α(G) = ϑ(G) as a quantum non-contextual graph
(abbreviated QNCG). We provide a classification of all QCGs up to 10 vertices in Sect. 1.5.

2.3 Basic exclusivity graphs

The following definition is necessary to present out first result: A subgraph H of a graph G
is said to be induced if, for any pair of vertices i and j of H, ij is an edge of H if and only if
ij is an edge of G. For example, a graph G has an induced pentagon if it is possible to remove
from G all but five vertices (and their corresponding edges) so that we end up with a pentagon
with no additional edges.

Result 1: The exclusivity graph of any NC inequality violated by QT contains, as induced
subgraphs, odd cycles on five or more vertices and/or their complements.
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This result2 is based on two fundamental results in graph theory: The strong perfect graph
theorem and the (weak) perfect graph theorem. Perfect graphs were introduced in Ref. [98] in
connection to the problem of the zero-error capacity of a noisy channel in Ref. [68]: Shannon
observed that ω(G∗n) = ω(G)n for graphs such that ω(G) = χ(G), which made the problem
of characterizing the Shannon capacity of such graphs more tractable [G∗n is the disjunctive
product3 of n copies of G, ω(G) is the clique number, and χ(G) is the chromatic number of G; in
general, ω(G) ≤ χ(G)]. Berge defined perfect graphs as those graphs G for which ω(H) = χ(H)
for each induced subgraph H ⊆ G. Berge observed that all odd cycles Cn with n ≥ 5 (known
in graph theory as “odd holes”) and their complements Cn (known as “odd antiholes”) satisfy
ω(G) < χ(G). From this result, Berge conjectured that a graph G is perfect if and only if G
has no odd hole or odd antihole as induced subgraph (strong perfect graph conjecture). This
conjecture has been recently proven in Ref. [100], and it is now known as the strong perfect
graph theorem. The simplest odd holes and antiholes are illustrated in Fig. 2.1.

The perfect graph conjecture (due also to Berge), which was later proved by Lovász in
Ref. [101] and is now known as the (weak) perfect graph theorem, states that if G is a perfect
graph, then its complement, G, is also a perfect graph.

Theorem 1: Let G be the exclusivity graph of an NC inequality. If G is a perfect graph, then
G is a QNCG and, as a consequence, the NC inequality is not violated by QT.

Proof: If G is perfect, then ω(G) = χ(G). On the other hand, according to the sandwich
theorem in Ref. [102], ω(G) ≤ ϑ(G) ≤ χ(G) for any graph G. Hence, G perfect implies ω(G) =
ϑ(G) = χ(G). Given that ω(G) = α(G), we obtain α(G) = ϑ(G), i.e., if G is a perfect graph,
then G is a QNCG. Applying now the (weak) perfect graph theorem, if G is perfect, then G
is also perfect. Therefore, repeating the previous argument the other way around we conclude
that G is a QNCG as well: α(G) = ϑ(G). This finishes the proof.

Corollary 1: If G is a QCG, i.e., if G is the exclusivity graph of an NC inequality violated by
QT, then G is not perfect. Consequently, by the strong perfect graph theorem, G must contain
odd holes and/or odd antiholes as induced subgraphs.

This proves Result 1.
Observation 1: A NC inequality not violated by QT may contain an NC inequality violated

by QT. This means that, even if the exclusivity graph of the initial NC inequality is not a QCG,
the exclusivity graph of the initial NC inequality may have an induced subgraph that is a QCG.

Observation 2: No odd cycle or complement of an odd cycle has an odd cycle or a complement
of an odd cycle as an induced subgraph. This suggests that odd cycles and their complements
could be used as a basis for a decomposition of any exclusivity graph.

Observation 3: The basic exclusivity graphs necessary for quantum contextuality are the
same basic graphs necessary for graph nonperfectness.

2One of the conclusions in Sect. 1.5.1, derived on the basis of the classification of QCGs, is directly connected
to Result 1.

3The disjunctive product of graphs, also known as or product or co-normal product, is defined as follows:
given two graphs G = (V (G), E(G)) and H = (V (H), E(H)), the or product G ∗H is a graph such that (i) the
vertex set of G∗H is the Cartesian product W = V (G)×V (H); and (ii) any two distinct vertices (u, u′) ∈W and
(v, v′) ∈W are adjacent in G∗H if and only if u is adjacent to v in G, or u′ is adjacent to v′ in H. The or product
is the complementary product of the well-known strong (normal or AND) product ⊗, and hence their mutual

relationship is G ∗H = (G⊗H). We refer the reader interested in a comprehensive overview about associative
products of graphs to Ref. [99].
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Figure 2.1: Cj denote the odd cycles on j vertices and Cj their complements. The figure depicts
the cases j = 5, 7, 9, 11. Notice that C5 and C5 are isomorphic.

Proof: A graph G is called almost perfect (Refs. [103, 104]) if there exists at least one
vertex v ∈ V (G) such that the graph G − v obtained by deleting v (and its incident edges)
is perfect. Trivially, every perfect graph is almost perfect. There are many nonperfect graphs
which are almost perfect. The interesting point is that there are nonperfect graphs for which
the deletion of any vertex gives rise to a perfect graph: A graph G is minimal (or minimally)
imperfect if it is not perfect but every induced subgraph H ⊂ G is perfect [i.e., ω(G) < χ(G) but
ω(H) = χ(H),∀H ⊂ G, H induced]. Note that, as a consequence of the strong perfect graph
theorem, any nonperfect graph is either an odd hole or an odd antihole, or must contain such
odd holes and/or odd antiholes as induced subgraphs. Hence, the only minimal imperfect graphs
are the odd holes and odd antiholes. Moreover, given that every induced subgraph H ⊂ Gm of
a minimal imperfect graph Gm is perfect, then the deletion of an arbitrary vertex v ∈ V (Gm)
produces an induced subgraph of Gm which is a perfect graph (Ref. [105]). Therefore, minimal
imperfect graphs are not only almost perfect but the only almost-perfect graphs for which almost
perfectness does not depend on the vertex choice. That is why odd holes and antiholes are the
necessary basic graphs for nonperfectness: Starting from an arbitrary nonperfect graph, and
deleting vertex by vertex trying to preserve nonperfectness in the subsequent resulting induced
subgraphs, eventually leads to a minimal imperfect graph. Since minimal imperfect graphs are
also QCGs and all QCGs are nonperfect (Corollary 1), then minimal imperfect graphs are the
simplest ones giving rise to quantum contextuality.
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2.4 Basic exclusivity graphs and the dimension of the quantum
system

A distinguishing feature of the complements of the odd cycles is that their presence as
induced subgraphs in an exclusivity graph G provides valuable information about the minimum
dimension that a quantum system must have in order to generate events reproducing all the
relationships of exclusivity described by G. While any of the relationships of exclusivity in an
odd cycle can be reproduced using a quantum three-dimensional system, this is impossible for
the relationships of exclusivity described by the complement of an odd cycle with n ≥ 7 vertices.

Result 2: If an exclusivity graph corresponding to an NC inequality has as an induced
subgraph a complement of an odd cycle on n ≥ 5 vertices, then the quantum dimension of the
systems whose events reproduce these exclusivity relationships is, at least, b2n/3c.

Proof: A (faithful) OR of G is an assignment of unit vectors {|vj〉}nj=1 to the vertices of G such

that orthogonal vectors are assigned to the vertices (iff) if they are adjacent.4 Vectors {|vj〉}nj=1

represent the states of the system after the corresponding events; vectors are orthogonal if (iff)
events are exclusive.

Let G be an exclusivity graph containing an odd antihole Cn as induced subgraph. To obtain
a lower bound of the dimension d of the quantum system producing events whose exclusivity
relationships are described exactly by G, we can study the constraints imposed by the presence
of Cn. Note that for any two different vertices u, v ∈ Cn, N(u) 6= N(v), where N(i) denotes
the neighborhood of vertex i (see Fig. 2.1). This implies that a faithful OR of G must assign
different vectors to u and v. As a consequence, we can lower bound d by identifying subgraphs
in Cn which are geometrically impossible in a space of lower dimension, assuming that distinct
vertices are assigned distinct vectors. For example, the simplest impossible graph in d = 1
consists of two nonadjacent vertices in Cn; in d = 2, three vertices, one of them adjacent to the
other two. From these two impossible graphs, one can recursively construct impossible graphs
in any d by adding two vertices adjacent to all vertices of an impossible graph in d − 2. For
example, if Cn contains a square, then d > 3. In brief, the graph F obtained by deleting bd/2c
disjoint edges from a d-vertex complete graph Kd is an impossible subgraph in dimension d− 1
of Cn.

To lower bound d, we must consider three cases: (C1) If n = 3m,m ∈ N, take the subgraph
F induced in Cn by vertices {1, 2, 4, 5, . . . , 3i + 1, 3i + 2, . . . , 3(m − 1) + 1, 3(m − 1) + 2} (see
Fig. 2.1). F is isomorphic to K2m minus m disjoint edges and is, therefore, an impossible graph
in d = 2m − 1. Hence, Cn is not faithfully representable in d = 2m − 1 = 2n

3 − 1 = b2n/3c-1.
The same holds true for G ⊇ Cn. (C2) If n = 3m + 1,m ∈ N, take the subgraph F induced
in Cn by vertices {1, 2, 4, 5, . . . , 3i + 1, 3i + 2, . . . , 3(m− 1) + 1, 3(m− 1) + 2}. F is isomorphic
to K2m minus m disjoint edges and is, therefore, an impossible graph in d = 2m − 1. Hence,
Cn is not faithfully representable in d = 2m − 1 = 2n−1

3 − 1 = b2n/3c-1. The same holds
true for G ⊇ Cn. (C3) If n = 3m + 2,m ∈ N, take the subgraph F induced in Cn by vertices
{1, 2, 4, 5, . . . , 3i+ 1, 3i+ 2, . . . , 3(m− 1) + 1, 3(m− 1) + 2, 3m+ 1}. F is isomorphic to K2m+1

minus m disjoint edges and, therefore, it is an impossible graph in d = 2m. Hence, Cn is not
faithfully representable in d = 2m = 2(n−2)

3 = b2n/3c-1. The same holds true for G ⊇ Cn.

4See definition of orthonormal representation of a graph G on p. 54.
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2.5 NC inequalities represented by basic exclusivity graphs

Result 3: For any cycle Cn with n odd ≥ 5, there is an NC inequality such that

S(Cn)
NCHV

≤ α(Cn)
Q

≤ ϑ(Cn), (2.1)

where S(Cn) is a sum of probabilities of events matching the relationships of exclusivity repre-

sented by Cn,
Q

≤ ϑ(Cn) indicates that its maximum value in QT is exactly ϑ(Cn), and

α(Cn) =
n− 1

2
, (2.2a)

ϑ(Cn) =
n cos

(
π
n

)
1 + cos

(
π
n

) (2.2b)

are, respectively, the independence number and the Lovász number of Cn.
Proof. By explicit construction. For any n odd ≥ 5, the events in the following sum of

probabilities of events:

S(Cn) =
n∑
i=1

P (1, 0|i, i+
[n

2

]
), (2.3)

where the sum in each event is taken modulo n, and numerating5 the vertices of Cn as in Fig. 2.1,
have exactly the relationships of exclusivity represented by Cn.

The fact that the maximum value of S(Cn) for NCHV theories is α(Cn) is proven in Ref. [6].
The fact that ϑ(Cn) is not only an upper bound of the maximum quantum value, but a value
that QT actually reaches can be seen by preparing the system in the quantum state

〈ψ| = (1, 0, 0) (2.4)

and measuring the observables represented by

j = |vj〉〈vj |, (2.5)

where

〈vj | =
[
cosφ, sinφ cos

(
2πj

n

)
, sinφ sin

(
2πj

n

)]
, (2.6)

with j = 1, . . . , n, cos2 φ = ϑ(Cn)
n .

The vectors (2.6) constitute a Lovász-optimum OR of Cn. An OR is Lovász optimum if there
is a unit vector |ψ〉, called handle, such that

∑n
j=1 |〈vj |ψ〉|2 = ϑ(G). In our case, the handle is

given by Eq. (2.4).
Result 4: For any complement of a cycle Cn with n odd ≥ 5, there is an NC inequality such

that

S(Cn)
NCHV

≤ α(Cn)
Q

≤ ϑ(Cn), (2.7)

5Note that we have chosen this labelling of the events in (2.3) and vertices in Fig. 2.1 in order to match the
compact expression of the vectors (2.6). Needless to say, other labellings are possible, giving rise to different ways
to write the NC inequality (2.3). The same can be said about odd antiholes.
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where

α(Cn) = 2, (2.8a)

ϑ(Cn) =
1 + cos

(
π
n

)
cos
(
π
n

) . (2.8b)

Proof. For n = 5, the proof of Result 3 is valid, since C5 and C5 are isomorphic. For any n
odd ≥ 7, the events in the following sum of probabilities of events:

S(Cn) =
n∑
i=1

P (1, 0, . . . , 0|i, i+ 2, . . . , i+ n− 3), (2.9)

where the sum in each event is taken modulo n, and numerating the vertices of Cn as in Fig. 2.1,
have all the relationships of exclusivity represented by Cn.

The fact that the maximum value of S(Cn) for NCHV theories is α(Cn) is proven in Ref. [6].
The fact that ϑ(Cn) is not only an upper bound of the maximum quantum value, but a value
that QT actually reaches can be seen by preparing the system in the quantum state

〈ψ| = (1, 0, . . . , 0), (2.10)

and measuring the observables represented by

j = |vj〉〈vj |, (2.11)

where the k-th component of 〈vj |, denoted as vj,k, with6 0 ≤ j ≤ n − 1 and 0 ≤ k ≤ n − 3, is
given by

vj,0 =

√
ϑ(Cn)

n
, (2.12a)

vj,2m−1 = Tj,m cos (Rj,m), (2.12b)

vj,2m = Tj,m sin (Rj,m), (2.12c)

where m = 1, 2, . . . , n−3
2 and

Tj,m = (−1)j(m+1)

√√√√2
(

cos (πn) + (−1)m+1 cos
[

(m+1)π
n

])
n cos(πn)

, (2.13a)

Rj,m =
j(m+ 1)π

n
. (2.13b)

6Note that here, for the sake of convenience, we relabel the observables (2.11) in such a way that, for the
complements of odd cycles, j = |vj〉〈vj | corresponds to vertex i = j + 1 in Fig. 2.1.



70 Basic exclusivity graphs in quantum correlations

The vectors defined by Eqs. (2.12) and (2.13) constitute a Lovász-optimum OR7 of Cn with
handle given by Eq. (2.10).

Note that, for every NC inequality presented in this section, the compatibility graph of the
observables is isomorphic to the exclusivity graph of the events. This follows from the fact that
every observable in these NC inequalities is of the form (2.5) and every event is of the type
1, 0, . . . , 0|i, j, . . . , z.

2.6 The exclusivity principle enforces the quantum violation of
the NC inequalities represented by basic exclusivity graphs

It has been recently proved that the principle that the sum of probabilities of a set of pairwise
exclusive events cannot be higher than 1 (Refs. [17, 6, 49, 18, 19, 65, 107, 77]), i.e., the E principle
(see 1.1.6 for details), exactly singles out the maximum quantum value for the NC inequality
associated to C5 (see Ref. [19]). The LO principle in Ref. [65] may be seen as the E principle
restricted to Bell scenarios (Ref. [107]). Note, however, that while for a given graph G, there

7After some algebraic manipulations, these general expressions for Lovász-optimum ORs of odd antiholes can
be expressed in a much more compact way. For instance, taking the graph C7, and for the same labeling of the
vertices as in Fig. 2.1, and handle 〈ψ| = (1, 0, 0, 0, 0), one can obtain for k = 1, . . . , 7 that

|wk〉 =


cos (φ1)
sin (φ1) cos (φ2) cos (φ3)
sin (φ1) cos (φ2) sin (φ3)
sin (φ1) sin (φ2) cos (φ4)
sin (φ1) sin (φ2) sin (φ4)

 , (2.14)

with

cos (φ1) =

√
1 + cos (π/7)

7 cos (π/7)
, (2.15a)

cos (φ2) = 2 sin (π/7)

√
2 cos (π/7)

−1 + 6 cos (π/7)
, (2.15b)

φ3 =
2π2k

7
, (2.15c)

φ4 =
2πk

7
. (2.15d)

Interestingly, this kind of compact expression for the Lovász-optimum OR of C7 is related to the fact that this
graph is what is known in graph theory as a 2-factorable graph: a factor or spanning subgraph of a graph G is a
subgraph of G with the same vertex set as G. A k-factor of G is a k-regular factor, and a k-factorization partitions
the edges of the graph G into disjoint k-factors. Note that a 2-factor is always a spanning cycle (or a collection of
disjoint cycles that spans the vertex set of G), so that a 2-factorization is a factorization of G in disjoint cycles.
It turns out that C7 can be 2-factorized into two disjoint factors isomorphic to C7, each of which span the entire
set of vertices, and such that the two of them collectively exhaust the set of edges. Examining and comparing
(2.14) with (2.6), we can interpret that the compact expression for the Lovász-optimum OR of C7 in dimension 5
is constructed from two interwoven Lovász-optimum ORs of C7, each of which spans a subspace of dimension 3.
This 2-factorization property is a common feature of odd antiholes, which comes from a necessary and sufficient
condition found by Julius Petersen in 1891 (Ref. [106]), according to which, for k integer, any 2k-regular graph is
2-factorable. As a consequence, the same idea applies to odd antiholes of higher orders.
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is always an NC inequality for which QT reaches ϑ(G) (Refs. [6, 7]), this is not true if “NC
inequality” is replaced by “Bell inequality”, as in Ref. [27] (see 1.4.5).

A natural question, especially important in the light of Result 1, is whether the E principle
may single out the maximum quantum value for the NC inequalities associated to Cn and Cn
for n odd ≥ 7 presented in Sect. 2.5.

Observation 4. “[T]he evidence that the Shannon capacity of odd cycles is extremely close
to the value of the Lovász theta function” (Ref. [108]) strongly suggests that the E principle
singles out the maximum quantum value for the NC inequalities (2.7). This implies that the E
principle also singles out the maximum quantum value for the NC inequalities (2.1). In any case,
it is very unlikely that any actual experiment would allow us to distinguish nature’s maximum
violation (assumed to be given by QT) from the maximum value allowed by the E principle.

Proof. Ref. [6] shows that, for a given exclusivity graph G, the maximum value satisfying
the E principle (applied only to one copy of G) for the sum S(G) of probabilities of events whose
relationships of exclusivity are represented by G is given by the fractional packing number of G,
α∗(G,Γ), which is equal to max

∑
i∈V (G)wi, where the maximum is taken over all 0 ≤ wi ≤ 1

and for all cliques (subsets of pairwise linked vertices) Cj ∈ Γ, under the restriction
∑

i∈Cj
wi ≤ 1

(Refs. [68, 109]). When Γ is the set of all cliques of G, then α∗(G,Γ) is also called the Rosenfeld
number p(G) (Ref. [110]). As shown in Ref. [19], for vertex-transitive graphs8 (such us, e.g.,
Cn and Cn), the maximum value of S(G) satisfying the E principle applied to n copies is given
by n
√
p(G∗n), where G is the exclusivity graph of the NC inequality. Recall that the maximum

quantum value is given by ϑ(G). For C5, p(C5) = 5
2 and

√
p(C5 ∗ C5) = ϑ(C5) =

√
5, which

proves that the E principle applied to two copies of C5 singles out the maximum quantum value
of S(C5). The whole process can be summarized in the following expression:

S(C5)
NCHV

≤ 2
Q, E2

≤
√

5
E1

≤ 5

2
, (2.16)

where
NCHV

≤ 2 indicates that the maximum value for NCHV theories is 2,
Q, E2

≤
√

5 indicates that
the maximum value for QT and for theories satisfying the E principle applied to two copies of

C5 is
√

5, and
E1

≤ 5
2 indicates that the maximum value for theories satisfying the E principle

applied to one copy of C5 is 5
2 .

For C7, with n = 1, 2, 3, n
√
p(C∗n7 ) = 7

2 . Since p(C7) = 7
2 , this means that, for C7, the E

principle applied to two or three copies of C7 does not tell us more than the E principle applied
to one copy. However, the E principle applied to four copies of C7 leads us to a value closer to
the maximum quantum one. This follows from Ref. [111], where it is proven that

4

√
p(C∗47 ) ≤ 7

4
√

17
≈ 3.4474. (2.17)

The situation is similar for Cn with n odd ≥ 9: the value singled out by the E principle seems to
converge to the maximum quantum one as more copies of Cn are taken into account, but there
is no clear evidence that this actually happens.

8A graph G is vertex transitive if, given any two vertices v and w of G, there exists an automorphism ψ :
V (G) −→ V (G) such that ψ(v) = w, i.e., every pair of vertices of G is equivalent under some element of its
automorphism group.
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However, note that odd cycles are sparser than their complements. As a result, when the
E principle is applied to multiple copies of complements of odd cycles, the resulting value ap-
proaches the maximum quantum one much faster. Consider, for example, C7. From Ref. [112],
we obtain that

p(C7) =
7

3
>

√
p(C7

∗2
) =

7√
10

>
3

√
p(C7

∗3
) =

7
3
√

33
. (2.18)

Therefore,

S(C7)
NCHV

≤ 2
Q

≤ 2.1099
E3

≤ 2.1824
E2

≤ 2.2136
E1

≤ 2.3333. (2.19)

For four copies of C7, only bounds of ω(C7
∗4

) are known (see Ref. [113]), but it is clear that the
value is even closer to the maximum quantum one after considering the fourth copy, since

7
4
√

115
≈ 2.1376 ≤ 4

√
p(C7

∗4
) ≤ 7

4
√

108
≈ 2.1714. (2.20)

For five copies, the best bounds known (Ref. [113]) are also compatible with a value even closer
to the maximum quantum one.

The point is that there is strong evidence (Ref. [108]) that the Shannon capacity of odd
cycles, Θ(Cn), is extremely close to their Lovász number, ϑ(Cn). This is important since

lim
m→∞

m

√
p(Cn

∗m
) =

n

limm→∞
m

√
ω(Cn

∗m
)

=
n

Θ(Cn)
(2.21)

(this holds because Cn and Cn are vertex transitive), which, if Θ(Cn) = ϑ(Cn), would be equal
to ϑ(Cn), which is exactly the maximum quantum value for Cn.

If the E principle singles out the maximum quantum value of inequalities (2.7), then it also
singles out the maximum quantum value of inequalities (2.1). To see it,9 consider one experi-
ment testing the inequality (2.7) for a given n, and a completely independent experiment testing
the inequality (2.1) for the same n. Notice that the exclusivity graph of the events defined by
taking one event of the first inequality and the corresponding event of the second inequality is
the complete graph on n vertices, since the exclusivity graphs of the two inequalities are com-
plementary. Therefore, the E principle imposes that the sum of the probabilities of the n events
constructed this way cannot exceed 1. Take into account that each of these probabilities is the
product of the probability of the event in the first inequality times the probability of the corre-
sponding event in the second inequality, since the corresponding experiments are independent.
Assume now that the E principle predicts that the maximum of the first inequality is ϑ(Cn)
and that the maximum value of the first inequality is reached when all the probabilities are
equal. Assuming that the maximum value of the second inequality is also reached when all the
probabilities are equal, and recalling that ϑ(Cn)ϑ(Cn) = n, we are led to the conclusion that
the maximum value allowed by the E principle for the second inequality cannot be higher than
ϑ(Cn), which is precisely the maximum value in QT.

9We refer the reader to Ref. [21], in particular Result 3 and its proof, which is directly connected to this
assertion and the subsequent argument. In fact it constitutes a generalization: If G is a vertex-transitive graph
on n vertices, given the quantum maximum for G, the E principle singles out the quantum maximum for G.
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2.7 Appendix: Basic exclusivity graphs inside the exclusivity
graphs of some NC inequalities

Table 2.1 shows the number of induced basic exclusivity graphs inside some NC inequalities
and Kochen-Specker (KS) proofs. The absence of induced odd antiholes may explain why the
NC inequalities associated to the exclusivity graphs of type (ii) were not pointed out before. To
our knowledge, the first time a type (ii) graph with n ≥ 7 was identified as a QCG is in Ref. [8].

Table 2.1: Number of induced basic exclusivity graphs in some NC inequalities and KS proofs.
The column “Graph” gives the standard name in graph theory, “Vertices” indicates its number
of vertices, “Dimension” indicates the minimum dimension of the quantum system needed to
define events with the corresponding exclusivity relationships.

NC inequality/KS proof Graph Vertices Dimension C5 C7 C7 C9 C9

KCBS (Ref. [74]) C5 5 3 1 0 0 0 0
CHSH (Ref. [46]) Ci8(1, 4) 8 4 8 0 0 0 0
S3 (Refs. [93, 89]) 10 4 10 0 0 0 0
KCBS-twin (Ref. [90]) J(5, 2) 10 6 12 0 0 0 0
Mermin (Ref. [114]) Complement of Shrikhande 16 8 96 0 0 0 0
KS-18 (Refs. [115, 116]) 18 4 144 108 0 12 0
YO (Ref. [117]) and its tight version (Ref. [118]) 22 3 288 384 0 0 0
KS-24 (Ref. [119]) 24 4 576 576 0 192 0
KS-31 (Ref. [24]) 31 3 70 184 0 248 0
KS-33 (Ref. [119]) 33 3 72 84 0 128 0





Chapter 3

Quantum fully contextual
correlations

In this chapter we present the results obtained in Ref. [89]. Below we provide a brief summary.

Summary: Quantum correlations are contextual yet, in general, nothing prevents the existence
of even more contextual correlations. We identify and test an NC inequality in which
the quantum violation cannot be improved by any hypothetical post-quantum theory,
and use it to experimentally obtain correlations in which the fraction of non-contextual
correlations is less than 0.06. Our correlations are experimentally generated from the
results of sequential compatible tests on a four-state quantum system encoded in the
polarization and path of a single photon.

3.1 Introduction

In this chapter we make use of concepts and results already presented in previous sections of
this thesis. In particular, we refer the reader to the basic definitions of quantum contextuality
and compatibility of tests, and their corresponding mathematical descriptions, which can be
found in Sect. 1.3.

As we pointed out in 1.4.6, the application of CSW’s graph-theoretic approach in Ref. [7] on
the basis of a classification of QCGs would allow to design experiments with quantum contextu-
ality on demand, by selecting graphs with the desired properties. Such classification is provided
in Ref. [8] and described in Sect. 1.5.

This chapter presents a remarkable example of this programme: Our goal is to use the graph-
theoretic approach in order to identify and perform an experiment with sequential quantum
compatible tests, which produces correlations with the largest contextuality allowed under the
no-disturbance assumption (1.20), which is assumed to be valid also for post-quantum theories.
For this purpose, we first introduce a measure of contextuality of the correlations, the non-
contextual content WNC, so that WNC = 0 corresponds to the maximum contextuality. Then,
we show how to experimentally obtain testable upper bounds to WNC. Next, we show how graph
theory allows us to identify experiments in which the upper bound to WNC predicted by QT
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is zero, and apply this method to single out an experiment for which WNC = 0. Finally, we
perform this experiment and obtain correlations in which WNC < 0.06.

3.2 Non-contextual content. Quantum fully contextual correla-
tions

Every correlation among compatible tests [therefore satisfying (1.20)] can be expressed as

P (a1, . . . , an|x1, . . . , xn) = wNC PNC(a1, . . . , an|x1, . . . , xn)

+ (1− wNC)PC(a1, . . . , an|x1, . . . , xn), (3.1)

where 0 ≤ wNC ≤ 1, and PNC(a1, . . . , an|x1, . . . , xn) can be expressed as (1.21), whereas
PC(a1, . . . , an|x1, . . . , xn) satisfies (1.20) but cannot be expressed as (1.21). We define the non-
contextual content WNC of the correlations as the maximum value of wNC over all possible
decompositions as (3.1), i.e.,

WNC ≡ max
{PNC,PC}

wNC. (3.2)

This definition is parallel to the definition of local content introduced in Ref. [120]. In fact, for
correlations generated through space-like separated tests, the non-contextual content equals the
local content.

ΩNC, ΩQ, and ΩC will denote, respectively, the maximum value of S [see (1.22)] for non-
contextual correlations [i.e., which can be expressed as (1.21)], quantum correlations, and corre-
lations satisfying (1.20). Now consider correlations satisfying (1.20) and saturating ΩQ. Then,
given a decomposition of such correlations as (3.1), with wNC = WNC, ΩQ can be expressed as

ΩQ =
∑

Ta1,...,an,x1,...,xn [WNC PNC(a1, . . . , an|x1, . . . , xn)

+ (1−WNC)PC(a1, . . . , an|x1, . . . , xn)]

= WNC

∑
Ta1,...,an,x1,...,xnPNC(a1, . . . , an|x1, . . . , xn)

+ (1−WNC)
∑

Ta1,...,an,x1,...,xnPC(a1, . . . , an|x1, . . . , xn). (3.3)

The first sum can be expressed in a non-contextual form, so it is upper bounded by ΩNC. The
second sum cannot be expressed in a non-contextual form, so it can only be upper bounded by
ΩC. Hence, ΩQ ≤ WNC ΩNC + (1 −WNC) ΩC, and, taking into account that ΩNC ≤ ΩQ ≤ ΩC,
then

WNC ≤
ΩC − ΩQ

ΩC − ΩNC
. (3.4)

Any experimental violation Sexp of a NC inequality indicates that ΩC > ΩNC and, therefore,
provides an upper bound on WNC, namely WNC ≤ (ΩC − Sexp)/(ΩC − ΩNC). Assuming that
the maximum Sexp in an ideal experiment is given by ΩQ, to observe correlations with zero
non-contextual content, here called quantum fully contextual correlations, one has to test a NC
inequality such that its maximum quantum violation equals its maximum possible violation
under the assumption (1.20), i.e., an inequality for which ΩNC < ΩQ = ΩC.
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01|0210|35

010|012111|345

11|0300|03

111|012010|345

01|25

00|14

a    a x    x1 1... | ...
n n

x    x1... : settings
n
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n

Figure 3.1: Exclusivity graph S3 corresponding to the NC inequality (3.5). Vertices represent
propositions. For example, 01|25 means “result 0 is obtained when test 2 is performed, and result
1 is obtained when test 5 is performed”. Edges link propositions that cannot be simultaneously
true. For example, 01|25 and 01|02 are linked, since in the first proposition the result of test 2
is 0, while in the second proposition the result of test 2 is 1.

However, even if ΩQ = ΩC, inherent imperfections of actual experiments will prevent the
observation of WNC = 0. In general, the more complex the experiment to produce the required
quantum correlations is, the higher the probability that experimental imperfections lead to a
higher upper bound for the non-contextual content. Therefore, the task is to identify the simplest
NC inequality violated by QT and such that ΩQ = ΩC.

3.3 Graph approach

Let us recall that, according to Refs. [6, 7], for any graph G there is a NC inequality1

for which ΩNC, ΩQ, and ΩC are given, respectively, by the independence number α(G), the
Lovász number ϑ(G), and the fractional packing number α∗(G) of the graph. Therefore, the
problem of identifying the simplest NC inequality violated by QT and such that ΩQ = ΩC

(and consequently, the simplest NC inequality experiment capable of revealing quantum fully
contextual correlations), is equivalent to the problem of singling out the simplest QCG for which
α(G) < ϑ(G) = α∗(G). We refer to a graph with this property as a QFCG.

1Needless to say, following Sect. 1.4.2, and in the spirit of CSW’s graph theoretic approach, by NC inequality
we refer to a positive linear combination of probabilities of events, and by graph we refer to the corresponding
exclusivity graph.
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3.3.1 Quantum fully contextual exclusivity graphs

For the purpose of identifying QFCGs, we generated all non-isomorphic graphs with less
than 11 vertices using nauty (Ref. [79]). There are 11989764 of them. For each of them we
calculated α(G) using Mathematica (Ref. [80]) and ϑ(G) using SeDuMi (Ref. [81]) and DSDP

(Refs. [82, 83]). There are 992398 graphs for which α(G) < ϑ(G). Then, we calculated α∗(G)
using Mathematica from the clique-vertex incidence matrix of G obtained from the adjacency
matrix of G using MACE (Refs. [84, 85]), an algorithm for enumerating all maximal cliques. A
list containing G, α(G), ϑ(G), and α∗(G) for all graphs with less than 11 vertices for which
α(G) < ϑ(G) is provided in Ref. [8].

As we already have commented in Sect. 1.5.1, there are only four graphs with less than 11
vertices for which α(G) < ϑ(G) = α∗(G); all of them have 10 vertices, and they are depicted in
Fig. 1.6. Moreover, the minimum dimension of the quantum system needed for the maximum
quantum violation is given by the minimum dimension of the orthogonal representation of the
complement of the graph leading to ϑ(G). Using this, it can be shown that the maximum
quantum violation of NC inequalities associated to three of the aforementioned QFCGs requires
quantum systems of dimension higher than four, while only the complement of the graph (a) in
Fig. 1.6 admits an orthogonal representation in dimension four. For the sake of convenience, we
show this graph in Fig. 3.1. We will denote this graph by S3.

The inequality associated to the graph S3 is constructed by looking for propositions involving
compatible tests, such that each vertex represents one proposition in the inequality and the edges
only link propositions that cannot be simultaneously true. Then, the inequality is simply given
by the sum of all the probabilities of the propositions represented in the graph.

For the graph S3, it can be easily seen that the following NC inequality is in one-to-one
correspondence with the graph:

S ≡P (010|012) + P (111|012) + P (01|02) + P (00|03)

+ P (11|03) + P (00|14) + P (01|25) + P (010|345)

+ P (111|345) + P (10|35)
NC

≤ 3,

(3.5)

where P (10|35) is the probability of obtaining result 1 when test 3 is performed and result 0
when test 5 is performed. In this case, the coefficients Ta1,...,an,x1,...,xn in (1.22) are all 1. The
non-contextual bound, ΩNC = 3, can be obtained from the independence number of the graph S3.
The maximum quantum violation of inequality (3.5) and its maximum possible violation under
the assumption (1.20) can be obtained from the Lovász and the fractional packing numbers of
the graph S3, respectively. This gives

ΩQ = ΩC = 3.5. (3.6)

The maximum quantum violation can be achieved by preparing a four-state quantum system in
the state

|ψ〉 =
1√
2

(|0〉+ |3〉) , (3.7)

where 〈0| = (1, 0, 0, 0), 〈1| = (0, 1, 0, 0), 〈2| = (0, 0, 1, 0), and 〈3| = (0, 0, 0, 1), and with the tests
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represented by the following tensor products of Pauli matrices σi and the 2×2 identity matrix 1:

0 = σx ⊗ 1, 1 = 1⊗ σz, 2 = σx ⊗ σz,
3 = 1⊗ σx, 4 = σz ⊗ 1, 5 = σz ⊗ σx. (3.8)

The results 0 and 1 correspond to the eigenvalues −1 and +1, respectively, of the operators in
(3.8). Notice that every probability in (3.5) includes only pairs or trios of mutually compatible
tests.

3.4 Experimental quantum fully contextual correlations

The experiment testing the NC inequality (3.5) required two-test sequences [for instance,
to obtain P (00|14)], and three-test sequences [for instance, to obtain P (010|012)]. We built six
devices for the six dichotomic tests defined in (3.8). The sequential tests were performed using
cascade setups (Ref. [36]) like the one shown in Fig. 3.2. We tested inequality (3.5) using the
spatial path and polarization of a single photon carrying a four-state quantum system with the
following encoding:

|0〉 = |t,H〉, |1〉 = |t, V 〉, |2〉 = |r,H〉, |3〉 = |r, V 〉, (3.9)

where t, r, H, and V denote the transmitted path, reflected path, horizontal, and vertical
polarization of the photon, respectively.

The cascade setup used to implement two sequential tests on a single photon consists of three
parts: state preparation, testing devices, and detectors. The preparation of the polarization-
spatial path-encoded single photon state |ψ〉 is achieved using a source of H-polarized single
photons. This single-photon source consists on an attenuated stabilized narrow bandwidth
diode laser emitting at the wavelength of 780 nm. This laser offers a long coherence length.
The two-photon coincidences were set to a negligible level by attenuating the laser to a mean
photon number of 0.06 per time coincidence window. This source is followed by a half-wave plate
(HWP) set at 22.5◦ and a polarizing beam splitter (PBS), allowing the photon to be distributed
with equal probability between the two paths t and r with the right polarization H and V ,
respectively (see Fig. 3.2).

Then, the photon in the two paths enters the device for testing x1 through the device’s input
and follows one of the two possible outputs, which correspond to the values +1 and −1. After
each of the two outputs we placed a device for testing x2. We used two identical devices for
testing x2. Finally, we placed a single-photon detector (D) at the output of the two devices x2.
The same idea is used for sequences of three tests x1, x2, and x3, by adding four devices for
measuring x3 and using eight single photon detectors.

Devices for measuring the six tests defined in (3.8) are given in Fig. 3.3. Measurements
1 and 3 are standard polarization measurements using a PBS and a HWP which map the
polarization eigenstate of the operator to |t,H〉 and |r, V 〉. The mapping to the eigenstates of
test 0, namely (|t〉 ± |r〉)/

√
2, was accomplished by interfering the two paths in a 50/50 beam

splitter (BS). A wedge (W) is placed in one of the paths to set the phase between both paths (see
Fig. 3.3). Tests 2 and 5 are represented by the tensor product of a spatial path and a polarization
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Figure 3.2: (a) Scheme for sequential tests of x1 and x2. The two possible results of each
test are assigned the values +1 and −1, and are represented by whichever lamp is flashing. (b)
Cascade setup used to implement two sequential tests on a single photon. It consists of three
parts: state preparation, testing devices, and detectors. The preparation part produces the
polarization-spatial path-encoded single photon state |ψ〉. The two outputs of the device for
testing x1 correspond to the two possible results. After each of these two outputs we placed a
device for testing x2. Single photon detectors are placed at each of the four outputs of the two
devices x2 (see the main text for details).

operator so they have a four-dimensional eigenspace. However, since the tests need to be rowwise
and columnwise compatible, only their common eigenstates can be used for distinguishing the
eigenvalues. Measurement 4 requires us only to distinguish between paths t and r. We needed
to recreate the eigenstates of the performed tests after each mapping and before entering the
next test, since our single-test devices map eigenstates to a fixed spatial path and polarization.

All interferometers in the experimental setup were based on a displaced Sagnac configura-
tion. The stability of these interferometers is very high. We obtained visibilities over 99% for
phase insensitive interferometers, and ranging between 90% and 95% for phase sensitive interfer-
ometers. We used silicon avalanche photodiodes calibrated to have the same detection efficiency
for single-photon detection. All single counts were registered using an eight-channel coincidence
logic with a time window of 1.7 ns. The raw detection events were gathered in a 10-second time
period for each of the six experimental configurations.

The experimental results are presented in Table 3.1. The errors in the results were deduced
from the standard deviation of 50 samples in the 10-second time period. The main sources of
systematic errors were the small imperfections in the interferometers and in the overlapping
of the light modes and the polarization components. These are the causes of the deviation
of the experimental results from the ideal case observed in Table 3.1. The fact that some of
the experimental results exceeded the corresponding ideal predictions was due to the lack of
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Figure 3.3: Devices for measuring the six tests defined in (3.8). The technique used consists
in mapping the eigenstates of the operator to the two states |t, φ〉 and |r, φ〉, where φ is a
polarization state (see the main text for details).

Table 3.1: Experimental results for inequality (3.5). The column “Ideal” refers to the predictions
of QT for an ideal experiment.

Probability Experimental result Ideal

P (010|012) 0.24091± 0.00021 0.25
P (111|012) 0.30187± 0.00020 0.25
P (01|02) 0.28057± 0.00020 0.25
P (00|03) 0.50375± 0.00014 0.5
P (11|03) 0.47976± 0.00014 0.5
P (00|14) 0.47511± 0.00034 0.5
P (01|25) 0.43765± 0.00015 0.5
P (010|345) 0.24296± 0.00051 0.25
P (111|345) 0.25704± 0.00052 0.25
P (10|35) 0.24751± 0.00035 0.25

Ω 3.4671± 0.0010 3.5

perfect compatibility between the sequential tests caused by the non-perfect visibilities of the
interferometers. Ref. [32] explains how to deal with this loophole.

From the results in Table 3.1, we can establish the following experimental upper bound to
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the non-contextual content of the correlations:

WNC ≤ 0.0658± 0.0019. (3.10)

This is the lowest experimental bound on the non-contextual content ever reported in any Bell
or NC inequalities experiment. The previous lowest experimental upper bound on the non-
contextual (local) content was 0.218± 0.014 (see Ref. [121]).

As in most experiments of Bell and NC inequalities with photons, we assumed that the de-
tected photons were an unbiased sample of the prepared photons. This assumption is necessary,
since the detection efficiency, without taking into account the losses in the setup, was 0.50 (a
value obtained considering that the detection efficiency of the single-photon detectors was 55%
and the efficiency of the fiber coupling was 90%). Future experiments using heralded sources
and single-photon detectors of very high efficiency (Refs. [122, 123]) may close this loophole.
Our experiment was intended to be a proof-of-principle experiment to illustrate the power of
the graph approach in Ref. [6] to single out experiments with properties on demand (in our case,
ΩNC < ΩQ = ΩC), and to experimentally observe fully contextual correlations.



Chapter 4

Quantum social networks

In this chapter we present the results obtained in Ref. [124]. Below we provide a brief
summary.

Summary:

We introduce a physical approach to social networks (SNs) in which each actor is charac-
terized by a yes-no test on a physical system. This allows us to consider SNs beyond those
originated by interactions based on pre-existing properties, as in a classical SN (CSN). As
an example of SNs beyond CSNs, we introduce quantum SNs (QSNs) in which actor i is
characterized by a test of whether or not the system is in a quantum state |ψi〉. We show
that QSNs outperform CSNs for a certain task and some graphs. We identify the simplest
of these graphs and show that graphs in which QSNs outperform CSNs are increasingly
frequent as the number of vertices increases. We also discuss more general SNs and identify
the simplest graphs in which QSNs cannot be outperformed.

We start this chapter with a short preamble intended to explain its apparently dissimilar
goal when compared with the previous ones.

At first glance, the title does not seem to have any relation with either quantum correlations
or exclusivity graphs, but this impression is far from being true: An appealing approach in
the quest for properties singling out QT from the landscape of general probabilistic theories
contemplates communication and computational tasks, in which not only does QT outperform
classical theories, but also in some cases cannot be improved by using hypothetical post-quantum
theories. Here, as in previous chapters, we consider post-quantum theories with the only re-
quirement that they cannot assign a value larger than 1 to the sum of probabilities of mutually
exclusive possibilities, i.e., theories which fulfill the E principle.1 As a consequence, the class
of tasks we are interested in consists of those requiring one to maximize a sum of probabilities
of propositions tested on a physical system. There are many examples of tasks belonging to
such class, ranging from some communication complexity tasks to all NC and Bell inequalities
(Refs. [125, 95, 33, 36, 93, 116]). The one we present in this chapter (the maximization of cer-
tain average probability) also belongs to this class. Remarkably, for such class of tasks, CSW’s

1See Sect. 1.1.6.
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graph-theoretic approach is a natural framework, through the identification of possibilities (or
events) with vertices of a graph, and mutual exclusivity relationships between pairs of events
with edges.

The novel point is that we have made an effort to present this task and the corresponding
classical, quantum and post-quantum yields in an attractive way that suggests potential prac-
tical applications, maybe even in daily life: for that purpose, we have built a bridge to another
discipline, social sciences, in which graph theory provides a major tool in the analysis, in par-
ticular in the field of SNs. A final remark: it is important to draw the reader’s attention to the
fact that, for that reason, in this chapter the adjacency relationships among the vertices of the
graphs are reversed with respect to foregoing chapters since we must account for usual (classical)
SNs, where links are established on the basis of coincident properties of those who interact, and
this feature must be preserved when one tries to generalize the concept of SN to give rise to a
quantum or post-quantum counterpart.

4.1 Introduction

Social networks (SNs) are a traditional subject of study in social sciences (Refs. [126,
127, 128]) and may be tackled from many perspectives, including complexity and dynamics
(Refs. [129, 130, 131]). Recently, they have attracted much attention after their tremendous
growth through the internet. A SN is a set of people, “actors”, with a pattern of interactions
between them. In principle, there is no restriction on the nature of these interactions. In
practice, in actual SNs, these interactions are based on relationships or mutual acquaintances
(common interests, friendship, kinship,etc). However, to our knowledge, SNs have never been
discussed on the basis of general interactions which can give rise to them. This is precisely the
aim of this work.

A first observation is that, while a SN is typically described by a graph in which vertices
represent actors and edges represent the result of their mutual interactions, the graph does not
capture the nature of the interactions or explain why actor i is linked or not to other actors.
From this perspective, the graph gives an incomplete description.

In order to account for this, we will consider the following, more general, scenario. We
represent each actor i by a yes-no test Ti on a physical system S initially prepared in a state
ρ and with possible outcomes 1 (yes) or 0 (no). Of course, these tests must satisfy some rules
so that actual SNs naturally fit within them. More importantly, these rules must allow us to
consider SNs beyond classical SNs (CSNs), defined as those in which the links between actors
are determined by pre-existing properties of the actors, such as, e.g., their enthusiasm for jazz.

First, let us see how a CSN can be characterized in terms of yes-no tests Ti. In any CSN, it
is always possible to identify a minimum set of labels such as “jazz” that describes the presence
or absence of a link between any two actors; each actor’s links are described by the value “yes”
or “no” for each of these labels. An example is shown in Fig. 4.1. The size of that minimum
set of labels coincides with a property of the underlying graph G, known in graph theory as its
intersection number2 (Ref. [86]), i(G). For example, for the CSN shown in Fig. 4.1, the seven

2The intersection number of a graph G is the minimum cardinality of a set X such that G is the intersection
graph of a family F of subsets of X , that is, the graph whose vertices represent the sets in F , with two distinct
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labels which describe the network cannot be reduced to a smaller number since for the underlying
graph i(G) = 7. Suppose each actor has the complete list of labels with their corresponding
value “yes” or “no” as in Fig. 4.1. The input physical system S can be a card, and its state
ρ is what is written on it, that is, the name of one of the labels. For instance, for the CSN in
Fig. 4.1, the state ρ may be “jazz”. Then, the outcome of Ti is 1 if actor i has in its list of labels
“yes” for jazz, and 0 if it has “no” for jazz. The initial state of the card does not change after
the test.

In this characterization of a SN, tests Ti naturally fulfil the following rules. (i) Two actors
i and j are linked if and only if there exists some state ρ for which the results of Ti and Tj are
both 1, which simply means that i and j share the pre-existing property described by the label
in ρ. (ii) If a test Ti is repeated on the same state ρ, it will always give the same result, which
simply means that the actor’s label does not change under the execution of the test. (iii) For
any ρ, the order of the tests is irrelevant, which reflects the symmetry of the interaction.

Note that, as a consequence of rule (i), if for a given ρ the outcome of Ti is 1, then a test Tj
in any j which is not linked to i will never give the outcome 1. This means that, for any ρ and
any set I of pairwise non-linked actors, the sum of the outputs of the tests Ti over all actors in
I is upper bounded by 1. Moreover, this results in a restriction on the possible states ρ. For
instance, in the previous example, the state “jazz or Oxford” is not allowed. For such a state,
the tests Ti and Tj corresponding to two non-linked actors i and j for which the values of the
labels “jazz” and “Oxford” are, respectively, “jazz: yes; Oxford: no” and “jazz: no; Oxford:
yes”, would give both the outcome 1, in contradiction with rule (i).

Let us consider now more general SNs (GSNs). We denote by Pρ(a, b|Ti, Tj) the joint prob-
ability of obtaining outcome a ∈ {0, 1} when performing Ti on the system S initially prepared
in the state ρ, and outcome b ∈ {0, 1} when performing Tj on S in the state ρi resulting from
the previous test Ti. The tests must obey the following rules, which generalize (i)–(iii): (I)
Pρ(1, 1|Ti, Tj) determines the linkage between actors i and j; they are linked if and only if there
exists some ρ such that Pρ(1, 1|Ti, Tj) > 0. (II) For any ρ, Pρ(a, a|Ti, Ti) = Pρ(a|Ti), i.e., when
Ti is repeatedly performed on S initially in the state ρ, it always yields the same result. (III)
For any ρ, the order of the tests is irrelevant: Pρ(a, b|Ti, Tj) = Pρ(b, a|Tj , Ti).

Note that in a CSN the probabilities Pρ(a|Ti) can take only the values 0 or 1, whereas in a
GSN these probabilities can take any values compatible with rules (I)–(III). Moreover, here we
will assume that the state ρ may change according to the results of the tests Ti.

There is a simple task which highlights the difference between a GSN and a CSN described
by the same graph G: the average probability T that, for an actor i chosen at random, the test
Ti yields the outcome 1. The interesting point is that T is upper bounded differently depending
on the nature of the interactions defining the SN. For the CSN, let us suppose that the card is

vertices linked by an edge if and only if the corresponding sets have a non-empty intersection. Let us note that
this number coincides with the edge clique cover number, usually denoted as θ′(G) or θE(G), which has a direct
graphical interpretation, based on its definition: Let V (G) and E(G) be the sets of vertices and edges of G,
respectively. Let C ⊆ V (G) be a clique, and e = (i, j) ∈ E(G) an edge. It is said that C covers e if and only if
i, j ∈ C. An edge clique cover (ECC) of G is a collection C = {C1, . . . , CN} of cliques of G such that for every
edge e ∈ E(G) there is at least one clique Ce ∈ C that covers e. It is said that C is optimal if there is no other
ECC of G, say C′, such that |C′| < |C|. The number of cliques in an optimal ECC is the ECC number θE(G) of G.
This number has previously appeared in this thesis on p. 59, regarding the classification of quantum contextual
graphs (QCGs).
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Figure 4.1: A CSN. Each actor is represented by a vertex of a graph and each link by an edge.
The characteristic of a CSN is that links can be explained on the basis of pre-existing properties
of the actors such as whether or not they are jazz enthusiasts, attended Oxford University,
practice yoga, like sushi, will participate in a chess tournament, love the music of J. S. Bach or
run four times a week.

in the state ρ (e.g., jazz). Then, for an actor i chosen at random, T = 1
n

∑n
i=1 Pρ(1|Ti), where

n is the number of actors. The maximum value of T over all possible states ρ is the maximum
number of actors sharing the value “yes” for a pre-existing property, divided by the number of
actors. This corresponds to ω(G)

n , where ω(G) is the clique number (Ref. [86]) of G, i.e. the
number of vertices in the largest clique. Given a graph, a clique is a subset of vertices such
that every pair is linked by an edge. The term “clique” comes from the social sciences, where
social cliques are groups of people all of whom know each other (Ref. [132]). In the example of
Fig. 4.1, the value of the clique number for the graph is ω(G) = 2. As a consequence, for any

CSN represented by that graph, the maximum of T is ω(G)
n = 1

3 .

However, for a GSN described by a graph G, the maximum value for T compatible with

rules (I)–(III) is α∗(G)
n , where G denotes the complement of G, which is the graph G on the

same vertices such that two vertices of G are adjacent if and only if they are not adjacent in G,
and α∗(G) is the so-called fractional packing number (Ref. [109]) of G, defined as max

∑
i∈V wi,

where the maximum is taken for all 0 ≤ wi ≤ 1 and for all cliques cj of G, under the restriction3∑
i∈cj wi ≤ 1. In the example of Fig. 4.1, α∗(G) = 5

2 . Hence, the maximum of T satisfying rules

(I)–(III) is 5
12 >

1
3 , attainable for instance by taking Pρ(1|Ti) = 1

4 for i = 1, 3 and Pρ(1|Tj) = 1
2

for j = 2, 4, 5, 6.

Note that the maximum value of T does not change when the outcome 1 is not deterministic,
as in a CSN, but occurs with certain probability. In this sense, such “randomized” SNs do not
perform better than CSNs.

The interesting point is that, since there are graphs for which ω(G) < α∗(G), then there

3As we said on p. 54, this restriction accounts for the E principle.
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Figure 4.2: A QSN can be visualized as a CSN in which each actor i has a device to measure a
quantum state |ψi〉.

should exist SNs in which T goes beyond the maximum value for CSNs.

4.2 Quantum social networks

We shall introduce now a natural SN for which T may be larger than the maximum for any
CSN represented by the same graph. A quantum SN (QSN) is defined as a SN in which each
actor i is associated with a quantum state |ψi〉. The states are chosen to reflect the graph of
the network in the following sense: Non-adjacent (adjacent) vertices in the graph correspond
to orthogonal (non-orthogonal) states.4 It is always possible to associate quantum states to the
actors of any network fulfilling the orthogonality relationships imposed by its graph (Ref. [133]).
Reciprocally, any set of quantum states defines a QSN.

A QSN can be constructed from a CSN by assigning to actor i a device to test the quantum
state |ψi〉, as illustrated in Fig. 4.2. The characterization of the QSN in terms of yes-no tests
Ti satisfying rules (I)–(III) is as follows. Each device receives a system S in a quantum state ρ
as input, and gives as output either the state |ψi〉 and the outcome 1, or a state orthogonal to
|ψi〉 and the outcome 0. These tests are measurements represented in quantum mechanics by
rank-1 projectors. Note that projective measurements are the simplest repeatable measurements
in quantum mechanics [in agreement with rule (II)], whereas general measurements represented
by POVMs are not repeatable.

In a QSN, T may be larger than the maximum for any CSN represented by the same graph. If
each and every actor is provided with the same input state |Ψ〉, according to quantum mechanics
the probability of getting the outcome 1 when performing Ti for a randomly chosen i is now
T = 1

n

∑n
i=1 |〈Ψ|ψi〉|2. Given G, the quantity 1

n max
∑n

i=1 |〈Ψ|ψi〉|2, where the maximum is
taken over all quantum vectors |Ψ〉 and |ψi〉 and all dimensions, gives the maximum value of T
for any QSN. This number is equal to ϑ(G)

n , where ϑ(G) is the Lovász number (Ref. [71]) of G,
which can be computed to arbitrary precision by semi-definite programming in polynomial time

4This assignment corresponds to a faithful orthogonal representation of the graph G of the network. See
definitions on pp. 54 and 67.
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(see the Appendix, 4.5).

The Lovász number was introduced as an upper bound of the Shannon capacity of a graph
(Ref. [68]), and it is sandwiched between the clique number ω(G) and the chromatic number
χ(G) of a graph (Ref. [102]): ω(G) ≤ ϑ(G) ≤ χ(G). The interesting point is that, for those
graphs such that ϑ(G) > ω(G), QSNs outperform CSNs.

On the other hand, ϑ(G) is upper bounded by the fractional packing number α∗(G), as was

shown by Lovász in Ref. [71]. In a nutshell, T and its three upper bounds fulfil T
CSN

≤ ω(G)
n

QSN

≤
ϑ(G)
n

GSN

≤ α∗(G)
n . For example, for the SNs in Figs. 4.1 and 4.2, one has T

CSN

≤ 1
3

QSN

≤
√

5
6

GSN

≤ 5
12 .

These numbers, ω(G) [which is equal to the independence number α(G) of the complement
graph], ϑ(G) and α∗(G) have previously appeared in quantum information, in the discussion of
the quantum channel version of Shannon’s zero-error capacity problem in Refs. [134, 43], and in
foundations of quantum mechanics, in the discussion of NC inequalities, in Ref. [6].

We generated all non-isomorphic connected graphs with less than 11 vertices (more than
11 × 106 graphs) and singled out those for which ϑ(G) > ω(G) (as explained in the Appendix,
4.5). The graph with less number of vertices such that ϑ(G) > ω(G) is the pentagon, for which
ω(G) = 2 and ϑ(G) =

√
5, which can be attained using a quantum system of dimension d = 3

[see Fig. 4.3 (a)]. The second simplest graph for which ϑ(G) > ω(G) is the one in Figs. 4.1
and 4.2. For a given number of vertices, the number of graphs such that the maximum of T
for QSNs is larger than for CSNs rapidly increases. The complete list of these graphs with less
than 11 vertices is provided in the Appendix, 4.5.

Interestingly, the probability that the graph of an arbitrary network with a large number
of actors contains induced graphs in which a QSN outperforms a CSN is almost identity. This
follows from a result in graph theory according to which an arbitrarily large graph contains with
almost certainty an induced copy of every graph (Ref. [70]).5 A graph H is said to contain an
induced copy of G when G is a subgraph of H obtained by removing some of the vertices and
all the edges incident to these vertices.

Moreover, a stronger result can be proven. The probability that QSNs outperform CSNs
for an arbitrarily large graph is almost identity. This follows from the observation in Ref. [135]
that, while for an n-vertex random graph with edges generated with probability 1/2 the value
of ω(G) is almost surely (Ref. [136]) roughly 2 log2 n, the value of ϑ(G) is almost surely o(

√
n)

(Ref. [137]).

Once one has identified a graph for which ϑ(G) > ω(G), one can compute the quantum states
|Ψ〉 and |ψi〉 of minimum dimensionality dQ providing the optimal quantum solution, the one
that maximizes T . For the simplest graph with quantum advantage these states are in Fig. 4.3
(a). The state |Ψ〉 is the initial state of S needed to obtain the maximum quantum advantage.

4.3 Social networks with no-better-than-quantum advantage

Remarkably, there are graphs for which QSNs outperform CSNs but no GSN outperforms
the best QSN: those satisfying ω(G) < ϑ(G) = α∗(G). To single out such graphs is particularly
interesting because they would allow us to construct the best GSN in a simple way.

5Ibid., proposition 11.3.1.
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We identified all the graphs with less than 11 vertices with ω(G) < ϑ(G) = α∗(G). There
are only four of them. The simplest one is in Fig. 4.3 (b). Its quantum realization requires a
quantum system of dimension d = 6 (e.g., a qubit-qutrit system) and ω(G) = 2 and ϑ(G) = 5

2 .
The second simplest graph contains the first one, and it is shown in Fig. 4.3 (c). It only requires
a quantum system of dimension d = 4; for this graph ω(G) = 3 and ϑ(G) = 7

2 . The other two
graphs are the one in Fig. 4.3 (c) with one or two extra edges.

In all the graphs we have explored so far, the quantum advantage requires the preparation
of S in a specific quantum state |Ψ〉. However, as the complexity of the network increases this
requirement becomes unnecessary. This is due to the fact that there are graphs for which the
quantum advantage is independent of |Ψ〉; thus any quantum state (pure or mixed, including
maximally mixed) can be used as initial state for the tests Ti.

As proven in the Appendix (4.5), any set of quantum states |ψi〉 belonging to the class of
the so-called KS sets (see Refs. [30, 24]) defines a QSN in which the quantum advantage is
independent of the state |Ψ〉. The graph corresponding to the SN associated to the simplest
KS set (Ref. [115]) is illustrated in Fig. 4.3 (d). It has ω(G) = 4 and ϑ(G) = 9

2 , requires a
quantum system of dimension d = 4, and no GSN can outperform it. Methods to generate KS
sets (Refs. [138, 139, 140, 141]) can be used to obtain QSNs with all these features.

4.4 Final remarks

Any actual SN through the internet, like Facebook or Twitter, is complex enough to poten-
tially benefit from assigning quantum tests to the actors. An example is the following: suppose
that a company wants to sell a product to as many Facebook users as possible. Under the
(correct) assumption that Facebook is a CSN, the optimal strategy would be to identify the
biggest subgroup of mutually linked actors, single out their common interest, and then design a
commercial targeting this common interest. However, if Facebook were a QSN with exactly the
same links as the actual Facebook, then the company would have a larger positive feedback by
linking its commercial to the results of the quantum tests.

As in a CSN, the vertices of a QSN can be organized in communities or clusters, with many
edges joining vertices of the same cluster and comparatively few edges joining vertices of different
clusters. Given a graph G, community detection might be simpler if the graph represents a QSN
rather than a CSN. The reason is that a QSN with a given G requires a (quantum) physical
system of dimension (i.e., number of perfectly distinguishable states) dQ = ξ(G), with ξ(G) the
orthogonal rank of the complement of G, defined as the minimum d such that there exists an
orthogonal representation of G in d dimensions (i.e., a function mapping non-adjacent vertices
in G to orthogonal vectors in Cd). However, building a CSN requires a physical system of
dimension dC = i(G) (e.g., for the graph G in Fig. 4.1, there are i(G) = 7 distinguishable states
ρ: jazz,. . . , running). We have dQ ≤ dC and, in most cases, dQ < dC . As an example, while
for the graphs in Fig. 4.3 (a)–(d), dC is 5, 15, 10 and 18; dQ is 3, 6, 4 and 4, respectively. Once
a community is detected, the study of its induced subgraph will tell us whether or not it has a
quantum advantage. Note that QSNs with no global quantum advantage can contain induced
subgraphs (e.g., representing communities) with quantum advantage.

On the experimental side, constructing a simple QSN with advantage over its classical coun-
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terpart is within actual experimental capabilities. The simplest example is a pentagon in which
each actor has a device for testing the appropriate quantum state.

4.5 Appendix

We explain how we obtained all graphs G with less than 11 vertices for which ϑ(G) > ω(G).
We also prove that a set of quantum states belonging to the class of KS sets defines a QSN in
which the quantum advantage is independent of the state.

4.5.1 Finding graphs in which QSNs can outperform CSNs

To obtain all SNs with less than 11 actors in which the assignment of quantum states
can outperform the corresponding CSNs, we generated all non-isomorphic connected graphs
using nauty (Ref. [79]), and then we calculated ω(G) (using Mathematica, Ref. [80]), ϑ(G)
(using SeDuMi, Ref. [81], and also DSDP, Refs. [82, 83]) and α∗(G) (using Mathematica from
the clique-vertex incidence matrix of G, obtained from the adjacency matrix of G calculated
using MACE, Refs. [84, 85], for enumerating all maximal cliques). In addition, we obtained the
minimum dimensionality ξ(G) of the quantum system in which the maximum quantum versus
classical advantage occurs, or a lower bound of ξ(G), by identifying subgraphs in G which are
geometrically impossible in a space of lower dimensionality. For example, the simplest impossible
graph in dimension d = 1 consists of two non-linked (non-orthogonal) vertices in G; in d = 2,
three vertices, one of them linked to the other two. From these two impossible graphs, one can
recursively construct impossible graphs in any dimension d by adding two vertices linked to all
vertices of an impossible graph in d − 2. For example, if G contains a square, then ξ(G) > 3.
Finally, we have calculated the minimum dimensionality i(G) needed for a CSN by using a
program based on nauty, very-nauty (Ref. [87] and Ref. [88]).

Table 4.1 contains the number of non-isomorphic graphs with a given number of vertices,
up to 10 vertices; the number of them in which QSNs outperform CSNs, and for the latter, the
number of those for which no GSN outperforms the best QSN. All non-isomorphic graphs with
less than 11 vertices (around 106) in which QSNs outperform CSNs are presented in Ref. [142].

Table 4.1: Number of non-isomorphic graphs with vertices ranging from 5 to 10 corresponding
to SNs in which the assignment of quantum states to the actors provides advantage, and number
of them in which the advantage cannot be improved by GSNs.

Vertices Graphs With quantum advantage With no-better-than-quantum advantage

5 21 1 0
6 112 2 0
7 853 28 0
8 11117 456 0
9 261080 15951 0
10 11716571 957639 4
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4.5.2 State-independent QSNs

A KS set in dimension d (Ref. [30]) is a set of rays S in the d-dimensional complex space
such that there is no function f : S → {0, 1} satisfying that for all orthonormal bases b ⊆ S,∑

u∈b f(u) = 1.
Proposition: For any KS set in dimension d represented by a graph G, ω(G) < ϑ(G) for any

initial state in dimension d.
Proof: For an n-ray KS set in dimension d, ϑ(G) = n

d , since ϑ(G) is the same for any initial
state, including the maximally mixed state ρ = 1

d1 (where 1 represents the identity matrix).
ω(G) cannot reach this number since, by definition of KS set in dimension d, there is no way to
assign 0 or 1 to their elements in such a way that, for every clique of size d in the complement
graph G, which corresponds to a basis b ⊆ S, d − 1 elements are 0 and one is 1. This means
that the best possible assignment respecting that two non-adjacent vertices in G cannot be both
1 includes at least one clique C in G for which 0 is assigned to the d elements. The KS set
can be expanded so that every vector belongs to a clique of size d in G, and the assignments
can be replicated an integer number m such that mω(G) and mϑ(G) can be expressed as a
sum of elements grouped in cliques. The contribution of each clique is either 0 or 1. In mϑ(G)
all cliques’s contribution is 1, whereas in mω(G) the contribution of the clique C in which the
assignment fails is 0.
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Figure 4.3: Graphs for which QSNs can outperform CSNs. The right side displays the quantum
states |ψi〉 and |Ψ〉 needed for the maximum quantum advantage using a quantum system of the
smallest dimension. (a) is the simplest graph for which QSNs can outperform CSNs. (b) and
(c) are the simplest graphs for which QSNs cannot be improved. Graph (c) has the same edges
as graph (b) plus extra ones. (d) is the simplest known graph in which the quantum advantage
is independent of |Ψ〉.
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Chapter 5

Introduction: Stabilizer formalism
and graph states

The purpose of this chapter is to provide the main definitions and minimum necessary
theoretical background that pave the way for discussing the results of the second part of this
thesis. The chapter is organized in two sections:

Sect. 5.1 is devoted to introducing the stabilizer formalism. We present, in a rather self-
contained and compact fashion, some basic concepts and definitions along with the notation
and techniques that will be used in the subsequent chapters. We put special emphasis on the
concepts of stabilizer and generator, that will be profusely used later, and also in the important
role of the operations belonging to the Clifford group, which will be useful when dealing with
graph states and their entanglement properties.

Sect. 5.2 focuses the attention on graph states, a particular instance of stabilizer states which
constitute the subject of study in this part of our research. After giving the definition and a
condensed list of possible applications, we deal with graph states as a “theoretical laboratory”
for multipartite entanglement, and describe some relevant results previously obtained by other
authors in relation to the general problem of the classification of entanglement in pure quantum
states, which provide the conceptual scenario for our contributions. We will finish the exposition
with a succinct outline of the classification of graph states of up to 7 qubits in classes of equiv-
alence under local Clifford operations carried out by our predecessors Hein, Eisert and Briegel
in Ref. [9], which can be considered the starting point of our work on graph states.

5.1 Stabilizer formalism

Graph states constitute a family of multipartite pure entangled states belonging to the
broader family of the so-called stabilizer states. The concept of stabilizer is a key issue in order
to study graph states and present some of our results: this is the main reason why we will
dedicate this section to briefly introduce the basics of the stabilizer formalism.

Representing quantum states as linear combinations of basis states can quickly become prolix
and even useless for certain problems as the dimension (or the number of subsystems) of the
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system increases.1 As an alternative, we could constrain ourselves to studying certain types of
quantum states. An obvious possibility is to limit ourselves to those states that can be written
as a linear combination of an upper bounded number of basis vectors, but such restriction would
lead us to put aside most quantum states and therefore to miss many of the interesting features
of quantum mechanics.

Another more fruitful possibility consists in considering “theoretical laboratories”,2 i.e., spe-
cific sets or families of quantum states which capture essential features of the problem we are
interested in, but which are nevertheless relatively easier to understand in their properties —
without bounding the dimension of the system—, due to the fact that they admit an economical
description, much more compact than that of the state vector. Among those theoretical lab-
oratories, stabilizer states (and the associated stabilizer formalism) constitute a conspicuous
example. Another one, to which we will devote further analysis in the next chapters, is the set
of graph states, a proper subset of the set of stabilizer states. We develop this issue in some
more detail in Sect. 5.2.2, where we discuss graph states as a theoretical laboratory for the study
of multipartite entanglement.

The stabilizer formalism has proved useful in many applications: for instance, in measurement-
based quantum computation (Refs. [144, 145]), in quantum error correction (Ref. [146]), or in
quantum secret sharing (Ref. [147]). And also in fundamental problems, such as the study
of quantum entanglement (Refs. [148, 149]), or the stabilizer-state violation of local realism
(Ref. [150]). The idea that underlies the stabilizer formalism is that many quantum states can
be more easily described through the operators that stabilize3 them than by the usual state
vector description. A pivotal aspect of the stabilizer formalism is the clever use of elements of
group theory: in particular, it focuses the attention on a specific class of unitary operators which
has the structure of a group, the so-called Pauli group, which can be considered as a multi-qubit

1For instance, if we had to carry out the analysis, characterization and classification of the multipartite quantum
entanglement, we would find that the number of entanglement classes of equivalence for pure multipartite states
grows very rapidly as a direct consequence of the exponential increase in the dimension of the corresponding
Hilbert space.

2This denomination —an apparent oxymoron— is used, v.g., in Ref. [143], regarding the systematic study of
multi-particle entanglement.

3See Sect. 5.1.2 for the definition.
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extension of the Pauli matrices4 for single qubits.

5.1.1 The Pauli group

The Pauli group Pn on n qubits consists of all 4 × 4n n-fold tensor products of the form
M = αMM1

⊗
· · ·
⊗
Mn, where αM ∈ {±1,±ı} is an overall phase factor and Mi is either the

2 × 2 identity matrix σ0 = 1 or one of the Pauli matrices X = σx, Y = σy, and Z = σz. In
compact notation, following Ref. [151], Pn = {±1,±i} × {1, X, Y, Z}⊗n.

As an example, P1, which is the Pauli group on one qubit, is the 16-element set5

P1 ≡ {±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ}. (5.11)

Another example: the operator X ⊗ iI ⊗−Z ⊗ iY ⊗−iI ⊗Z ⊗Y is an element of P7 (which
involves 4 × 47 = 65536 elements). Note that one can merge all the phases affecting each one-
qubit tensor factor into an unique overall phase, and write −iX ⊗ I ⊗Z ⊗ Y ⊗ I ⊗Z ⊗ Y . And
one can even opt for a more compact notation, like −iX1Z3Y4Z6Y7: here, each subindex refers
to the qubit onto which the Pauli operator is acting; both identity operators and tensor product
symbols ⊗ are unstated.

Let us recall some basic ideas of group theory. Given that Pn is a group, then it is a
set of elements endowed with an associative multiplication operation, satisfying the following
properties:

1. Pn contains the identity operator, 1⊗ · · · ⊗ 1 = 1⊗n.

4Recall that the Pauli matrices can be expressed in the computational basis {|0〉, |1〉} as:

X = σx =

(
0 1
1 0

)
; Y = σy =

(
0 −i
i 0

)
; Z = σz =

(
1 0
0 −1

)
; 1 = σ0 =

(
1 0
0 1

)
. (5.1)

The action of the Pauli operators on the states of the computational basis is

X|0〉 = |1〉, (5.2)

X|1〉 = |0〉, (5.3)

Y |0〉 = i|1〉, (5.4)

Y |1〉 = −i|0〉, (5.5)

Z|0〉 = |0〉, (5.6)

Z|1〉 = −|1〉. (5.7)

As a consequence, Pauli’s matrices can be alternatively expressed in Dirac’s notation as:

X = |0〉〈1|+ |1〉〈0|, (5.8)

Y = −i|0〉〈1|+ i|1〉〈0|, (5.9)

Z = |0〉〈0| − |1〉〈1|. (5.10)

5This set has algebraic structure of group under the operation of matrix multiplication: factors ±1,±i are
necessary to guarantee closure under such operation.
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2. Closure property, i.e., the product of any two elements of Pn must also be an element of Pn.
Multiplying g = g1⊗· · ·⊗gn ∈ Pn and h = h1⊗· · ·⊗hn ∈ Pn, gives gh = g1h1⊗· · ·⊗gnhn,
which also belongs to Pn (each single-qubit factor gjhj is a Pauli matrix affected by a
coefficient ±1 ó ±i).

3. For each element in Pn there is an inverse within Pn: given g = g1 ⊗ · · · ⊗ gn ∈ Pn, the
operator g† = g†1 ⊗ · · · ⊗ g

†
n also belongs to Pn (recall that Pauli matrices are Hermitian,

X = X†, Y = Y †, Z = Z†, 1 = 1†). Furthermore, gg† = g1g
†
1⊗· · ·⊗ gng

†
n = 1⊗n, implying

that g† is the inverse of g.

The previous properties are satisfied by any group, regardless of its nature. The following
ones are specific of the elements of the Pauli group (Ref. [150]):

• Given that Pauli matrices (except for 1) are traceless, the elements of Pn are also traceless
operators (with the exception of {±1,±i} × 1⊗n).

• Pauli matrices are unitary, and as a consequence the same is true for the elements of Pn.

• The elements of Pn whose overall phases are ±1 are Hermitian, unlike those with overall
phases ±i, which are anti Hermitian. Hence, we can partition Pn in two subsets: the first
one consists of all the Hermitian elements g ∈ Pn. These elements fulfill g2 = 1⊗n, and
consequently their eigenvalues are ±1; the second subset consists of all the anti Hermitian
elements h ∈ Pn, which satisfy h2 = −1⊗n, and therefore have eigenvalues ±i.

• Any two elements belonging to Pn either commute or anticommute. This property is
trivial for P1. Following literally Ref. [150], we can extend it to Pn by defining a function
f(gj , hj) of gj , hj ∈ P1, such that

f(gj , hj) =

{
0 if gj and hj conmmute,
1 if gj and hj anticonmmute.

(5.12)

Note that gjhj = (−1)f(gj ,hj)hjgj . Taking now two elements g = g1 ⊗ · · · ⊗ gn and
h = h1⊗· · ·⊗hn in Pn, and evaluating their commutator and anti-commutator, we obtain

[g, h] = gh− hg = hg ((−1)
∑n

j=1 f(gj ,hj) − 1), (5.13)

{g, h} = gh+ hg = hg ((−1)
∑n

j=1 f(gj ,hj) + 1). (5.14)

Obviously, g and h either commute or anticommute, depending on the number of pairs of
one-qubit tensor factors (gj , hj) which anticommute. The necessary and sufficient condition
for g, h ∈ Pn to commute is that

∑n
j=1 f(gj , hj) is an even number, which implies that

these elements of Pn must have an even number of elements of P1 that anticommute.

According to group theory, for any group G (v.g., Pn) there exists a subset of elements that
generates the entire group. Assuming that the group operation is a multiplication (in case of
additive groups the definition is similar), we say that a subset γG = {g1, . . . , gl} ⊆ G generates G
if any element of G can be written as a product of elements of γG. The notation G = 〈g1, . . . , gl〉
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(or G = 〈γG〉) is commonly used to describe this fact. The set γG is called a generating set or
generator of the group G. Note that the generating set of a group is not necessarily unique.
Furthermore, one can always choose a generating set γG in such a way that all its elements
are independent, in the sense that no element of γG is the product of other elements of γG.6

As a consequence, removing dependent elements from a generating set γG does not alter its
capacity to generate the group G, unlike the elimination of any operator gi from an independent
generating set: this would result in a decrease of the size of the (new) generated group.

5.1.2 Stabilized states and stabilizing operators

The key definition on which the stabilizer formalism is based is the following: we say that
a state |ψ〉 is stabilized by some operator A if |ψ〉 is an eigenstate of A with eigenvalue +1,
i.e., A|ψ〉 = |ψ〉. The operator A is a stabilizing operator of |ψ〉. For instance, the state
|+〉 = 1√

2
(|0〉+ |1〉) is the eigenvector of the Pauli operator X with eigenvalue +1, X|+〉 = |+〉,

and consequently it is a state (in fact, the only one) stabilized by X.

We can easily extend this concept to states of higher dimension: if we consider an operator
given by the tensor product of two Pauli matrices, then, we find that there are two linearly
independent states stabilized by such an operator. For example (Ref. [150]), given the operator
X ⊗ X = X1X2, we see that it stabilizes both the state |Φ+〉 = 1√

2
(|00〉 + |11〉) and the state

|Ψ+〉 = 1√
2
(|10〉+ |01〉), i.e., X1X2|Φ+〉 = |Φ+〉, and X1X2|Ψ+〉 = |Ψ+〉.

As we will see later, the denomination stabilizer states on n qubits comes from the fact that
such kind of states are stabilized by n-fold tensor products of Pauli matrices. But there are
certain subtle aspects in this generalization that must be clarified:

Recall that we have stated above, on p. 98, that Pn splits into two subsets: first, the
subset of Hermitian elements g ∈ Pn, whose overall phases are ±1, which satisfy g2 = 1⊗n,
and have eigenvalues ±1. And second, the subset of anti-Hermitian elements h ∈ Pn, whose
overall phases are ±i, which satisfy h2 = −1⊗n, and have eigenvalues ±i. According to the
definitions of stabilized state and stabilizing operator previously given, the eigenvalue of the
stabilizing operator A corresponding to the stabilized state |ψ〉 must necessarily be equal to
+1. As a consequence, the anti-Hermitian elements of Pn cannot be stabilizing operators of any
state. Therefore, the anti-Hermitian half of the Pauli group Pn is discarded from the stabilizer
formalism.7

Moreover, there is another operator belonging to the Pauli group Pn that is also out of the
stabilizer formalism: the operator −1⊗n. Here is the reason: if we suppose that this operator
stabilizes some state |ψ〉, then it must fulfill −1⊗n|ψ〉 = |ψ〉 = −|ψ〉, which results in |ψ〉 = 0.
This rules −1⊗n out as stabilizing operator for any meaningful state.

According to Ref. [150], let g ∈ Pn be a Hermitian element, and let us consider the operator
given by Pg = 1

2(1⊗n + g), where 1⊗n is the identity operator in Pn. Such operator Pg has the

6Or more precisely: given certain coefficients ai ∈ {0, 1}, no product of the form ga1
1 · · · g

ak
k will be equal to

the identity, unless ai = 0, ∀i.
7Alternatively, on a more fundamental level, we demand that stabilizing operators are observables, and hence

Hermitian.
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following property:(
1

2
(1⊗n + g)

)2

=
1

4
(1⊗n + 2g + g2) =

1

4
(1⊗n + 2g + 1

⊗n) =
1

2
(1⊗n + g), (5.15)

that is, Pg = P 2
g , which implies that Pg is a projection operator. It is easy to check that

1
2(1⊗n + g)|ψ〉 = |ψ〉 for those states |ψ〉 stabilized by g, and 1

2(1⊗n + g)|φ〉 = 0 for the other
eigenvectors of g (those corresponding to the eigenvalue −1). From these features we conclude
that Pg = 1

2(1⊗n + g) is the projection operator onto the states stabilized by g. These states
constitute a Hilbert subspace whose dimension, dg can be calculated from the trace of the
projection operator Pg,

dg = tr

[
1

2
(1⊗n + g)

]
=

1

2
tr(1⊗n) = 2n−1, (5.16)

where we have used the traceless property tr(g) = 0 fulfilled by any operator of Pn. There-
fore, any Hermitian operator of the Pauli group Pn stabilizes exactly 2n−1 linearly independent
states.8

Let us see now what happens when we consider states stabilized by several Pauli operators.
For instance, let us take those states stabilized by the operator X1X2. In addition, let us
impose the condition that they are stabilized by Z ⊗ Z = Z1Z2. Then, the only state out of
the two (|Φ+〉, |Ψ+〉) initially stabilized by X1X2 which is also stabilized by Z1Z2 is |Φ+〉 =

1√
2
(|00〉+ |11〉).
We observe a reduction in the dimension of the Hilbert subspace of stabilized states. In order

to generalize this example, let g, h ∈ Pn be two different Hermitian elements of the Pauli group
of order n such that they commute: then, g and h will have common eigenvectors. To determine
the number of linearly independent states stabilized by both operators at the same time, we
can resort to the corresponding projection operators Pg and Ph onto the subspaces stabilized
by g and h. The intersection of both subspaces is described by PgPh, and its dimension, d(g,h),
coincides with the trace of PgPh, namely,

d(g,h) = tr

[
1

2
(1⊗n + g)

1

2
(1⊗n + h)

]
= tr

[
1

4
(1⊗n + g + h+ gh)

]
= 2n−2. (5.17)

Again, we have used the traceless property for Pauli operators, tr(g) = tr(h) = 0, and the
fact that tr(gh) = 0 since gh ∈ Pn, and g 6= h, by hypothesis. The obvious conclusion is the
following: the number of linearly independent states stabilized both by g and by h is 2n−2, and
hence the dimension of the stabilized subspace is reduced by half with respect to the initial dg
because of the introduction of a new commuting stabilizing operator h. The repetition of such
projection argument leads us to state that

1. a set of k mutually independent9 and commuting n-fold operators of Pn jointly stabilizes
2n−k linearly independent states, and

8For instance, the operator X ⊗X ∈ P2 stabilizes two linearly independent states, namely, |Φ+〉 and |Ψ+〉.
9Recall footnote 6 on p. 99. The independence property means that no operator can be written as a product

of other operators, up to a sign, and this is equivalent to products of operators being traceless (Ref. [150]).
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2. for each new addition of an independent and commuting operator belonging to Pn to such
set, the dimension of the common stabilized subspace is cut in half.

Another remarkable issue is the following: if a given set of elements of the Pauli group Pn
jointly stabilizes a common subspace, then such set constitutes a subgroup10 in Pn. This follows
from three facts: (i) In case that two given Hermitian operators g, h ∈ Pn stabilize a certain
state |ψ〉, then their product gh ∈ Pn also stabilizes the same state, i.e., g|ψ〉 = |ψ〉, h|ψ〉 =
|ψ〉 ⇒ gh|ψ〉 = |ψ〉. (ii) The identity operator 1⊗n stabilizes all states. (iii) The Hermitian
elements of Pn are their own inverses (and trivially, they stabilize the same states).

5.1.3 Stabilizers and stabilizer states

Now we can proceed to define on a sound basis the concepts of stabilizer and stabilizer state,
along with a summary of key ideas, some of them already presented:

• As we have said before, given a set of k(≤ n) mutually independent and commuting11

operators {g1, . . . , gk} of the Pauli group Pn, this set stabilizes a total amount of 2n−k

linearly independent states, which collectively constitute a basis of the common vector
space stabilized by the k operators. Let us denote such stabilized vector space as VS .

• Any other operator h which is obtained by multiplying in all possible ways the k operators
gi among one another (there are 2k ways to do that) stabilizes VS as well. Moreover, the
identity operator 1⊗n, and the corresponding inverse operators of the gi (themselves) also
stabilize VS . Therefore, the set of all the n-fold Pauli operators that together stabilize the
vector space VS has the structure of a group. In particular, it is a subgroup of the Pauli
group Pn, the so-called stabilizer group of VS , or simply stabilizer of VS , denoted by S.

• Therefore, a stabilizer S ⊆ Pn, is defined as an Abelian subgroup of Pn which does not
contain the operator −1⊗n (Ref. [152]). A stabilizer consists of 2k n-qubit Pauli operators,
si, i = 1, . . . , 2k, mutually commuting, and all of them Hermitian (with overall phases ±1).

Hence, we can write si = αiM
(i)
1 ⊗ · · · ⊗M

(i)
n ∈ Pn, i = 1, . . . , 2k, for some k ≤ n, where

αi is an overall phase factor, and M
(i)
j stands for one of the four one-qubit Pauli operators

{1, X, Y, Z} acting on qubit j. The operators si are called stabilizing operators.

• The set of k independent operators {g1, . . . , gk} which under multiplication generates the
group S is the generating set or generator of the stabilizer S. We will denote it by γS =
{g1, . . . , gk}. Following the notation previously introduced on p. 98, we have S = 〈γS〉.
Each operator gi is a generating operator. The number of generating operators is the
cardinality of the generator, |γS | = k.

• A stabilizer S is completely specified by its generator γS . Nevertheless, the generator is
not unique: note that given two generating operators gi, gj ∈ γS , gi 6= gj , we can always
substitute any of them by their product h = gigj , and the new set γ̃S obtained is a
generator of S as well.

10A subgroup is a subset of group elements that by themselves constitute a group. Consequently, a subgroup
satisfies the group properties on p. 97.

11So that they can be diagonalized simultaneously and, therefore, share a common set of eigenvectors.
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• If the cardinality of the generator is |γS | = k, then the cardinality of the corresponding
stabilizer is |S| = 2k, and the dimension of the stabilized vector space is dimVS = 2n−k =
2n−|γS |. Therefore, the generator provides and economical way to describe not only the
stabilizer S, but also the stabilized vector space VS (much more compact than the usual
vector state description), which is one of the main advantages of the stabilizer formalism.12

• The case where the number of generating operators, k, equals the number of qubits, n,
is special: if |γS | = n, then |S| = 2n, and the dimension of the vector space stabilized
by S is dimVS = 20 = 1. As a consequence, for the set of 2n stabilizing operators
si ∈ S, there exists an unique common n-qubit eigenstate |ψ〉 with eigenvalue +1, hence
fulfilling si|ψ〉 = |ψ〉, ∀i. Such state |ψ〉 is called a stabilizer state,13 since it is the only
state stabilized by each and every stabilizing operator si ∈ S. Alternatively, we define a
stabilizer state on n qubits as the simultaneous +1 eigenstate of n independent, commuting
elements of the Pauli group Pn.

5.1.4 Unitary operations and stabilizer formalism

For our purposes, it is also useful to make a brief review about the effect of unitary operations
on the stabilizer, and the associated dynamics of the stabilized vector subspaces inside the larger
Hilbert space in which they are immersed.

Let VS be the space of states stabilized by a stabilizer S. Suppose that we apply an arbitrary
unitary operation U (i.e., an U such that U †U = UU † = 1) on VS , so that the stabilized states
“evolve” under U . Let |ψ〉 ∈ VS be any of such states, and si ∈ S any stabilizing operator.

12An example will suffice: take the following generator

γ(S) ≡


g1 X Z Z X 1

g2 1 X Z Z X
g3 X 1 X Z Z
g4 Z X 1 X Z.

(5.18)

This 4 generating operators completely specify the corresponding 24 = 16 operators of the stabilizer S, and
consequently the stabilized vector space VS , whose dimension is dimVS = 2. A basis of VS is, for instance,

|ψ1〉 =
1

4
(|00000〉+ |10010〉+ |01001〉+ |10100〉+ |01010〉 − |11011〉 − |00110〉 − |11000〉

−|11101〉 − |00011〉 − |11110〉 − |01111〉 − |10001〉 − |01100〉 − |10111〉+ |00101〉), (5.19)

|ψ2〉 =
1

4
(|11111〉+ |01101〉+ |10110〉+ |01011〉+ |10101〉 − |00100〉 − |11001〉 − |00111〉

−|00010〉 − |11100〉 − |00001〉 − |10000〉 − |01110〉 − |10011〉 − |01000〉+ |11010〉). (5.20)

13We illustrate this point with a simple example taken from Ref. [150]: the state |Φ−〉 = 1√
2
(|00〉 − |11〉) is the

only state stabilized both by −X1X2 and by Z1Z2. These two operators commute, since there is an even number
one-qubit tensor factors that anticommute [see eq. (5.13)]. On the other hand, the two operators are independent,
and therefore, they constitute a generator γS of certain stabilizer S. Since the cardinality of this generator equals
2, then the number of operators in the stabilizer is equal to 22 = 4, namely: S = {1⊗ 1,−X ⊗X,Y ⊗ Y,Z ⊗Z}.
The dimension of the stabilized vector space VS is equal to dimVS = 22−2 = 1. Therefore, there is a unique state
which is stabilized by S, the aforementioned |Φ−〉 = 1√

2
(|00〉 − |11〉), which is a stabilizer state.
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Given that, by definition, si|ψ〉 = |ψ〉, then

U |ψ〉 = Usi|ψ〉 = UsiU
†U |ψ〉. (5.21)

According to Eq. (5.21), the transformed state under the action of U , namely U |ψ〉, is stabilized
by the operator UsiU

†. We can extend this result to the entire initial subspace VS , and conclude
that the new transformed vector space UVS is stabilized by the group USU † ≡ {UsiU † | si ∈
S}. In other words, we can follow the unitary dynamics of the stabilized states through the
corresponding transformation undergone by the stabilizer.

In addition, if γS = {g1, . . . , gk} is the generator of S, then USU † = 〈Ug1U
†, . . . , UgkU

†〉.
That is, to account for the change that U induces on the stabilizer S it suffices to see how U
affects the generator γS .

As an easy but useful example, let us discuss concisely the case of the one-qubit Hadamard
gate H, which can be expressed in the computational basis in matrix form as

H =
1√
2

(
1 1
1 −1

)
, (5.22)

or in Dirac’s notation as H = 1√
2
(|0〉〈0| + |0〉〈1| + |1〉〈0| − |1〉〈1|). The Hadamard gate is a

unitary operation (H† = H−1), to which we can apply what we have said before. A well-known
result reflects the way Pauli operators are transformed under the action of H, namely

HXH† = Z; HYH† = −Y ; HZH† = X; H1H† = 1. (5.23)

Consequently, if H is applied on a quantum state stabilized by the operator Z (i.e., the state |0〉)
then the resulting state (i.e., |+〉) is stabilized by the transformed stabilizing operator, which is
precisely X, as expected. This —apparently naive— result entails one of the main advantages
of the stabilizer formalism, which is evidenced when we apply the same idea to n qubits: let
us take the n-qubit state whose stabilizer is S = 〈Z1, Z2, . . . , Zn〉. Such state, on the basis
of the one-qubit case that we have just discussed, is |0〉⊗n. If we apply now the Hadamard
operation onto each of the n qubits, i.e., H⊗n, then the stabilizer of the resulting state after
the transformation is S ′ = 〈X1, X2, . . . , Xn〉, so that the state is |+〉⊗n. The key point is the
remarkable economy of such description: the resulting vector state, in its usual expression,
requires 2n complex amplitudes to be specified, whereas the alternative description based on the
generator is linear with n (there are n generating operators, which by themselves completely
specify the stabilizer, and therefore the stabilized state). This is the main thrust of the stabilizer
formalism, as we pointed out at the beginning of this chapter, and also on p. 102.

Of course, the same ideas come into play for other one-qubit unitary operations, like the
phase gate S = Ph(π2 ) = |0〉〈0|+ i|1〉〈1|, in matrix form

S =

(
1 0
0 i

)
, (5.24)

or for unitary operations involving more than one qubit, like for instance the 2-qubit controlled-
NOT (C-NOT, XOR or CX) gate,

CX = |0〉〈0| ⊗ 1+ |1〉〈1| ⊗X = |00〉〈00|+ |01〉〈01|+ |10〉〈11|+ |11〉〈10|, (5.25)
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or in matrix form

CX =

(
1 0
0 X

)
=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , (5.26)

which, as it is well-known, in combination with the Hadamard gate can be used to create
entanglement (Ref. [152]). The fact that the action of these three gates can be described within
the stabilizer formalism is interesting since any unitary operation taking elements of Pn to
elements of Pn under conjugation can be composed from the Hadamard, C-NOT and phase
gates. We refer the interested reader to Ref. [152], Sect. 10.5.2, for further details.

The Clifford group

We must remark that given some n-qubit stabilizer state |ψ〉 and an arbitrary unitary op-
erator U , the resulting state U |ψ〉 after the action of U is not, in general, a “Pauli-type”
stabilizer state, meaning that the transformed stabilizer under conjugation by U , i.e., USU † =
〈Ug1U

†, . . . , UgkU
†〉, need not be a subgroup of the Pauli group Pn.14 Noticing this fact makes

particularly interesting (and important) to consider those unitary operations that map elements
of the Pauli group Pn to elements also belonging to Pn under conjugation, and hence, such
that they apply a “Pauli-type” stabilizer state onto another stabilizer state of the same type.
The set of operations which verify this condition is a group, known as the Clifford group, Cn.
Unitary operations belonging to the Clifford group are usually called Clifford elements, Clifford
operations or Clifford unitaries. According to a well-known definition in group theory, those
operations that map a group G onto itself under conjugation constitute the so-called normalizer
of the group, N(G). Therefore, the Clifford group is the normalizer of the Pauli group, i.e.,

Cn = N(Pn) = {U | UPnU † = Pn}. (5.27)

The normalizer of the one-qubit Pauli group, N(P1), is the one-qubit Clifford group, C1,
whose elements are the one-qubit Clifford operations. It is straightforward to check that the
Pauli matrices themselves belong to C1: if g and h are two arbitrary Pauli matrices, then the
transformation of h under conjugation with respect to g fulfills ghg† = ± hgg† = ± h, given
that g and h either commute or anticommute.

The so-called local Clifford (LC) group on n qubits, Cn1 , is the n-fold tensor product of the
one-qubit Clifford group C1 with itself. The elements of Cn1 are the LC operators, of the form
U =

⊗n
i=1 Ui, where Ui ∈ C1.

About the generating set of the one-qubit Clifford group C1, it is shown in Refs. [146, 153, 151]
that, disregarding overall phases, C1 is a finite group with 24 elements, all of them obtainable
as a product of operators chosen from the set {H,S}, i.e., the Hadamard and phase unitary

14Recall that, according to the definition on p. 99, if certain quantum state |ψ〉 is an eigenstate with eigenvalue
+1 of some operator A, i. e., A|ψ〉 = |ψ〉, then |ψ〉 is stabilized by A, and A is a stabilizing operator for |ψ〉. Note
that nothing in this definition imposes A to be an operator of the Pauli group.
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operations, which also belong to the one-qubit Clifford group.15 In compact notation:

N(P1) = 〈H,S〉. (5.29)

With respect to the Clifford group Cn, the corresponding generator consists of the unitary
one-qubit operations H and S, along with an additional unitary operator (Refs. [146, 153, 151]):
although there is some freedom for this choice, the most usual option is the C-NOT gate or,
alternatively (and better for our purposes), the controlled-Z gate16 CZ, defined as

CZ = |0〉〈0| ⊗ 1+ |1〉〈1| ⊗ Z = |00〉〈00|+ |01〉〈01|+ |10〉〈10| − |11〉〈11|, (5.30)

or in matrix form

CZ =

(
1 0
0 Z

)
=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 . (5.31)

Note that one can define two-qubit general controlled unitary operations CU = |0〉〈0| ⊗ 1+
|1〉〈1| ⊗ U (of which CZ and CX are two remarkable instances): one of the qubits onto which
CU acts is the so-called control qubit, and the other is the target qubit. If the control qubit is
in the state |0〉, 1 is applied to the target qubit. Only when the control qubit is in the state
|1〉 is the U operation applied to the target qubit. In general, the action of a general controlled
unitary operation is not symmetric under exchange of the dichotomic character control/target
between the qubits. That is the case for CX. On the contrary, CZ has the little advantage
of being symmetric under control/target exchange, and that is the reason why some authors
(Refs. [153, 154, 155, 150], and we among them) prefer it. Anyway, we can write

Cn = N(Pn) = 〈H,S,CX〉 = 〈H,S,CZ〉. (5.32)

5.1.5 Measurements in the stabilizer formalism

Although not fundamental for the purposes of this thesis (in a first reading it may be skipped),
for the sake of completeness we will devote a few lines in this subsection to the description of
measurements in the stabilizer formalism. We will follow Refs. [152, 150], where we refer the
interested reader for further details. The main motivation is that any quantum operation (think,
for instance, in applications such as measurement-based quantum computation, or a quantum
error correction) may be thought of as a unitary operation followed by a projective measurement
whose outcome is ignored (Ref. [24]). Focussing on measurements, we will consider those that
are in a certain sense “natural” in the context of the stabilizer formalism.

15Such belonging to C1 is trivial, given the way H transforms the Pauli matrices under conjugation in Eqs. (5.23),
and since

SXS† = Y ; SY S† = −X; SZS† = Z; S1S† = 1. (5.28)

16It is straighforward to check that CX = (1 ⊗ H) CZ (1 ⊗ H), which in the end means that it is possible to
reproduce the action of a C-NOT gate by combining one CZ gate and two Hadamard gates on the target qubit.
This accounts for the freedom of choice aforementioned.
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Let |ψ〉 be a n-qubit stabilizer state, whose stabilizer S is generated by γS = {g1, . . . , gn}.
This implies that dimVS = 1. Let us suppose that we make a measurement of certain observable
represented by a Hermitian operator M . To exploit the power of the stabilizer formalism, we
would like the post-measurement state to be a stabilizer state as well. In order to satisfy such
requirement, and given that according to QT the post-measurement state is an eigenstate of M ,
then M must be a Hermitian tensor product of Pauli matrices, i.e., a Hermitian element (overall
phase ±1) of the Pauli group Pn, namely

M = αMM1 ⊗ . . .⊗Mn, (5.33)

where αM is an overall phase and each Mj is one of the Pauli matrices {1, X, Y, Z} acting on
qubit j. A measurement of such an operator M is sometimes called a Pauli measurement.

For the sake of simplicity, let us assume that M ∈ Pn with αM = +1 (if αM = −1, the
discussion is almost the same except for a exchange in the probabilities of the two outcomes).
Let the state of the physical system of n qubits be the stabilizer state |ψ〉, and suppose we carry
out a measurement of M . We are interested in the transformation (if any) undergone by the
stabilizer S. There are two possibilities:

• M commutes with all the generating operators {g1, . . . , gn} of S.

Then, either M or −M is an element of S: taking any gj ∈ γS , we have

gjM |ψ〉 = Mgj |ψ〉 = M |ψ〉, ∀gj ; j = 1, . . . , n. (5.34)

That is, M |ψ〉 ∈ VS . Since dimVS = 1, M |ψ〉 must be a multiple of |ψ〉. On the other
hand M ∈ Pn, and thus M2 = 1⊗n, which leads to M |ψ〉 = ± |ψ〉. I.e, either M or
−M belongs to S. Let us assume that M ∈ S (otherwise the discussion is similar): then
M |ψ〉 = |ψ〉, and hence |ψ〉 is an eigenstate of M with eigenvalue +1: the measurement
outcome is +1 with probability one, whereas the measurement does not alter the state, and
the stabilizer remains invariant.

• M anticommutes with at least one of the generating operators {g1, . . . , gn} of S.

Without loss of generality we can assume that M anticommutes only with certain g ∈ γS ,
and commutes with the rest.17 Then, since M2 = 1⊗n (because M ∈ Pn) its eigenvalues
are ±1. Now we can write the projection operator corresponding to the outcomes ±1 of the

measurement of M as Π
(±)
M = 1

2(1⊗n ±M), and subsequently apply the rules of quantum
mechanics in order to calculate the probabilities p(±1) of such outcomes, obtaining

p(+1) = tr

(
1⊗n +M

2
|ψ〉〈ψ|

)
, (5.36)

p(−1) = tr

(
1⊗n −M

2
|ψ〉〈ψ|

)
. (5.37)

17If, for instance, M anticommuted with another generating operator different from g, say gi, we would have

Mggi = −gMgi = ggiM, (5.35)

and therefore M would commute with ggi. Recall that, according to one of the key properties of a stabilizer S
listed on p. 101, the substitution of an element gi of the generator γS by the product gig with another element
g produces a new generator γ̃S of the same stabilizer S. Proceeding with such substitutions, we arrive at the
desired case in which M anticommutes only with g ∈ γS .
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Using the fact that g|ψ〉 = |ψ〉, and also that Mg = −gM :

p(+1) = tr

(
1⊗n +M

2
g|ψ〉〈ψ|

)
= tr

(
g
1⊗n −M

2
|ψ〉〈ψ|

)
. (5.38)

The trace is invariant under cyclic permutation of a product of operators. On the other
hand, g is a Hermitian operator, i.e., g = g†. Since g|ψ〉 = |ψ〉, then 〈ψ|g = 〈ψ|g† = 〈ψ|.
Substituting in Eq. (5.38) and operating:

p(+1) = tr

(
g
1⊗n −M

2
|ψ〉〈ψ|

)
= tr

(
1⊗n −M

2
|ψ〉〈ψ|g

)
(5.39)

= tr

(
1⊗n −M

2
|ψ〉〈ψ|g†

)
= tr

(
1⊗n −M

2
|ψ〉〈ψ|

)
= p(−1). (5.40)

And given that p(+1) + p(−1) = 1, we conclude that p(+1) = p(−1) = 1/2.

If the result of measuring M is +1 (this will happen with probability 1/2), then the state
of the system after the measurement, following the rules of quantum mechanics, will be

|ψ(+)〉 =
Π

(+)
M |ψ〉√
p(+1)

=
1√
2

(1⊗n +M)|ψ〉. (5.41)

Notice that the stabilizer of this state, say S̃, has a generator obtained from γS =
{g1, . . . , gn}, substituting g —which anticommutes with M— by M itself. In a similar
way, if the result of measuring M is −1, the stabilizer S̃ of the post-measurement state
will have a generator obtained from γS substituting g by −M .

In a nutshell, using the stabilizer formalism, the description of the action of measuring a
Hermitian operator M ∈ Pn (a Pauli measurement) on a stabilizer state |ψ〉 with stabilizer S is
the following:

1. Find a generator γS of S such that at most one generating operator anticommutes with
M .

2. If all the generating operators of γS commute with M , then the result of the measurement
of M (+1 or −1) will occur with probability one, and both the state |ψ〉 and the stabilizer
S will be left invariant.

3. If one generating operator g anticommutes with M , then the state after the measurement
of M will have a new stabilizer S̃ whose generator is obtained from γS , replacing g by
±M . The outcomes of the measurement (±1) will occur at random.

In any case, the post-measurement state after a Pauli measurement is carried out on a
stabilizer state is also a stabilizer state.

At this point, we finish our review of the basics of the stabilizer formalism. For additional
issues like the representation of an n-fold tensor product of Pauli matrices as a 2n-dimensional
binary vector, and the application of this alternative formalism to algebraically describe stabilizer
states, we refer the interested reader to Ref. [150]. It might also be very instructive, in order
to capture the advantages of the stabilizer formalism, to see how it is applied in the context
of quantum codes and quantum error correction. A very suitable approach can be found in
Ref. [152] (the entire Chap. 10, and more specifically Sect. 10.5.5).
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5.2 Graph states

Graph states (see Refs. [9, 11]) are a type of n-qubit pure states that play several fundamental
roles in quantum information theory. In quantum error-correction, the stabilizer codes which
protect quantum systems from errors (Ref. [156]) can be realized as graph codes (Refs. [157, 158]).
In measurement-based (or one-way) quantum computation (Ref. [144]), graph states are the
initial resources consumed during the computation. Moreover, some graph states are universal
resources for quantum computation (Ref. [145]). In quantum simulation, graph states allow
us to demonstrate fractional braiding statistics of anyons in an exactly solvable spin model
(Ref. [159]). Graph states have been used in multipartite purification schemes (Ref. [160]).
The Clifford group has been used for entanglement distillation protocols (Ref. [161]). Graph
states naturally lead to Greenberger-Horne-Zeilinger (GHZ) or all-versus-nothing proofs of Bell’s
theorem (Refs. [162, 163, 164, 165, 166, 167]), which can be converted into Bell inequalities which
are maximally violated by graph states (Refs. [114, 168, 169, 170, 171, 172]). Some specific graph
states are essential for several quantum communication protocols, including entanglement-based
quantum key distribution (Ref. [91]), teleportation (Ref. [173]), reduction of communication
complexity (Ref. [174]), and secret sharing (Refs. [175, 176]).

In addition to all these applications, graph states also play a fundamental role in the theory
of entanglement. For n ≥ 4 qubits, there is an infinite amount of different, inequivalent classes of
n-qubit pure entangled states. The graph state formalism is a useful abstraction which permits
a detailed (although not exhaustive) classification of n-qubit entanglement of n ≥ 4 qubits.
Precisely, we will devote the following chapters, where we present the main results of the second
part of this thesis, to going more deeply into this topic.

For all these reasons, a significant experimental effort is devoted to the creation and testing
of graph states of an increasing number of qubits. On one hand, there are experiments of n-
qubit n-photon graph states up to n = 6 (Refs. [177, 178, 179, 180, 181]). On the other hand,
the combination of two techniques, hyper-entanglement (i.e., entanglement in several degrees of
freedom, like polarization and linear momentum) in Refs. [182, 183, 184, 185, 186, 187, 188] and
the sources of 4, 5, and 6-photon entanglement using parametric down-conversion in Refs. [189,
190, 191, 192, 193, 178, 194] allows us to create 6-qubit 4-photon graph states (Refs. [195, 196]),
8-qubit 4-photon graph states (Ref. [195]), and even 10-qubit 5-photon graph states (Ref. [195]).
The use of 4-photon sources for preparing 8-qubit graph states is particularly suitable due to the
high visibility of the resulting states. Finally, if we restrict ourselves to GHZ states (which can
be considered a specific class of graph states), it has been reported in Ref. [197] the creation of
GHZ states with up to 14 qubits using a string of trapped 40Ca+ ions, where each ion represents
a qubit.18

As we have already pointed out at the beginning of this chapter, graph states constitute
a special family of stabilizer states, and henceforth we can apply to graph states all the ideas
presented in the previous sections.

18This is, to our knowledge, the current best achievement.
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5.2.1 Definitions

Summarizing the essentials of Sect. 5.1.3, recall that the stabilizing operators si of a given
stabilizer S commute, so that they can be diagonalized simultaneously and, therefore, share a
common set of eigenvectors that constitute a basis of the vector space VS stabilized by S. The
vector space VS is of dimension 2n−k when the cardinality of the generator γS is |γS | = k. As a
consequence, if |γS | = n (and therefore |S| = 2n), then there exists a unique common eigenstate
|ψ〉 on n qubits with eigenvalue 1, such that si|ψ〉 = |ψ〉 for every stabilizing operator si ∈ S.
Such a state |ψ〉 is called a stabilizer state because it is the only state that is stabilized (or fixed)
by every operator of the stabilizer S.

Given that an n-qubit graph state |G〉 is a specific instance of stabilizer state, the gen-
erator of |G〉 consists of k = n generating operators, which provide a compact mathematical
characterization of |G〉, as we will remark below.

A n-qubit graph state |G〉 is a pure entangled state associated to a graph G(V,E) consisting of
a set of n vertices V = {1, . . . , n} and a set of edges E connecting pairs of vertices, E ⊂ V × V
(Refs. [9, 11]). Each vertex represents a qubit. An edge (i, j) ∈ E represents an Ising-type
interaction between qubits i and j. The graph G provides both a blueprint for preparing |G〉
and a mathematical characterization of |G〉 on the basis of the stabilizer formalism:19

(I) The recipe for preparing the state |G〉 is the following (see Figs. 5.1 and 5.2): first prepare
each qubit in the state |+〉 = 1√

2
(|0〉+|1〉), i.e., the initial n-qubit state will be |ψ0〉 =

⊗
i∈V |+〉i.

Then, for each edge (i, j) ∈ E connecting two qubits i and j, apply a controlled-Z gate between
these qubits, i.e., the unitary transformation CZ = |00〉〈00| + |01〉〈01| + |10〉〈10| − |11〉〈11|.
According to this,

|G〉 =
∏

(i,j)∈E

CZij |+〉⊗n, (5.42)

where CZij stands for a controlled-Z operation between qubits i and j.
(II) The alternative mathematical characterization of |G〉, which exploits the stabilizer for-

malism, is the following: the graph state |G〉 associated to the graph G is the unique n-qubit
state which fulfills

gi|G〉 = |G〉, for i = 1, . . . , n, (5.43)

where gi are the generating operators of the stabilizer group of the state, defined as the set
{sj}2

n

j=1 of all products of the generating operators. Specifically, gi is the generating operator
associated to the vertex i, defined by

gi := Xi

⊗
j∈N (i)

Zj , (5.44)

19We must emphasize that graphs associated to graph states are simple, connected and undirected graphs without
weights, that is, graphs G with the following properties: (1) all the vertices in G are of the same type (all of them
represented by the same symbol); (2) vertices are not connected to themselves (i.e., graphs without loops); (3)
there are no multiple edges between the same set of vertices; (4) any two vertices i and j are connected by a path
in G; (5) there is no weight assignment to the vertices; and (6) edges have no inherent direction. Note that it
is also possible to associate a graph to any stabilizer state, but in that case one should consider different types
of nodes or vertices (solid and hollow, and even with signs), and also loops, along with some linkage restrictions.
For details, refer to Ref. [150], Sect. 2.3.
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initial state interaction pattern graph and graph state

Figure 5.1: Recipe for preparing a 8-qubit graph state, starting from a “blank” state |+〉⊗8

corresponding to a 8-vertex empty graph, and applying a sequence of controlled-Z gates.

Qubit 2

Qubit 1

Qubit 3

Qubit 4

Qubit 5

Qubit 6

Qubit 7

Qubit 8

Figure 5.2: A circuit of preparation for the 8-qubit graph state corresponding to Fig. 5.1, using
controlled-Z gates. In the circuit, a qubit (vertex of the graph) is represented by a horizontal
wire, and a controlled-Z gate (edge in the graph) by a vertical segment with diamond-shaped
ends connecting the qubits involved in the operation. Such ends are identical, since controlled-Z
gates are symmetric under exchange between control/target qubits.
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where N (i) is the neighborhood of the vertex i, i.e., the set of those vertices which are connected
to i, and Xi (Zi) denotes the Pauli matrix σx (σz) acting on the ith qubit.20

The equivalence between the two ways, (I) and (II), to account for a graph state follows
from the next reasoning:21 the initial state, namely, |ψ0〉 = |+〉⊗n, is a stabilizer state whose

generating n-qubit operators belong to the Pauli group Pn and are of the form g
(0)
i = Xi, for

i = 1, . . . , n. The two-qubit operator CZij is Hermitian (i.e., CZij = CZ†ij), it is symmetric under
exchange of control/target qubits, and belongs to the Clifford group Cn (see Sect. 5.1.4), so that
it maps Pn onto itself. As a consequence, the resulting state after the application of a sequence
of controlled-Z gates is also a stabilizer state (in the strict sense of the term, i.e., it is stabilized
by a subgroup of the Pauli group). It is easy to check that, given |ψ0〉 = |+〉⊗n, if one applies a
controlled-Z gate CZij between qubits i and j (corresponding to an edge (i, j) ∈ E of the graph

G), then it will transform the generating operators g
(0)
i = Xi and g

(0)
j = Xj under conjugation

in such a way that
CZij Xi

CZij = XiZj , (5.46)

and
CZij Xj

CZij = ZiXj , (5.47)

and will leave the other g
(0)
k 6={i,j} invariant. The reiterated application of this argument to the

sequence of controlled-Z gates following the blueprint provided by the set of edges ofG eventually
leads to a final state, the graph state |G〉, which is a stabilizer state with the n generators given
by Eq. (5.44), as required.

5.2.2 Graph states as a “theoretical laboratory” for multipartite entangle-
ment

Graph states, as we have mentioned in the introduction to Sect. 5.2, play several fundamental
roles in the field of quantum information, not only from a theoretical point of view, but also in
the realm of applications. There is another field in which graph states, the stabilizer formalism
on which they are based, and the powerful aid provided by selected elements of graph theory,
have proved to be very valuable tools to gain an insight: the theory of entanglement. The study

20A simple example is the 3-qubit linear cluster state |LC3〉, whose associated graph is the 3-vertex linear cluster
LC3, consisting of three vertices {1, 2, 3}, one of them (say vertex 2) linked to the other two. With such labeling,
the stabilizer of |LC3〉 is the following set of 23 = 8 3-qubit Pauli operators:

S(|LC3〉) =



s1 = g1 = X1 Z2 13

s2 = g2 = Z1 X2 Z3

s3 = g3 = 11 Z2 X3

s4 = g1g2 = Y1 Y2 Z3

s5 = g1g3 = X1 12 X3

s6 = g2g3 = Z1 Y2 Y3

s7 = g1g2g3 = − Y1 X2 Y3

s8 = gjgj = 11 12 13,

(5.45)

where the first three of them are the generating operators given by Eq. (5.44).
21For the sake of compactness along the argument, the Pauli identity operators acting on qubits not expressly

mentioned remain unstated. For instance, Xi will refer to a n-fold tensor product with σx acting on qubit i, and
identity operators on the other qubits.
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and characterization of graph states from the viewpoint of their entanglement properties is,
among other things, a direct consequence of the great interest they have raised as a result of the
multiple applications and tasks in which they are useful. Nevertheless, at a more fundamental
level, the set of graph states constitutes an exceptional “theoretical laboratory” for the study
of multipartite entanglement by itself. On one hand, the stabilizer formalism entails a more
economical description of graph states (linear in the number of qubits), which allows to set
aside the vector state representation: the latter, in case of an n-qubit state, would imply to
give account of 2n complex amplitudes in general, and this is the reason why the analysis of
entanglement on the basis of the vector representation becomes unfeasible in practice for a
relatively small number of qubits. On the other hand, any graph state has a natural graphical
counterpart, in the form of a simple, connected, undirected and unweighted graph, completely
determined by its adjacency matrix: this enables us to resort to a plethora of well-known tools
and results from graph theory in order to go in depth about the characterization of entanglement,
whose treatment becomes more transparent, and computationally more manageable.

Due to the fact that most of the main results of the second part of this thesis deal with this
topic, we give below a brief panoramic review of some important results previously obtained by
other authors, which constitute the framework for our contributions.

Summary of previous results about classification of multipartite entanglement

1. Two pure states |ψ〉 and |φ〉 are equivalent under local operations assisted by classical
communication (LOCC), i.e., they can be obtained with certainty from each other by
means of LOCC, if and only if they are equivalent under local unitary (LU) operations
(Refs. [198, 199]). Therefore, LOCC equivalence equals LU equivalence:

|ψ〉 LOCC7−→ |φ〉 ⇔ |ψ〉 LU7−→ |φ〉. (5.48)

However, as it is pointed out in Ref. [200], and already for bipartite systems, two states |ψ〉
and |φ〉 are typically not related by LU operations, and one needs continuous parameters
to label all equivalence classes: there are infinitely many of them (Refs. [201, 202]). As
a consequence, in order to carry out a simpler classification of pure states in terms of
entanglement, the relation of equivalence between states must be based on another kind of
conversion between them, different from LOCC. A possibility (Ref. [198]) is to consider the
conversion of the states through stochastic local operations and classical communication
(SLOCC) instead of LOCC: this means using LOCC but without imposing that the con-
version between states has to be attained with certainty. Therefore, it suffices a nonzero
probability of success for the transformation under LOCC in order to consider that two
states are equivalent.

2. LU operations are a particular instance of SLOCC. Therefore, those states that are equiv-
alent under LU are also equivalent under SLOCC (the converse is not necessarily true). A
classification under SLOCC is a coarse graining of the one based on LU:

|ψ〉 LU7−→ |φ〉 ⇒ |ψ〉 SLOCC7−→ |φ〉. (5.49)
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We will say that two quantum states have the same entanglement if they are SLOCC equiv-
alent. With this relation of equivalence, several authors have carried out the corresponding
classification of n-partite quantum states according to their entanglement properties. The
simplest situation implies assuming one qubit per party; unfortunately, for n-qubit systems
the situation becomes involved very soon, for a small number of qubits. In a nutshell:

• For n = 2 there are essentially two classes of equivalence: one of them includes
all product states (unentangled). The other one includes all pure entangled states,
since any of them can be converted into the Einstein-Podolski-Rosen (EPR) state
|Φ+〉 = 1√

2
(|00〉+ |11〉) through SLOCC (Refs. [200, 203]).

• For n = 3 there are six classes of equivalence under SLOCC (Ref. [200]). One of them
corresponds to fully separable (therefore unentangled) states, the A − B − C-class.
A possible representative state of such class is the state |ψA−B−C〉 = |000〉. Three of
them correspond to bi-separable states (one class for each bipartition A−BC, B−AC,
C − AB), in which the state of the two-qubit part is entangled. As an example, a
possible representative state of the A − BC-class is |ψA−BC〉 = 1√

2
|0〉(|00〉 + |11〉).

Finally, two of them correspond to genuinely tripartite entangled states: the GHZ-
class, whose representative state is the 3-qubit GHZ state |GHZ〉 = 1√

2
(|000〉+|111〉),

and the W-class, whose representative state is the 3-qubit W state |W 〉 = 1√
3
(|100〉+

|010〉+ |001〉).

• For n ≥ 4 the number of classes of equivalence under SLOCC becomes infinite: as it
is shown in Ref. [200], the reason is that the number of parameters of a state which
the parties can modify acting locally through SLOCC grows linearly with n, whereas
the number of parameters required to specify the state grows exponentially with n.
Nevertheless, in the case n = 4, the uncountable set of classes can be grouped into
nine continuous families, whose representatives can be found in Ref. [204]. A similar
treatment to extend the SLOCC classification for states of more than four qubits,
or for multipartite systems of qudits of dimension d > 2, remains unknown to our
knowledge.

3. The exponential growth of the complexity of the problem of classifying pure quantum states
according to SLOCC equivalence has led to postpone such attempt for arbitrary states, and
to focus the attention on specific families of quantum states (“theoretical laboratories”)
describable with a relatively small number of parameters when compared with the general
problem, but whose more economical description nevertheless captures essential features of
the problem of classifying entanglement, in the hope that this strategy makes it possible
to gain some insight about the general problem. As we said at the beginning of this
section, stabilizer states and graph states constitute appropriate “theoretical laboratories”
for such purpose. Any graph state is describable through a simple, connected, undirected
and unweighted graph. Recall that graph states belong to the broader family of stabilizer
states: as we mentioned in footnote 19 on p. 109, it is also possible to associate a more
complicated kind of graph to any stabilizer state. Interestingly, any stabilizer state |S〉 is
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equivalent under local operations belonging to the LC group22 (i.e., unitary operations which
map the Pauli group onto itself under conjugation) to some —generally non-unique— graph
state |G〉 (Ref. [158]). Consequently, we can restrict our analysis to graph states, since
the corresponding entanglement classification will account for stabilizer states up to LC
operations.

4. Every two graph states which are equivalent under SLOCC are also equivalent under LU
operations (Ref. [205]). Recall that according to Eq. (5.49), and for any pair of arbitrary
pure states, LU equivalence implies SLOCC equivalence. The converse is not true in
general, but it is fulfilled by graph states. Hence, given two different graph states |G〉 and
|G′〉,

|G〉 SLOCC7−→ |G′〉 ⇐⇒ |G〉 LU7−→ |G′〉. (5.50)

In other words, for graph states SLOCC equivalence and LU equivalence are coincident
notions, which means that the classification of graph states according to entanglement can
be based on LU equivalence. We can conclude that two n-qubit graph states |G〉 and |G′〉
will have the same degree of n-partite entanglement if and only if there exist n unitary
transformations Ui on individual qubits such that |G′〉 =

⊗n
i=1 Ui|G〉.

5. In case that the aforementioned one-qubit unitary transformations Ui belong to the one-
qubit Clifford group C1 (equivalently, in case that U =

⊗n
i=1 Ui belongs to the LC group Cn1 ;

see p. 104 for details), we say that the two graph states |G〉 and |G′〉 are equivalent under
LC transformations, or LC equivalent, in brief. In relation to this, there is an important
conjecture, usually referred to as “LU⇔LC”, that poses the question whether LU equiv-
alence and LC equivalence coincide for graph states. Note that, trivially, LC equivalence
implies LU equivalence, since LC operations constitute a subset of LU operations. The
strong implication, hence, is the converse, LU⇒LC. The triple coincidence of SLOCC,
LU and LC equivalence for graph states would make the task of checking whether two
given graph states are locally equivalent much more efficient, because it would be based
on LC equivalence, yielding an additional advantage: a description of such local equiva-
lence of graph states in purely graph theoretic terms would be possible thanks to the local
complementation rule, that we describe later in item 6 on this list of results.

Unfortunately, the LU⇔LC conjecture is proven false in Ref. [206], where Ji et al. offer
explicit counterexamples of the conjecture. The smallest counterexample Ji et al. have
found corresponds to two 27-qubit graph states whose corresponding graphs are the same
except for only one edge, and such that they are LU equivalent but not LC equivalent.23

The same algorithm employed for this finding has generated other counterexamples with
35 qubits. Although not proven, Ji et al. in fact “[...] believe that 27 is the smallest
possible size of counterexamples of LU⇔LC.”

Nevertheless, the LU⇔LC conjecture is true for several classes of n qubit graph states:
on one hand, numerical results show that LC equivalence coincides with local unitary

22See details about the Clifford group on p. 104.
23In fact, they conclude that two LU-equivalent graph states which are not LC equivalent always have associated

graphs that differ only in one edge.
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equivalence for qubit graph states associated with connected graphs up to n = 7 vertices
(see Refs. [9, 11]). On the other hand, LU⇔LC also works for graph states whose stabilizers
satisfy certain conditions24 (Ref. [207]). Moreover, going beyond Ref. [207], the class of
stabilizer states for which LU⇔LC is broadened to include all stabilizer states represented
by graphs with cycles of length neither 3 nor 4 in Ref. [208].

We must emphasize that in the second part of this thesis the following assumption is made:
deciding whether or not two graph states of n < 27 qubits have the same entanglement is
equivalent to deciding whether or not they are LC equivalent. In other words, we assume
that the LU⇔LC conjecture is true for graph states of up to n = 26 qubits, a number of
qubits beyond n = 8 (the one corresponding to the classification we present in Chap. 6)
or n = 12 (corresponding to the extended classification we provide in Chap. 8).25

6. According to Ref. [10], it is possible to translate the action of LC operations on graph states
into transformations on their associated graphs, i.e., to provide transformation rules, stated
in purely graph theoretical terms, which completely characterize the evolution of graph
states under LC operations. There is essentially one basic rule, known as local complemen-
tation (abbreviated in this thesis26 as LC∗) and described below, the successive application
of which on a graph G generates the complete equivalence class of the corresponding graph
state |G〉 under local unitary operations within the Clifford group: such LC equivalence
class of a graph state |G〉 is usually referred to as the LC orbit of |G〉 (or simply, orbit).

Let us note that we can also conform this language of classes of equivalence to the effect of
LC∗ on the associated graph G: we can say that two graphs G and G′ are LC∗ equivalent if
it is possible to transform one in the other by means of a sequence of LC∗ operations. As a
consequence, LC∗ splits the set of graphs into LC∗ classes of equivalence: all those graphs
that can be obtained through reiterative application of LC∗ on a given graph G constitute
the so-called (LC∗) orbit of G. In principle, one can choose any of the graphs of a given
orbit as the representative of such orbit. The choice of a certain graph as representative
may be based on different criteria. As we will see later, we will adopt in our work one in
particular, which entails a clear physical meaning.

Local complementation on a vertex i of a graph G acts as follows: one picks out the vertex
i and inverts (complements) the neighborhood N (i) of i; i.e., vertices in the neighborhood
which were connected become disconnected and vice versa. Mathematically, denoting an

24According to Ref. [207], this conditions concern a subgroup M(|G〉) in the stabilizer S of a graph state
|G〉: M(|G〉) is generated by the so-called minimal elements, i.e., the operators of S with minimal support (see
Sect. 7.2.1 for the concept of support). The conditions refer to the fact that the three Pauli operators X, Y and
Z must appear in each and every qubit throughout the operators in M(|G〉). If M(|G〉) fulfills this conditions

and |G〉 LU7−→ |G′〉, then |G〉 LC7−→ |G′〉.
25We suppose that Ji et al.’s algorithm (Ref. [206]) would have detected counterexamples of such a relatively

small size, in case there were any.
26We prefer to use the abbreviation LC∗ in order to avoid confusion: nevertheless, it is usual to abbreviate

local complementation by LC as well, since in the end it is, so to say, the graphical counterpart of LC operations
on graph states, expecting that the meaning of the acronym LC will be clear from the context of the discussion:
“local Clifford” when applied to graph states, “local complementation” when referred to graphs.
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a

b

c

G G’
l( )i

Figure 5.3: Local complementation λ(i) on vertex i of the graph G on the left. The neigh-
borhood of i (highlighted in the graph in the center), whose adjacency relationship is inverted
(complemented) by λ(i), is the set of vertices N (i) = {a, b, c}. The rest of the edges of G (dashed
lines) remains unaltered. The resulting LC∗-equivalent graph G′ is on the right.

LC∗ on vertex i by λ(i),

G = (V,E)
λ(i)7−→ G′ = (V,E∆KN (i)), (5.51)

where ∆ stands for the symmetric difference between sets of edges,27 and KN (i) is the
set of edges of the complete graph over the vertices of N (i). An example is depicted in
Fig. 5.3.

The action of LC∗ on vertex i of a graph G can be described in the stabilizer formalism.
On the stabilizer28 of |G〉, LC∗ on the qubit i induces the map Y (i) 7→ Z(i), Z(i) 7→ −Y (i)

on the qubit i, and the map X(j) 7→ −Y (j), Y (j) 7→ X(j) on the qubits j ∈ N (i), following
Ref. [11]. On the generator, LC∗ on the qubit i maps the generating operators gold

j with
j ∈ N (i) to gnew

j gnew
i .

Summarizing, we can say that two graph states |G〉 and |G′〉 have the same degree of
entanglement (and hence, belong to the same LC equivalence class —or LU equivalence
class— or orbit) if there exists a sequence Λ of LC∗ operations transforming the graphs G
and G′ between each other (i.e., if G and G′ belong to the same orbit),

|G〉 ≡LC |G′〉 ⇐⇒ G
Λ←→ G′. (5.53)

27Given to sets of edges E ⊂ V × V and F ⊂ V × V connecting vertices of the set V , E∆F is the symmetric
difference between E and F , defined as

E∆F = (E ∪ F )− (E ∩ F ). (5.52)

28For the sake of economy, we use the same labels interchangeably both for qubits and for vertices: in a mild
abuse of terminology, the “neighborhood of qubit i” must be understood as the set of qubits j whose associated
vertices —also labeled by j— belong to the neighborhood of vertex i.
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Previous progress on the classification of graph states according to entanglement

The list of results of other authors that we have just revisited constitute the conceptual
framework in which we develop our contributions, collected in the next chapters. In order to
complete this review, we must briefly discuss another result of importance for us, since it is the
starting point of our research on graph states.

The classification and study of the entanglement properties of graph states have been achieved,
up to 7 qubits, by Hein, Eisert, and Briegel (HEB, hereafter) in Ref. [9] (see also Ref. [11]). This
classification has been useful to identify new two-observer all-versus-nothing proofs (Ref. [167]),
new Bell inequalities (Refs. [171, 172]), and has stimulated the preparation of several graph states
(Ref. [195]). In our work, we have extended HEB’s classification up to 8 qubits in Ref. [13] (see
Chap. 6), and subsequently up to 12 qubits in Ref. [209] (see Chap. 8).

The number of orbits under local complementation for simple, connected, non-isomorphic29

n-vertex graphs grows very rapidly with the number of vertices, as it is shown in Table 5.1,
where data have been taken from Ref. [210] (also available in Ref. [11], p. 55). According to that
table, the total number of LC∗ orbits for graphs with a number of vertices ranging from 2 to 7 is
45, and this number coincides with the number of LC equivalence classes for graph states of up
to 7 qubits analyzed by HEB from the perspective of their entanglement properties in Ref. [9].

Table 5.1: Number of LC∗ orbits for simple, connected, non-isomorphic graphs, as a function of
the number of vertices.

Number of vertices Number of LC∗ orbits

1 1
2 1
3 1
4 2
5 4
6 11
7 26
8 101
9 440
10 3132
11 40457
12 1274068

In a nutshell, the 45 LC classes of graph states are ordered according to the following criteria:
(a) number of qubits, (b) minimum number of controlled-Z gates needed for the preparation,

29Graph isomorphism (i.e., a permutation of the vertices that map neighbored vertices onto neighbored vertices)
physically comes up to an exchange of particles. If we focus on examining the question of how the entanglement
in a graph state is related to the topology of its underlying graph, graph isomorphic situations are essentially
the same. Of course, if we excluded graph isomorphisms, as we would do, e.g., if we were interested in quantum
communication scenarios where the labeling of the qubits and their ”local environment” is relevant, the number
of inequivalent classes of graph states would be considerably larger.
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(c) the Schmidt measure, and (d) the rank indexes (they are calculated and tabulated, for each
LC class, in Ref. [9], table II). For the definitions and details we refer the reader to Sect. 6.2.
The ordering criteria (c) and (d) refer to entanglement measures30 which are invariant under
LC transformations and quantify the entanglement of graph states belonging to each LC orbit.
In principle, they should also allow to label and discriminate unambiguously between any pair
of different LC orbits.31

Finally, HEB provide a list of simple representatives of each equivalence class, although
they do not specify accurately the criterion of simplicity followed for their particular choice. In
Fig. 5.4, we show for illustrative purposes the simple representative graphs of the 45 LC orbits
of graph states, as they appear in Ref. [9].

We end this introductory chapter with this succinct outline of HEB’s classification of graph
states up to 7 qubits. Now we are ready to address the three main problems of our research on
graph states:

(i) The extension of the classification of graph states in LC equivalence classes up to 8 qubits
(Chap. 6).

(ii) The quest for a compact set of LC invariants capable of labeling and distinguishing
unambiguously between any pair of LC orbits of graph states of up to 8 qubits (Chap. 7).

(iii) The formulation of an optimal preparation procedure of graph states on the basis of the
preparation depth and the LC equivalence classes; and the extension of the LC classification up
to 12 qubits, along with a critical discussion about the effectiveness of the previous compact set
of invariants as LC orbit-discriminating quantities (Chap. 8).

Moreover we present, as closing contribution, a practical application of graph states to
quantum information theory, namely, to the field of communication complexity: we provide
an entanglement-assisted experimental protocol of reduction of communication complexity. In
that protocol, the participants share an entangled state which is precisely a graph state, the
3-qubit or 4-qubit GHZ state, respectively, whose associated graphs are the complete graphs K3

or K4, belonging to the LC classes of graph states Nos. 2 and 3 in Refs. [9, 11]. This protocol is
an example to additionally motivate the usefulness and importance of graph states in quantum
information theory (Chap. 9).

30Other entanglement measures to specifically quantify entanglement in pure graph states have been consid-
ered afterwards in the scientific literature. For instance, distance-like measurements as the relative entropy of
entanglement or the geometric measure are analyzed for graph states in Ref. [211]. Geometric measure and the
calculation of the closest product states are evaluated in Ref. [212] for up to 8 qubits, and in Ref. [213] for 9, 10
and 11 qubits, giving rise to another ordering of the LC orbits.

31We see later, in Chap. 6, that the latter —unambiguous discrimination among LC classes— is not the case;
we provide a solution up to 8 qubits in Chap. 7, whose degree of validity up to 12 qubits is discussed in Chap. 8.
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Figure 5.4: List of representative graphs with up to 7 vertices that are not equivalent under
local complementation and graph isomorphism, corresponding to the 45 LC equivalence classes
of graph states of up to 7 qubits. Figure reproduced from Hein et al. (Ref. [9]).





Chapter 6

Entanglement in eight-qubit graph
states

In this chapter we present the results obtained in Ref. [13]. Below we provide a brief summary.

Summary:

Any 8-qubit graph state belongs to one of the 101 equivalence classes under local unitary
operations within the Clifford group. For each of these classes we obtain a representative
which requires the minimum number of controlled-Z gates for its preparation, and calculate
the Schmidt measure for the 8-partite split, and the Schmidt ranks for all bipartite splits.
This results into an extension to 8 qubits of the classification of graph states proposed by
Hein, Eisert, and Briegel [Phys. Rev. A 69, 062311 (2004)].

6.1 Introduction

As we have discussed in Chap. 5, the classification and study of the entanglement properties
of graph states have been achieved, up to 7 qubits, by HEB in Refs. [9, 11]. The main purpose
of this chapter is to extend such classification to 8-qubit graph states.

Recall that up to 7 qubits there are 45 orbits, i.e., classes of graph states that are not
equivalent under one-qubit unitary transformations. With 8 qubits, there are 101 new classes of
equivalence (see Table 5.1). For a small n, the number of orbits has been well known for a long
time (see, e.g., Ref. [210]).1 The purpose here is to classify them according to several relevant
physical properties for quantum information theory.

Needless to say, the main object of study in this chapter is the graph state. We refer the
reader to Sect. 5.2.1 for the definition of graph state, both as a recipe for its preparation and
as an algebraic description on the basis of the stabilizer formalism. Many of the most relevant
applications of graph states in the field of quantum information, along with a summary of the

1There are 995 non-isomorphic connected graphs distributed among the 45 orbits up to 7 vertices, and 11117
for the 101 orbits of 8 vertices (Ref. [210]). Note that in this chapter we are only interested in graph states
associated to connected graphs. In quantum codes, connected graphs correspond to indecomposable quantum
codes (i.e., those that cannot be expressed as the direct sum of two smaller codes).
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experimental efforts devoted to the creation and testing of graph states of an increasing number
of qubits can be found in Sect. 5.2, p. 108.

For the purposes of this chapter, the key is local complementation, a simple transformation
which leaves the entanglement properties of graph states invariant. Summarizing what we have
discussed in the previous chapter, let us recall that two n-qubit states, |φ〉 and |ψ〉 have the
same n-partite entanglement if and only if there are n one-qubit unitary transformations Ui,
such that |φ〉 =

⊗n
i=1 Ui|ψ〉. If these one-qubit unitary transformations belong to the one-qubit

Clifford group,2 then both states are said to be LC equivalent. Van den Nest, Dehaene, and De
Moor (VDD, hereafter) found that the successive application of a transformation with a simple
graphical description is sufficient to generate the complete equivalence class of graph states
under local unitary operations within the Clifford group (the so-called orbit, see Ref. [10]). This
simple transformation is local complementation, by means of which one can generate the orbits
of all LC-inequivalent n-qubit graph states; in particular, the 101 orbits corresponding to 8-qubit
graph states, whose classification is the goal of this chapter.

The definition of local complementation —which is our main classifying tool— and the
graphical description of its action on a given graph have been introduced in Sect. 5.2.2, item 6
on p. 115, where we refer the reader.

To establish an order between the equivalence classes we will use the criteria proposed in
Refs. [9, 11]. These criteria are introduced in Sect. 6.2. In Sect. 6.3 we present our results. In
Sect. 6.4 we present the conclusions and point out some pending problems.

6.2 Criteria for the classification

Following HEB, the criteria for ordering the classes are: (a) number of qubits, (b) minimum
number of controlled-Z gates needed for the preparation, (c) the Schmidt measure, and (d) the
rank indexes. For instance, class No. 1 is the only one containing two-qubit graph states, class
No. 2 is the only one containing three-qubit graph states (Refs. [9, 11]). Classes No. 3 and No. 4
both have n = 4 qubits and require a minimum of |E|=3 controlled-Z gates. However, class
No. 3 has Schmidt measure ES = 1, while class No. 4 has ES = 2.

6.2.1 Minimum number of controlled-Z gates for the preparation

Different members of the same LC class require a different number of controlled-Z gates for
their preparation starting from the state |+〉 = (|0〉+ |1〉) /

√
2 for each qubit. The first criterion

for our classification is the minimum number of controlled-Z gates required for preparing one
graph state within the LC class. This corresponds to the number of edges of the graph with the
minimum number of edges within the LC∗ class, |E|. We will provide a representative graph
with the minimum number of edges for each LC class of graph states.

2As a reminder, the one-qubit Clifford group C1 is generated by the Hadamard gate H =
(|0〉〈0|+ |0〉〈1|+ |1〉〈0| − |1〉〈1|) /

√
2 and the phase gate S = |0〉〈0|+ i|1〉〈1|.



6.2 Criteria for the classification 123

6.2.2 Schmidt measure

The Schmidt measure was introduced by Eisert and Briegel as a tool for quantifying the
genuine multipartite entanglement of quantum systems in Ref. [214] (see also Ref. [215]). Any
state vector |ψ〉 ∈ H(1)⊗ . . .⊗H(N) of a composite quantum system with N components can be
represented as

|ψ〉 =

R∑
i=1

ξi|ψ(1)
i 〉 ⊗ · · · ⊗ |ψ

(N)
i 〉, (6.1)

where ξi ∈ C for i = 1, . . . , R, and |ψ(j)
i 〉 ∈ H(j), for j = 1, . . . , N . The Schmidt measure

associated with a state vector |ψ〉 is then defined as

ES(|ψ〉) = log2(r), (6.2)

where r is the minimal number R of terms in the sum of Eq. (6.1) over all linear decompositions
into product states. In case of a two-component system (N = 2), the minimal number of product
terms r is given by the Schmidt rank of the state |ψ〉. Hence, the Schmidt measure could be
considered a generalization of the Schmidt rank to multipartite quantum systems [see Eq. (6.7)
below]. The Schmidt measure can be extended to mixed states by means of a convex roof
extension. In this chapter, however, we will deal only with pure states.

Given a graph G = (V,E), a partition of V is any tuple (A1, . . . , AM ) of disjoint subsets
Ai ⊂ V , with

⋃M
i=1Ai = V . In case M = 2, we refer to the partition as a bipartition, and denote

it (A,B). We will write

(A1, . . . , AN ) ≤ (B1, . . . , BM ), (6.3)

if (A1, . . . , AN ) is a finer partition than (B1, . . . , BM ), which means that every Ai is contained
in some Bj . The latter is then a coarser partition than the former. For any graph G = (V,E),
the partitioning where (A1, . . . , AM ) = V such that |Ai| = 1, for every i = 1, . . . ,M , is referred
to as the finest partition.

We must point out that ES is nonincreasing under a coarse graining of the partitioning: If
two components are merged in order to form a new component, then the Schmidt measure can
only decrease. If we denote the Schmidt measure of a state vector |ψ〉 evaluated with respect to

a partitioning (A1, . . . , AN ) as E
(A1,...,AN )
S (|ψ〉), meaning that the respective Hilbert spaces are

those of the grains of the partitioning, then the nonincreasing property of ES can be expressed
as

E
(A1,...,AN )
S (|ψ〉) ≥ E(B1,...,BM )

S (|ψ〉), (6.4)

if (A1, . . . , AN ) ≤ (B1, . . . , BM ).
Let (A,B) be a bipartition (i.e., A ∪ B = V ;A ∩ B = ∅) of a graph G = (V,E), with

V = {1, . . . , N}, and let us denote the adjacency matrix of the graph by Γ, i.e., the symmetric
matrix with elements

Γij =

{
1, if (i, j) ∈ E,

0, otherwise.
(6.5)

When we are dealing with a bipartition, it is useful to label the vertices of the graph so that
A = {1, . . . , p}, B = {p + 1, . . . , N}. Then, we can decompose the adjacency matrix Γ into
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submatrices ΓA, ΓB (that represent edges within A and edges within B), and ΓAB (the |A|× |B|
off-diagonal submatrix of the adjacency matrix Γ that represents those edges between A and
B), (

ΓA ΓAB
ΓTAB ΓB

)
= Γ. (6.6)

The Schmidt rank SRA(G) of a graph state |G〉 represented by the graph G = (V,E), with
respect to the bipartition (A,B), is given by the binary rank [i.e., the rank over GF (2)] of the
submatrix ΓAB,

SRA(G) = rankF2(ΓAB). (6.7)

It follows straightforwardly from the definition that SRA(G) = SRB(G), because the different
bipartitions are fixed by choosing the smaller part, say A, of the bipartition (A,B), which gives
2N−1 bipartitions.

6.2.3 Rank indexes

While calculating the Schmidt rank with respect to all possible bipartitions of a given graph,
let us count how many times a certain rank occurs in all the bipartite splits, and then classify
this information according to the number of vertices in A, the smaller part of the split under
consideration. There is a compact way to express this information, the so-called rank indexes
(Refs. [9, 11]). The rank index for all the bipartite splits with p vertices in the smaller part A
is given by the p-tuple

RIp = (νpp , . . . , ν
p
1) = [νpj ]1j=p, (6.8)

where νpj is the number of times in which SRA(G) = j, with |A| = p, occurs.

6.3 Procedures and results

The main results of the chapter are summarized in Fig. 6.2 and Table 6.1. In the following,
we provide details on the calculations leading to these results.

6.3.1 Orbits under local complementation

We have generated all LC∗ orbits for n = 8 and calculated the number of non-isomorphic
graphs in each LC∗ orbit, denoted by |LC|. These numbers are counted up to isomorphism.

In addition, for each orbit, we have calculated a representative with the minimum number of
edges |E|. As representative, we have chosen the one (or one of those) with the minimum number
of edges and the minimum maximum degree (i.e., number of edges incident with a vertex). This
means that the graph state associated to this graph requires the minimum number of controlled-
Z gates for its preparation, and the minimum preparation depth3 (i.e., its preparation requires

3This particular choice paves the way for Chapter 8, where we show how to prepare any graph state of up
to 12 qubits with the minimum number of controlled-Z gates and the minimum preparation depth by means of
one-qubit and controlled-Z gates. We refer the reader to that chapter for the definition of preparation depth and
its implications.
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a minimum number of steps; see Ref. [216]). All the representatives of each of the 101 orbits are
illustrated in Fig. 6.2. |LC| and |E| are in Table 6.1.

6.3.2 Bounds to the Schmidt measure

It is a well-known fact that for any measure of multiparticle entanglement proposed so far,
including the Schmidt measure ES , the computation is exceedingly difficult for general states. In
order to determine ES , one has to show that a given decomposition in Eq. (6.1) with R terms is
minimal. For a general state, the minimization problem involved can be a very difficult problem
of numerical analysis, which scales exponentially in the number of parties N as well as in the
degree of entanglement of the state itself. Nevertheless, this task becomes feasible if we restrict
our attention to graph states. HEB established several upper and lower bounds for the Schmidt
measure in graph theoretical terms in Refs. [9, 11]. These bounds make possible to determine
the Schmidt measure for a large number of graphs of practical importance, because in many
cases the bounds proposed are easily computable and, remarkably, the upper and lower bounds
frequently coincide.

Pauli persistency and size of the minimal vertex cover

For any graph state |G〉, upper bounds for its Schmidt measure ES(|G〉) are the Pauli
persistency PP (G) and the size of the minimal vertex cover V C(G),

ES(|G〉) ≤ PP (G) ≤ V C(G). (6.9)

The Pauli persistency is the minimal number of local Pauli measurements necessary to disen-
tangle a graph state. Concerning this question, HEB described graphical transformation rules
when local Pauli measurements are applied (Refs. [9, 11]).

A vertex cover is a concept from graph theory: It is any subset V ′ ⊆ V of vertices in a graph
G to which any edge of G is incident (see Fig. 6.1). Therefore, the minimal vertex cover of a
graph is the smallest one, whose size4 is denoted by V C(G). According to the graphical rules
for the Pauli measurements, since each σz measurement simply deletes all edges incident to a
vertex, the size of the minimal vertex cover would equal the Pauli persistency, provided that we
restrict the Pauli measurements to σz measurements. Nevertheless, in graphs with many edges,
i.e., very connected, a proper combination of σx, σy, and σz measurements could provide a more
efficient disentangling sequence, giving a better upper bound PP (G) for the Schmidt measure.
See Refs. [9, 11] for details.

Maximal Schmidt rank

For any graph state |G〉, a lower bound for the Schmidt measure ES(|G〉) is the maximal
Schmidt rank,

SRmax(G) ≤ ES(|G〉). (6.10)

4The size of a minimal vertex cover in a graph G is also known as the vertex cover number of G, denoted
sometimes as τ(G) or β(G). Interestingly, there is a relation between the vertex cover number τ(G) and the
independence number α(G) (another combinatorial number profusely used in the first part of this thesis), namely,
α(G) + τ(G) = |G|, where |G| is the number of vertices of the graph G.
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Figure 6.1: The set of vertices 4, 6, and 8 is the minimal vertex cover of the graph (left). The
set of vertices 3, 5, 7, and 8, is a vertex cover of the graph, but is not minimal, it has size 4
(right).

While calculating the Schmidt rank with respect to all possible bipartitions of a given graph
G = (V,E), if one maximizes the Schmidt rank over all bipartitions (A,B) of the graph, and
takes into account the nonincreasing property of ES |(G)〉 [see Eq. (6.4)], then one obtains a
lower bound for the Schmidt measure with respect to the finest partitioning. This lower bound
is the maximal Schmidt rank,

SRmax(G) := max
A⊆V

SRA(G). (6.11)

According to the definition of Schmidt rank, the maximal Schmidt rank for any state is, at most,
bN2 c, i.e., the largest integer less than or equal to N

2 .

Addition and deletion of edges and vertices

Applying the LC∗ rule does not change the Schmidt measure ES . It is interesting to remark
that other local changes to the graph, such as the deletion of edges or vertices, have only a limited
effect on ES . This fact is established by HEB in Ref. [9] in what they call the edge/vertex rule:
On one hand, by deleting (or adding) an edge e between two vertices of a graph G the Schmidt
measure of the resulting graph G′ = G ± e can at most decrease (or increase) by 1. On the
other hand, if a vertex v (including all its incident edges) is deleted, the Schmidt measure of the
resulting graph G′ = G − v cannot increase, and will at most decrease by one. If ES(|G + e〉)
denotes the Schmidt measure of the graph state corresponding to the graph G + e, then the
previous rules can be summarized as

ES(|G+ e〉) ≤ ES(|G〉) + 1, (6.12a)

ES(|G− e〉) ≥ ES(|G〉)− 1, (6.12b)

ES(|G− v〉) ≥ ES(|G〉)− 1. (6.12c)

We have used these rules in two ways: Firstly, as an internal test to check our calculations,
comparing pairs of graphs connected by a sequence of addition or deletion of edges/vertices;
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and secondly, as a useful tool that, in some graphs, has enabled us to go from a bounded to
a determined value for the Schmidt measure, once again by comparison between a problematic
graph G and a resulting graph G′ (typically obtained by edge or vertex deletion) of a known
Schmidt measure.

Schmidt measure in some special types of graphs

There are some special types of graph states in which lower and upper bounds for the Schmidt
measure coincide (see Ref. [9]), giving directly a determined value for ES . Since the maximal
Schmidt rank for any state can be at most bN2 c, and restricting ourselves to states with coincident
upper and lower bounds to ES , it is true that SRmax(G) = ES(|G〉) = PP (G) = V C(G) ≤ bN2 c.
This is the case for GHZ states, and states represented by trees, rings with an even number of
vertices, and clusters. In our work we have used the following results concerning GHZ states
and trees:

(a) The Schmidt measure for any multipartite GHZ state is 1.
(b) A tree T is a graph that has no cycles. The Schmidt measure of the corresponding graph

state |T 〉 is the size of its minimal vertex cover: ES(|T 〉) = V C(T ).
There is another interesting kind of graphs for our purposes, the so-called 2-colorable graphs.

A graph is said to be 2-colorable when it is possible to perform a proper 2-coloring on it: This
is a labeling V → {1, 2}, such that all connected vertices are associated with a different element
from {1, 2}, which can be identified with two colors. It is a well-known fact in graph theory
that a necessary and sufficient criterion for a graph to be 2-colorable is that it does not contain
any cycles of odd length. Mathematicians call these graphs bipartite graphs due to the fact that
the whole set of vertices can be distributed into two disjoint subsets A and B, such that no two
vertices within the same subset are connected, and therefore every edge connects a vertex in A
with a vertex in B.

In Ref. [9], HEB provided lower and upper bounds for the Schmidt measure that could be
applied to graph states represented by 2-colorable graphs:

1

2
rankF2(Γ) ≤ ES(|G〉) ≤ b|V |

2
c, (6.13)

where Γ is the adjacency matrix of the 2-colorable graph. If Γ is invertible, then

ES(|G〉) = b |V |
2
c. (6.14)

Besides, HEB pointed out that any graph G which is not 2-colorable can be turned into a 2-
colorable one G′ by simply deleting the appropriate vertices on cycles with odd length present
in G. The identification of this graphical action with the effect of a σz measurement on qubits
corresponding to such vertices yields new upper bounds for ES(|G〉):

ES(|G〉) ≤ ES(|G′〉) +M ≤ b|V −M |
2

c+M ≤ b|V |+M

2
c, (6.15)

where M is the number of removed vertices. We have used these new bounds in some graphs as
a tool to check our calculations.
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6.4 Final remarks, open problems, and future developments

To sum it all up, we have extended to 8 qubits the classification of the entanglement of
graph states proposed in Ref. [9] for n < 8 qubits. Notice that for n = 8 we have 101 classes,
while for n < 8 there are only 45 classes. For each of these classes we obtain a representative
which requires the minimum number of controlled-Z gates for its preparation (see Fig. 6.2),
and calculate the Schmidt measure for the 8-partite split (which measures the genuine 8-party
entanglement of the class), and the Schmidt ranks for all bipartite splits (see Table 6.1).

This classification has been useful to obtain new all-versus-nothing proofs of Bell’s theorem
(Ref. [167]) and new Bell inequalities. Specifically, any 8-qubit graph state belonging to a class
with a representative with 7 edges (i.e., a tree) has a specific type of Bell inequality (Ref. [172]).
More generally, it has been helpful to investigate the non-locality (i.e., the non-simulability of
the predictions of quantum mechanics by means of LHV models) of graph states in Ref. [171].

Extending the classification in Ref. [9] a further step sheds some light on the limitations of
the method of classification. The criteria used in Ref. [9] to order the classes (see Sect. 6.2)
already failed to distinguish all classes in n = 7. For instance, classes No. 40, No. 42, and
No. 43 in Refs. [9, 11] have the same number of qubits, require the same minimum number of
controlled-Z gates for the preparation, and have the same Schmidt measure and rank indexes.
The same problem occurs between classes No. 110 and No. 111, between classes No. 113 and
No. 114, and between classes No. 116 and No. 117 in our classification (see Table 6.1). Following
Refs. [9, 11], we have placed the class with lower |LC| in the first place. However, this solution
is not satisfactory, since |LC| is not related to the entanglement properties of the class. On the
other hand, VDD have proposed a finite set of invariants that characterizes all classes (Ref. [12]).
However, this set has more than 2 × 1036 invariants already for n = 7. We have addressed the
problem of obtaining a minimum set of invariants capable of distinguishing all classes with n ≤ 8
qubits in Ref. [217], and this work is the main issue of Chap. 7 of this thesis.

Another weak point in the method is that the precise value of ES is still unknown for some
classes. The good news is that, for most of these classes, the value might be fixed if we knew
the value for the 5-qubit ring cluster state, which is the first graph state in the classification
for which the value of ES is unknown in Refs. [9, 11]. Unfortunately, we have not made any
progress in calculating ES for the 5-qubit ring cluster state.5

Table 6.1 shows that there are no 8-qubit graph states with rank indexes RIp = [νpj ]1j=p with
νpj 6= 0 if j = p, and νpj = 0 if j < p, i.e., with maximal rank with respect to all bipartite splits,

5There are other entanglement measures to specifically quantify the genuine multipartite entanglement in pure
graph states (see footnote 30 on p. 118). Along with the Schmidt measure one can also consider, for instance,
the relative entropy of entanglement and the geometric measure: this three quantities are extremely difficult to
compute analytically. Interestingly, Hajdušek and Murao have recently presented in Ref. [211] a more graphical
and intuitive perspective. In their approach they show that the problem of evaluating these three entanglement
measures in pure graph states can be mapped directly to the well-known problem of identifying the maximum
independent set in graph theory. For a given graph state |G〉, knowing the independence number α(G) of the
graph G corresponds to knowing the upper bound for the three aforementioned entanglement measures, as well as
whether the upper and lower bounds for each of them are equal. Moreover, identifying which qubits comprise the
maximum independent set allows them to construct the minimal linear decomposition of |G〉 into product states
as well as its closest separable and closest product state, which allow to calculate the measures. Unfortunately,
they are able to evaluate the three entanglement measures only in the case when the lower and upper bounds
coincide, which is not the case for the 5-qubit ring cluster state.
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i.e., such that entanglement is symmetrically distributed between all parties. These states are
robust against disentanglement by a few measurements. Neither there are 7-qubit graph states
with this property (Refs. [9, 11]). This makes more interesting the fact that there is a single
5-qubit and a single 6-qubit graph state with this property (Refs. [9, 11]).
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Figure 6.2: Graphs associated to the 101 classes on 8-qubit graph states inequivalent under
local complementation and graph isomorphism. We have chosen as representative of the class
the one (or one of those) with minimum number of edges and minimum maximum degree (i.e.,
number of edges incident with a vertex), which means that it requires the minimum number of
controlled-Z gates in the preparation and minimum preparation depth.
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Table 6.1: Entanglement of the 101 classes of 8-qubit graph states. No. is the number of the
class; it is assigned attending to |E|, ES , and RIj ; the numbering starts at the point in which the
one in Refs. [9, 11] ends. |LC| is the number of nonisomorphic elements of the class. |E| is the
number of edges of those representatives with the minimum number of edges. ES is the Schmidt
measure (or its lower and upper bounds). RIj is the rank index with j qubits in the smaller
bipartition (i.e., the number of bipartite splits in which a certain rank occurs; ranks appear in
decreasing order from left to right). 2-col indicates whether or not a 2-colorable representative
exists.

No. |LC| |E| ES RI4 RI3 RI2 2-col No. |LC| |E| ES RI4 RI3 RI2 2-col
46 2 7 1 (0,0,0,35) (0,0,56) (0,28) yes 97 154 8 4 (8,22,4,1) (42,13,1) (27,1) no
47 6 7 2 (0,0,20,15) (0,30,26) (12,16) yes 98 542 8 4 (8,22,5,0) (42,14,0) (27,1) no
48 6 7 2 (0,0,30,5) (0,45,11) (15,13) yes 99 300 8 4 (12,16,7,0) (44,11,1) (27,1) yes
49 16 7 2 (0,0,30,5) (0,45,11) (17,11) yes 100 214 8 4 (14,17,4,0) (48,8,0) (28,0) yes
50 4 7 2 (0,0,34,1) (0,48,8) (16,12) yes 101 14 9 3 (0,20,15,0) (24,32,0) (25,3) no
51 16 7 2 (0,0,34,1) (0,51,5) (19,9) yes 102 66 9 3 (0,28,7,0) (32,24,0) (25,3) no
52 10 7 3 (0,12,16,7) (16,28,12) (20,8) yes 103 66 9 3 (0,30,5,0) (36,20,0) (26,2) yes
53 16 7 3 (0,12,22,1) (16,34,6) (20,8) yes 104 6 9 3 (0,32,0,3) (32,24,0) (24,4) yes
54 44 7 3 (0,12,22,1) (16,35,5) (21,7) yes 105 57 9 3 < 4 (0,30,5,0) (36,19,1) (25,3) no
55 16 7 3 (0,18,14,3) (18,33,5) (21,7) yes 106 28 9 4 (8,18,9,0) (38,18,0) (25,3) no
56 44 7 3 (0,18,14,3) (22,29,5) (23,5) yes 107 17 9 4 (8,20,6,1) (32,24,0) (24,4) no
57 10 7 3 (0,18,15,2) (18,36,2) (21,7) yes 108 72 9 4 (8,20,7,0) (36,20,0) (25,3) no
58 25 7 3 (0,18,16,1) (18,36,2) (22,6) yes 109 87 9 4 (8,20,7,0) (40,16,0) (27,1) no
59 44 7 3 (0,18,16,1) (22,31,3) (23,5) yes 110 114 9 4 (8,22,5,0) (40,16,0) (26,2) no
60 44 7 3 (0,24,9,2) (24,30,2) (23,5) yes 111 372 9 4 (8,22,5,0) (40,16,0) (26,2) no
61 26 7 3 (0,24,10,1) (28,25,3) (23,5) yes 112 70 9 4 (8,24,2,1) (40,16,0) (26,2) no
62 120 7 3 (0,24,10,1) (28,26,2) (24,4) yes 113 264 9 4 (8,24,3,0) (44,12,0) (27,1) no
63 66 7 3 (0,26,7,2) (30,24,2) (25,3) yes 114 542 9 4 (8,24,3,0) (44,12,0) (27,1) no
64 14 7 4 (8,12,12,3) (32,18,6) (24,4) yes 115 156 9 4 (12,18,5,0) (46,9,1) (27,1) no
65 25 7 4 (8,12,14,1) (32,20,4) (24,4) yes 116 174 9 4 (12,20,3,0) (46,10,0) (27,1) no
66 120 7 4 (8,14,12,1) (34,19,3) (25,3) yes 117 542 9 4 (12,20,3,0) (46,10,0) (27,1) no
67 72 7 4 (8,16,10,1) (36,17,3) (25,3) yes 118 262 9 4 (12,20,3,0) (48,8,0) (28,0) no
68 172 7 4 (8,18,8,1) (38,16,2) (26,2) yes 119 802 9 4 (14,19,2,0) (50,6,0) (28,0) no
69 10 8 2 (0,0,34,1) (0,52,4) (20,8) yes 120 117 9 4 (16,16,3,0) (50,6,0) (28,0) yes
70 10 8 2 (0,0,35,0) (0,54,2) (21,7) yes 121 10 10 3 (0,32,2,1) (32,24,0) (24,4) no
71 10 8 3 (0,12,22,1) (16,36,4) (20,8) no 122 37 10 3 (0,32,3,0) (40,16,0) (27,1) yes
72 21 8 3 (0,12,22,1) (16,36,4) (22,6) no 123 36 10 4 (8,22,5,0) (44,12,0) (26,2) no
73 10 8 3 (0,18,17,0) (18,36,2) (21,7) no 124 7 10 4 (8,24,0,3) (32,24,0) (24,4) no
74 44 8 3 (0,18,17,0) (22,32,2) (23,5) yes 125 103 10 4 (8,24,3,0) (42,14,0) (26,2) no
75 66 8 3 (0,18,17,0) (22,33,1) (24,4) no 126 46 10 4 (8,24,3,0) (44,12,0) (27,1) no
76 26 8 3 (0,20,14,1) (24,30,2) (24,4) yes 127 170 10 4 (8,26,1,0) (46,10,0) (27,1) no
77 26 8 3 (0,24,10,1) (24,31,1) (23,5) yes 128 74 10 4 (12,20,3,0) (46,10,0) (27,1) yes
78 28 8 3 (0,24,10,1) (28,27,1) (23,5) no 129 340 10 4 (12,22,1,0) (48,8,0) (27,1) no
79 44 8 3 (0,24,11,0) (28,26,2) (23,5) no 130 254 10 4 (12,22,1,0) (50,6,0) (28,0) no
80 132 8 3 (0,24,11,0) (28,27,1) (24,4) no 131 433 10 4 (14,21,0,0) (52,4,0) (28,0) no
81 114 8 3 (0,24,11,0) (30,25,1) (25,3) yes 132 476 10 4 (16,18,1,0) (52,4,0) (28,0) no
82 72 8 3 (0,26,9,0) (30,26,0) (25,3) no 133 28 10 4 < 5 (12,22,0,1) (48,8,0) (28,0) no
83 72 8 3 (0,28,6,1) (32,23,1) (25,3) yes 134 9 11 3 < 4 (0,30,5,0) (40,15,1) (25,3) no
84 198 8 3 (0,28,7,0) (34,22,0) (26,2) yes 135 39 11 4 (8,26,1,0) (44,12,0) (26,2) no
85 56 8 3 < 4 (0,30,4,1) (34,21,1) (25,3) no 136 46 11 4 (12,20,3,0) (50,6,0) (27,1) no
86 28 8 4 (8,16,10,1) (32,22,2) (24,4) no 137 208 11 4 < 5 (16,18,1,0) (52,4,0) (28,0) no
87 10 8 4 (8,16,10,1) (32,24,0) (24,4) yes 138 298 11 4 < 5 (18,17,0,0) (54,2,0) (28,0) no
88 56 8 4 (8,16,10,1) (36,18,2) (26,2) no 139 24 11 4 < 5 (20,10,5,0) (50,5,1) (27,1) no
89 66 8 4 (8,16,11,0) (36,18,2) (25,3) yes 140 267 11 4 < 5 (20,14,1,0) (54,2,0) (28,0) no
90 72 8 4 (8,18,9,0) (34,22,0) (25,3) no 141 4 12 4 (28,0,7,0) (56,0,0) (28,0) no
91 63 8 4 (8,18,9,0) (36,20,0) (26,2) yes 142 22 12 4 < 5 (14,21,0,0) (56,0,0) (28,0) no
92 66 8 4 (8,18,9,0) (38,16,2) (25,3) no 143 46 12 4 < 5 (20,12,3,0) (50,6,0) (27,1) yes
93 176 8 4 (8,18,9,0) (38,17,1) (26,2) no 144 28 13 4 (28,4,3,0) (56,0,0) (28,0) no
94 76 8 4 (8,20,6,1) (36,19,1) (25,3) no 145 7 13 4 < 5 (16,18,1,0) (56,0,0) (28,0) no
95 194 8 4 (8,20,7,0) (38,18,0) (26,2) yes 146 51 13 4 < 5 (24,10,1,0) (56,0,0) (28,0) no
96 352 8 4 (8,20,7,0) (40,15,1) (26,2) no





Chapter 7

Compact set of invariants
characterizing graph states of up to
eight qubits

In this chapter we present the results obtained in Ref. [217]. Below we provide a brief
summary.

Summary:

The set of entanglement measures proposed by Hein, Eisert, and Briegel for n-qubit graph
states [Phys. Rev. A 69, 062311 (2004)] fails to distinguish between inequivalent classes
under local Clifford operations if n ≥ 7. On the other hand, the set of invariants proposed
by Van den Nest, Dehaene, and De Moor [Phys. Rev. A 72, 014307 (2005)] distinguishes
between inequivalent classes, but contains too many invariants (more than 2 × 1036 for
n = 7) to be practical. Here we solve the problem of deciding which entanglement class
a graph state of n ≤ 8 qubits belongs to by calculating some of the state’s intrinsic
properties. We show that four invariants related to those proposed by VDD are enough
for distinguishing between all inequivalent classes with n ≤ 8 qubits.

7.1 Introduction and main goal

Let us start, for the sake of convenience, with a quick overview of some of the results already
presented in Chap. 5. This results are explained in more detail in Sect. 5.2.2:

Graph states play a fundamental role in the study of entanglement. Two quantum states
have the same entanglement if they are equivalent under SLOCC. For n = 3, there are six classes
under SLOCC (see Ref. [200]). For n ≥ 4 the number of classes under SLOCC is infinite and is
specified by an exponentially increasing number of parameters. However, if we focus on graph
states of n < 27 qubits, then the discussion becomes simpler. On one hand, every two graph
states which are SLOCC equivalent are also equivalent under LU operations (Ref. [205]). On
the other hand, previous results suggest that, for graph states of n < 27 qubits, the notion of
LU equivalence and LC equivalence coincide. The “LU⇔LC conjecture” states that “every two
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LU-equivalent stabilizer states must also be LC equivalent.” Ji et al. proved that the LU⇔LC
conjecture is false in Ref. [206]. However, the LU⇔LC is true for several classes of n qubit graph
states (Refs. [207, 208]) and the simplest counterexamples to the conjecture are graph states
of n = 27 qubits in Ref. [206]. Indeed, Ji et al. “believe that 27 is the smallest possible size
of counterexamples of LU⇔LC.” In this part of our research we assume that deciding whether
or not two graph states of n < 27 qubits have the same entanglement is equivalent to deciding
whether or not they are LC equivalent.

The aim of this chapter is to solve the following problem: Given an n-qubit graph state
with n < 9 qubits, decide which entanglement class it belongs to just by examining some of the
state’s intrinsic properties (i.e., without generating the whole LC class). The solution to this
problem is of practical importance. If one needs to prepare a graph state |G〉 and knows that
it belongs to one specific class, then one can prepare |G〉 by preparing the LC-equivalent state
|G′〉 requiring the minimum number of entangling gates and the minimum preparation depth of
that class (see Refs. [9, 11, 13]) and then transform |G′〉 into |G〉 by means of simple one-qubit
unitary operations.1 The problem is that, so far, we do not know a simple set of invariants which
distinguishes between all classes of entanglement, even for graph states with n ≤ 7 qubits.

In that regard recall that, as we already know from Chap. 6, the classification of graph
states’ entanglement has been achieved, up to n = 7 qubits, by HEB in Refs. [9, 11]. We
have extended such classification to n = 8 qubits in Ref. [13]. The criteria for ordering the
classes in Refs. [9, 11, 13], for each number of qubits, are based on several quantities: first,
the minimum number of two-qubit gates required for the preparation of a member of the class;
and second, some entanglement measures, namely, the Schmidt measure for the n-partite split
(which measures the genuine n-party entanglement of the class, Ref. [214]), and the Schmidt
ranks for all bipartite splits (or rank indexes, Refs. [9, 11]). The problem is that this set of
entanglement measures fails to distinguish between inequivalent classes (i.e., between different
types of entanglement). There is already an example of this problem for n = 7 in Refs. [9, 11],
and the same occurs for n = 8 in Ref. [13] (see details in Sect. 6.4). Therefore, we cannot use
these invariants for deciding which entanglement class a given state belongs to. Reciprocally, if
we have such a set of invariants, then we can use it to unambiguously label each of the classes.

VDD proposed a finite set of invariants that characterizes all classes (Ref. [12]). However,
already for n = 7, this set has more than 2× 1036 invariants which are not explicitly calculated
anywhere, so this set is not useful for classifying a given graph state. Indeed, VDD “believe
that [their set of invariants] can be improved —if not for all stabilizer states then at least for
some interesting subclasses of states” (Ref. [12]). Moreover, they state that “it is likely that
only [some] invariants need to be considered in order to recognize LC equivalence” (Ref. [12]),
and that “it is not unlikely that there exist smaller complete lists of invariants which exhibit
less redundancies” (Ref. [12]). In this chapter we show that, if n ≤ 8, then four invariants are
enough to recognize the type of entanglement (Ref. [217]).

In Sect. 7.2, after outlining or referring to previous ideas allowing to follow the subsequent
discussions, we introduce a new basic concept of the stabilizer formalism, namely, the support
of a stabilizing operator (Sect. 7.2.1). This concept is necessary in order to review some of the

1This preparation procedure constitutes the issue of Chap. 8, where we take advantage of both the classification
of graph states in LC equivalence classes (Chap. 6) and the identification of such classes on the basis of a compact
set of LC invariants (main concern of the current chapter) to achieve optimality in the preparation.
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results about the invariants proposed by VDD that will be useful in our discussion (Sect. 7.2.2).
Then, in Sect. 7.3, we present the results of our research, and discuss their implications.

7.2 Basic concepts

In the following, we will take advantage of concepts and notation previously introduced in this
thesis. In particular, we will base our discussion on the stabilizer formalism, since graph states
are a special kind of stabilizer states:2 we refer the reader to Sect. 5.1 for a condensed overview,
and more specifically to the notions of Pauli group and generator of a group (Sect. 5.1.1), n-qubit
stabilizer and stabilizer states (Sect. 5.1.3).

Of the two possible definitions of graph state, we are interested in this chapter in the algebraic
characterization in the stabilizer formalism, which has been presented in Sect. 5.2.1, definition
(II). Nevertheless, for convenience we recall it here: the graph state |G〉 associated to the graph
G is the unique n-qubit state fulfilling

gi|G〉 = |G〉, for i = 1, . . . , n, (7.1)

where gi are the generating operators of the state’s stabilizer group, the latter defined as the
set {sj}2

n

j=1 of all products of the generating operators. The generating operator gi associated
to the vertex i is defined by

gi := X(i)
⊗

(i,j)∈E
Z(j), (7.2)

where the product is extended to those vertices j which are connected with i and X(i) (Z(i))
denotes the Pauli matrix σx (σz) acting on the ith qubit.

As we have seen, VDD found that the successive application of local complementation on
the graph G associated to a graph state |G〉 is enough to generate the complete equivalence class
of |G〉 under local unitary operations (orbit of |G〉) within the Clifford group (Ref. [10]). The
details and the description of the graphical action of local complementation can be consulted in
Sect. 5.2.2, item 6. For subsequent purposes we need to remember that, on the stabilizer, local
complementation on the qubit i induces the map

Y (i) 7→ Z(i), Z(i) 7→ −Y (i) (7.3)

on the qubit i, and the map

X(j) 7→ −Y (j), Y (j) 7→ X(j) (7.4)

on the qubits j connected with i (Ref. [11]).

Finally, using local complementation one can generate the orbits of all LC-inequivalent n-
qubit graph states. There are 45 orbits for n ≤ 7 (Refs. [9, 11]) and 101 orbits for n = 8
(Ref. [13]).

With these tools, we are ready to introduce the new concept of support of a stabilizing
operator.

2We also know from Chap. 5 that every stabilizer state is equivalent under LC operations to some (generally
non unique) graph state (Ref. [158]).
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7.2.1 Supports and classes of equivalence related to supports

Let |ψ〉 be a stabilizer state and S(|ψ〉) the corresponding stabilizer. Given a stabilizing

operator si = αiM
(i)
1

⊗
· · ·
⊗
M

(i)
n , its support supp(si) is the set of all j ∈ {1, . . . , n} such that

M
(i)
j differs from the identity 1. Therefore, the support3 of si is the set of the labels of the qubits

on which the action of the Pauli matrices is non trivial (i.e., there is a X, Y , or Z Pauli matrix
acting on the qubit). Notice that, according to Eqs. (7.3) and (7.4), the support of a stabilizing
operator is preserved under the maps induced on the stabilizer by local complementation.

Let ω ⊆ {1, . . . , n} be the support of a stabilizing operator si, supp(si) = ω. The weight of
the operator si is the cardinality of its support, |ω|. The identity operator 1

⊗
· · ·
⊗

1, which
is always present in a stabilizer due to the underlying group structure, fulfills ω = {∅} and,
therefore, is of weight zero.

The set of operators {si}2
n

i=1 of a stabilizer S(|ψ〉) of a stabilizer state |ψ〉 can be classified
into equivalence classes according to their supports, defining a partition in the stabilizer. We
will say that two stabilizing operators si and sj of S belong to the same equivalence class [ω] if
they have the same support ω, i.e., supp(si) = supp(sj) = ω. We denote by Aω(|ψ〉) the number
of elements (stabilizing operators) si ∈ S(|ψ〉) with supp(si) = ω. In other words, Aω(|ψ〉) is
the cardinality of the equivalence class [ω].

Since any graph state |G〉 is a special type of stabilizer state, these definitions can also be
applied to them.

7.2.2 Invariants of Van den Nest, Dehaene, and De Moor

The following theorem is a key result obtained by VDD in Ref. [12] that presents a finite set of
invariants which characterizes the LC equivalence class of any stabilizer state (i.e., functions that
remain invariant under the action of all LC transformations). We have chosen an adapted for-
mulation of the theorem to group multiplication involving Pauli operators [see Eq. (7.5)], slightly
different from VDD’s original notation, which is based on the well-known equivalent formulation
of the stabilizer formalism in terms of algebra over the field F2 = GF(2), where arithmetic is
performed modulo 2 and each stabilizing operator is identified with a 2n-dimensional binary
index operator.

Theorem 1. Let |ψ〉 be a stabilizer state on n qubits corresponding to a stabilizer S|ψ〉. Let
r ∈ N0 and consider subsets ωk, ωkl ⊆ {1, . . . , n} for every k, l ∈ {1, . . . , r}, with k < l. Denote
Ω := (ω1, ω2, . . . , ω12, ω13, . . .) and let T Ω

n,r(|ψ〉) be the set consisting of all tuples (s1, . . . , sr) ∈
S|ψ〉 × . . .× S|ψ〉 satisfying

supp(sk) = ωk, supp(sksl) = ωkl. (7.5)

Then, (i) |T Ω
n,r(|ψ〉)| is LC invariant and (ii) the LC equivalence class of |ψ〉 is completely deter-

mined by the values of all invariants |T Ω
n,n(|ψ〉)| (i.e., where r = n).

VDD provide another family of support-related invariants, based on a second theorem with
the same formulation than the one above, except for the substitution of conditions (7.5) by new

3Let us remind the reader that, for a given stabilizer S, the stabilized vector space VS is of dimension 2n−k

when the cardinality of the generator γS is |γS | = k. For simplicity we are assuming k = n in the definition, but
the concept of support we have just introduced can also be applied in case the stabilized space is not of dimension
one, that is, in case that S does not fix a unique state |ψ〉.
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constraints
supp(sk) ⊆ ωk, supp(sksl) ⊆ ωkl. (7.6)

These new LC invariants are the dimensions of certain vector spaces and, in principle, are more
manageable from a computational point of view because they involve the generator matrix of
the stabilizer and rank calculation. Nevertheless, we will focus our attention on the first family
of invariants, since they suffice to solve the problem we address in this chapter with no extra
computational effort. To resort to the second family would be justified in case we had to use
invariants with a high r value to achieve LC discrimination among graph states up to eight
qubits. We refer the reader to Ref. [12] for a proof of Theorem 1 and the extension to the second
family of LC invariants.

The invariants of Theorem 1 are the cardinalities of certain subsets T Ω
n,r(|ψ〉) of S|ψ〉 · · · S|ψ〉,

which are defined in terms of simple constraints (7.5) on the supports of the stabilizing operators.
VDD pointed out that, for r = 1, these invariants count the number of operators in the stabilizer
with a prescribed support. Therefore, fixing r = 1, for every possible support ωk ⊆ {1, . . . , n},
there is an invariant

|{s ∈ S|ψ〉|supp(s) = ωk}|. (7.7)

That is, the invariants for r = 1 are the Aωk
(|ψ〉), i.e., the cardinalities of the equivalence classes

[ωk] of the stabilizer. The number of possible supports in a stabilizer of an n-qubit state is equal
to 2n and, therefore, there are 2n VDD’s invariants for r = 1. Many of them could be equal to
zero. In fact, when dealing specifically with graph states, it can be easily seen that Aωk

(|ψ〉) = 0
when referred to supports fulfilling |ωk| = 1 because stabilizing operators of weight 1 are not
present in the stabilizer of a graph state due to the inherent connectivity of the graphs associated
to the states that rules out isolated vertices.

On the other hand, VDD consider the invariants Aωk
(|ψ〉) as “local versions” of the so-called

weight distribution of a stabilizer, a concept frequently used in classical and quantum coding
theory. For r ≥ 2, the new series of invariants involve r-tuples of stabilizing operators and their
corresponding supports and constitute a generalization of the weight distribution. Let us denote

Ad(|ψ〉) =
∑

ω,|ω|=d

Aω(|ψ〉), (7.8)

the number of stabilizing operators with weight equal to d. According to this notation, the
weight distribution of a stabilizer is the (n+ 1)-tuple

W|ψ〉 = {Ad(|ψ〉)}nd=0. (7.9)

In principle, W|ψ〉 could be a compact way to present the whole information about the
invariants Aω(|ψ〉), i.e., VDD’s invariants with r = 1. This question will be addressed later.

In order to clarify the content of VDD’s theorem, let us briefly discuss the way it works
when applied to a particular graph state. We have chosen the three-qubit linear cluster state,
|LC3〉, because of its simplicity, combined with a sufficient richness in the stabilizer structure.
Table 7.1 shows the stabilizer of |LC3〉 with its eight stabilizing operators, {s1, . . . , s8}. Three
of them (s1 = g1, s2 = g2, and s3 = g3) constitute a generator. |LC3〉 is a three-qubit graph
state, so there are 23 = 8 possible supports (8 being the number of subsets in the set {1, 2, 3}):

{∅}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}. (7.10)
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Table 7.1: Stabilizer and supports for the graph state |LC3〉.

Stabilizing operators Support Weight

XZ1 s1 = g1 {1, 2} 2
ZXZ s2 = g2 {1, 2, 3} 3
1ZX s3 = g3 {2, 3} 2
111 s4 = g1g1 {∅} 0
Y Y Z s5 = g1g2 {1, 2, 3} 3
X1X s6 = g1g3 {1, 3} 2
ZY Y s7 = g2g3 {1, 2, 3} 3
−Y XY s8 = g1g2g3 {1, 2, 3} 3

(i) VDD’s invariants for r = 1. In this case, Ω = (ω1). By Ω, we denote each of all the
possible ways to choose a single support ω1, so there are eight choices for Ω, which are those
listed in Eq. (7.10). Given a particular choice of Ω = (ω1), the set T Ω

n,1(|LC3〉) contains all
stabilizing operators s1 for the |LC3〉 fulfilling

supp(s1) = ω1, (7.11)

so, as a matter of fact, T Ω
n,1(|LC3〉) is the equivalence class [ω1] associated to the support ω1.

Only five out of the eight possible supports are in fact present in the stabilizer of the state
|LC3〉 (see the column “Support” in Table 7.1) and, therefore, we can distinguish between five
non empty equivalence classes [ω]. According to VDD’s theorem, the LC invariants for r = 1,
|T Ω
n,1(|LC3〉)|, are the cardinalities Aω(|LC3〉) of such equivalence classes [ω], namely,

A{∅}(|LC3〉) = 1, (7.12a)

A{1}(|LC3〉) = 0, (7.12b)

A{2}(|LC3〉) = 0, (7.12c)

A{3}(|LC3〉) = 0, (7.12d)

A{1,2}(|LC3〉) = 1, (7.12e)

A{1,3}(|LC3〉) = 1, (7.12f)

A{2,3}(|LC3〉) = 1, (7.12g)

A{1,2,3}(|LC3〉) = 4. (7.12h)

(ii) VDD’s invariants for r = 2. In this case, Ω = (ω1, ω2;ω12). By Ω we denote each of
all the possible different ways to choose two supports ω1, ω2, and then a third support ω12.
Let M = 2n be the number of possible supports and n being the number of qubits. On one
hand, there are

(
M
2

)
different combinations of two supports (ω1, ω2), plus M couples of the form

(ω1, ω2 = ω1). On the other hand, there are M possible choices for ω12. As a consequence, there

are M
[
M +

(
M
2

)]
ways to choose Ω. For n = 3, this number is 288. Given a particular choice
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of Ω = (ω1, ω2;ω12), the set T Ω
n,2(|LC3〉) contains all the two-tuples of the stabilizing operators

(s1, s2) of the state |LC3〉 fulfilling

supp(s1) = ω1, supp(s2) = ω2, supp(s1s2) = ω12. (7.13)

Many of these sets T Ω
n,2(|LC3〉) could be empty because the stabilizer fails to fulfill any of the

conditions (7.13). The cardinalities of the 288 sets, |T Ω
n,2(|LC3〉)|, are the VDD’s invariants that

we are interested in. For instance, if we choose Ω = (ω1, ω2;ω12) such that

ω1 = {1, 2}, ω2 = {1, 2, 3}, ω12 = {1, 2, 3}, (7.14)

then, according to the information in Table 7.1, there is only one operator with support ω1,
namely, s1, and four operators with support ω2: s2, s5, s7, and s8. We obtain T Ω

n,2(|LC3〉) =
{(s1, s2), (s1, s5), (s1, s7), (s1, s8)} because these four two-tuples verify conditions (7.13), and the
value of the corresponding VDD’s invariant is the cardinality of the set, |T Ω

n,2(|LC3〉)| = 4.

Another example. If we choose Ω such that ω1 = {1, 2}, ω2 = {2, 3}, and ω12 = {1, 2, 3},
then the VDD’s invariant is |T Ω

n,2(|LC3〉)| = 0, because the two-tuple (s1, s3) defined by the
supports ω1 and ω2 fulfills s1s3 = s6 and s6 does not match with support ω12.

7.3 Results and discussion

The number of VDD’s invariants for an n-qubit graph state grows very rapidly with r (and,
of course, with n). If n = 3, there are eight invariants for r = 1 and 288 invariants for r = 2. For
an eight-qubit graph state, there are 256 invariants for r = 1 and 8421376 for r = 2. Obviously,
the problem of calculating all the VDD’s invariants for graph states up to eight qubits becomes
completely unfeasible if there are no restrictions on r. The total number of VDD’s invariants for
a given n-qubit graph state, and all possible values of r, is M +

∑n
r=2C

′(M, r)C ′(M,P ), where
M = 2n, P =

(
r
2

)
, and C ′(M, r) denotes the combinations with repetition of M elements choose

r. For n = 7, this formula gives 2.18× 1036; for n = 8, it gives 1.88× 1053.

How many of them are needed to distinguish between all LC equivalence classes? VDD
stated in Ref. [12] that “the LC equivalence class of |ψ〉 is completely determined by the values
of all invariants |T Ω

n,n(|ψ〉)| (i.e., where r = n)”. However, this number [i.e., C ′(M, r)C ′(M,P )
with r = n] is still too large to be practical. For n = 7 is 2.18 × 1036 and for n = 8 is
1.88× 1053 (i.e., most of the invariants correspond to the case r = n). We are interested in the
minimum value of r that yields a series of invariants sufficient to distinguish between all the
146 LC equivalence classes of graph states up to n = 8 qubits. In Ref. [12], the authors point
out that there are examples of equivalence classes in stabilizer states which are characterized
by invariants of small r; for instance, those equivalent to GHZ states. In addition, they remark
that a characterization based on small r values could be feasible, at least for some interesting
subclasses or subsets of stabilizer states. We have calculated the VDD’s invariants for r = 1 for
the 146 LC equivalence classes of graph states with up to n = 8 qubits. This implies calculating
the cardinalities Aω(|ψ〉) of the corresponding equivalence classes [ω] of the 146 representatives
of the LC equivalence classes, 30060 invariants in total (since there are 1, 1, 2, 4, 11, 26, and 101
classes of two-, three-, four-, five-, six-, seven-, and eight-qubit graph states, respectively, and the
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number of VDD’s invariants with r = 1 is 2n for each class). Our results confirm the conjecture
that invariants with r = 1 are enough for distinguishing between the 146 LC equivalence classes
for graph states up to eight qubits. It is therefore unnecessary to resort to families of VDD’s
invariants |T Ω

n,r(|ψ〉)| with r ≥ 2.

Our goal is not to show the values of these 30060 invariants but to compress all this in-
formation and construct simple invariants from it. However, in order to do it properly, some
requirements should be fulfilled. (I) The compacted information must be unambiguous and
easily readable. (II) The compacted information must be LC invariant. (III) The compacted
information concerning different LC equivalence classes must still distinguish between any of
them.

Following the comments of VDD in Ref. [12] about considering the invariants Aω(|ψ〉) as
“local versions” of the weight distribution W|ψ〉 of a stabilizer, we have calculated W|ψ〉 for the
146 LC classes of equivalence, according to definition (7.9). It can easily be seen that, if Aω(|ψ〉)
is LC invariant, then W|ψ〉 is also LC invariant and permits a compact way to compress the
information of the invariants Aω(|ψ〉). Unfortunately, W|ψ〉 is not able to distinguish between any
two LC classes of equivalence. Table 7.2 shows that the weight distribution fails to distinguish
between LC classes starting from n = 6. Graph states with labels 13 and 15 in Refs. [9, 11] have
the same weight distribution and this degeneration increases as the number of qubits grows, as
we have checked out calculating W|ψ〉 for all graph states up to eight qubits.

Table 7.2: Weight distribution for graph states up to six qubits.

Graph state A0 A1 A2 A3 A4 A5 A6

1 1 0 3
2 1 0 3 4
3 1 0 6 0 9
4 1 0 2 8 5
5 1 0 10 0 5 16
6 1 0 4 6 11 10
7 1 0 2 8 13 8
8 1 0 0 10 15 6
9 1 0 15 0 15 0 33
10 1 0 7 8 7 24 17
11 1 0 6 0 33 0 24
12 1 0 4 8 13 24 14
13 1 0 3 8 15 24 13
14 1 0 2 8 17 24 12
15 1 0 3 8 15 24 13
16 1 0 3 0 39 0 21
17 1 0 1 8 19 24 11
18 1 0 0 8 21 24 10
19 1 0 0 0 45 0 18
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Therefore, we must look for a way to compress the information about the invariants Aω(|ψ〉),
which satisfies (I)–(III). The fact that the stabilizing operators of a stabilizer can be classified into
equivalence classes according to their supports (equivalence classes [ω]), and that the cardinalities
of such classes [ω] are the invariants Aω(|ψ〉), leads us to introduce two definitions. Two classes
[ω1] and [ω2] are equipotent if and only if both have the same cardinality, i.e., Aω1(|ψ〉) =
Aω2(|ψ〉), regardless of whether their stabilizing operators have different weights |ω1| 6= |ω2| or
not. It is clear that the number of equipotent equivalence classes [ω] for a given cardinality
Aω(|ψ〉) is LC invariant. We will call it the Aω multiplicity (or Aω potency) and denote it by
M(Aω). For instance, if we take a look at the list of invariants Aω(|LC3〉) [see Eqs. (7.12a)–
(7.12h)] we find that the value 0 appears three times (so there are three equivalence classes [ω]
with that cardinality), and then M(0) = 3. Using this criterion, M(1) = 4 and M(4) = 1 for
the |LC3〉.

If we tabulate the values of Aω(|ψ〉) together with the corresponding values of M(Aω), we
obtain a two-index compact information, which is LC invariant and, more importantly, LC
discriminant, as required. The results are shown in Tables 7.3–7.5.

In Table 7.5 we can see that four numbers are enough to distinguish between all classes
of graph states with n = 8 qubits: the multiplicities of the values 0, 1, 3, and 4. Indeed, in
Tables 7.3 and 7.4 we see that these four numbers are enough to distinguish between all classes
of graph states with n ≤ 8 qubits.

Summarizing, we have shown that, to decide which entanglement class a graph state of n ≤ 8
qubits belongs to, it is enough to calculate four quantities. These four LC invariants characterize
any LC class of n ≤ 8 qubits.

This result solves a problem raised in the classification of graph states of n ≤ 8 qubits4

developed in Refs. [9, 11, 13]. A compact set of invariants that characterize all inequivalent
classes of graph states with a higher number of qubits can be obtained by applying the same
strategy. This can be done numerically up to n = 12 qubits,5 a number of qubits beyond the
present experimental capability in the preparation of graph states (Ref. [195]).

We have also shown that the conjecture (Ref. [218]) that the list of LC invariants given in
Eq. (7.6) is sufficient to characterize the LC equivalence classes of all stabilizer states, which is
not true in general (Ref. [9]), is indeed true for graph states of n ≤ 8 qubits. Moreover, we have
shown that, for graph states of n ≤ 8 qubits, the list of LC invariants given in Eq. (7.7), which
is more restrictive than the list given in Eq. (7.6), is enough. This solves a problem suggested in
Ref. [12], regarding the possibility of characterizing special subclasses of stabilizer states using
subfamilies of invariants.

4See Sect. 6.4.
5As a matter of fact, this is one of the problems we address in Chap. 8, where the calculation of cardinality-

multiplicity (C-M) invariants Aω(|G〉) — M(Aω) is extended to graph states |G〉 of up to 12 qubits, and whose
effectiveness as discriminants among any LC classes of graph states is discussed as well.
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Table 7.3: Invariants for the n-qubit graph states with 3 ≤ n ≤ 6. Notation: valuemultiplicity.
The numeration of the classes is the one in Refs. [9, 11].

No. Invariants

1 02, 11, 31

2 03, 14, 41

3 08, 17, 91

4 08, 13, 24, 51

5 015, 116, 161

6 018, 18, 23, 42, 101

7 017, 17, 26, 51, 81

8 015, 111, 35, 61

9 032, 131, 331

10 038, 115, 28, 82, 171

11 041, 116, 46, 241

12 038, 114, 27, 41, 52, 81, 141

13 042, 16, 28, 46, 51, 131

14 037, 112, 28, 34, 62, 121

15 042, 112, 46, 53, 131

16 044, 14, 212, 53, 211

17 034, 118, 26, 31, 54, 111

18 033, 121, 33, 46, 101

19 047, 11, 315, 181
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Table 7.4: Invariants for the seven-qubit graph states. Notation: valuemultiplicity. The numera-
tion of the classes is the one in Refs. [9, 11].

No. Invariants

20 063, 164, 641

21 078, 132, 215, 162, 341

22 084, 132, 48, 83, 401

23 077, 131, 215, 83, 171, 261

24 087, 125, 48, 56, 161, 251

25 092, 112, 28, 47, 54, 84, 201

26 087, 116, 214, 47, 81, 102, 281

27 080, 125, 211, 33, 43, 53, 81, 141, 231

28 085, 115, 216, 43, 67, 91, 181

29 087, 112, 215, 49, 53, 131, 221

30 080, 121, 212, 36, 41, 54, 83, 171

31 086, 128, 43, 54, 86, 201

32 089, 112, 216, 44, 54, 82, 321

33 072, 140, 23, 34, 44, 94, 181

34 085, 114, 217, 47, 51, 62, 131, 221

35 079, 125, 212, 42, 56, 83, 171

36 086, 114, 217, 44, 52, 62, 82, 261

37 080, 121, 212, 38, 41, 52, 62, 121, 211

38 074, 132, 28, 33, 45, 75, 161

39 077, 122, 216, 35, 42, 75, 161

40 070, 136, 27, 37, 67, 151

41 078, 122, 214, 35, 43, 54, 111, 201

42 074, 126, 215, 35, 67, 151

43 084, 18, 221, 37, 67, 151

44 078, 124, 23, 315, 46, 101, 191

45 083, 122, 310, 410, 62, 241
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Table 7.5: Invariants for the eight-qubit graph states. Notation: valuemultiplicity. The numeration
of the classes is the one in Ref. [13].

No. Invariants No. Invariants

46 0128, 1127, 1291 97 0163, 144, 217, 314, 45, 54, 72, 106, 221

47 0158, 163, 232, 322, 651 98 0157, 155, 217, 39, 44, 53, 63, 71, 94, 122, 241

48 0173, 164, 415, 163, 841 99 0165, 140, 218, 317, 44, 52, 62, 71, 94, 122, 241

49 0158, 162, 231, 161, 172, 321, 501 100 0152, 159, 216, 38, 412, 98, 211

50 0176, 163, 816, 651 101 0168, 158, 418, 83, 96, 122, 241

51 0176, 156, 47, 58, 87, 321, 441 102 0177, 126, 226, 34, 411, 52, 62, 86, 201, 321

52 0192, 124, 216, 48, 57, 84, 164, 371 103 0174, 120, 240, 39, 64, 72, 82, 124, 271

53 0180, 130, 230, 48, 82, 102, 162, 171, 491 104 0200, 121, 424, 56, 134, 571

54 0163, 154, 222, 38, 84, 92, 181, 241, 421 105 0159, 158, 215, 34, 412, 92, 104, 161, 341

55 0185, 132, 216, 413, 87, 202, 441 106 0193, 119, 215, 312, 612, 91, 123, 541

56 0181, 130, 223, 46, 67, 83, 92, 122, 181, 301 107 0196, 19, 224, 412, 54, 88, 132, 411

57 0191, 132, 29, 416, 106, 161, 661 108 0180, 126, 226, 34, 44, 610, 92, 123, 361

58 0176, 149, 414, 514, 202, 411 109 0164, 140, 228, 32, 48, 54, 61, 72, 106, 221

59 0183, 128, 225, 46, 52, 63, 82, 102, 132, 141, 161, 341 110 0174, 132, 222, 313, 44, 71, 82, 106, 111, 311

60 0179, 132, 225, 49, 63, 83, 101, 142, 201, 381 111 0166, 140, 222, 39, 49, 51, 61, 74, 101, 131, 161, 311

61 0186, 124, 220, 410, 58, 82, 104, 161, 401 112 0168, 131, 232, 39, 48, 51, 72, 134, 311

62 0169, 146, 215, 37, 45, 57, 81, 92, 121, 151, 181, 331 113 0161, 146, 221, 310, 44, 56, 61, 83, 112, 141, 261

63 0175, 127, 231, 34, 46, 62, 87, 91, 142, 261 114 0158, 151, 220, 312, 42, 53, 61, 72, 82, 114, 261

64 0200, 18, 214, 418, 56, 86, 131, 142, 291 115 0164, 140, 228, 32, 47, 56, 87, 141, 261

65 0188, 113, 228, 416, 64, 92, 124, 331 116 0161, 138, 237, 37, 42, 61, 73, 106, 281

66 0181, 120, 226, 38, 48, 63, 74, 81, 103, 161, 281 117 0161, 143, 223, 314, 44, 53, 61, 72, 102, 132, 281

67 0179, 124, 226, 34, 48, 52, 68, 92, 121, 181, 301 118 0155, 155, 212, 316, 49, 98, 211

68 0170, 135, 220, 312, 47, 52, 74, 81, 102, 132, 251 119 0152, 159, 216, 310, 49, 61, 86, 112, 231

69 0180, 154, 48, 57, 164, 172, 371 120 0160, 142, 229, 33, 412, 61, 86, 112, 231

70 0176, 162, 814, 161, 172, 321 121 0192, 125, 424, 56, 88, 411

71 0188, 122, 232, 57, 84, 172, 691 122 0176, 124, 224, 36, 416, 61, 72, 106, 221

72 0148, 184, 28, 37, 84, 174, 351 123 0190, 128, 212, 31, 516, 86, 112, 511

73 0185, 132, 215, 412, 810, 161, 501 124 0200, 15, 232, 56, 88, 134, 411

74 0178, 130, 226, 49, 66, 83, 92, 241, 361 125 0169, 135, 228, 34, 44, 56, 64, 81, 92, 122, 331

75 0166, 154, 214, 46, 57, 84, 91, 142, 171, 291 126 0170, 144, 214, 36, 512, 86, 101, 112, 261

76 0188, 126, 214, 414, 52, 86, 92, 131, 142, 291 127 0161, 148, 219, 36, 49, 54, 76, 101, 161, 281

77 0186, 128, 218, 412, 54, 104, 142, 161, 401 128 0161, 142, 233, 33, 46, 61, 73, 106, 281

78 0191, 124, 222, 41, 58, 87, 142, 601 129 0160, 150, 218, 38, 49, 63, 72, 94, 121, 301

79 0178, 132, 225, 47, 66, 84, 123, 421 130 0156, 152, 219, 39, 410, 61, 86, 112, 231

80 0166, 149, 215, 36, 48, 56, 81, 91, 111, 141, 201, 351 131 0152, 159, 216, 312, 46, 62, 74, 104, 251

81 0156, 170, 23, 34, 415, 92, 101, 134, 281 132 0156, 152, 216, 313, 410, 75, 102, 131, 251

82 0179, 127, 227, 34, 46, 64, 82, 91, 125, 301 133 0148, 169, 212, 32, 416, 98, 211

83 0179, 124, 226, 34, 410, 52, 64, 82, 92, 121, 181, 301 134 0188, 134, 320, 63, 910, 541

84 0165, 149, 214, 36, 410, 76, 81, 102, 132, 251 135 0166, 144, 220, 33, 412, 810, 351

85 0160, 156, 216, 34, 410, 54, 81, 144, 321 136 0191, 130, 23, 33, 412, 715, 101, 481

86 0190, 110, 230, 416, 53, 92, 102, 162, 371 137 0154, 151, 226, 38, 46, 62, 74, 104, 251

87 0200, 19, 216, 424, 52, 134, 571 138 0154, 151, 224, 314, 41, 65, 96, 271

88 0176, 128, 216, 314, 412, 71, 84, 114, 231 139 0183, 112, 231, 310, 510, 66, 123, 301

89 0174, 130, 232, 44, 52, 66, 85, 142, 321 140 0160, 136, 234, 39, 48, 64, 92, 122, 271

90 0175, 124, 233, 34, 410, 62, 74, 81, 162, 341 141 0212, 11, 314, 628, 451

91 0168, 128, 244, 31, 42, 64, 72, 82, 124, 271 142 0184, 143, 628, 451

92 0175, 127, 231, 34, 48, 62, 81, 91, 106, 341 143 0179, 114, 235, 315, 73, 88, 101, 321

93 0170, 133, 226, 39, 44, 52, 66, 71, 91, 122, 151, 271 144 0172, 19, 256, 36, 64, 88, 291

94 0182, 120, 226, 38, 410, 52, 83, 101, 132, 161, 341 145 0188, 137, 32, 628, 451

95 0164, 141, 228, 36, 44, 54, 62, 72, 112, 142, 291 146 0164, 121, 256, 32, 64, 88, 291

96 0167, 140, 223, 37, 45, 55, 71, 84, 112, 141, 291



Chapter 8

Optimal preparation of graph states

In this chapter we present the results obtained in Ref. [209]. Below we provide a brief
summary.

Summary:

We show how to prepare any graph state of up to 12 qubits with: (a) the minimum
number of controlled-Z gates, and (b) the minimum preparation depth. We assume only
one-qubit and controlled-Z gates. The method exploits the fact that any graph state
belongs to an equivalence class under local Clifford operations. We extend up to 12 qubits
the classification of graph states according to their entanglement properties, and identify
each class using only a reduced set of invariants. For any state, we provide a circuit with
both properties (a) and (b), if it does exist, or, if it does not, one circuit with property
(a) and one with property (b), including the explicit one-qubit gates needed.

8.1 Introduction

Building a quantum computer entails isolating atomic-scale systems, except when a con-
trolled interaction (e.g., a logic gate) is applied. Isolation must be kept up until a subsequent
controlled interaction is applied. Any undesirable coupling with the outside disrupts the quan-
tum state of the systems and ruins the computation. Due to the enormous difficulties which
keeping atomic-scale systems isolated and controlled entails, a main limiting factor preventing
the development of quantum computing is the amount of time during which the systems must
be kept isolated and controlled to achieve the computation. Therefore, the task of reducing this
amount of time is an essential factor in the process of achieving the goal of building a quantum
computer.

Another limiting factor for quantum computation is the number of entangling gates needed.
While one-qubit gates can be built with fidelities higher than 99%, two-qubit entangling gates
hardly reach 93%, and this becomes worse for three-qubit gates, etc. Therefore, since one- and
two-qubit gates are enough for universal quantum computation, it is reasonable to focus on
circuits with only one- and two-qubit gates, and having the least possible number of two-qubit
gates.
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Here we address the problem of preparing an important class of quantum states, namely,
graph states, with circuits requiring (a) the minimum number of two-qubit entangling gates,
and (b) the minimum preparation depth (i.e., requiring a minimum number of time steps). We
assume that we can implement arbitrary one-qubit gates and one specific two-qubit entangling
gate, the controlled-Z gate. The result can be easily extended to any other specific two-qubit
gate.

8.1.1 Graph states: the graph as a blueprint for preparation

The subject of study in this chapter, as in the foregoing two ones, is the graph state. The
reader interested in references about the most relevant applications of graph states in the field
of quantum information, together with an outline of the experimental efforts devoted to the
creation and testing of graph states of an increasing number of qubits, may find them in Sect.5.2.
Likewise, Sect. 5.2.2 deals with the role of graph states in the theory of entanglement. Our
contributions with respect to this topic are described in Chaps. 6–7, more specifically in Sect. 6.4
and Sect. 7.3.

Although two definitions of graph state have already been presented in detail in Sect. 5.2.1,
it is convenient for our purposes recalling here definition (I), according to which the graph G
provides a blueprint for preparing the graph state |G〉. Succinctly, an n-qubit graph state |G〉 is a
pure state associated with a graph G = (V,E) consisting of a set of n vertices V = {0, . . . , n−1}
and a set of edges E connecting pairs of vertices, E ⊂ V×V (Refs. [9, 11]). Each vertex represents
a qubit, whereas an edge (i, j) ∈ E represents an Ising-type interaction between qubits i and
j. To prepare |G〉, one first prepares each qubit in the state |+〉 = 1√

2
(|0〉 + |1〉), i.e., the

initial state will be |ψ0〉 =
⊗

i∈V |+〉i. Then, for each edge (i, j) ∈ E connecting two qubits
i and j, one applies a controlled-Z gate between these qubits, i.e., the unitary transformation
CZ = |00〉〈00|+ |01〉〈01|+ |10〉〈10| − |11〉〈11|.

8.1.2 Preparation using only controlled-Z gates

Let us suppose that we have the state |ψ0〉 =
⊗n−1

i=0 |+〉i, and we want to prepare the
eight-qubit graph state |G〉 whose graph G is in Fig. 8.1, using only controlled-Z gates. One
possible way is to follow the preparation procedure suggested by G, taking into account the
possible restrictions in performing two or more controlled-Z gates simultaneously, and optimally
distributing the controlled-Z gates to minimize the number of steps. The preparation depth of
|G〉 is the minimum number of time steps required to prepare |G〉 (Ref. [216]).

The state |ψ0〉 corresponds to a graph with n isolated vertices. The total number of edges
in G gives a trivial upper bound to the preparation depth of |G〉, since each controlled-Z gate
can be applied in a time step. To find the minimum number of time steps, we have to explore
the possibility of applying two or more controlled-Z gates in a single time step.

Given a vertex i in G, the neighborhood of i, N (i), is the set of vertices connected to i. Now
let us suppose that there is more than one element in N (i), i.e., |N (i)| > 1, and let j, k ∈ N (i)
be two of the neighbors. Then, to prepare the corresponding graph state |G〉 we must apply
a controlled-Z gate to entangle qubits i and j, and another one to entangle qubits i and k.
Applying a controlled-Z gate between qubits i and j in a certain time step implies that both
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Figure 8.1: Graph corresponding to the 8-qubit graph state we want to prepare. Edges in the
same color represent controlled-Z gates that can be performed in the same time step.

qubits are busy during this entangling interaction. If we focus on qubit i, we have to wait for
a further time step to have qubit i free before applying another controlled-Z gate to entangle i
and k. Nevertheless, vertex k could be connected to another vertex l 6= {i, j} in G. If such is
the case, we could in principle take advantage of the same time step we are using to entangle
qubits i and j in order to do the same with qubits k and l, because both controlled-Z gates can
be performed in parallel.

Remarkably, the problem of determining the minimum number of time steps with the re-
strictions that we have mentioned is related to an old problem in graph theory: given an edge
(i, j) in G, let us use a certain color to mark (i, j) and those other edges of G corresponding
to controlled-Z gates that can be performed at the same time step than that of (i, j), and use
different colors for those edges related to controlled-Z gates that do not fulfill this condition.
Since two controlled-Z gates can be performed at the same time step if and only if the four
qubits involved do not coincide, then every edge incident to the same vertex must have a differ-
ent color. In graph theory this color configuration is called a proper edge coloring or, to put it
more concisely, the graph is said to be edge-colored. Hence, the preparation depth problem is
equivalent to determining the minimum number of colors required to get a proper edge coloring
of G. This problem is known as the determination of the chromatic index or edge chromatic
number χ′(G).

Let us denote by ∆(G) the maximum degree of G (i.e., the maximum number of edges
incident to the same vertex). Vizing’s theorem (Ref. [219]) states that G can be edge-colored
in either ∆(G) or ∆(G) + 1 colors, and not fewer than that. Therefore, χ′(G) is either ∆(G)
or ∆(G) + 1. A proof can be found in Ref. [220]. The important point is that χ′(G) gives the
preparation depth of |G〉 (Refs. [216, 221]).

Graphs requiring ∆(G) colors are called class-1 graphs, and those requiring ∆(G) + 1 colors
are called class-2 graphs. For instance, the four-qubit fully connected graph state is represented
by a graph of four vertices, six edges, and maximum degree equal to 3: it is a class-1 graph,
so that its preparation depth coincides with its maximum degree: 3. On the other hand, the
three-qubit fully connected graph state is represented by a graph of three vertices with three
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edges and maximum degree equal to 2: it is the smallest class-2 graph and, as a consequence,
its preparation depth is also 3.

The graph in Fig. 8.1 is a class-1 graph: it can be edge-colored with ∆(G) = 7 colors (this
number corresponds to the degree of vertex 3). Hence, if we use only controlled-Z gates, the
minimum preparation depth of the corresponding graph state is 7. For instance, one of the
optimal distributions of the 13 controlled-Z gates is given in the circuit of Fig. 8.2, which has
seven time steps.

1 2 3 4 5 6 7

Qubit 1

Qubit 0

Qubit 2

Qubit 3

Qubit 4

Qubit 5

Qubit 6

Qubit 7

Figure 8.2: A circuit with minimum preparation depth for the graph state corresponding to
Fig. 8.1, using only controlled-Z gates. In the circuit, a qubit (vertex of the graph) is represented
by a horizontal wire, and a controlled-Z gate (edge in the graph) by a vertical segment with
diamond-shaped ends connecting the qubits involved in the operation. Time steps are separated
by vertical dashed lines.

However, if we are allowed to use one-qubit gates, in most cases it is possible to get the
desired graph state with a lower number of two-qubit gates and less preparation depth. For
that purpose, one has to take into account the degree of entanglement of the state we want to
prepare.

8.1.3 Optimum preparation

Let us recall that two graph states have the same degree of entanglement1 if and only if
they are equivalent under local unitary LU operations (Ref. [205]), so that they belong to the

1This paragraph is a condensed summary of results that we have previously presented in a more extensively
way in Sect. 5.2.2.
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same LU equivalence class. Moreover, previous results suggest that, for graph states of up to 26
qubits (Ref. [206]), the notions of LU equivalence and LC equivalence coincide and, therefore,
entanglement classes are in fact LC equivalence classes (or LC classes, for short). This implies
a remarkable simplification, since it is possible to carry out a graphical description of the action
of LC transformations on graph states (Ref. [10]): the successive application of a simple graph
transformation rule, the so called local complementation, on a certain graph G and on those that
are obtained from G, allows us to generate the whole LC class of |G〉. The entire set of graphs
connected to a given G by a sequence of local complementations is usually referred to as the
orbit of G (in correspondence with the LC orbit or LC class of |G〉).

Any of the graph states belonging to a given LC class could be used as a representative
for that orbit, but there is a practical advantage in taking one requiring: (a) the minimum
number of controlled-Z gates, or (b) the minimum preparation depth of the class. If we can
identify which LC class a given |G〉 belongs to, then we can prepare |G〉 by preparing instead
the LC-equivalent state |G′〉 requiring (a) and (b), and then transform |G′〉 into |G〉 by means of
single-qubit Clifford operations corresponding to a sequence of local complementations carried
out on G′. This last transformation from |G′〉 to |G〉 requires only one additional time step,
since the local complementation at vertex a is equivalent (Refs. [9, 11]) to the unitary operation

U τa (G) = exp
(
−iπ

4
σ(a)
x

) ∏
b∈N (a)

exp
(
i
π

4
σ(b)
z

)
, (8.1)

where σ
(a)
x is the Pauli matrix σx acting on qubit a, σ

(b)
z is the Pauli matrix σz acting on

qubit b, and N (a) is the neighborhood of a. Operations on different qubits commute, and
therefore one can group together a sequence of unitary operations U τa (G) corresponding to
local complementations into n one-qubit gates Ri (with i = 0, . . . , n − 1), which can be jointly
performed in a single step.

The preparation procedure of a graph state |G〉 through the optimum LC representative |G′〉
provides an advantage in time steps when compared to the standard graph-based controlled-Z
procedure2 when

χ′(G)− χ′(G′) > 1, (8.2)

since the preparation depth for the standard procedure is χ′(G), while the preparation depth
through the optimum LC representative is χ′(G′) + 1, that is, the sum of the preparation depth
of the optimum LC representative plus a unit of time corresponding to the one-qubit gates.
This means that the preparation depth through the optimum LC representative provides an
advantage for most graph states. For instance, as we will see, for the graph state of Fig. 8.1, the
optimum preparation circuit requires only seven controlled-Z gates and three time steps: saving
six controlled-Z gates and requiring four time steps fewer than in the standard procedure.

However, the preparation through the optimum LC representative requires us to identify
which LC class |G〉 belongs to. To be practical, this must require us to identify the simplest
signature of the class.

In Sect. 8.2, we classify all LC classes for graph states up to n = 12 qubits. This classification
is based on a reduced set of invariants which allows us to identify which class a given state belongs

2I.e., the one that uses G as a blueprint for the preparation of |G〉, described above.
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to. In Sect. 8.3, we provide a representative of the class with both properties (a) and (b), if it
exists, or, if it does not, one with property (a) and one with property (b). All these results,
which occupy several hundreds of megabytes, are organized in two tables, one for n < 12 and
one for n = 12, and presented as supplementary material in Ref. [14]. Finally, in Sect. 8.4,
we explain how to obtain the one-qubit gates needed, and provide as supplementary material
a computer program in Ref. [15] to, given the graph G corresponding to the state we want to
prepare, generate a sequence of local complementations which connect G to the corresponding
optimum graph(s). In Sect. 8.5, the whole method is illustrated with an example.

8.2 Classification of graph states in terms of entanglement

The classification of the entanglement of graph states has been achieved up to n = 7 in
Refs. [9, 11], and we have extended it to n = 8 in Ref. [13] (see Chap. 6). There are 45 LC
classes3 for graph states up to seven qubits, and 101 LC classes for eight-qubit graph states,
which are ordered according to certain criteria based on several entanglement measures, which
are invariant under LC transformations.

Here we extend the classification up to n = 12. The number of orbits for n ≤ 8 qubits is 146.
For n = 9, there are 440 orbits; for n = 10, there are 3 132 orbits; for n = 11, there are 40 457;
and, for n = 12, there are 1 274 068. All the information about each LC class is presented as
supplementary material in Ref. [14].

For each LC class we give the number of nonisomorphic graphs in the associated LC∗ class
(size of the orbit), |LC|. Then, the orbits are classified according to the number of vertices
(qubits), |V |; the minimum number of edges of a graph belonging to the class (controlled-Z
gates needed for the preparation), |E|; the Schmidt measure, ES (upper and lower bounds are
given where the exact value is unknown); and for n/2 ≥ i ≥ 2, the rank indexes RIi for bipartite
splits with i vertices in the smallest partition. The classifying labels |V |, |E|, ES , and RIi are
applied in this order. Additionally, we include the information regarding the existence (or not)
of a two-colorable graph belonging to the class (a piece of data which is useful, in some cases,
to calculate lower and upper bounds for the Schmidt measure).

However, these numbers, which were (almost) enough to identify every class if n ≤ 8, are
not enough to identify every class if n > 8. In other words, the set of entanglement measures for
n-qubit graph states used in Refs. [9, 11, 13] failed to distinguish between inequivalent classes
under LC operations if n > 8: different LC classes had coincident values for those entanglement
measures. In fact, the number of problematic LC classes increases with n. Therefore, using
these invariants for deciding which entanglement class a given state belongs to is unreliable. A
finite set of invariants that characterizes all classes has been proposed in Ref. [12]. However,
already for n = 7, this set has more than 2× 1036 invariants which are not explicitly calculated
anywhere, and hence this set is not useful for classifying a given graph state.

3In this and subsequent sections, as we have done in previous chapters, we use again the abbreviation LC∗

for local complementation on graphs, the graphical counterpart of local Clifford (LC) operations on graph states.
Nevertheless, sometimes it is arguable, and the reader may overlook this notation (perhaps unnecessary) when
dealing in the same paragraph or argument with LC orbits of graph states and LC∗ orbits of the associated graphs,
given that there is a direct correspondence, and the meaning is clear from the context.
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Nevertheless, a compact set of invariants related to those proposed in Ref. [12] is enough to
distinguish among all inequivalent LC classes with n ≤ 8 qubits: the 4 two-index invariants called
cardinalities-multiplicities (C-M hereafter) in Ref. [217]. There is a straightforward procedure
for calculating these four invariants using the information contained in the graphs (see Chap. 7).

We have analyzed the utility and limitations of the C-M invariants as LC-class discriminants
for graph states up to 12 qubits, a question that was left as an open problem in Ref. [217]
(see Chap. 7, p. 141), where it was conjectured that four of these C-M invariants would be
enough to label and discriminate all the LC classes. Our results show that for graph states
of n ≥ 9 qubits the C-M invariants fail to distinguish between inequivalent LC classes: the
smallest counterexample of the conjecture corresponds to a pair of nine-qubit orbits that have
exactly the same entire list of C-M invariants. These are the only problematic orbits for n = 9
qubits. As an alternative for discriminating between them, we have calculated the whole list of
VDD invariants of type r = 1 (Ref. [12]) for these two orbits, and once again these invariants
coincide. In order to determine the number of C-M and VDD “problematic” (undistinguishable)
orbits, we have extended our calculations up to n = 12 qubits. The ratio pf (n) of the number
of graphs belonging to problematic orbits and the overall number of graphs for each n, gives the
probability that a randomly chosen graph state falls in one of the problematic orbits. The values
of pf (n) are, fortunately, quite low (see Table 8.1). Therefore, the first step of the procedure of
preparation, i.e., the identification of the orbit, resorts to C-M invariants (and, sometimes, type
r = 1 VDD invariants), and works in most cases. For those rare states whose orbit identification
through C-M or VDD (r = 1) invariants is not univocal, one would resort to VDD invariants of
higher order r (Ref. [12]). However, the computational effort of this task makes this procedure
less efficient than simply generating the whole LC∗ orbit of the graph.

Table 8.1: Orbits for which C-M and VDD invariants are not good LC discriminants.

n No. of orbits No. of problematic orbits pf (n)

≤ 8 146 0 0
9 440 2 0.0012218
10 3 132 8 0.0006996
11 40 457 78 0.0011929
12 1 274 068 472 0.0000949

In the supplementary material (see Ref. [14]), those LC classes which have the same set of
quantities {|V |, |E|, ES , RIi} are ordered according to the C-M invariants, going from the small-
est cardinality (zero) to the biggest one, and increasing the value of the associated multiplicity of
each cardinality. For those orbits with the same set of quantities {|V |, |E|, ES , RIi,C-M invariants},
orbits are ordered by the increasing size of the orbit, |LC|. We do not apply any subsequent
classifying criteria, in case there were undistinguishable LC classes left.

C-M invariants are given as an ordered list of multiplicities Mi, for i = 0, . . . , x. The
value Mi is the multiplicity of the cardinality i. We do not list all 2n possible multiplicities,
but only the multiplicities of cardinalities 0, . . . , x, where x is the smallest number such that
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all“non-problematic” orbits are distinguished. This may not be the smallest possible set of
C-M invariants. For instance, only the cardinalities {0, 1, 3, 4} are needed for n ≤ 8, but, for
simplicity’s sake, we have included the continuous list {0, 1, 2, 3, 4}.

8.3 Optimum representative

We have determined the optimum representatives for all the orbits up to 12 qubits, initially
defined as one of those with the minimum number of edges in the orbit and, among them, one
of those with the minimum chromatic index. In the supplementary material (Ref. [14]), we have
included a column labeled min(|E|, χ′,#) for each LC∗ class, where |E| is the minimum number
of edges in the class, χ′ is the minimum chromatic index of the graphs with |E| edges, and #
is the number of nonisomorphic graphs with |E| edges and chromatic index χ′. The value of
χ′ coincides with the preparation depth of those representative states and indicates how much
more efficient the preparation procedure we are proposing is than the standard one [it is χ′(G′)
in Eq. (8.2)].

While carrying out the LC∗ classification, an interesting observation arose: the optimum
representative of a certain orbit was determined by the application of two filters to the orbit
in a certain order. First, we looked for the graph with the minimum number of edges (which
implies a minimum number of two-qubit entangling operations), |E|, and second the minimum
chromatic index χ′ fixed that |E| (which means a minimum preparation depth given those graphs
with |E| edges). However, if we commute the order of the filters, for n ≤ 7 qubits, the result of
the permutation of the filters gives the same graph, but this is not the case for n > 7. We get
the simplest example of non coincidence between the final optimum representatives for n = 8,
where there is only one orbit (LC∗ class number 136) in which the permutation of the filters
does not produce the same final graph. There are two graphs in this orbit with |E| = 11 and
χ′ = 4, and one graph with χ′ = 3 and |E| = 12 (see Fig. 8.3). For each n ≤ 12, we calculated
the number of orbits with different final representatives when we applied the filters in different
order: the ratio of the number of “exceptional” orbits and the entire number of orbits increases
with n, for n ≥ 9 (Table 8.2).

Table 8.2: Orbits for which a different order of the filters relating the minimum number of edges
and minimum chromatic index produces a non-coincident representative graph.

n # of orbits # of exceptional orbits

≤ 7 45 0
8 101 1
9 440 3
10 3 132 65
11 40 457 2 587
12 1 274 068 136 518

Moreover, we have included in our tables (see supplementary material Ref. [14]), beside the
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column labeled min(|E|, χ′,#), another column labeled min(χ′, |E|,#), with a 3-tuple of values
(χ′, |E|,#), where χ′ is now the minimum chromatic index in the class, |E| is the minimum
number of edges of the graphs with chromatic index χ′, and # is the number of nonisomorphic
graphs with chromatic index χ′ and |E| edges. Checking the coincidence of χ′ and |E| in both
columns directly tells us if a certain orbit is exceptional or not. In case of coincidence, we have
left the second column blank. From an experimental point of view, the appropriate order for the
filters is something that the experimentalists should elucidate, since it is related to the physical
substrate used to implement the qubits, and the resources at their disposal. If minimizing the
number of two-qubit entangling operations is a critical factor, because the fidelity in performing
such quantum gates is lower than desirable, then the appropriate order is (|E|, χ′): once the
number of gates is minimized, then it is the turn of reducing the preparation depth.
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Figure 8.3: Two optimum representatives for LC∗ class number 136 (up). The graph on the
left is obtained by applying over the entire orbit the filter min(|E|, χ′), i.e., first minimizing
over |E| and then over χ′, whereas the one on the right is obtained by applying the filter
min(χ′, |E|). Any graph state belonging to LC class number 136 could be prepared by means
of the circuits depicted under those representatives. The circuit on the left prioritizes a lower
number of entangling gates; the one on the right prioritizes a lower preparation depth. Ri and
R′i are one-qubit gates. They are specific for the state of the class 136 we want to prepare.

To complete our results in Ref. [14] we provide, in the two final columns for each LC∗ class,
an optimum graph resulting from the filters applied in the order min(|E|, χ′,#), and another
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one applying the filters as min(χ′, |E|,#) (if it is not coincident with the former; in case of
coincidence, the second final column is left blank). The edges of the graph are listed, with
vertices indexed as 0, . . . , n−1. Moreover, edges are divided in classes (enclosed by parentheses)
that define a proper edge-coloring (with χ′ colors). This information is equivalent to providing
an optimum circuit [with a number of time steps equal to χ′(G′)] for preparing the optimum
representative graph G′ of the class. The graphs and circuits in Fig. 8.3 have been designed
according to the information in the supplementary material in Ref. [14] for LC∗ class number
136.

8.4 One-qubit gates

Assuming that an experimentalist has prepared the optimum representative graph state |G′〉
corresponding to the desired state |G〉, he or she needs to know at least one sequence of local
complementations connecting G′ with G. The length of this LC∗ sequence is not relevant, due
to the possibility of implementation of the corresponding local operations as one-qubit gates in
only one time step, as was already discussed above. However, finding a way in the orbit from
|G′〉 to |G〉 is a hard task. To make the entire orbit-based preparation procedure practical,
we have designed a computer program that accomplishes this task. Very briefly, it uses the
information about the graph G related to the state |G〉 that one wishes to obtain. The input
is the information about the edges. The program finds the optimal graph(s) G′ with respect
to both the number of edges and chromatic index (these two quantities are also part of the
output), and provides a sequence of LC∗ mapping G′ onto G (corresponding to LC operations
transforming |G′〉 into |G〉). This computer program is included as supplementary material in
Ref. [15].

8.5 Example

In order to clarify the whole process, we go back to the graph in Fig. 8.1. As we mentioned,
G is a class-1 graph. Therefore, the preparation depth of |G〉 using only controlled-Z gates is
7. The orbit-based procedure allows us to reduce significatively the preparation depth and the
number of controlled-Z gates. It consists of the following steps:

(I) To identify the orbit or LC equivalence class the graph state |G〉 belongs to, we calculate
the C-M invariants (Ref. [217]). The result is: {0170, 135, 312, 47}. Therefore, after consulting
Ref. [14], we conclude that the graph state |G〉 belongs to the LC class number 68.

(II) Also in Ref. [14] we find the optimum representative graph G′: it is the eight-vertex linear
cluster LC8 (see Fig. 8.4). Graph LC8 is a class-1 graph, whose maximum degree is ∆(G′) = 2.
Hence its preparation depth is 2, which means a remarkable saving in the preparation depth
compared to that of |G〉.

(III) Therefore, it is worth preparing |G〉 by preparing |G′〉 and then applying suitable one-
qubit gates. The program in Ref. [15] outputs a sequence of local complementations which
connects G′ to G. For instance, the sequence of LC∗ operations applied on vertices 6, 7, 4,
5, and 2 in graph G′ enables us to obtain G. Denoting the corresponding series of LC oper-
ations by τ(G′), we have |G〉 = τ(G′)|G′〉. Applying Eq. (8.1) and re-arranging terms so that
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Figure 8.4: Graph state LC8, optimum representative of orbit 68.

τ(G′) =
∏
i∈V Ri, where Ri is a specific gate on qubit i, we obtain that
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In addition, the number of controlled-Z gates necessary to get |G〉 is remarkably reduced
(six two-qubit gates fewer than in the standard preparation method). The optimum circuit for
preparing |G〉, with a preparation depth equal to 3, is the one in Fig. 8.5.

8.6 Further developments: Hypergraph states as generaliza-
tions of graph states

Hitherto, we have considered graph states as a special family of stabilizer states (see Chap. 5).
In this ending section, we will devote a few lines to discuss another natural way in which graph
states can be embedded into a more general set of quantum states: quantum hypergraph states.

Graph states can be created in an n-qubit system using only particular two-qubit interactions,
implemented for instance as controlled-Z gates. Nevertheless, a strictly larger set of n-qubit
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Figure 8.5: Optimum circuit for preparing the graph state corresponding to Fig. 8.1.

entangled quantum states can be generated considering up to n-qubit interactions of a certain
kind among the qubits. This line of thought leads to the introduction of the so-called hypergraph
states (Refs. [222, 223]), which also admit an intuitive graphical representation that serves as a
possible blueprint for their preparation, and an algebraic characterization based on the fact that
they are stabilized by operators which constitute appropriate generalizations of the stabilizing
operators of graph states.

Following Ref. [222], to account for k-qubit interactions (1 ≤ k ≤ n), let us consider a

general controlled-Z gate, denoted by CZ
(k)
i1i2...ik

, acting on the k qubits labeled by i1i2 . . . ik. By

definition we take CZ
(1)
i1
≡ Zi1 . Algebraically, CZ

(k)
i1i2...ik

introduces a minus sign to the input
state |11 . . . 1〉i1i2...ik , i.e.,

CZ
(k)
i1i2...ik

|11 . . . 1〉i1i2...ik = −|11 . . . 1〉i1i2...ik , (8.4)

and leaves all the other components of the computational basis unchanged. Hence the action
of the controlled-Z gate is invariant under permutations of the n qubits in the computational

basis, which means that any of the k qubits on which CZ
(k)
i1i2...ik

acts can be considered as the

target qubit.4 Trivially, the usual 2-qubit controlled-Z gate is just an instance of the general

controlled-Z gate, that is, CZ = CZ
(2)
i1i2

.

To define the concept of hypergraph state we need a previous definition: a hypergraph G≤n =
{V,E} is a set of n vertices V with a set of hyperedges E of any order k, 1 ≤ k ≤ n. In other

4For consistency in the definitions, it is also assumed in Ref. [222] that CZ(0) ≡ −1.
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Figure 8.6: Correspondence between a 8-vertex hypergraph (left) and the circuit of preparation of
the corresponding 8-qubit hypergraph state (right). The hypergraph |G≤8〉 has one 1-hyperedge
{5}, two 2-hyperedges {1, 3} and {3, 4}, one 3-hyperedge {6, 7, 8}, one 4-hyperedge {1, 2, 3, 4},
and one 8-hyperedge {1, 2, 3, 4, 5, 6, 7, 8}. Note that in the circuit of preparation there is a
local Z gate acting on qubit {5}, whereas the rest of the operations are standard and general
controlled-Z gates affecting different sets of qubits. The symbols are self-explained.

words, E is a set of non-empty subsets of V , so a hyperedge can connect any number of vertices
(a hyperedge connecting k vertices is called a k-hyperedge).

With the action of the general controlled-Z gate in Eq. (8.4) and the definition of hypergraph
at hand, we arrive at the two definitions of hypergraph state:

(I) Given a hypergraphG≤n as a blueprint, the recipe for the preparation of the corresponding
quantum hypergraph state |G≤n〉 is the following: Assign to each vertex a qubit, and first prepare
each qubit in the state |+〉 = 1√

2
(|0〉 + |1〉), i.e., the initial n-qubit state will be |ψ0〉 = |+〉⊗n.

Then, for each hyperedge, perform a general controlled-Z operation between all connected qubits.
Formally, if the qubits i1, i2, . . . , ik are connected by a k-hyperedge, then perform the operation
CZ

(k)
i1i2...ik

. Eventually, and according to this, the corresponding hypergraph state can be written
as

|G≤n〉 =

n∏
k=1

∏
{i1,i2,...,ik}∈E

CZ
(k)
i1i2...ik

|+〉⊗n, (8.5)

where {i1, i2, . . . , ik} ∈ E denotes k vertices which are connected by a k-hyperedge. Notice that
the product of k = 1, 2, . . . , n accounts for different types (sizes or cardinalities) of hyperedges
in the hypergraph.

We illustrate the correspondence between hypergraphs and hypergraph states with an ex-
ample in Fig. 8.6.

(II) The algebraic characterization on the basis of a generalized stabilizer formalism is the
following: The hypergraph state |G≤n〉 associated to a given hypergraph G≤n is the unique
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n-qubit state which fulfills

Ki|G≤n〉 = |G≤n〉, ∀i = 1, 2, . . . , n. (8.6)

For any vertex i, Ki is the correlation operator given by

Ki = Xi ⊗
n∏
k=1

CZ
(k−1)
N (i) = Xi ⊗

n∏
k=1

∏
(i1,i2,...,ik−1)∈N (i)

CZ
(k−1)
i1i2...ik−1

, (8.7)

where the product over k takes into account all kinds of hyperedges that may appear in G≤n.
For any value of k, the neighborhood N (i) of the vertex i is defined as

N (i) = {(i1, i2, . . . , ik−1)|{i, i1, i2, . . . , ik−1} ∈ E}. (8.8)

Different kinds of neighborhoods can obviously appear in this scenario (ranging from single
vertices to k − 1-tuples), depending on the order k of the hyperedges that connect the vertex i
to other vertices.

A k-uniform hypergraph is a hypergraph such that all its hyperedges have size k (in other
words, it is a collection of sets of size k). Therefore, graphs constitute the family of 2-uniform
hypergraphs. Accordingly, the set of graph states is the subset of 2-uniform hypergraph states.
This fact poses the question whether the classification of graph states in equivalence classes
under LC operations that we have dealt with in Chaps. 5–8 admits an extension for the broader
family of hypergraph states. We can give a positive answer: the exploration of the entanglement
properties and nonclassical features of hypergraph states has been carried out very recently in
Ref. [223]. The authors identify the equivalence classes under LU transformations for hypergraph
states of up to four qubits (providing also simple representatives for each class), as well as
important classes of five- and six-qubit states, and determine various entanglement properties
of these classes. They also present general conditions under which the local unitary equivalence
of hypergraph states can simply be decided by considering a finite set of transformations with a
clear graph-theoretical interpretation (Pauli operations). Moreover, they consider the question
whether hypergraph states and their correlations can be used to reveal contradictions with
classical hidden variable theories (thereby extending a previous work in Ref. [165]), and show
that the generalized stabilizer formalism of hypergraph states can be used to derive various NC
and Bell inequalities.

A natural extension of our contribution in this chapter, namely, the analysis of the prepa-
ration depth of a given hypergraph state |H〉 and its possible optimal preparation procedure,
would rely upon the unambiguous identification of the LU equivalence class |H〉 belongs to, the
knowledge of the simplest representative hypergraph state |H0〉 of that class, and a sequence
of LU operations (possibly local Pauli operations) connecting both of them. For that purpose,
we would resort to elements of graph theory: the chromatic index χ′(H) of a hypergraph H is
the least number of colors needed to color the hyperedges so that no intersecting hyperedges
(hyperedges with some common vertices) have the same color. This number is a measure of the
preparation depth of |H〉 since it takes into account the fact that, during the action of a general
controlled-Z gate on a set of qubits, all of them are busy (unavailable) for another multi-qubit
interaction. This is a possible issue for future research.



Chapter 9

Proposed experiment for the
quantum “Guess My Number”
protocol

In this chapter we present the results obtained in Ref. [224]. Below we provide a brief
summary.

Summary:

An experimental realization of the entanglement-assisted “Guess My Number” protocol
for the reduction of communication complexity, introduced by Steane and van Dam, would
require producing and detecting three-qubit GHZ states with an efficiency η > 0.70, which
would require single photon detectors of efficiency σ > 0.89. We propose a modification of
the protocol which can be translated into a real experiment using present-day technology.
In the proposed experiment, the quantum reduction of the multiparty communication
complexity would require an efficiency η > 0.05, achievable with detectors of σ > 0.47, for
four parties, and η > 0.17 (σ > 0.55) for three parties.

9.1 Introduction

In foregoing chapters, we have focused our attention on graph states, an important family
of multipartite quantum states (which includes among its members GHZ and cluster states)
useful for applications in quantum information science, some of which have been outlined in
Sect. 5.2. Such a list of applications was not intended to be exhaustive, but significant in relation
to the possible uses of graph states. Among them, we mentioned communication complexity
(Ref. [174]), for which graph states constitute interesting and advantageous resources due to their
genuine multipartite entanglement. The goal of this chapter is to present, in a straightforward
manner, an experimental protocol of reduction of communication complexity based on the use
of quantum resources, known as the “Guess My Number” (GMN) protocol. The key point is
that the participants in the GMN protocol share an entangled quantum state, and this quantum
state is precisely a graph state, the 3-qubit or 4-qubit GHZ state, respectively, whose associated
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graphs are the complete graphs K3 or K4, belonging to the LC classes of graph states Nos. 2 and
3 in Refs. [9, 11]. This protocol will serve as an example to additionally motivate the usefulness
and importance of graph states in quantum information theory.

First of all, we will quickly review some basic concepts relating communication complexity.
Then, we will describe the original GMN protocol in Sect. 9.2. In subsequent sections we present
our contributions: first, our modified version of the GMN protocol in Sect. 9.3, and finally our
results and conclusions in Sect. 9.4.

9.1.1 Reduction of communication complexity in a nutshell

Communication complexity is an abstract model for the paradigm of distributed computation
(Ref. [41]). Its main purpose is to study the amount of information, in terms of bits or qubits
(quantum communication complexity), that two spatially separated computing devices need to
exchange in order to perform some computational task. Andrew Yao in 1979 was the first to
introduce and study the topic of classical communication complexity in Ref. [225]. Yao himself,
in 1993, considered how the situation might change if separated devices (or parties, Alice and
Bob) were allowed to exchange qubits rather than classical bits (Ref. [226]). In principle, there
are apparently convincing reasons to believe that quantum information should not provide any
advantage when compared with classical communication: Holevo’s theorem (Ref. [227]), a result
about the classical information capacity of quantum channels, states that, for any classical
message, the cost of transmitting it from one party (Alice) to another party (Bob) in terms of
qubits is the same as the cost of transmitting it in terms of classical bits. In other words, if
the computational task requires transmitting k bits on average, then it also requires k qubits on
average.1

Notwithstanding, such belief turns out to be incorrect: quantum mechanics can be used
to obtain remarkable advantages for such information/computation tasks. In fact, one of the
most impressive applications of quantum resources for information processing is precisely the
reduction of the communication complexity required for certain computations (Refs. [174, 229,
230, 231, 232]).

Following Ref. [41], in order to understand why quantum information can provide an ad-
vantage in communication and, nonetheless, not to contradict Holevo’s theorem, let us consider
first a communication scenario, the most basic one. Such scenario is illustrated in Fig. 9.1,
which is taken also from Ref. [41]: there are two parties, Alice and Bob. Alice receives an input
consisting of an n-bit string x ∈ {0, 1}n, and her task is to transmit it to Bob. She is only
allowed to send him a message, and with that information at disposal Bob must output x. In
this so simple scenario it is true that messages based on quantum resources are not more efficient
than classical ones, according to Holevo’s theorem. As a consequence, Alice will have to send
n qubits in order to achieve the task (classically, she would have to send the entire n-bit string
x): quantum information does not provide an advantage.

Nevertheless, the situation with respect to a possible advantage in the use of quantum re-

1To put it another way, and following G. Brassard (Ref. [228]), no more than n bits of expected classical
information can be communicated between unentangled parties by the transmission of n qubits. Yao’s original
model implicitly assumed that Alice and Bob were not allowed to share prior entanglement in the initialization
phase.
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Alice Bob

n

Figure 9.1: The basic communication scenario (the one underlying Holevo’s theorem). Alice
receives as input an n-bit string x, and then sends a message to Bob, who must output x.
Sending a quantum message in not more efficient than sending a classical one, according to
Holevo (Ref. [227]). Figure taken from Ref. [41].

sources instead of classical ones is different when one considers a more elaborated communication
scenario for Alice and Bob, with a different computational task: imagine that Bob’s goal is not
to output Alice’s n-bit string x (unknown for him), but to determine some information that is
a function f(x, y) of x which may depend on other data y (for instance, another n-bit string) at
Bob’s disposal but unknown for Alice. It is assumed that the form of the function f is known
both to Alice and to Bob prior to the execution of the information protocol. Obviously, there is
a trivial solution for this problem: Alice sends Bob her input x, and Bob subsequently computes
f(x, y). Remarkably, in this more involved scenario, quantum information enables Alice and
Bob to attain the task with less qubit communication than would be required if the protocol
were restricted to convey only classical bit communication. An scenario of the class we have just
described, following Ref. [41], is usually referred to as a communication complexity scenario, and
is illustrated in Fig. 9.2, which is also taken from Ref. [41].

The issue in classical communication complexity is to evaluate how much classical commu-
nication is required to compute the value of the function f(x, y). To accomplish the task, the
parties may not only exchange bits, but also use shared or local randomness. In quantum com-
munication complexity the parties may instead use quantum resources. There are basically two
approaches: the quantum communication model (Ref. [226]), in which parties can communicate
qubits, and the entanglement model (Ref. [174]), where the parties share entangled states and
are allowed to communicate classical bits.2 Interestingly, the entanglement model is connected

2Both models are essentially equivalent if one allows the parties in the quantum communication model to
share entangled states as well, since in that case one qubit in the quantum communication model can be replaced
by two bits and one maximally entangled 2-qubit state (an EPR pair, v.g., |Φ+〉 = 1√

2
(|0〉|0〉 + |1〉|1〉)) in the

entanglement model, and conversely one bit can be simulated by one qubit (Ref. [41]).
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Alice Bob

Figure 9.2: The basic communication complexity scenario. Both Alice and Bob receive n-bit
strings, x and y respectively (x unknown to Bob, y unknown to Alice), and their goal is to
compute certain function f(x, y), that will be Bob’s output. For some tasks with this struc-
ture, communication based on quantum messages is much more efficient than communication
restricted to classical messages. The number of qubits can be exponentially smaller than the
number of bits. Figure taken from Ref. [41].

with fundamental problems: in Ref. [125] it is proven that for every Bell’s inequality, including
those which are not yet known, there always exists a communication complexity problem, for
which a protocol assisted by states which violate the inequality (therefore, entangled) is more
efficient than any classical protocol. Violation of Bell’s inequalities is the necessary and sufficient
condition for quantum protocols to beat the classical ones.

In this chapter we are interested precisely in the second approach: Let us suppose that two
or more separated parties need to compute a function of a number of inputs distributed among
them. Using the best classical strategy, this would require a certain minimum amount of classical
communication to be transmitted between the parties. However, if the parties initially shared
some entangled states, then the amount of classical communication required for the computation
would be a great deal smaller than if no entanglement were present. The quantum advantage
usually grows with the number of parties involved (Ref. [229]). Entanglement-assisted reduc-
tion of classical communication complexity has numerous potential applications in computer
networks, VLSI circuits, and data structures (Ref. [233]).

Graph states, like other entangled quantum states, constitute a valuable resource that may
be shared by the participants in those scenarios corresponding to the entanglement model of
communication complexity. They can provide surprising increases in communication efficiency
in some protocols and tasks, outperforming the best classical yield. Our purpose in the next
sections is to present in detail one of those scenarios, involving a communication protocol based
on the GMN game, with the peculiarity that the contestants share specifically a graph state
(in particular, a GHZ state of 3 or 4 qubits). We analyze the difficulties of an experimen-
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tal realization of the entanglement-assisted GMN protocol for the reduction of communication
complexity, and then propose certain changes that make the modified version of the GMN pro-
tocol experimentally feasible. We discuss the best classical strategy (exchanging bits and using
shared randomness), the alternative quantum strategy (exchanging bits on the basis of a clever
use of the shared graph state), and then make a comparison between their yields to determine
the quantum versus classical advantage, through the analysis of the probability of success in the
game. Finally, we discuss the photon detection efficiency requirements needed to perform the
experiment in the laboratory, and make a concrete proposal for such an experiment.

9.2 The original Guess My Number protocol. Experimental
requirements

A particularly attractive, thought-provoking, and stimulating way to show the quantum
advantage was proposed by Steane and van Dam as a method for always winning the television
contest “Guess My Number” in Ref. [232]. A team of three contestants (Alice, Bob, and Charlie),
each of them isolated in a booth, is given an integer number n = nA +nB +nC of apples (where
nj = 0, 1/2, 1, or 3/2). One of the contestants must guess whether the number is odd or even
just by receiving one bit from the other two contestants. The best classical strategy would allow
the contestants to win in 75% of the cases. However, they can win in 100% of the cases if they
initially share three-qubit GHZ states (Refs. [162, 234]). The same game can be played with four
contestants and the quantum versus classical advantage is the same: 100% vs 75%. Steane and
van Dam stressed that “A laboratory demonstration of entanglement-enhanced communication
would be (. . . ) a landmark in quantum physics and quantum information science” (Ref. [232]).
So far, however, the requirements for an experimental implementation of the quantum GMN
protocol have impeded further progress. Some progress has been reported on simpler schemes
of quantum reduction of classical communication complexity. For instance, Xue et al. presented
an experiment on quantum reduction of two-party communication complexity based on two-
qubit entanglement (Ref. [235]). Galvão proposed a protocol requiring only one qubit and a
detection efficiency σ > 0.33 (Ref. [236]). More recently, Brukner, Żukowski, and Zeilinger
have introduced a quantum reduction of two-party communication complexity based on the
entanglement between two qutrits (Ref. [237]).

The main obstacle for an experimental realization of the quantum GMN protocol is the high
detection efficiency required. The required setup would consist of a source of GHZ states, single
qubit operations, and single qubit detectors. If we define the overall efficiency η as the number of
three-qubit (or four-qubit) joint detections corresponding to GHZ states, divided by the number
of three-qubit (or four-qubit) systems emitted by the source, then, assuming that when no joint
detection occurs the probability of winning the game is only 1/2, the experimental probability
of winning the GMN game using GHZ states is

Pexp(η) = η + (1− η)
1

2
. (9.1)

Therefore, the quantum advantage could be detected if an overall efficiency η > 0.50 could be
achieved. In the three-qubit case, the experiment would require threefold coincidences between
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detectors so that each individual detector should have an efficiency σ = 0.79 (since σ = η1/c, c
being the number of qubits). Moreover, in order to obtain an experimental quantum probability
of winning the GMN game 10% higher than the best classical probability, we would need η >
0.70, which would require detectors of efficiency σ > 0.89.

Quantum optics provides the best way to produce qubits in a GHZ state and distribute
them to various spacetime regions. However, the first experiments producing three-photon
polarization-entangled GHZ states (Refs. [238, 239]) did not satisfy the demands of the GMN
protocol, because only a tiny fraction of the ensemble of photon triplets was detected (Ref. [232]).
Further experiments producing four-photon GHZ states (Ref. [240]) yield a fourfold coincidence
with a success probability 4 times higher than that of previous three-photon experiments. More-
over, recent experiments (Ref. [241]) report a fourfold coincidence rate 2 orders of magnitude
brighter than in Ref. [240]. We shall show that in the very near future this technology could
allow an experimental demonstration of a quantum reduction of a genuine three or four-party
communication complexity.

9.3 The modified Guess My Number protocol

In this section, we introduce a modified version of the quantum GMN protocol which is
experimentally feasible with current technology. We shall describe a quantum reduction of three-
party (four-party) communication complexity in which the quantum advantage is clear, provided
we can produce three (four) qubits in a GHZ state and detect them all separately with an overall
efficiency η > 0.17, which would require detectors of efficiency σ > 0.55 (η > 0.05 and σ > 0.47,
for four qubits). The main goal of this proposal is to note that the absence of perfect sources
and detectors does not prevent us from performing an experimental demonstration of a quantum
reduction of a genuine multiparty communication complexity and to stimulate experimental work
along these lines.

The modified GMN game preserves all the essential features of the original game, but includes
rules that relax the detection requirements to experimentally show the quantum advantage. The
modified GMN game features one referee (and a fourth contestant in the c = 4 version). We
shall discuss in detail the four-party version of the modified protocol; similar rules apply to the
three-party version. During the game, each of four contestants (Alice, Bob, Charlie, and David)
is isolated in a booth. Before the game starts, they can take anything they want with them into
the booths, but once they are in, they will not be able to communicate with each other or with
anybody else, save for the referee. Once they are in the booths, the referee distributes among
them a randomly chosen integer number n of apples in four portions, n = nA + nB + nC + nD,
such that nj = 0, 1/2, 1, or 3/2. Then, the referee asks each and everyone whether or not they
are ready to play the game; if all contestants say yes, then the referee asks Bob, Charlie, and
David to give him a bit. Then, the referee adds (modulo 2) the three bits, and hands the result
over to Alice. The team wins if Alice ascertains whether the total number of distributed apples
is even or odd. If any contestant refuses to play the game, then the referee distributes a new
number n′ = n′A + n′B + n′C + n′D of apples and asks the four contestants again whether or not
they are ready to play the game, etc. If the referee distributes N rounds of apples, then the
contestants are forced to play the game for at least r rounds (hereafter referred as “the played
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Table 9.1: The 19 integer combinations of 0, 1/2, 1, and 3/2, and their corresponding 128 vari-
ations. In 64 of them ni + nj + nk + nl is an odd number while in the other 64 it is an even
number.

{ni, nj , nk, nl} ni + nj + nk + nl number of variations

{0, 0, 0, 0} 0 1
{0, 0, 0, 1} 1 4
{0, 0, 1/2, 1/2} 1 6
{0, 0, 1/2, 3/2} 2 12
{0, 0, 1, 1} 2 6
{0, 1/2, 1/2, 1} 2 12
{1/2, 1/2, 1/2, 1/2} 2 1
{0, 0, 3/2, 3/2} 3 6
{0, 1/2, 1, 3/2} 3 24
{0, 1, 1, 1} 3 4

{1/2, 1/2, 1/2, 3/2} 3 4
{1/2, 1/2, 1, 1} 3 6
{0, 1, 3/2, 3/2} 4 12
{1/2, 1/2, 3/2, 3/2} 4 6
{1/2, 1, 1, 3/2} 4 12
{1, 1, 1, 1} 4 1

{1/2, 3/2, 3/2, 3/2} 5 4
{1, 1, 3/2, 3/2} 5 6

{3/2, 3/2, 3/2, 3/2} 6 1

rounds”). The contestants know p = r/N before the game starts. In addition, the referee must
ensure that each of the 128 possible variations of apples (see Table 9.1) occurs with the same
frequency in the played rounds.

9.3.1 Maximum classical probability of winning

In the modified GMN game, if the referee forces the contestants to play in r = pN of the
N rounds, the contestants can refuse to play between the first and the N − r round, but then
they are forced to play in the remaining r rounds. If they decide to play without being forced
to do so then, every time they play, they will postpone in one round the moment they have to
play compulsorily. The maximum classical probability of winning is obtained by combining two
strategies. The first one applies in the rounds in which they play without being forced to do so,
and can be designed in a way such that the contestants know when they must play and success
is guaranteed when they do play (this happens, at best, once in every 32 rounds, on average, if
c = 4, and once in every 8 rounds, on average, if c = 3). The second strategy applies when they
are forced to play. It could be any of the best classical strategies of the original GMN game,
giving a probability of success of 3/4 (for instance, each contestant would give the referee a bit
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value 0 if she/he had received nj = 0 or 1/2, or a bit value 1 if she/he had received nj = 1 or
3/2). From all this follows that, for the modified GMN game, the best classical strategies (of
which there are several) give the following maximum probability of winning for c = 3 or c = 4
contestants being forced to play in at least p of the rounds,

PC(c, p) = lim
N→∞

(1− µ)N−pN

4pN

pN∑
j=0

(j + 3pN)µj

×
(
N − pN + j − 1

j

)

+
N∑

j=pN+1

(1− µ)N−jµj
(
N
j

) , (9.2)

where

µ =
8

22c
. (9.3)

For c = 3 and c = 4, this probability is represented as a function of p in Fig. 9.3. In addition,
Fig. 9.3 contains numerical simulations of the probability that the team with c = 3 and c = 4
wins when using the best classical strategy for games of N = 100 rounds.

Note that, in both cases, if the referee forces the team to play all the rounds, the probability
of winning by using the best classical strategy is 3/4 while, if the referee forces them to play in
at least one of every 100 rounds, then the probability of success using the best classical strategy
is approximately 1.

9.3.2 Best entanglement-assisted strategy

Let us now see what the probabilities of winning are when using the best entanglement-
assisted strategy. The contestants will always win if they use the following method:

(1) Each contestant carries a qubit belonging to a four-qubit system initially prepared in the
GHZ state

|GHZ〉 =
1√
2

(|0̄0̄0̄0̄〉+ |1̄1̄1̄1̄〉), (9.4)

where |0̄0̄0̄0̄〉 = |0̄〉 ⊗ |0̄〉 ⊗ |0̄〉 ⊗ |0̄〉, where |0̄〉 = (1/
√

2)(|0〉+ |1〉) and |1̄〉 = (1/
√

2)(|0〉 − |1〉).
(2) Each contestant j applies to her/his qubit the rotation

R(nj) = |0̄〉〈0̄|+ einjπ|1̄〉〈1̄|, (9.5)

where nj is her/his number of apples.
(3) Then, each contestant measures her/his qubit in the computational basis {|0〉, |1〉}.
(4) If, due to the inefficiency of the detectors, a contestant does not obtain a result, then

she/he will tell the referee that she/he will not play the game, and the referee will therefore
abort that round. Note that, in the aborted rounds, Alice does not receive any bits from the
referee. If all contestants consent to play that round, then Bob, Charlie, and David will give
their outcomes to the referee, who will add them up, and give the result to Alice.
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Figure 9.3: Exact and numerical simulations of the probability of the contestants winning the
modified GMN game using the best classical strategy, as a function of the minimum percentage
of rounds the referee forces them to play, for the three-contestant game (black squares) and four-
contestant game (white squares). In the numerical simulations the referee distributes N = 100
rounds. The exact probabilities are given by Eq. (9.2). Interestingly, for c = 3 contestants
forced to play in at least p = 0.17 of the rounds, the best classical probability of winning is only
PC = 0.92. For c = 4 contestants forced to play in at least p = 0.05 of the rounds, the best
classical probability of winning is only PC = 0.90.

In this case Alice can give the correct answer with probability 1 because state (9.4) has the
following property: for any nA + nB + nC + nD integer (where nj = 0, 1/2, 1, or 3/2),

R(nA)⊗R(nB)⊗R(nC)⊗R(nD)|GHZ〉

=

{
|GHZ〉 if nA + nB + nC + nD is even,

|GHZ⊥〉 if nA + nB + nC + nD is odd,
(9.6)

where |GHZ〉 and |GHZ⊥〉 can be reliably distinguished by local measurements in the computa-
tional basis:

|GHZ〉 =
1

2
√

2
(|0000〉+ |0011〉+ |0101〉+ |0110〉

+|1001〉+ |1010〉+ |1100〉+ |1111〉), (9.7)

|GHZ⊥〉 =
1

2
√

2
(|0001〉+ |0010〉+ |0100〉+ |0111〉

+|1000〉+ |1011〉+ |1101〉+ |1110〉). (9.8)
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Table 9.2: Examples of single photon detection efficiency requirements for the modified GMN
protocol. c is the number of parties, PQ−PC is the difference between the quantum and classical
probabilities of winning, η is the number of joint detections divided by the number of systems
emitted by the source, and σ is the corresponding single photon detection efficiency.

c PQ − PC η σ

3 0.250 1 1
4 0.250 1 1
3 > 0.214 > 0.50 > 0.79
4 > 0.218 > 0.20 > 0.67
3 > 0.107 > 0.20 > 0.58
4 > 0.177 > 0.10 > 0.56
3 > 0.077 > 0.17 > 0.55
4 > 0.097 > 0.05 > 0.47

9.4 Results and discussion

Assuming that, when all four contestants obtain a result, this corresponds to a GHZ state
(i.e., assuming that any error in the preparation is negligible), then having an experimental
efficiency η allows the team to play the modified GMN game with p = η. Now let us go back
to the probabilities illustrated in Fig. 9.3. In the first place we shall compare the experimental
requirements for the original GMN game with three qubits to those of the modified protocol.
The most important point is that, while in the original GMN protocol the difference between
the quantum and classical probabilities of winning could be detected only if the experimental
setup has an overall efficiency η > 0.50 (that is, a single qubit detection efficiency σ = 0.79),
in the modified protocol the difference between the quantum and classical probabilities can
be detected for almost any efficiency. Moreover, as seen above, to obtain an experimental
quantum probability of winning 10% higher than the best classical probability in the original
GMN protocol, the setup would need to have η > 0.70 (that is, a single qubit detection efficiency
σ > 0.89). However, to obtain a difference between the quantum and classical probabilities of
winning higher than 7.7% in the modified protocol, the setup would only require η > 0.17 (that
is, detectors of efficiency σ > 0.55). On the other hand, since sources of four-photon GHZ
states (9.4) are currently available (Refs. [240, 241]), then it is interesting to note that, for c = 4
contestants and an experimental setup with an overall efficiency η > 0.05 (that is, with detectors
of efficiency σ > 0.47), it would be possible to obtain a difference between the quantum and
classical probabilities higher than 9.7%. Photodetectors of σ > 0.47 are currently available.
Other examples for different values of σ can be found in Table 9.2. An interesting advantage of
all these experiments is that the expected quantum probabilities are 1, which implies that the
error of the experimental results, given by the standard deviation

√
P (1− P )/r, where r is the

number of coincidences (i.e., played rounds), should be very low.

The proposed experiment would consist of a source emitting three (or four) polarization-
entangled photons in a GHZ state generated in a parametric-down conversion process (Refs. [240,
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241]), coupled into three (four) single mode optical fibers which distribute the photons to differ-
ent regions, where each photon suffers a randomly chosen rotation of the type (9.5), and a linear
polarization measurement (typically the horizontal and vertical states represent the computa-
tional basis). If all photons are detected, then two (three) of the contestants send their result to
the referee who adds them up and sends the result to the third (fourth) contestant, who adds it
to her result and gives the answer.

To sum up, while testing the advantage of the original quantum GMN protocol involving
three parties would require detectors of an efficiency at least σ > 0.79 (or σ > 0.89 to obtain an
experimental quantum probability of winning 10% higher than the best classical probability),
we have introduced a modified quantum GMN protocol involving three or four parties and
preserving all the essential features of the original one, but with the remarkable property that
the quantum vs classical advantage is detectable for any σ. To be specific, σ > 0.55 would
allow us to obtain an experimental quantum probability of winning at least 7.7% higher than
the best classical probability in the three-party case, and σ > 0.47 would allow us to obtain
an experimental quantum probability of winning at least 9.7% higher than the best classical
probability in the four-party case.

As a final remark, our hope that this proposal stimulated experimental work to detect the
quantum reduction of a genuine multiparty communication complexity was made into reality
in 2007 by Zhang et al. in Ref. [16]. The authors present an experimental demonstration of a
modified version of the entanglement-assisted GMN protocol for the reduction of communica-
tion complexity among three separated parties. The parties take advantage of the properties of
the GHZ state they share. As expected, the results of experimental measurements imply that
the separated parties can compute a function of distributed inputs by exchanging less classi-
cal information than it is required by using any classical strategy. Moreover, the results also
demonstrate the advantages of entanglement-enhanced communication, which is very close to
quantum communication. In Figs. 9.4 and 9.5, reproduced with permission of the authors, we
show the experimental setup and the measurement results of the modified quantum three-party
GMN experiment.
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Figure 9.4: Diagram of Hefei’s experimental setup for the three-party modified GMN game
using three-photon entanglement. Reproduced from Zhang et al., Phys. Rev. A 75, 022302
(2007), with permission of the authors.

Figure 9.5: Measurement results of Hefei’s quantum three-party GMN experiment, for the
32 possible variations. Square dots represent the number of played rounds (corresponding to
the right y axis). The dashed line at 1.0 and the solid line at 0.75 represent the theoretical
maximum quantum and classical probabilities of winning the modified GMN game, respectively.
The histogram (referred to the left y axis) shows the experimental probabilities of winning,
which turn out to be significantly higher than the maximum classical probabilities. Reproduced
from Zhang et al., Phys. Rev. A 75, 022302 (2007), with permission of the authors.



Exclusivity graphs and graph states:
What is the connection?

Last but not least, we conclude with a final remark that gives internal coherence to our work.
Recall what we said at the beginning of this work, on p. 27: Throughout this thesis, graphs
have been the ubiquitous mathematical entity upon which we have based all our research. That
being true, we must highlight the fact that this thesis is divided into two parts where graphs
mean very different things and play diverse roles. In the first part, devoted to exclusivity graphs
of NC inequalities, graphs account for experiments in which some measurements are carried out
on states: vertices represent events while edges describe relations of mutual exclusivity between
events, and on the basis of such graphs we construct NC inequalities and calculate their bounds
from some combinatorial numbers specific of the graphs. In the second part, devoted to graph
states, graphs represent entangled multi-qubit quantum states. The graph not only provides an
aid to write the generator of a graph state, but also serves as a blueprint for its preparation:
vertices represent qubits (each of them initialized at the state |+〉) and edges describe subsequent
entangling 2-qubit operations (v.g., controlled-Z gates). This proves how fruitful and versatile
graph theory becomes when applied to some fundamental problems in QT (one of the main
thrusts of the thesis), but at the same time causes us a slight nuisance: the scope of the thesis
is too wide to be captured in a meaningful, precise and relatively short title, and this explains
why we have chosen that of Quantum correlations and graphs, an intentionally broad-range title
with which we try to cover all the aspects of our research.

Nevertheless, between these apparently non-linked parts of the thesis there is in fact a pro-
found connection. So, the question is: Exclusivity graphs and graph states, what is the connec-
tion?

Such a question is frequently formulated in workshops and meetings on quantum information
theory when the topic of exclusivity graphs of NC inequalities is part of the programme, since
most people in the field usually have acquired prior familiarity with graph states. In the following
we elucidate the answer to this question succinctly, on the basis of previous results obtained by
other authors.

A connection between exclusivity graphs and graph states

(I) The first key result comes from Ref. [165]: any graph state corresponding to a connected
graph violates local realism, i.e., all graph states feature nonlocal correlations unexplainable
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Figure 9.6: Connected subgraphs on 3 vertices of a given graph G that give rise to a violation
of local realism by the corresponding graph state |G〉.

with LHV theories. For instance, the non-trivial 2-qubit graph state is LC equivalent to the
singlet state and hence violates the original Bell inequality, Ref. [37]. Moreover, for a connected
graph state with more than two vertices, any connected subgraph on three vertices yields a
contradiction when trying to explain the observed correlations with LHV theories (see Fig. 9.6).

A quick reminder: recall (Sect. 5.2.1) that a graph state |G〉 associated to graph G is the
unique common eigenvector to all stabilizing (generating) operators gi, i.e., gi|G〉 = |G〉 for all
i ∈ {1, ..., n}. Regarding correlations, from a physical point of view, the graph G describes all
the perfect correlations of the state |G〉, since 〈G|gi|G〉 = 1 for all i ∈ {1, ..., n}. By considering
the set of operators that can be obtained from products of generating operators (5.44), one
obtains a commutative group featuring 2n elements, the so-called stabilizer group, defined as

S(G) = {sj}j=1,...,2n , sj =
∏

i∈Ij(G)

gi, (9.9)

where Ij(G) denotes any of the 2n subsets of the vertices of the graph G. All the stabilizing
operators are of the form

si =
n⊗
j=1

O
(i)
j , (9.10)

where operators O
(i)
j ∈ {1,±Xj ,±Yj ,±Zj} are one-qubit Pauli operators.

In order to prove that all graph states feature nonlocal correlations (Ref. [165]; see also
Ref. [164], specifically for cluster states of qubits with respect to their nonlocal properties,
where it is proven that a GHZ argument always holds for any cluster state), we can proceed to
generate Bell inequalities by adding all elements of the stabilizer group S(G). We eventually
arrive at the operator

B(G) =

2n∑
i=1

si =

2n∑
i=1

n⊗
j=1

O
(i)
j . (9.11)

It is then possible to define a Bell inequality based on the above Bell operator, and to
compute its local bound

L(G) = max
LHV
|〈B〉| (9.12)
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Note that the graph state |G〉 reaches the value of 2n (i.e., the algebraic maximum) for Bell
inequality (9.12), since si|G〉 = |G〉 for all i ∈ {1, ..., 2n}. However, it turns out that L(G) < 2n

for any graph G. Therefore, for all graph states it is possible to construct a Bell inequality,
which the graph state itself violates maximally.

Bell inequalities of the type (9.12), in principle, are not optimal in the following sense
(Ref. [171]): note that they involve the entire set of 2n stabilizing operators of S(G). Nev-
ertheless, for a given graph state associated to a connected graph of n ≥ 3 qubits, if one con-
siders the Bell operator involving the whole set of stabilizing operators, then one always have
a violation of a Bell inequality (Ref. [165]), but not the maximum one according to a specific
measure, namely, the ratio D between the quantum value of the Bell operator and its bound
in LHV theories (Refs. [165, 171]). Such a violation occurs because that Bell operator contains
inside a simpler Bell operator (i.e., involving a smaller number of stabilizing operators) giving
the maximum violation according to D. Moreover, the maximum violation (measured by D) can
be obtained for Bell operators with a different number of terms: in that case, one can choose
the one with the lowest number, since the other inequalities contain this inequality and require
more measurements, according to Ref. [171].

Anyway, we conclude that for graph states it is always possible to derive Bell inequalities
maximally violated by them.

(II) The second key result comes from Ref. [242]: it is possible to transform the Bell op-
erator (9.11), which is written as a sum of mean values of stabilizing operators, into a sum
of probabilities of events, and then apply CSW’s graph-theoretic approach from Refs. [6, 7] in
order to construct the graph associated with the Bell inequality3 (9.12). The procedure is the
following (Ref. [242]):

Let G be a graph on n vertices and |G〉 the corresponding n-qubit graph state. Let S(G) be

the stabilizer group of G. For each si ∈ S(G), with si =
⊗n

j=1O
(i)
j , let wi = |{O(i)

j : O
(i)
j 6= 1}|

be the weight4 of si. Let Ei = {E(k,i) : k = 1, 2, . . . , 2wi−1} be the set of the events of si, i.e.
the measurement outcomes that occur with non-zero probability when the system is in state |G〉
and the stabilizing operators si are measured with single-qubit measurements. The set of all
events is E =

⋃
i=1,2,...,2n−1 Ei. Hence, two events are exclusive if there exists a j ∈ {1, . . . , n} for

which the same single-qubit measurement gives a different outcome. Therefore, the exclusivity
graph of the inequality (9.12) is the graph H(G) in which vertices represent the events in E and
edges link pairs of mutually exclusive events.

This method has a remarkable feature: when it is applied to two graphs G1 and G2 belonging
to the same orbit under local complementation, it eventually leads to the same exclusivity graph
H(G). In other words, there is an unique exclusivity graph H(G) for each LC orbit (and
consequently for each LC class of equivalence of graph states), and one can choose any arbitrary
graph of the orbit as a representative to generate H(G) (for instance, the simplest representatives
in the classifications provided in Refs. [9, 11, 13, 209]).

Another important point concerns the characteristics of the exclusivity graph: given an n-
qubit graph state |G〉, let H be the exclusivity graph corresponding to its LC orbit. Then, for

3We know from Sect. 1.3 that Bell inequalities are special instances of NC inequalities, in particular, when the
tests involved in a NC inequality are not only compatible but also space-like separated.

4See Sect. 7.2.1.
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n > 2,
α(H) < ϑ(H) = α∗(H) = 2n − 1, (9.13)

where α(H), ϑ(H) and α∗(H) are the independence number, the Lovász number and the frac-
tional packing number of H, respectively.5 In other words, the graph G violates the correspond-
ing Bell inequality (9.12) up to its algebraic maximum.

Let us recall, from Sect. 1.4.6, that those graphs G fulfilling α(G) < ϑ(G) = α∗(G) are called
QFCGs, and for them there is a NC inequality in which the maximum quantum violation cannot
be higher without violating the E principle, Ref. [7]. Moreover, in Chap. 3 we refer to quantum
correlations achieving α∗(G) as quantum fully contextual correlations. Finally, it turns out that
exclusivity graphs associated to LC orbits of graph states belong to such noteworthy family of
QFCGs.

A final remark: the foregoing connection between exclusivity graphs and graph states sug-
gests a possible generalization that deserves future research. In Sect. 8.6 we have outlined the
concept of hypergraph states. The identification of equivalence classes of hypergraph states un-
der LU transformations for up to four qubits, as well as important classes of five- and six-qubit
states has been carried out in Ref. [222]. The question whether hypergraph states and their cor-
relations can be used to reveal contradictions with classical hidden variable theories has also been
considered, and various NC inequalities and Bell inequalities have been derived in Ref. [222]. It
would be interesting to generate the corresponding exclusivity graphs and study their properties,
in particular their combinatorial numbers: we cannot dismiss the possibility that the results on
hypergraph states shed new light on the nature and limits of quantum correlations.

5See definitions in Sect. 1.4.4.
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En esta tesis hemos tratado diversos aspectos de la teoŕıa cuántica (TC), que comprenden
tanto problemas de ı́ndole fundamental como aplicada. Todos ellos comparten un rasgo distintivo
común: se trata de problemas adecuados para abordarlos mediante una descripción basada en
conceptos, métodos y herramientas propios de la teoŕıa de grafos. Tal descripción proporciona
una capacidad de percepción adicional en la búsqueda de soluciones a los problemas planteados.
Nuestros resultados confirman el poder, versatilidad y utilidad del enfoque basado en teoŕıa de
grafos que hemos seguido. Esto se hace patente tanto en la Parte I, donde el principal objeto de
interés es el grafo de exclusividad de una desigualdad no contextual (NC) y la conexión de sus
números combinatorios caracteŕısticos con los ĺımites de las correlaciones clásicas, cuánticas y
más generales; como en la Parte II, donde la atención se centra primordialmente en los estados
grafo, su clasificación de acuerdo con sus propiedades de entrelazamiento, y la formulación de
un procedimiento óptimo de preparación. Y no sólo eso: la conexión entre ambas partes de la
tesis (p. 171) revela nuevos aspectos que a primera vista pasan desapercibidos pero que, una vez
desvelados, dan soporte a la idea ya mencionada: la TC y la teoŕıa de grafos son disciplinas que
se impulsan mutuamente en obvia sinergia.

En ĺınea con estas consideraciones, y a fin de dar fin a la tesis, presentamos a continuación
el resumen con las conclusiones obtenidas a partir de aquellos caṕıtulos que corresponden a los
resultados innovadores de nuestro trabajo:

• Caṕıtulo 1

Los Resultados 1 y 2 de la Ref. [7], correspondientes a la aproximación a las correlaciones
cuánticas mediante teoŕıa de grafos de Cabello-Severini-Winter (CSW), permitiŕıan diseñar
experimentos con contextualidad cuántica “a la carta” mediante la selección de grafos G
con las relaciones deseadas entre el número de independencia α(G), el número de Lovász
ϑ(G) y el número de empaquetamiento fraccionario α∗(G), grafos para los cuales CSW
proporcionan un método general para construir desigualdades NC.

Siguiendo la propuesta de CSW, nosotros hemos abordado la elaboración de la clasificación
de los llamados grafos cuánticos contextuales (QCG), que se definen como aquéllos para los
que α(G) < ϑ(G). En la Ref. [8] proporcionamos una lista ordenada que contiene G, α(G),
ϑ(G), y α∗(G) para todos los grafos de menos de 11 vértices tales que α(G) < ϑ(G). La
Tabla 1.1 presenta el número total de grafos simples conexos no isomorfos para un número
de vértices entre 2 y 10; además, el número de ellos que son QCG [α(G) < ϑ(G)], y para
éstos últimos, el número de ellos que son grafos cuánticos completamente contextuales
[QFCG, es decir, aquéllos para los que α(G) < ϑ(G) = α∗(G)].
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No existen QCG con un número de vértices menor que 5. En la Fig. 1.5 presentamos
una muestra con los 37 QCG de menor orden, aquéllos correspondientes a un número de
vértices entre 5 y 7. El QCG más simple es el pentágono o 5-ciclo, C5, que es el grafo
de exclusividad asociado a las desigualdades NC de Wright y Klyachko-Can-Binicioğlu-
Shumovsky (véanse Refs. [49, 74]). Una cuidadosa inspección de la figura revela que todos
los grafos mostrados en ella contienen a C5 como subgrafo inducido, con la excepción
de dos de ellos: el heptágono o 7-ciclo (C7) y su complemento (C7). Estos tres grafos
pertenecen a una familia bien conocida en teoŕıa de grafos: los llamados holes y antiholes
impares. Un análisis posterior de los QCG de hasta 10 vértices sugiere que todos los QCG
podŕıan contener necesariamente holes y/o antiholes impares como subgrafos inducidos.
Resolvemos este problema en la Ref. [78] (y dicha solución es nuestro principal interés en
el Cap. 2).

No hay ningún QFCG con menos de 10 vértices. Los más simples son los cuatro grafos
de 10 vértices que se muestran en la Fig. 1.6. Dado que para tales grafos se tiene que
α(G) < ϑ(G) = α∗(G), hay una desigualdad NC asociada a cada uno de ellos en la cual
la máxima violación cuántica no puede ser mayor sin violar el principio de exclusividad
(E), es decir, que la suma de las probabilidades de un conjunto de eventos mutuamente
excluyentes dos a dos no puede ser mayor que 1. Alcanzar tal máxima violación cuántica
revelaŕıa, por tanto, correlaciones cuánticas completamente contextuales. El grafo (a) en
la Fig. 1.6, llamado por nosotros S3, es el grafo de exclusividad que corresponde a la
desigualdad NC capaz de revelar correlaciones cuánticas completamente contextuales más
simple desde el punto de vista de la dimensión del sistema cuántico requerido (Ref. [89];
véanse también las conclusiones del Cap. 3). El grafo (d) en la Fig. 1.6 es el conocido como
grafo de Johnson, J(5, 2), que es el grafo de exclusividad correspondiente a la desigualdad
twin de Cabello en la Ref. [90]: se trata de la desigualdad NC capaz de revelar correlaciones
cuánticas completamente contextuales más simple desde el punto de vista del número de
experimentos (test śı/no) necesario. Los grafos (b) y (c) son esencialmente como el grafo
(a) más una o dos aristas extra, y no superan a los grafos (a) ó (d) en lo referente al
número de experimentos necesario o la dimensión del sistema cuántico requerido.

En consecuencia, finalmente podemos concluir que la clasificación completa de los QCG
de hasta 10 vértices que proporcionamos en la Ref. [8] nos permite identificar escena-
rios experimentales con correlaciones “a la carta” mediante la selección de grafos con las
propiedades requeridas, y clasificar las correlaciones cuánticas a través del estudio de los
números combinatorios de dichos grafos.

• Caṕıtulo 2

Hemos demostrado que la TC únicamente viola un tipo particular de desigualdades NC:
aquéllas cuyos grafos de exclusividad contienen ciertos subgrafos inducidos básicos, los
ciclos impares con cinco o más vértices y sus complementos (Resultado 1, p. 64). También
hemos demostrado que la presencia de algunos de estos subgrafos proporciona una cota
inferior a la dimensión mı́nima que debe tener un sistema cuántico para hacer que la
desigualdad NC correspondiente sea experimentalmente comprobable (Resultado 2, p. 67).

Por otro lado, hemos mostrado que hay una familia de desigualdades NC violada por la
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TC cuyos grafos de exclusividad son precisamente los ciclos de orden impar (Resultado 3,
p. 68). Este resultado no es nuevo (véanse Refs. [6, 1, 47]). El resultado interesante es
que hemos demostrado que existe otra familia de desigualdades NC violadas por la TC
cuyos grafos de exclusividad son los complementos de los ciclos de orden impar (Resul-
tado 4, p. 68), y además hemos descrito cómo alcanzar el máximo valor cuántico para cada
miembro de esta familia.

Finalmente, hemos aportado evidencias que sugieren que la máxima violación cuántica de
las desigualdades correspondientes a los Resultados 3 y 4 es seleccionada por el principio
E. Esto añade nuevos ejemplos a la lista de desigualdades cuyo máximo valor cuántico es
seleccionado por dicho principio (véase Ref. [19]). El hecho de que los grafos de exclusividad
de estas desigualdades NC básicas están presentes como subgrafos inducidos en el grafo de
exclusividad de cualquier desigualdad NC violada por la TC (Resultado 1) sugiere que el
principio E puede resultar fundamental para explicar las correlaciones cuánticas.

• Caṕıtulo 3

Hemos aplicado la aproximación de CSW a las correlaciones cuánticas mediante teoŕıa
de grafos (Refs. [6, 7]) sobre la base de nuestra clasificación de los QCG proporcionada
en la Ref. [8], con la finalidad de diseñar un experimento con contextualidad cuántica “a
la carta” mediante la búsqueda y selección de grafos con las propiedads deseadas. Este
procedimiento nos ha permitido identificar y después llevar a cabo un experimento con
test cuánticos compatibles y secuenciales, que produce correlaciones con la mayor contex-
tualidad permitida bajo la suposición de no-disturbance (ND) expresada por la Ec. (1.20),
que se asume como válida también para teoŕıas post-cuánticas.

Para tal propósito, hemos utilizado nuestra clasificación de QCG para seleccionar aquel
QFCG con menos de 11 vértices (hay sólo cuatro grafos de esta clase) que requiriese un
sistema cuántico con la mı́nima dimensión necesaria para alcanzar la máxima violación
cuántica de la desigualdad NC asociada a tal grafo. Además, hemos proporcionado la
desigualdad NC, el estado cuántico y el conjunto de medidas conducentes a dicha máxima
violación cuántica.

Asumiendo que los fotones detectados constituyen una muestra representativa y fiel de
los emitidos por la fuente, y asumiendo también que la compatibilidad de los test secuen-
ciales es perfecta, las correlaciones observadas en nuestro experimento exhiben la mayor
contextualidad de la que nunca antes se haya informado en ningún experimento previo
sobre desigualdades de Bell o desigualdades NC: correlaciones experimentales en las cuales
la fraccción de correlaciones no contextuales es menor que 0.06. Se trata, pues, de corre-
laciones experimentales que proporcionan una evidencia convincente de la existencia de
correlaciones completamente contextuales (i. e., aquéllas sin contenido no contextual) en
la naturaleza.

Además, con todo ello hemos demostrado la utilidad de la aproximación de CSW a las
correlaciones cuánticas basada en teoŕıa de grafos (Refs. [6, 7]), a la hora de identificar
experimentos con ciertas propiedades deseables. Ello sugiere que desarrollos posteriores
según estas ĺıneas de trabajo proporcionarán mejores herramientas para identificar y ob-
servar fenómenos de especial interés f́ısico.
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• Caṕıtulo 4

Una red social (RS) suele describirse t́ıpicamente mediante un grafo en el cual los vértices
representan actores de la red y las aristas representan el resultado de su mutua interacción,
pero tal grafo no plasma la naturaleza de las interacciones ni explica por qué un actor se
conecta o no a otros actores de la RS. Para solventar esa carencia en la descripción habitual,
hemos introducido un enfoque f́ısico de las RS en el cual cada actor viene caracterizado por
un test śı/no realizado sobre un sistema f́ısico. Este enfoque nos ha permitido considerar
RS más generales (RSG), que van más allá de las que se originan por interacciones basadas
en propiedades preexistentes, como ocurre en una RS clásica (RSC). Hemos confrontado
RSG y RSC descritas por el mismo grafo, y hemos puesto de manifiesto la diferencia entre
ellas por medio de una tarea simple para la cual los rendimientos correspondientes, medidos
a través de la probabilidad promedio de éxito en la tarea, están acotados superiormente
de manera diferente dependiendo de la naturaleza de las interacciones que definen cada
tipo de RS.

Hemos introducido también las RS cuánticas (RSQ) como un ejemplo de RS más allá
de las RSC: hemos demostrado que las RSQ superan a las RSC en la tarea mencionada
previamente y para ciertos grafos espećıficos. Presentamos todos los grafos no isomorfos
de menos de 11 vértices (alrededor de 106) para los que las RSQ superan a las RSC en
la Ref. [142]. Hemos identificado los grafos más simples con esta caracteŕıstica, y hemos
demostrado que los grafos para los cuales las RSQ superan a las RSC son cada vez más
frecuentes a medida que el número de vértices crece.

Además, hemos considerado grafos para los cuales las RSQ superan a las RSC, pero tales
que ninguna RSG descrita por uno de tales grafos supera a la mejor RSQ con el mismo
grafo, y hemos identificado todos los grafos de menos de 11 vértices con esa propiedad. La
Tabla 4.1 muestra el número de grafos no isomorfos con un número dado de vértices, hasta
10 vértices; el número de ellos en que las RSQ superan a las RSC, y para éstos últimos, el
número de aquéllos para los cuales ninguna RSG supera a la mejor RSQ.

Finalmente, hemos considerado grafos para los que la ventaja cuántica es independiente
del estado cuántico, y hemos identificado el grafo más simple de este tipo.

• Caṕıtulo 5

Al ser este caṕıtulo una introducción a la segunda parte de la tesis, consistente en la recopi-
lación de aspectos conceptuales junto con resultados de otros autores, no hay conclusiones
asociadas a él.

• Caṕıtulo 6

Hemos extendido hasta n = 8 qubits la clasificación del entrelazamiento de los estados
grafo con n < 8 qubits propuesta por Hein, Eisert y Briegel (HEB) en la Ref. [9]. Para
n = 8 hay 101 clases de equivalencia bajo operaciones locales de Clifford (LC), también
conocidas como clases LC u órbitas, en tanto que para n < 8 hay sólo 45 clases LC.

Para cada una de estas clases LC hemos obtenido un representante cuya preparación
requiere el mı́nimo número de puertas controlled-Z y, además, la mı́nima profundidad de
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preparación. Dichos representantes se corresponden con grafos con el mı́nimo número de
aristas y el mı́nimo grado máximo (véase la Fig. 6.2). También hemos calculado, para cada
clase LC, la medida de Schmidt para la partición 8-partita (que mide el entrelazamiento
genuino 8-partito de la clase LC), y los rangos de Schmidt para todas las particiones
bipartitas (Tabla 6.1).

Esta clasificación ha resultado útil para obtener nuevas demostraciones todo-o-nada del
teorema de Bell en la Ref. [167], y nuevas desigualdades de Bell. Concretamente, cualquier
estado grafo de 8 qubits que pertenezca a una clase LC con un grafo representante de 7
aristas (i. e., un árbol) conlleva un tipo espećıfico de desigualdad de Bell (Ref. [172]). De
modo más general, la clasificación ha sido útil para investigar la no localidad (i. e., la no
reproducibilidad de las predicciones de la TC por medio de modelos de variables ocultas
locales—modelos LHV por su acrónimo en inglés) de los estados grafo en la Ref. [171].

Los criterios utilizados en la Ref. [9] para etiquetar y ordenar las clases LC ya fallaban al
distinguir todas las clases para n = 7. Hemos comprobado que el mismo problema surge
con n = 8, entre las clases No. 110 y No. 111, entre las clases No. 113 y No. 114, y entre
las clases No. 116 y No. 117 de nuestra clasificación (véase la Tabla 6.1). Por otra parte,
Van den Nest, Dehaene y De Moor (VDD) han propuesto en la Ref. [12] un conjunto finito
de invariantes que caracteriza todas las clases, pero dicho conjunto contiene demasiados
invariantes (más de 2 × 1036 para n = 7) para resultar práctico. Este hecho plantea el
problema de obtener un conjunto mı́nimo de invariantes bajo operaciones LC capaz de
distinguir todas las clases con n ≤ 8 qubits (éste es el principal asunto tratado en el Cap. 7
de esta tesis).

El valor preciso de la medida de Schmidt ES es todav́ıa desconocido para algunas clases.
Sin embargo, para la mayoŕıa de estas clases, dicho valor podŕıa quedar fijado si se conociera
el valor para el estado cluster anular de 5 qubits (correspondiente al grafo pentagonal o
5-ciclo), que es el primer estado grafo de la clasificación para el cual el valor de ES se
desconoce (Refs. [9, 11]). Desafortunadamente, nosotros no hemos hecho ningún progreso
en el cálculo de ES para dicho estado grafo.

No hay estados grafo de 8 qubits con ı́ndices de rango RIp = [νpj ]1j=p con νpj 6= 0 si j = p,
y νpj = 0 si j < p, i. e., con rango máximo con respecto a todas las biparticiones, es
decir, tales que el entrelazamiento esté simétricamente distribuido entre todas las partes
(Tabla 6.1). Estos estados son robustos contra el desentrelazamiento producido por unas
pocas medidas. Tampoco hay estados grafo de 7 qubits con esta propiedad (Refs. [9, 11]).
Esto hace más interesante el hecho de que haya únicamente un estado grafo de 5 qubits y
otro de 6 qubits con esta propiedad (Refs. [9, 11]).

• Caṕıtulo 7

El conjunto de medidas de entrelazamiento propuesto por HEB en la Ref. [9] para estados
grafo de n qubits falla al distinguir entre clases LC no equivalentes si n ≥ 7 (Ref. [13]).
El conjunto de invariantes propuesto por VDD en la Ref. [12] śı distingue entre clases LC
no equivalentes, pero contiene demasiados invariantes (más de 2 × 1036 para n = 7) para
resultar práctico.
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Hemos resuelto el problema de decidir a qué clase de entrelazamiento pertenece un estado
grafo de n ≤ 8 qubits mediante el cálculo de algunas de las propiedades intŕınsecas del
estado, y por tanto sin generar la clase LC completa.

En primer lugar, hemos confirmado la conjetura formulada en la Ref. [12] de que los in-
variantes de VVD de tipo r = 1 son suficientes para distinguir entre las 146 clases de
equivalencia bajo operaciones LC para estados grafo de hasta ocho qubits. No obstante,
el número de dichos invariantes para estados grafo de hasta ocho qubits es aún demasiado
grande para propósitos prácticos (30060 invariantes). Posteriormente, hemos comprobado
que la distribución de pesos, que constituye una forma compacta de comprimir la in-
formación relativa a los invariantes de VDD de tipo r = 1, no resuelve el problema de
distinguir entre cualesquiera dos clases de equivalencia LC: de hecho, ya no lo hace para
estados grafo de 6 qubits.

A continuación, hemos introducido un nuevo conjunto compacto de invariantes bajo ope-
raciones LC relacionados con los propuestos por VDD, a los que hemos denominado in-
variantes cardinalidad-multiplicidad (C-M), y hemos demostrado que basta con cuatro
invariantes C-M para distinguir entre todas las clases LC no equivalentes de estados grafo
con n ≤ 8 qubits. Este resultado resuelve el problema surgido en la clasificación de los
estados grafo de n ≤ 8 qubits desarrollada en las Refs. [9, 11, 13].

También hemos demostrado que la conjetura formulada en la Ref. [218], según la cual la
lista de invariantes bajo operaciones LC dados por la Ec. (7.6) es suficiente para caracteri-
zar las clases de equivalencia LC de todos los estados de estabilizador, que no es cierta en
general (Ref. [9]), es de hecho cierta para estados grafo de n ≤ 8 qubits. Además hemos
demostrado que para estados grafo de n ≤ 8 qubits, la lista de invariantes bajo operaciones
LC que vienen dados por la Ec. (7.7), que es más restrictiva que la lista de los que vienen
dados por la Ec. (7.6), es suficiente. Esto resuelve un problema apuntado por VDD en la
Ref. [12], en relación con la posibilidad de caracterizar subclases especiales de estados de
estabilizador usando subfamilias de invariantes.

Se puede obtener un conjunto compacto de invariantes C-M que caracterice todas las clases
LC no equivalentes para estados grafo con un número mayor de qubits aplicando la misma
estrategia. Esto puede llevarse a cabo numéricamente hasta n = 12, un número de qubits
más allá de la actual capacidad experimental de preparación de estados grafo (Ref. [195]).
En este caṕıtulo, la cuestión tocante a si estos invariantes conservan su eficacia para
discriminar de manera no ambigua entre diferentes clases LC, queda abierta para futura
investigación, y finalmente es resuelta en el Cap. 8.

• Caṕıtulo 8

Hemos propuesto un procedimiento para la preparación óptima de cualquiera de los más de
1.65×1011 estados grafo de hasta 12 qubits, basado en sus propiedades de entrelazamiento.
Aqúı por preparación óptima entendemos una preparación con (a) un número mı́nimo de
puertas de entrelazamiento y (b) un número mı́nimo de pasos o etapas de tiempo, cuando
es posible; o bien, eligiendo entre (a) o (b) en los otros casos. La preferencia dependerá
del sistema f́ısico particular que estemos considerando. Nuestro principal objetivo ha sido
proporcionar en un único paquete todas las herramientas necesarias para identificar con
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rapidez la clase de entrelazamiento a la que pertenece el estado diana, y a continuación
encontrar fácilmente el circuito (o los circuitos) óptimo(s) correspondiente(s) de puertas de
entrelazamiento, y finalmente las puertas de un qubit expĺıcitas adicionales necesarias para
preparar el estado diana; todo ello a partir de un estado puro producto inicial, y asumiendo
únicamente puertas de un qubit arbitrarias y puertas controlled-Z, lo que constituye el
escenario más común para propósitos prácticos.

Los resultados publicados en la Ref. [209] y presentados en este caṕıtulo van más allá de los
que se obtienen en las Refs. [9, 11, 13, 217]: la clasificación en virtud del entrelazamiento
de una familia muy relevante de estados puros (estados grafo, y por extensión, estados de
estabilizador) de 9, 10, 11 y 12 qubits. En total, se introducen casi 1.3 × 106 clases de
entrelazamiento.

Hemos analizado la utilidad y las limitaciones de los invariantes C-M como discriminantes
de las clases LC para estados grafo de hasta 12 qubits, una cuestión que se dejó como
problema abierto en la Ref. [217] (véase Cap. 7), donde se conjeturaba que cuatro de
tales invariantes C-M bastaŕıan para etiquetar y discriminar todas las clases LC. Nuestros
resultados muestran que para estados grafo de n ≥ 9 qubits los invariantes C-M fallan
al distinguir entre clases LC no equivalentes: el contraejemplo de menor tamaño para
la conjetura corresponde a un par de órbitas de nueve qubits que tienen exactamente
la misma lista completa de invariantes C-M. Éstas son las únicas órbitas problemáticas
para n = 9 qubits. Como alternativa para discriminar entre ellas hemos calculado la lista
completa de invariantes de VDD de tipo r = 1 (véase Ref. [12]) para las dos órbitas,
y una vez más estos invariantes coinciden. A fin de determinar el número de órbitas
“problemáticas” (indistinguibles) desde el punto de vista de los invariantes C-M y VDD,
hemos extendido nuestros cálculos hasta n = 12 qubits. La ratio pf (n) entre el número
de grafos pertenecientes a órbitas problemáticas y el número total de grafos para cada
valor de n, da la probabilidad de que un estado grafo escogido al azar caiga en una de
las órbitas problemáticas. Los valores calculados de pf (n) son, afortunadamente, bastante
bajos (véase la Tabla 8.1). Por tanto, el primer paso en el procedimiento de preparación, i.
e., la identificación de la órbita, recurre a invariantes C-M (y, a veces, a invariantes de VDD
tipo r = 1), y funciona en la mayoŕıa de los casos. Para aquellos casos poco frecuentes
en los que la identificación de la órbita a través de invariantes C-M o de VDD (r = 1) no
fuera uńıvoca, uno podŕıa recurrir a invariantes de VDD de mayor orden r (Ref. [12]). Sin
embargo, el esfuerzo computacional de dicha tarea hace este procedimiento menos eficiente
que simplemente generar la órbita LC completa del estado grafo.

Los resultados obtenidos tienen relevancia experimental. Por ejemplo, imaginemos un
f́ısico experimental en el campo de los iones atrapados que quisiera preparar estados grafo.
El f́ısico experimental sabe que puede mantener, v. g., nueve iones (qubits) aislados de
influencias externas por un peŕıodo de tiempo dado, y sabe que durante ese tiempo puede
llevar a cabo un máximo de m operaciones de entrelazamiento de dos qubits con una
eficiencia por encima de un cierto valor umbral. El f́ısico experimental quiere saber qué
clases de estados grafo (qué clases de entrelazamiento) son una diana razonable con estos
recursos. Nuestros resultados en este caṕıtulo le permiten responder a esta cuestión: si
m = 8, él puede preparar 47 clases diferentes (las clases 147–193 en la Ref. [14]); si m = 9,
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puede preparar 47 + 95 = 142 clases diferentes (las clases 147–288 en la Ref. [14]), etc.
Además, nuestro trabajo le dice cuál es la secuencia óptima de láseres (puertas) requerida
para preparar cualquier estado de cada clase.

Y lo que es más interesante: consideremos que el f́ısico experimental quiere preparar un
estado grafo espećıfico de nueve qubits. Nuestra contribución proporciona el protocolo
conocido más simple para identificar a qué clase de entrelazamiento pertenece el estado
grafo diana, y da el circuito más simple para prepararlo, donde más simple significa en la
mayoŕıa de los casos aquél que requiere el mı́nimo número de puertas de entrelazamiento de
dos qubits y mı́nimo número de pasos de computación; en aquellos casos en que tal circuito
no existe, nuestra contribución proporciona un circuito que requiere el mı́nimo número de
puertas de entrelazamiento, y también otro circuito que requiere mı́nima profundidad.

• Caṕıtulo 9

El protocolo original asistido por entrelazamiento para la reducción de la complejidad de la
comunicación conocido como “Guess My Number” (GMN), que fue introducido por Steane
y van Dam en la Ref. [232], plantea algunas dificultades para su realización experimental:
requeriŕıa producir y detectar estados de Greenberger-Horne-Zeilinger (GHZ) de tres qubits
con una eficiencia η > 0.70, lo que a su vez conllevaŕıa disponer de detectores de un fotón
con eficiencia σ > 0.89.

Hemos elaborado una versión modificada del protocolo GMN: los cambios que hemos intro-
ducido finalmente hacen que el protocolo GMN modificado sea factible experimentalmente.
Discutimos la mejor estrategia clásica (que implica intercambio de bits y uso de aleato-
riedad compartida); la estrategia cuántica alternativa (en que se intercambian bits sobre la
base de un uso ingenioso de un estado entrelazado compartido por los participantes en el
protocolo, que es además un estado grafo); y a continuación realizamos una comparación
entre sus rendimientos para determinar la ventaja cuántica respecto a la variante clásica,
mediante el análisis de la probabilidad de éxito en el protocolo (que puede visualizarse
como un juego).

Nuestros resultados indican que, mientras que la comprobación de la ventaja del protocolo
cuántico GMN original con tres participantes precisa de detectores con una eficiencia de
al menos σ > 0.79 (ó σ > 0.89 para obtener una probabilidad experimental cuántica de
éxito un 10% mayor que la mejor probabilidad clásica), nuestro protocolo cuántico GMN
modificado con tres o cuatro participantes conserva todas las caracteŕısticas esenciales del
original, pero con la destacable propiedad de que la ventaja cuántica respecto a la variante
clásica es detectable para cualquier σ.

Para ser más espećıficos, una eficiencia σ > 0.55 nos permitiŕıa obtener una probabilidad
experimental cuántica de éxito al menos un 7.7% mayor que la mejor probabilidad clásica,
en el caso de tres participantes; y σ > 0.47 nos permitiŕıa obtener una probabilidad
experimental cuántica de éxito al menos un 9.7% mayor que la mejor probabilidad clásica,
en el caso de cuatro participantes en el protocolo.

Esta propuesta ha estimulado posterior esfuerzo experimental para la detección de la re-
ducción cuántica de una complejidad de comunicación multipartita genuina, lo que final-
mente ha llevado a la realización del experimento (véase la Ref. [16]), con los resultados
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esperados: los participantes en el protocolo cuántico modificado pueden computar una
función de inputs distribuidos mediante el intercambio de menos información clásica de la
que se requeriŕıa utilizando cualquier estrategia clásica.

Con estas consideraciones, damos fin a las conclusiones de la tesis doctoral.





Conclusions

In this thesis we have dealt with several topics in quantum theory (QT), encompassing both
fundamental and applied issues, all of them sharing a common feature: they are suitable for a
description based on concepts, methods and tools taken from graph theory, and such description
provides additional insight in search of solutions to the problems raised. Our results confirm
the power, versatility and usefulness of the graph-theoretic approach we have followed. This
is patent both in Part I, where the main subject of interest is the exclusivity graph of a non-
contextuality (NC) inequality and the connection of its characteristic combinatorial numbers
with the limits of classical, quantum and more general correlations; and in Part II, where
attention is primarily focused on graph states, their classification according to entanglement
properties, and the formulation of an optimal preparation procedure. Moreover, the connection
between both parts of the thesis (p. 171) reveals new aspects that at first sight go unnoticed
but, once uncovered, support the aforementioned idea: QT and graph theory are disciplines that
mutually boost each other in obvious synergy.

In line with these considerations, and in order to close this thesis, we present below the
summary of conclusions drawn from those chapters which correspond to innovative results of
our work:

• Chapter 1

According to Cabello-Severini-Winter’s (CSW) graph-theoretic approach to quantum cor-
relations, Results 1 and 2 in Ref. [7] would allow to design experiments with quantum
contextuality on demand by selecting graphs G with the desired relationships between the
independence number α(G), the Lovász number ϑ(G) and the fractional packing number
α∗(G), graphs for which a general method to construct NC inequalities is provided.

Following that suggestion, we have addressed the elaboration of a classification of quantum
contextual graphs (QCGs, for which α(G) < ϑ(G)). An ordered list containing G, α(G),
ϑ(G), and α∗(G) for all graphs with less than 11 vertices for which α(G) < ϑ(G) is provided
in Ref. [8]. Table 1.1 presents the total number of non-isomorphic simple connected graphs
for a number of vertices ranging from 2 to 10; the number of them which are QCGs
[α(G) < ϑ(G)], and for the latter, the number of those which are quantum fully contextual
graphs [QFCGs, fulfilling α(G) < ϑ(G) = α∗(G)].

There are no QCGs with a number of vertices less than 5. In Fig. 1.5 we present a sample
with the 37 simplest QCGs, those corresponding to a number of vertices ranging from 5
to 7. The simplest QCG is the pentagon or 5-cycle, C5, which is the exclusivity graph
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corresponding to the Wright and Klyachko-Can-Binicioğlu-Shumovsky NC inequalities (see
Refs. [49, 74]). A careful inspection of the figure reveals that all the graphs shown in it
contain C5 as induced subgraph, with the exception of two: the heptagon or 7-cycle (C7)
and its complement (C7). This three graphs belong to a well-known family in graph theory:
the so-called odd holes and odd antiholes. A subsequent analysis of the QCGs of up to 10
vertices suggests that all QCGs might necessarily contain odd holes and/or odd antiholes
as induced subgraphs, Ref. [78] (this issue is our main interest in Chap. 2).

There is no QFCG with less than 10 vertices. The simplest ones are the four 10-vertex
graphs depicted in Fig. 1.6. Given that for such graphs α(G) < ϑ(G) = α∗(G), there is
an NC inequality associated to each of them in which the maximum quantum violation
cannot be higher without violating the exclusivity (E) principle (namely, that the sum
of probabilities of a set of pairwise exclusive events cannot be higher than 1). Achiev-
ing such maximum quantum violation would reveal, therefore, fully contextual quantum
correlations. Graph (a) in Fig. 1.6, called S3, is the graph corresponding to the simplest
NC inequality capable of revealing fully contextual quantum correlations, from the view-
point of the dimensionality of the required quantum system, Ref. [89] (see conclusions of
Chap. 3). Graph (d) in Fig. 1.6 is the Johnson graph J(5, 2), which is the exclusivity
graph corresponding to Cabello’s twin-inequality in Ref. [90], the simplest NC inequality
capable of revealing fully contextual quantum correlations, from the viewpoint of the num-
ber of experiments (yes-no tests) needed. Graphs (b) and (c) are essentially as graph (a)
plus one or two extra edges, and do not outperform (a) nor (d) regarding the number of
experiments needed or the dimensionality of the quantum system required.

Consequently, we finally conclude that the complete classification of QCGs up to 10 vertices
provided in Ref. [8] allows to identify experimental scenarios with correlations on demand
by picking out graphs with the required properties, and classify quantum correlations
through the study of their graph combinatorial numbers.

• Chapter 2

We have proven that QT only violates a particular kind of NC inequalities: those whose
exclusivity graph contains some basic induced subgraphs, odd cycles with five or more
vertices and their complements (Result 1, p. 64). We have also shown that the presence of
some of these subgraphs provides a lower bound to the minimum dimension that a quan-
tum system must have to make the corresponding NC inequality experimentally testable
(Result 2, p. 67).

In addition, we have shown that there is a family of NC inequalities violated by QT whose
exclusivity graphs are precisely odd cycles (Result 3, p. 68). This result is not new (see
Refs. [6, 1, 47]). The interesting result is that we have shown that there is another family
of NC inequalities violated by QT whose exclusivity graphs are the complements of odd
cycles (Result 4, p. 68). We have described how to reach the maximum quantum value for
each member of this family.

Finally, we have shown evidences that suggest that the maximum quantum violation of the
inequalities in Results 3 and 4 are singled out by the E principle. This adds new examples
to the list of inequalities whose maximum quantum value is singled out by this principle
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(see Ref. [19]). The fact that the exclusivity graphs of these NC inequalities are present
in the exclusivity graph of any NC inequality violated by QT (Result 1) suggests that the
E principle may be fundamental for quantum correlations.

• Chapter 3

We have applied CSW’s graph-theoretic approach in Refs. [6, 7] on the basis of our clas-
sification in Ref. [8] of QCGs to design an experiment with quantum contextuality on
demand, by selecting graphs with the desired properties. This procedure has allowed us to
identify and perform an experiment with sequential quantum compatible tests, which pro-
duces correlations with the largest contextuality allowed under the no-disturbance (ND)
assumption (1.20), which is assumed to be valid also for post-quantum theories.

For that purpose, we have used our classification of QCGs to select the QFCG with less
than 11 vertices (there are only four of them) requiring a quantum system with the mini-
mum dimension needed to achieve the maximum quantum violation of the NC inequality
associated to the graph. Moreover, we have provided the NC inequality, the quantum state
and the measurements leading to the maximum quantum violation.

Assuming that the detected photons are a fair sample of those emitted by the source and
assuming that the compatibility of the sequential tests is perfect, the correlations observed
in our experiment exhibit the largest contextuality ever reported in any experiment of
Bell or NC inequalities (experimental correlations in which the fraction of non-contextual
correlations is less than 0.06), and provide compelling evidence of the existence of fully
contextual correlations (i.e., those without non-contextual content) in nature.

Moreover, we have demonstrated the usefulness of the approach to quantum correlations
based on graph theory (Refs. [6, 7]) in identifying experiments with properties on demand.
This suggests that further developments along these lines will provide better tools to
identify and observe phenomena of physical interest.

• Chapter 4

A social network (SN) is typically described by a graph in which vertices represent ac-
tors and edges represent the result of their mutual interactions, but such graph does not
capture the nature of the interactions or explain why an actor is linked or not to other
actors of the SN. To account for that lack in the usual description, we have introduced a
physical approach to SNs in which each actor is characterized by a yes-no test on a physical
system. This approach has allowed us to consider more general SNs (GSNs) beyond those
originated by interactions based on pre-existing properties, as in a classical SN (CSN). We
have confronted GSN and CSN described by the same graph and evidenced the difference
between them by means of a simple task for which the corresponding yields, measured
through the average probability of success, are upper bounded differently depending on
the nature of the interactions defining the SN.

We have also introduced quantum SNs (QSNs) as an example of SNs beyond CSNs: we
have shown that QSNs outperform CSNs for the aforementioned task and some specific
graphs. All non-isomorphic graphs with less than 11 vertices (around 106) in which QSNs
outperform CSNs are presented in Ref. [142]. We have identified the simplest of these
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graphs and shown that graphs in which QSNs outperform CSNs are increasingly frequent
as the number of vertices increases.

Moreover, we have considered graphs for which QSNs outperform CSNs but no GSN
outperforms the best QSN, and identified all the graphs with less than 11 vertices with
that property. Table 4.1 contains the number of non-isomorphic graphs with a given
number of vertices, up to 10 vertices; the number of them in which QSNs outperform
CSNs, and for the latter, the number of those for which no GSN outperforms the best
QSN.

Finally, we have considered graphs for which the quantum advantage is independent of the
quantum state, and identified the simplest graph of this kind.

• Chapter 5

Being this chapter a compilation of conceptual issues and results of other authors, there
are no conclusions associated to this chapter.

• Chapter 6

We have extended to 8 qubits the classification of the entanglement of graph states pro-
posed in Ref. [9] for n < 8 qubits. For n = 8 there are 101 local Clifford (LC) classes of
equivalence (orbits), while for n < 8 there are only 45 classes.

For each of these classes we have obtained a representative which requires the minimum
number of controlled-Z gates for its preparation and, in addition, the minimum preparation
depth. This representatives correspond to graphs with minimum number of edges and
minimum maximum degree (Fig. 6.2). We have also calculated for each class the Schmidt
measure for the 8-partite split (which measures the genuine 8-party entanglement of the
class), and the Schmidt ranks for all bipartite splits (Table 6.1).

This classification has been useful to obtain new all-versus-nothing proofs of Bell’s theorem
in Ref. [167] and new Bell inequalities. Specifically, any 8-qubit graph state belonging to a
class with a representative with 7 edges (i.e., a tree) has a specific type of Bell inequality
(Ref. [172]). More generally, it has been helpful to investigate the nonlocality (i.e., the
non-simulability of the predictions of quantum mechanics by means of local hidden variable
(LHV) models) of graph states in Ref. [171].

The criteria used in Ref. [9] to label and order the classes already failed to distinguish
all classes in n = 7. We have checked that the same problem occurs between classes
No. 110 and No. 111, between classes No. 113 and No. 114, and between classes No. 116
and No. 117 in our classification (see Table 6.1). On the other hand, Van den Nest,
Dehaene, and De Moor (VDD) have proposed a finite set of invariants that characterizes
all classes in Ref. [12], but contains too many invariants (more than 2 × 1036 for n = 7)
to be practical. This fact poses the problem of obtaining a minimum set of LC invariants
capable of distinguishing all classes with n ≤ 8 qubits (main issue of Chap. 7 of this thesis).

The precise value of the Schmidt measure ES is still unknown for some classes. Never-
theless, for most of these classes, the value might be fixed if we knew the value for the
5-qubit ring cluster state, which is the first graph state in the classification for which the
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value of ES is unknown (Refs. [9, 11]). Unfortunately, we have not made any progress in
calculating ES for the 5-qubit ring cluster state.

There are no 8-qubit graph states with rank indexes RIp = [νpj ]1j=p with νpj 6= 0 if j = p, and
νpj = 0 if j < p, i.e., with maximal rank with respect to all bipartite splits, i.e., such that
entanglement is symmetrically distributed between all parties (Table 6.1). These states are
robust against disentanglement by a few measurements. Neither there are 7-qubit graph
states with this property (Refs. [9, 11]). This makes more interesting the fact that there
is a single 5-qubit and a single 6-qubit graph state with this property (Refs. [9, 11]).

• Chapter 7

The set of entanglement measures proposed by Hein, Eisert and Briegel (HEB) in Ref. [9]
for n-qubit graph states fails to distinguish between inequivalent classes under LC opera-
tions if n ≥ 7 (Ref. [13]). The set of invariants proposed by VDD in Ref. [12] distinguishes
between inequivalent classes, but contains too many invariants (more than 2 × 1036 for
n = 7) to be practical.

We have solved the problem of deciding which entanglement class a graph state of n ≤ 8
qubits belongs to by calculating some of the state’s intrinsic properties, thus without
generating the whole LC class.

First, we have confirmed the conjecture in Ref. [12] that VVD’s invariants of type r = 1
are enough for distinguishing between the 146 LC equivalence classes for graph states up
to eight qubits. Nevertheless, the number of such invariants for graph states of up to eight
qubits is still too large for practical purposes (30060 invariants). Subsequently, we have
checked that the weight distribution, a compact way to compress the information regarding
VDD invariants of type r = 1, does not solve the problem of distinguishing between any
two LC classes of equivalence: it already fails for 6-qubit graph states.

Then, we have introduced a new compact set of LC invariants related to those proposed
by VDD, the so-called cardinality-multiplicity (C-M) invariants, and shown that four C-M
invariants are enough for distinguishing between all inequivalent classes with n ≤ 8 qubits.
This result solves the problem raised in the classification of graph states of n ≤ 8 qubits
developed in Refs. [9, 11, 13].

We have also shown that the conjecture in Ref. [218] that the list of LC invariants given
in Eq. (7.6) is sufficient to characterize the LC equivalence classes of all stabilizer states,
which is not true in general (Ref. [9]), is indeed true for graph states of n ≤ 8 qubits.
Moreover, we have shown that, for graph states of n ≤ 8 qubits, the list of LC invariants
given in Eq. (7.7), which is more restrictive than the list given in Eq. (7.6), is enough. This
solves a problem suggested in Ref. [12], regarding the possibility of characterizing special
subclasses of stabilizer states using subfamilies of invariants.

A compact set of C-M invariants that characterize all inequivalent classes of graph states
with a higher number of qubits can be obtained by applying the same strategy. This can
be done numerically up to n = 12, a number of qubits beyond the present experimental
capability in the preparation of graph states (Ref. [195]). The question whether these in-
variants keep their effectiveness to unambiguously discriminate among different LC classes
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is left open for future research (and solved in Chap. 8).

• Chapter 8

We have proposed a procedure for the optimal preparation of any of the more than 1.65×
1011 graph states with up to 12 qubits, based on their entanglement properties. Optimal
means with both (a) a minimum number of entangling gates and (b) a minimum number of
time steps, when possible, or choosing between (a) or (b), in the other cases. The preference
will depend on the particular physical system we are considering. The main goal has been
to provide in a single package all the tools needed to rapidly identify the entanglement class
the target state belongs to, and then easily find the corresponding optimal circuit(s) of
entangling gates, and finally the explicit additional one-qubit gates needed to prepare the
target, starting with a pure product state and assuming only arbitrary one-qubit gates and
controlled-Z gates, which constitutes the most common scenario for practical purposes.

The results published in Ref. [209] and presented in this chapter go beyond those in
Refs. [9, 11, 13, 217]: the classification of entanglement for a highly relevant family of
qubit pure states (graph states and, by extension, stabilizer states) of 9, 10, 11, and 12
qubits. In total, almost 1.3× 106 entanglement classes are introduced.

We have analyzed the utility and limitations of the C-M invariants as LC-class discrim-
inants for graph states up to 12 qubits, a question that was left as an open problem in
Ref. [217] (see Chap. 7), where it was conjectured that four of these C-M invariants would
be enough to label and discriminate all the LC classes. Our results show that for graph
states of n ≥ 9 qubits the C-M invariants fail to distinguish between inequivalent LC
classes: the smallest counterexample of the conjecture corresponds to a pair of nine-qubit
orbits that have exactly the same entire list of C-M invariants. These are the only prob-
lematic orbits for n = 9 qubits. As an alternative for discriminating between them, we
have calculated the whole list of VDD invariants of type r = 1 (see Ref. [12]) for these two
orbits, and once again these invariants coincide. In order to determine the number of C-M
and VDD “problematic” (undistinguishable) orbits, we have extended our calculations up
to n = 12 qubits. The ratio pf (n) of the number of graphs belonging to problematic orbits
and the overall number of graphs for each n, gives the probability that a randomly chosen
graph state falls in one of the problematic orbits. The values of pf (n) are, fortunately,
quite low (see Table 8.1). Therefore, the first step of the procedure of preparation, i.e.,
the identification of the orbit, resorts to C-M invariants (and, sometimes, type r = 1
VDD invariants), and works in most cases. For those rare states whose orbit identification
through C-M or VDD (r = 1) invariants is not univocal, one would resort to VDD invari-
ants of higher order r (Ref. [12]). However, the computational effort of this task makes
this procedure less efficient than simply generating the whole LC orbit of the graph state.

The results have experimental relevance. For example, imagine an experimentalist in the
field of trapped ions who wants to prepare graph states. The experimentalist knows that he
can keep, e.g., nine ions (qubits) isolated from external influences for a given period of time,
and knows that during this time he can perform a maximum of m two-qubit entangling
operations with an efficiency above a certain threshold. The experimentalist wants to know
which classes of graph states (which classes of entanglement) are a reasonable target with
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these resources. Our results in this chapter allow him to answer this question: if m = 8,
he can prepare 47 different classes (classes 147–193 in Ref. [14]); if m = 9, he can prepare
47 + 95 = 142 different classes (classes 147–288 in Ref. [14]), etc. Moreover, our work tells
the experimentalist which is the optimum sequence of lasers (gates) required for preparing
any state of each class.

More interestingly, consider that the experimentalist wants to prepare a specific nine-qubit
graph state. Our contribution provides the simplest known protocol to identify which
entanglement class the target state belongs to, and give the simplest circuit to prepare it,
where simplest means in most cases the one requiring the minimum number of entangling
gates and computational steps or, in those cases in which such a circuit does not exist,
gives a circuit requiring the minimum number of entangling gates, and a circuit requiring
minimum depth.

• Chapter 9

The original entanglement-assisted “Guess My Number” (GMN) protocol for the reduction
of communication complexity, introduced by Steane and van Dam in Ref. [232], poses some
difficulties for an experimental realization: it would require producing and detecting three-
qubit Greenberger-Horne-Zeilinger (GHZ) states with an efficiency η > 0.70, which in turn
would require single photon detectors of efficiency σ > 0.89.

We have elaborated a modified version of the GMN protocol: the changes we have intro-
duced eventually make the modified GMN protocol experimentally feasible. We discuss
the best classical strategy (exchanging bits and using shared randomness), the alternative
quantum strategy (exchanging bits on the basis of a clever use of the shared entangled
state, which is a graph state), and then make a comparison between their yields to deter-
mine the quantum versus classical advantage, through the analysis of the probability of
success in the game.

Our results indicate that while testing the advantage of the original quantum GMN proto-
col involving three parties requires detectors of an efficiency at least σ > 0.79 (or σ > 0.89
to obtain an experimental quantum probability of winning 10% higher than the best clas-
sical probability), our modified quantum GMN protocol involving three or four parties
preserves all the essential features of the original one, but with the remarkable property
that the quantum vs classical advantage is detectable for any σ.

To be specific, σ > 0.55 would allow us to obtain an experimental quantum probability
of winning at least 7.7% higher than the best classical probability in the three-party case,
and σ > 0.47 would allow us to obtain an experimental quantum probability of winning
at least 9.7% higher than the best classical probability in the four-party case.

This proposal has stimulated subsequent experimental work to detect the quantum re-
duction of a genuine multiparty communication complexity, which has resulted in the
realization of the experiment (see Ref. [16]), with the expected results: the parties in-
volved in the modified quantum protocol, can compute a function of distributed inputs by
exchanging less classical information than it is required by using any classical strategy.

With this, we put and end to the conclusions of our PhD thesis.
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Optimal preparation of graph states

Phys. Rev. A 83, 042314 (2011).

5. A. Cabello, L. E. Danielsen, A. J. López-Tarrida, and J. R. Portillo,
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Entrelazamiento en estados grafo de 8 qubits
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VIII Encuentros Andaluces de Matemática Discreta (IMUS, Universidad de Sevilla, 2013).





Index of acronyms

BS 50/50 beam splitter

C-M Cardinality-multiplicity (invariants)

C-NOT Controlled NOT (gate, operation)

CHSH Clauser-Horne-Shimony-Holt

COM Commutativity

CSN Classical social network

CSW Cabello-Severini-Winter

E Exclusivity (principle)

EPR Einstein-Podolski-Rosen

GHZ Greenberger-Horne-Zeilinger

GMN Guess My Number (protocol)

GSN General social network

HEB Hein-Eisert-Briegel

HWP Half-wave plate

JM Joint measurability

KS Kochen-Specker

LC Local Clifford (equivalence, operation)



198 Index of acronyms

LC∗ Local complementation

LHV Local hidden variables

LO Local Orthogonality (principle)

LOCC Local operations assisted by classical communication

LU Local unitary (equivalence, operation, transformation)

NC Non-contextuality (inequality)

ND No-Disturbance (principle, assumption)

NCHV Non-contextual hidden variables

OR Orthonormal representation

PBS Polarizing beam splitter

POVM Positive-operator-valued measure

PVM Projection-valued measure

QCG Quantum contextual graph

QFCG Quantum fully contextual graph

QNCG Quantum non-contextual graph

QSN Quantum social network

QT Quantum theory

SLOCC Stochastic local operations assisted by classical communication

SN Social network

VDD Van den Nest-Dehaene-De Moor

VLSI Very-large-scale integration



Bibliography

[1] Y.-C. Liang, R. W. Spekkens and H. M. Wiseman, Phys. Rep. 506, 1 (2011). 18, 28, 37,
53, 177, 186

[2] M. Nawareg, F. Bisesto, V. D’Ambrosio, E. Amselem, F. Sciarrino, M. Bourennane and
A. Cabello, (2013), arXiv:1311.3495. 18, 28, 37, 53

[3] J. Barrett, N. Linden, S. Massar, S. Pironio, S. Popescu and D. Roberts, Phys. Rev. A
71, 022101 (2005). 18, 28, 37, 44
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[39] A. Aćın, N. Brunner, N. Gisin, S. Massar, S. Pironio and V. Scarani, Phys. Rev. Lett. 98,
230501 (2007). 49
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[76] J. L. Ramı́rez-Alfonśın and B. A. Reed (Eds.), Perfect graphs, (John Wiley & Sons, 2001).
56

[77] A. Cabello, (2012), arXiv:1212.1756. 58, 70
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[112] A. Vesel and J. Žerovnik, Discrete Math. 12, 333 (1998). 72
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Phys. Rev. Lett. 95, 240406 (2005). 108

[186] J. T. Barreiro, N. K. Langford, N. A. Peters and P. G. Kwiat, Phys. Rev. Lett. 95, 260501
(2005). 108

[187] M. Barbieri, F. De Martini, P. Mataloni, G. Vallone and A. Cabello, Phys. Rev. Lett. 97,
140407 (2006). 108

[188] G. Vallone, E. Pomarico, P. Mataloni, F. De Martini and V. Berardi, Phys. Rev. Lett. 98,
180502 (2007). 108
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Phys. Rev. Lett. 90, 200403 (2003). 108

[191] S. Gaertner, M. Bourennane, M. Eibl, C. Kurtsiefer and H. Weinfurter, Appl. Phys. B
77, 803 (2003). 108

[192] M. Bourennane, M. Eibl, S. Gaertner, C. Kurtsiefer, A. Cabello and H. Weinfurter, Phys.
Rev. Lett. 92, 107901 (2004). 108

[193] P. Walther, M. Aspelmeyer, K. J. Resch and A. Zeilinger, Phys. Rev. Lett. 95, 020403
(2005). 108

[194] S. Gaertner, M. Bourennane, C. Kurtsiefer, A. Cabello and H. Weinfurter, Phys. Rev.
Lett. 100, 070504 (2008). 108

[195] W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Gühne, A. Goebel, Y.-A. Chen, C.-Z. Peng,
Z.-B. Chen and J.-W. Pan, Nat. Phys. 6, 331 (2010). 108, 117, 141, 180, 189

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.95.210502
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.95.210502
http://www.nature.com/nphys/journal/v3/n2/abs/nphys507.html
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.102.030502
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.102.030502
http://iopscience.iop.org/1367-2630/11/8/083010
http://iopscience.iop.org/1367-2630/11/8/083010
http://www.tandfonline.com/doi/abs/10.1080/09500349708231877
http://journals.aps.org/pra/abstract/10.1103/PhysRevA.58.R2623
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.95.240405
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.95.240405
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.95.240406
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.95.260501
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.95.260501
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.97.140407
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.97.140407
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.98.180502
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.98.180502
http://journals.aps.org/pra/abstract/10.1103/PhysRevA.64.010102
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.90.200403
http://link.springer.com/article/10.1007/s00340-003-1321-5
http://link.springer.com/article/10.1007/s00340-003-1321-5
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.92.107901
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.92.107901
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.95.020403
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.95.020403
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.100.070504
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.100.070504
http://www.nature.com/nphys/journal/v6/n5/full/nphys1603.html


BIBLIOGRAPHY 209

[196] W.-B. Gao, X.-C. Yao, P. Xu, O. Gühne, A. Cabello, C.-Y. Lu, Z.-B. Chen and J.-W.
Pan, unpublished. 108

[197] T. Monz, P. Schindler, J. T. Barreiro, M. Chwalla, D. Nigg, W. A. Coish, M. Harlander,
W. Hänsel, M. Hennrich and R. Blatt, Phys. Rev. Lett. 106, 130506 (2011). 108

[198] C. H. Bennett, S. Popescu, D. Rohrlich, J. A. Smolin and A. V. Thapliyal, Phys. Rev. A
63, 012307 (2000). 112

[199] G. Vidal, J. Mod. Opt. 47, 355 (2000). 112

[200] W. Dür, G. Vidal and J. I. Cirac, Phys. Rev. A 62, 062314 (2000). 112, 113, 133

[201] N. Linden and S. Popescu, Fortsch. Phys. 46, 567 (1998), arXiv:quant-ph/9711016. 112

[202] J. Kempe, Phys. Rev. A 60, 910 (1999). 112

[203] H.-K. Lo and S. Popescu, Phys. Rev. A 63, 022301 (2001). 113

[204] F. Verstraete, J. Dehaene, B. De Moor and H. Verschelde, Phys. Rev. A 65, 052112 (2002).
113

[205] M. Van den Nest, J. Dehaene and B. D. Moor, Local equivalence of stabilizer states, in
Proceedings of the 16th International Symposium on Mathematical Theory of Networks
and Systems (MTNS 2004), (Katholieke Universiteit Leuven, Belgium, 2004). 114, 133,
148

[206] Z. Ji, J. Chen, Z. Wei and M. Ying, Quantum Inf. Comput. 10(1&2), 97 (2010). 114, 115,
134, 149

[207] M. Van den Nest, J. Dehaene and B. D. Moor, Phys. Rev. A 71, 062323 (2005). 115, 134

[208] B. Zeng, H. Chung, A. W. Cross and I. L. Chuang, Phys. Rev. A 75, 032325 (2007). 115,
134
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