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Abstract

One recently proposed criterion to separate two datasets in dis-
criminant analysis, is to use a hyperplane which minimises the sum
of distances to it from all the misclassified data points. Here all dis-
tances are supposed to be measured by way of some fixed norm, while
misclassification means lying on the wrong side of the hyperplane, or
rather in the wrong halfspace. In this paper we study the problem
of determining such an optimal halfspace when points are distributed
according to an arbitrary random vector X in Rd ,. In the uncon-
strained case in dimension d, we prove that any optimal separating
halfspace always balances the misclassified points. Moreover, under
polyhedrality assumptions on the support of X, there always exists an
optimal separating halfspace passing through d affinely independent
points. It follows that the problem is polynomially solvable in fixed
dimension by an algorithm of O(nd+1) when the support of X consists
of n points.

All these results are strengthened in the one-dimensional case,
yielding an algorithm with complexity linear in the cardinality of the
support of X.

If a different norm is used for each data set in order to measure
distances to the hyperplane, or if all distances are measured by a
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fixed gauge, the balancing property still holds, and we show that,
under polyhedrality assumptions on the support of X, there always
exists an optimal separating halfspace passing through d − 1 affinely
independent data points.

These results extend in a natural way when we allow constraints
modeling that certain points are forced to be correctly classified.

Keywords. Gauge-distance to hyperplane, separating halfspace, discrimi-
nant analysis.

1 Problem statement

In two-group probabilistic Discriminant Analysis models, one has two classes
of objects, CA, CB, identified with points in Rd , and the aim is to build,
by minimizing a certain error function, a classification rule, i.e., a function
that labels as member of CA or member of CB an entry x ∈ Rd whose class
membership is unknown. See e.g. [3, 6, 8, 10, 16] for comprehensive surveys.

We assume full distributional knowledge: we are given a random vector
(X, Y ) in Rd ×{−1, 1}; the d-variate random vectorX models the coordinates
representing objects and Y models class membership, where we identify the
value 1 (respectively −1) with class CA (respectively CB), and assume the
distribution of the vector (X,Y ) to be known.

In practical settings, one usually has a data setD = {(x1, y1), . . . , (xp, yp)} ⊂
Rd ×{−1, 1}, assumed to be a random sample of the random vector (X, Y ),
and then the distribution of (X, Y ) is determined (estimated) from the sample
by one of a number of procedures, as reviewed in e.g. [3], thus fulfilling this
full-distributional knowledge assumption. For instance, in Bayesian models,
a prior distribution for (X, Y ) is assumed to be given and then updated af-
ter obtaining the sample D; in nonparametric models, one assumes (X, Y )
to be uniformly distributed over the finite set D, or represented via a kernel
as a mixture of densities (e.g. uniform distributions on hypercubes centered
at the data points); in parametric approaches, (X,Y ) is assumed to have a
distribution known up to some parameters (e.g. gaussian distributions with
unknown mean values and covariances), which are estimated by standard
point-estimation methods once D becomes available.

Classification will be obtained according to a linear rule, defined via a
hyperplane, as follows.
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Let H def
=
(
Rd \ {0}) × R. For any pair σ

def
= (u, β) ∈ H, define the

halfspaces and hyperplanes

H#(σ) = H#(u, β)
def
= { x ∈ Rd 〈 u ; x 〉#β }

where # ∈ {≤, <,=,≥, >}. Note that these sets all remain the same when
σ is multiplied by any strictly positive constant, but not when the sign is in-
versed. In fact we will use the halfspace H<(σ) to discriminate elements from
CA, as opposed to those of CB. Therefore we say we separate by a halfspace
(or oriented hyperplane), and the sign of σ is thus part of the information.
We will also speak of the ‘halfspace’ σ by an abuse of terminology.

Given σ = (u, β) ∈ H, x ∈ Rd and y ∈ {−1, 1}, we will say that (x, y)
is correctly classified by σ iff y〈 u ; x 〉 < yβ, which occurs iff x ∈ H<(yσ).
Otherwise, (x, y) is said to be misclassified by σ.

When (x, y) ∈ Rd × {−1, 1} is misclassified by σ, a penalty (misclassifi-
cation cost) is incurred. This penalty is assumed to be proportional to the
distance to the halfspace of correctly classified points, as detailed later.

Distances are measured according to gauges γ in Rd, see e.g. [15, 7, 9]
and Section 2, and the γ-distance of a point a ∈ Rd to H#(σ) is then

dγ(a,H
#(σ))

def
= inf{ γ(x− a) x ∈ H#(σ) }, (1)

where this infimum is reached when # ∈ {≤,=,≥}.
Gauges γA and γB are given to measure distances to halfspaces, and

thus misclassification costs: for σ and (x, y) given, the misclassification cost
c((x, y), σ) associated with (x, y) when σ is used as classifier is defined as

c((x, y), σ)
def
=

{
dγA(x,H<(σ)), if y = 1
dγB(x,H>(σ)), if y = −1.

(2)

Hence, for a given σ = (u, β) ∈ H, the expected misclassification cost of
(X, Y ) is then given by

f(σ) = E [c((X, Y ), σ)] , (3)

where E [·] denotes expected value.

Classification constraints are allowed in the model: two subsets S∗A, S
∗
B of

Rd are given such that the search for halfspaces is reduced to those which do
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not classify as members of CB points in S∗A and do not classify as members
of CA points in S∗B. In other words, σ must satisfy

S∗A ⊂ H≤(σ), S∗B ⊂ H≥(σ), (4)

or equivalently,

sup{ 〈 u ; a 〉 a ∈ S∗A } ≤ β ≤ inf{ 〈 u ; b 〉 b ∈ S∗B },

where sup{ 〈 u ; a 〉 a ∈ S∗A } = −∞ (respectively inf{ 〈 u ; b 〉 b ∈ S∗B } =
+∞) when S∗A = ∅ (respectively S∗B = ∅).

Since (4) is satisfied iff

sup{ 〈 u ; a 〉 a ∈ cl(conv(S∗A)) } ≤ β ≤ inf{ 〈 u ; b 〉 b ∈ cl(conv(S∗B)) },

where cl(conv(Z)) stands for the closure of the convex hull of the set Z, we
can assume wlog that S∗A, S

∗
B are closed convex sets.

We are concerned in this paper with the existence of optimal hyperplanes
passing through many points. The results are simplified if we can assert
that sup{ 〈 u ; a 〉 a ∈ S∗A } and inf{ 〈 u ; b 〉 b ∈ S∗B }, when finite,
are attained. A sufficient condition for this to happen is to impose some
structure on S∗A, S

∗
B. We make the following

Assumption 1 S∗A and S∗B are asymptotically conical sets, i.e., there ex-
ist compact convex sets MA,MB and closed convex cones KA, KB (possibly
degenerated to {0}) such that

S∗A = MA +KA

S∗B = MB +KB.
(5)

See [4] for further results on this concept.

When S∗A or S∗B are non-empty, σ satisfying (4) may not exist. We exclude
this by assuming throughout the paper linear separability of S∗A and S∗B :

Assumption 2 There exists σ ∈ H satisfying (4).

Moreover, for reasons that will become apparent later, we also impose the
following:

Assumption 3 0 < τ < 1, where τ
def
= P [Y = 1] .
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Assumption 4 Let ‖·‖ denote the Euclidean norm in Rd . Then, E [‖X‖|(Y = 1)]
and E [‖X‖|(Y = −1)] , the expected values of ‖X‖ conditioned to the events
(Y = 1) and (Y = −1), exist and are finite.

Any optimal solution to

min f(σ)
s.t. σ ∈ H, S∗A ⊂ H≤(σ), S∗B ⊂ H≥(σ)

(6)

will be called hereafter an optimal separating halfspace.

Our aim is to study properties of optimal separating halfspaces in the
general setting described above. With this, we provide deeper insight, and
obtain a new algorithmic approach, to the work of [11], where problem (6) is
addressed in the particular case that the distribution of (X,Y ) is uniformly
distributed on the finite set D, and no constraints of type (4) are allowed.

In particular, it is shown in Theorem 2 below that optimal separating
halfspaces exist. Moreover, under stronger assumptions on X and the gauges
γA, γB, the search for an optimal separating halfspace may be reduced by
Theorems 13 and 15, to halfspaces with boundary containing sufficiently
many points of the support of X.

The remainder of the paper is structured as follows. In Section 2 we recall
certain properties of gauge distances, which enable us to rewrite the objec-
tive function and view problem (6) as a nonlinear nonconvex optimisation
problem in d+ 1 variables.

Section 3 discusses existence and balancing properties, extending those
previously derived by the authors in [14] for the case of uniform distribution
on D. Section 4 then concerns the localization results for optimal separating
halfspaces, first for the particular case in which the gauges are induced by a
common norm, and then in the more general setting in which different norms
(or gauges) are used for the different classes.

The following notation will be used. For a given set S ⊂ Rd , conv(S) will
denote its convex hull. For a convex set S, let dim(S) denote the dimension
of S, and relint(S) its relative interior. For an arbitrary S, ext(S) will denote
the set of extreme points of the closure of conv(S).

For any random vector Z, let SZ be its support, i.e., the smallest closed
set S satisfying P [Z ∈ S] = 1. Hence, SX|Y=1 and SX|Y=−1 represent the
supports of the variable X conditioned to the values of Y, i.e., the distribution
of X for classes CA and CB.
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2 Misclassification costs evaluation

As announced in Section 1, misclassification costs are measured through dis-
tances, these being induced by gauges.

We recall that, given a compact convex set Γ containing the origin in its
interior, the gauge γ with unit ball Γ is defined as

γ(x)
def
= min{ t ≥ 0 x ∈ tΓ }.

The dual (or polar) γ◦ of γ is

γ◦(v)
def
= max{ 〈 v ; y 〉 γ(y) ≤ 1 } = max{ 〈 v ; y 〉 y ∈ Γ },

which is well-defined and also a gauge on (the dual space of) Rd , see e.g.
[9, 15]. Note that this definition immediately implies the generalized Cauchy-
Schwarz inequality 〈 v ; x 〉 ≤ γ◦(v)γ(x).

Since the γ-distance from a point x to H#(σ) equals 0 when x ∈ H#(σ),
and equals dγ(x,H

=(σ)) otherwise, the formula in [13] for γ-distances to
hyperplanes yields the following expression for the γ-distance to halfspaces:

dγ(x,H
<(u, β)) = dγ(x,H

≤(u, β)) =

(〈 u ; x 〉 − β
γ◦(−u)

)+

(7)

dγ(x,H
>(u, β)) = dγ(x,H

≥(u, β)) =

(
β − 〈 u ; x 〉

γ◦(u)

)+

, (8)

where (·)+ = max{·, 0}.
Expressions (7)-(8) enable us to rephrase in a more manageable form the

expected misclassification cost f(σ) defined in (3):

f(σ) = E [c((X,Y ), σ)]

= τE [c((X, 1), σ)|Y = 1] + (1− τ)E [c((X,−1), σ)|Y = −1] .

Hence, by (2),

f(σ) = τE [dγA(X,H<(σ))|Y = 1] + (1− τ)E [dγB(X,H>(σ))|Y = −1] .

Denote respectively by FA and FB the distributions of the random vectors
X|(Y = 1) and X|(Y = −1). Then,

f(σ) = τ

∫ (〈 u ; a 〉 − β
γ◦A(−u)

)+

dFA(a) + (1− τ)

∫ (
β − 〈 u ; b 〉

γ◦B(u)

)+

dFB(b).

(9)
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Remark 1 The integrals in (9) are well defined and finite by Assumption 4.

Indeed, the first integrand is non-negative and bounded above by ‖u‖‖a‖+|β|
γ◦A(−u)

,

thus the first integral is bounded above by ‖u‖E[‖X‖|Y=1]+|β|
γ◦A(−u)

. Similarly, the

second integrand is also non-negative, bounded above by ‖u‖‖b‖+|β|
γ◦B(u)

, thus the

second integral is bounded above by ‖u‖E[‖X‖|Y=−1]+|β|
γ◦B(u)

. Hence,

f(σ) ≤ τ
‖u‖E [‖X‖|Y = 1] + |β|

γ◦A(−u)
+ (1− τ)

‖u‖E [‖X‖|Y = −1] + |β|
γ◦B(u)

< +∞,

as asserted 2

Since for any λ > 0 we have H#(λσ) = H#(σ), the optimization problem
(6) can be reformulated as

min τ
γ◦A(−u)

∫
(〈 u ; a 〉 − β)+ dFA(a) + 1−τ

γ◦B(u)

∫
(β − 〈 u ; b 〉)+ dFB(b)

s.t. γ(u) = 1
sup{ 〈 u ; a 〉 a ∈ S∗A } ≤ β ≤ inf{ 〈 u ; b 〉 b ∈ S∗B },

(10)
where γ is an arbitrary fixed gauge.

Some properties of this optimization problem are discussed in the next
section.

3 General properties

3.1 Existence of optimal solutions

Problem (10) is, in general, non-differentiable, non-convex, and may have an
unbounded feasible region (for instance, when S∗A and S∗B are empty, since β
is then unconstrained). However, optimal solutions always exist. Indeed one
has

Theorem 2 Under assumptions 1-4 there always exists an optimal separat-
ing halfspace. Moreover, if SX|Y=1, SX|Y=−1 are compact sets, then there ex-
ists an optimal separating halfspace, the boundary of which intersects SX|Y=1∪
SX|Y=−1 ∪ S∗A ∪ S∗B.
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Proof. Let us first show that an optimal separating halfspace exists.
We start by constructing an M > 0 such that, if |β| > M, then no (u, β) ∈ H
with γ(u) = 1 can be optimal to (10).

1. By Assumptions 3–4 and the equivalence of norms in Rd, there exists
M0 > 0 such that

P [γ◦(X) ≤M0|Y = −1] ≥ 1

2
.

Then for any β ≥ M0 and u with γ(u) = 1, the Cauchy-Schwartz
inequality yields

P [〈 u ; X 〉 ≤ β|Y = −1] ≥ P [γ(u)γ◦(X) ≤ β|Y = −1]

= P [γ◦(X) ≤ β|Y = −1]

≥ P [γ◦(X) ≤M0|Y = −1] ≥ 1

2
.

In other words, for any β ≥M0 and u with γ(u) = 1 one has

P
[
X ∈ H≤(u, β)|Y = −1

] ≥ 1

2

and thus

f(u, β) ≥ 1− τ
γ◦B(u)

∫
(β − 〈 u ; b 〉)+ dFB(b)

≥ 1− τ
γ◦B(u)

∫

H≤(u,M0)

(β − 〈 u ; b 〉)+ dFB(b)

=
1− τ
γ◦B(u)

∫

H≤(u,M0)

(β − 〈 u ; b 〉) dFB(b)

=
1− τ
γ◦B(u)

βP
[
X ∈ H≤(u,M0)|Y = −1

]− 1− τ
γ◦B(u)

∫

H≤(u,M0)

〈 u ; b 〉dFB(b)

≥ 1− τ
γ◦B(u)

β

2
− 1− τ
γ◦B(u)

∫
|〈 u ; b 〉|dFB(b).

Let now (u0, β0) be any feasible solution for (10). Then, a sufficient
condition for β ≥ M0 to satisfy f(u, β) > f(u0, β0) for all u with
γ(u) = 1 is that

1− τ
γ◦B(u)

β

2
− 1− τ
γ◦B(u)

∫
|〈 u ; b 〉|dFB(b) > f(u0, β0) ∀u, γ(u) = 1,
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or, equivalently,

β > 2

∫
|〈 u ; b 〉|dFB(b) +

2γ◦B(u)

1− τ f(u0, β0) ∀u, γ(u) = 1.

In particular, defining M1 as

M1 = max
γ(u)=1

[
2

∫
|〈 u ; b 〉|dFB(b) +

2γ◦B(u)

1− τ f(u0, β0)

]
,

(which exists by continuity of the expression and compactness of the

unit ball of γ) one has for any β > M ′ def
= max{M0,M1} that f(u, β) >

f(u0, β0) for all u with γ(u) = 1.

2. Similarly one can find M ′′ > 0 such that, for any β < −M ′′, f(u, β) >
f(u0, β0) for all u with γ(u) = 1.

3. defining M
def
= max{M ′,M ′′}, one has

f(u, β) > f(u0, β0) for all u, β with γ(u) = 1, |β| > M .

In particular, |β0| ≤M. This implies that Problem (10) can be rephrased
as

min τ
γ◦A(−u)

∫
(〈 u ; a 〉 − β)+ dFA(a) + 1−τ

γ◦B(u)

∫
(β − 〈 u ; b 〉)+ dFB(b)

s.t. γ(u) = 1
|β| ≤M
sup{ 〈 u ; a 〉 a ∈ S∗A } ≤ β ≤ inf{ 〈 u ; b 〉 b ∈ S∗B }.

(11)
The objective function of (11) is continuous on its feasible region R, which is
compact and, since (u0, β0) ∈ R, it is non-empty. Hence, an optimal solution
exists, as asserted.

Assume now that SX|Y=1 and SX|Y=−1 are compact sets. Let σ0 = (u0, β0)
be an optimal separating halfspace, existence of which has just been shown,
and consider the linear program in the one-dimensional variable β

min τ
γ◦A(−u0)

∫
H≥(σ0)

(〈 u0 ; a 〉 − β) dFA(a) + 1−τ
γ◦B(u0)

∫
H≤(σ0)

(β − 〈 u0 ; b 〉) dFB(b)

s.t. sup{ 〈 u0 ; x 〉 x ∈ H≤(σ0) ∩ (SX|Y=1 ∪ SX|Y=−1

) } ≤ β
inf{ 〈 u0 ; x 〉 x ∈ H≥(σ0) ∩ (SX|Y=1 ∪ SX|Y=−1

) } ≥ β
sup{ 〈 u0 ; a 〉 a ∈ S∗A } ≤ β ≤ inf{ 〈 u0 ; b 〉 b ∈ S∗B }

(12)



Carrizosa & Plastria / Optimal separating halfspace 10

One immediately has that β0 is not only feasible but also optimal for
(12). Moreover, since H≤(σ0) ∪ H≥(σ0) = Rd and SX is nonempty, the
set of nontrivial constraints of problem (12) is nonempty. This implies that
its feasible region is an interval with at least one finite endpoint. Since the
objective is linear and bounded below, there exists an optimal solution β
which is an endpoint, thus at least one of the constraints of (12) is binding
at β. In other words, at least one of the four following conditions hold:

sup{ 〈 u0 ; x 〉 x ∈ H≤(σ0) ∩ (SX|Y=1 ∪ SX|Y=−1) } = β (13)

inf{ 〈 u0 ; x 〉 x ∈ H≥(σ0) ∩ (SX|Y=1 ∪ SX|Y=−1) } = β (14)

sup{ 〈 u ; a 〉 a ∈ S∗A } = β (15)

inf{ 〈 u ; b 〉 b ∈ S∗B } = β. (16)

Since SX|Y=1, SX|Y=−1 are compact, their intersection with H≤(σ0) or
H≥(σ0) define compact sets. Hence, the supremum and infimum in (13)-(14)
are attained. Moreover, since, by assumption, S∗A, S

∗
B are asymptotically con-

ical, the same happens for the supremum and infimum of (15)-(16), if finite,
must be attained. Indeed, by (5), one has

sup
a∈S∗A
〈 u ; a 〉 = sup

a∈MA+KA

〈 u ; a 〉

= sup
m∈MA

〈 u ; m 〉+ sup
k∈KA
〈 u ; k 〉

=

{
maxm∈MA

〈 u ; m 〉, when 〈 u ; k 〉 ≤ 0 for all k ∈ KA

+∞, otherwise

Similarly,

inf
b∈S∗B
〈 u ; b 〉 =

{
minm∈MB

〈 u ; m 〉, when 〈 u ; k 〉 ≥ 0 for all k ∈ KB

−∞, otherwise

Moreover, the optimality of β for (12) implies that (u0, β) is an optimal
separating halfspace satisfying the conditions of the Theorem. 2

Remark 3 Even when feasible, optimal solutions may not exist if Assump-
tion 3 is dropped. Indeed, if we take X to be an arbitrary random vector
with support SX = Rd , and Y degenerate to 1, then it is clear that, for
any u ∈ H, if {βn} is a sequence converging to +∞, then f(u, βn) tends
to 0, a value which is not attained at any β. Hence, no optimal separating
hyperplane exists in this degenerate case. 2
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3.2 Balancing property

The search of an optimal separating halfspace, whose existence is shown in
Theorem 2, can be further restricted to those halfspaces that balance the
mass of misclassified points of populations CA and CB in the way specified
below:

Definition 4 We say that σ = (u, β) ∈ H balances (X, Y ) if

τ

γ◦A(−u)
P
[
X ∈ H≥(σ)|Y = 1

] ≥ 1− τ
γ◦B(u)

P [X ∈ H<(σ)|Y = −1] (17)

τ

γ◦A(−u)
P [X ∈ H>(σ)|Y = 1] ≤ 1− τ

γ◦B(u)
P
[
X ∈ H≤(σ)|Y = −1

]
(18)

Theorem 5 For a given u 6= 0, the set of β such that (u, β) is an optimal
solution to (10) is a (possibly empty or degenerate) closed interval. Moreover,
all σ = (u, β) optimal to (10) satisfy

1. If supa∈S∗A〈 u ; a 〉 < β < infb∈S∗B〈 u ; b 〉, then σ satisfies (17)-(18),
i.e., σ balances X.

2. If β = infb∈S∗B〈 u ; b 〉, then σ satisfies (17).

3. If β = supa∈S∗A〈 u ; a 〉, then σ satisfies (18).

Proof. Consider any fixed u 6= 0, and look for an optimal choice for a
corresponding β. The objective for fixed u then looks like

fu(β) =
τ

γ◦A(−u)

∫
(〈 u ; a 〉 − β)+ dFA(a)+

1− τ
γ◦B(u)

∫
(β − 〈 u ; b 〉)+ dFB(b).

Function fu is convex since it is the sum of integrals of convex functions,
finite everywhere, and having compact level sets. Hence, the set of optimal
β is a closed interval.

Moreover, a necessary and sufficient condition for optimality at a given β∗

is that 0 belongs to ∂fu(β∗) +N(β∗), where ∂fu(β∗) is the subdifferential of
fu at β∗, and N(β∗) is the normal cone of [supa∈S∗A〈 u ; a 〉, infb∈S∗B〈 u ; b 〉]
at β∗.

The subdifferential is easily determined (see e.g. [9] p260-262) :

∂fu(β) =

{
τ

γ◦A(−u)

(
−
∫

H>(σ)

dFA(a)− δAP [X ∈ H=(σ)|Y = 1]

)
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+
1− τ
γ◦B(u)

(∫

H<(σ)

dFB(b) + δBP [X ∈ H=(σ)|Y = −1]

)
: δA, δB ∈ [0, 1]

}

=

{
− τ

γ◦A(−u)
(P [X ∈ H>(σ)|Y = 1] + δAP [X ∈ H=(σ)|Y = 1])

+
1− τ
γ◦B(u)

(P [X ∈ H<(σ)|Y = −1] + δBP [X ∈ H=(σ)|Y = −1]) : δA, δB ∈ [0, 1]

}
,

where the minimum of this set is obtained for δA = 1, δB = 0, and the
maximum for δA = 0, δB = 1. This implies that ∂fu(β) has the form [l1, l2],
with

l1 = − τ
γ◦A(−u)

P
[
X ∈ H≥(σ)|Y = 1

]
+ 1−τ

γ◦B(u)
P [X ∈ H<(σ)|Y = −1]

l2 = − τ
γ◦A(−u)

P [X ∈ H>(σ)|Y = 1] + 1−τ
γ◦B(u)

P
[
X ∈ H≤(σ)|Y = −1

]
.

(19)

For part 1, N(β) = {0}, thus the optimality condition reads 0 ∈ ∂fu(β) =
[l1, l2], which holds iff σ balances X.

For part 2 (respectively part 3), N(β) = [0,+∞[ (respectively N(β) =
]−∞, 0]), and the optimality condition is equivalent to (17) (respectively to
(18)). 2

3.3 Dimension one

The simplest case happens of course when the data points just consist of
single values, i.e. d = 1. Note that all halfspaces are halflines, either of the
form σ = (1, β) =]−∞, β] or σ = (−1, β) = [β,+∞[. Theorem 5 yields:

Corollary 6 In the one-dimensional case, if (1, β∗) is optimal for (10) then
f(1, β∗) ≤ f(−1, β∗) and one of the following conditions hold:

1. maxS∗A < β∗ < minS∗B and

τ

γ◦A(−1)
P [X ≥ β∗|Y = 1] ≥ 1− τ

γ◦B(1)
P [X < β∗|Y = −1]

1− τ
γ◦A(1)

P [X ≤ β∗|Y = −1] ≥ τ

γ◦B(−1)
P [X > β∗|Y = 1]

2. β∗ = minS∗A and

τ

γ◦A(−1)
P [X ≥ β∗|Y = 1] ≥ 1− τ

γ◦B(1)
P [X < β∗|Y = −1]
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3. β∗ = maxS∗B and

1− τ
γ◦A(1)

P [X ≤ β∗|Y = −1] ≥ τ

γ◦B(−1)
P [X > β∗|Y = 1]

2

In the proof of Theorem 5, the convex minimization problem in one vari-
able

min fu(β)
s.t. S∗A ⊂ H≤(u, β)

S∗B ⊂ H≥(u, β)
β ∈ R

(20)

has been addressed for a fixed u. In fact, optimality conditions at β yield the
balancing property of Theorem 5. In the particular case in which SX|Y=1,
SX|Y=−1 are finite, it is shown below that (20) can be solved in time propor-
tional to |SX |+ T, where T is the time needed to calculate supa∈S∗A〈 u ; a 〉
and infb∈S∗B〈 u ; b 〉. Indeed, one has

Theorem 7 Let u ∈ Rd, u 6= 0. Let T denote the time needed to determine
supa∈S∗A〈 u ; a 〉 and infb∈S∗B〈 u ; b 〉. Then, (20) can be solved in O(|SX |+T )
time.

Proof. Function fu is a convex piecewise linear function, having at most
|SX | breakpoints, namely, those in the set {〈 u ; x 〉 : x ∈ SX}.

As shown below, an adaptation of the algorithm of Balas-Zemel, [2] can be
used to solve (20) in O(|SX|Y=1|+ |SX|Y=−1|) time in the unconstrained case
in which S∗A = S∗B = ∅. Since fu is convex, an optimal solution for the con-
strained problem is obtained by finding, in O(T ) time, the projection of the
unconstrained optimal solution onto the feasible set [supa∈S∗A〈 u ; a 〉, infb∈S∗B〈 u ; b 〉],
yielding the result.

Hence we can assume that S∗A = S∗B = ∅, and we need to show that, in
this case, O(|SX |) time suffices.

For each β and # ∈ {≤, <,=,≥, >}, define

ω#
A (β)

def
=

∑
a∈SX|Y=1: 〈 u ; a 〉#β P [X = a|Y = 1]

ω#
B (β)

def
=

∑
b∈SX|Y=−1: 〈 u ; b 〉#β P [X = b|Y = −1] .

(21)
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Observe that the coefficients in (21) at β∗ can be calculated from those
at β without evaluating all points in the sets SX|Y=1, SX|Y=−1. Indeed, for
β1 ≤ β2 one has

ω≥A(β2) = ω≥A(β1)−
∑

a∈SX|Y=1:β1≤〈 u ; a 〉<β2

P [X = a|Y = 1]

ω>A(β2) = ω>A(β1)−
∑

a∈SX|Y=1:β1<〈 u ; a 〉≤β2

P [X = a|Y = 1]

ω≤B(β2) = ω≤B(β1) +
∑

b∈SX|Y=−1:β1<〈 u ; b 〉≤β2

P [X = b|Y = −1]

ω<B(β2) = ω<B(β1) +
∑

b∈SX|Y=−1:β1≤〈 u ; b 〉<β2

P [X = b|Y = −1] .

In particular, the coefficients in β2 (respect. β1) are obtained from those
in β1 (respect. β2) in time proportional to |{x ∈ SX : β1 ≤ 〈 u ; x 〉 ≤ β2}|.

From (19) we see that the left and right derivatives fu− and fu+ of fu at β
are expressed in terms of the coefficients in (21) as

fu−(β) = −τ
γ◦A(−u)

ω≥A(β) + 1−τ
γ◦B(u)

ω<B(β)

fu+(β) = −τ
γ◦A(−u)

ω>A(β) + 1−τ
γ◦B(u)

ω≤B(β).
(22)

Hence, a binary search can be implemented as follows: starting with the

sets S0
A

def
= SX|Y=1, S

0
B

def
= SX|Y=−1, at each stage k a median βk of the set

{〈 u ; x 〉 : x ∈ SkA ∪ SkB} is found (in time proportional to |SkA| + |SkB|);
the directional derivatives fu−(βk), fu+(βk) at βk are obtained following (22),
thus in time proportional to |SkA| + |SkB|. With this information, we check
whether βk is optimal (i.e., whether fu−(βk) ≤ 0 ≤ fu+(βk)). If it is the
case we stop. Otherwise, if fu−(βk) > 0, then the search can be reduced to

those β < βk, i.e., to the sets Sk+1
A

def
= {a ∈ SkA : 〈 u ; a 〉 < βk} and

Sk+1
B

def
= {b ∈ SkB : 〈 u ; b 〉 < βk}. Similarly, if fu+(βk) < 0, then the

search can be reduced to the sets Sk+1
A

def
= {a ∈ SkA : 〈 u ; a 〉 > βk} and

Sk+1
B

def
= {b ∈ SkB : 〈 u ; b 〉 > βk}. In any case, the cardinality of the

candidate set (from which medians must be calculated) is halved at each
stage. Hence, the total process can be done in time proportional to |SX |, as
asserted. 2

This result immediately gives a linear-time algorithm for the one-dimensional
case. Indeed, by using Theorem 7 to find β optimal for (20) with u = 1 and
then u = −1, one obtains the following
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Theorem 8 In the one-dimensional case d = 1, with finite support, a sepa-
rating hyperplane (point) is obtained in time O(|SX | + T, ) where T denotes
the time needed to calculate the maxima and minima of S∗A, S

∗
B.

2

4 Localization properties

In this section we show that, when the support SX of X and the sets S∗A, S
∗
B

have a certain structure (which includes the case in which SX is a finite
union of possibly degenerate polytopes), an optimal hyperplane exists passing
through many points, this number being related to the dimensionality of the
convex hull of SX , S

∗
A and S∗B.

We start by looking at the single-norm case: there exist a norm ν (i.e.,
ν is a gauge such that ν(x) = ν(−x) for all x) and positive constants δA, δB
such that

γA = δAν, γB = δBν, (23)

and generalize later the results to the case in which different norms or gauges
are used as γA and γB.

4.1 Single-norm case

In the single-norm case (23), the cost structure defined in (2) admits the
simpler form

c((x, y), σ) =

{
δAdν(x,H

<(σ)), if y = 1
δBdν(x,H

>(σ)), if y = −1,

showing how constants δA, δB model the different importance of classifying
in CA an element of CB and viceversa. Moreover, since

γ◦A(−u) = γ◦A(u) =
1

δA
ν◦(u), γ◦B(u) =

1

δB
ν◦(u),

choosing γ = ν◦, Problem (10) can be rephrased as

min τδA
ν◦(u)

∫
(〈 u ; a 〉 − β)+ dFA(a) + (1−τ)δB

ν◦(u)

∫
(β − 〈 u ; b 〉)+ dFB(b),

s.t. ν◦(u) = 1
sup{ 〈 u ; a 〉 a ∈ S∗A } ≤ β ≤ inf{ 〈 u ; b 〉 b ∈ S∗B }
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or, equivalently,

min τδAE
[
(〈 u ; X 〉 − β)+ |Y = 1

]
+ (1− τ)δBE

[
(β − 〈 u ; X 〉)+ |Y = −1

]
s.t. ν◦(u)=1

sup{ 〈 u ; a 〉 a ∈ S∗A } ≤ β ≤ inf{ 〈 u ; b 〉 b ∈ S∗B }
(24)

For the particular case in which X takes just a finite set of values, the
objective function in (24) simplifies to

τδA
∑

a∈SX|Y=1
P [X = a|Y = 1] (〈 u ; a 〉 − β)+ +

+(1− τ)δB
∑

b∈SX|Y=−1
P [X = b|Y = −1] (β − 〈 u ; b 〉)+ ,

(25)

an expression equivalent to the following program introduced by Mangasar-
ian, [11] and later addressed in [14]

min τδA
∑

a∈SX|Y=1
P [X = a|Y = 1] (〈 u ; a 〉 − β)+ +

+(1− τ)δB
∑

b∈SX|Y=−1
P [X = b|Y = −1] (β − 〈 u ; b 〉)+

s.t. u ∈ Rd, β ∈ R.
(26)

Theorem 2 shows that, for compact SX|Y=1, SX|Y=−1 an optimal halfspace
exists with boundary intersecting SX ∪ S∗A ∪ S∗B. As shown below, we can
strengthen this result if we assume, roughly speaking, that the intersection
of SX|Y=1 and SX|Y=−1 with any halfspace has a finite number of extreme
points.

We formalize this by introducing the concept of quasipolytopal set.

Definition 9 A set S ⊂ Rd is said to be quasipolytopal if for any # ∈ {≤
,=,≥} and σ ∈ H, the set conv(S ∩H#(σ)) is a polytope.

Remark 10 For a convex set S to be quasipolytopal, it is necessary and
sufficient to be a polytope. Indeed, if S is a polytope, then, by definition, S
is quasipolytopal. Conversely, given a convex quasipolytopal set S, it follows
that S is bounded, since else there would exist σ ∈ H such that S ∩H≤(σ)
would be an unbounded polyhedron, thus would not be a polytope. Hence,
S is bounded, and we can take some σ ∈ H such that S ⊂ H≤(σ). For such
a σ we have by assumption that S = conv(S ∩H≤(σ)) is a polytope.

However, for S nonconvex, quasipolytopal sets which are not polytopes
exist, as discussed in the following Remark. 2
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Remark 11 It follows from the definition that, if S1, . . . , Sn are quasipoly-
topal sets, then

⋃n
i=1 Si is also quasipolytopal. In particular, since a polytope

is trivially quasipolytopal, the finite union of polytopes is also quasipoly-
topal. Taking polytopes reduced to singletons, we obtain that any finite set
is quasipolytopal.

However, the intersection of two quasipolytopal sets may not be quasipoly-
topal: take e.g. in 2 dimensions, the quasipolytopal sets

S1 = {(x1, x2)|x2
1 + x2

2 = 1} ∪ {(x1, x2)| max{|x1|, |x2|} = 2}
S2 = {(x1, x2)|x2

1 + x2
2 = 1} ∪ {(x1, x2)| max{|x1|, |x2|} = 3},

whose intersection has as convex hull a disc, which is not polytopal. 2

Before obtaining the announced property, a separation result is needed.

Lemma 12 Let Γ1, Γ2 be non-empty polytopes in Rd with relint(Γ1) ∩
relint(Γ2) = ∅. Then, there exists a hyperplane σ such that Γ1 ⊂ H≤(σ),Γ2 ⊂
H≥(σ), and H=(σ) contains at least max{dim(Γ1), dim(Γ2)} affinely inde-
pendent points of ext(Γ1) ∪ ext(Γ2).

Proof. Without loss of generality, we can assume that dim(Γ1) ≥ dim(Γ2).
Consider the polytope Γ1−Γ2, and we will show the result separately for the
cases in which Γ1 − Γ2 has not or has full dimension.

For dim(Γ1− Γ2) < d, we can take σ = (u, β) ∈ H, with β ≤ 0, such that
Γ1 − Γ2 ⊂ H=(σ). Hence,

〈 u ; x1 − x2 〉 = β ∀x1 ∈ Γ1, x2 ∈ Γ2.

Let x0
2 ∈ Γ2. Setting β∗ = β + 〈 u ; x0

2 〉, one has

〈 u ; x1 〉 = β∗ ∀x1 ∈ Γ1

〈 u ; x2 〉 = 〈 u ; x0
2 〉 = β∗ − β ≥ β∗ ∀x2 ∈ Γ2.

Hence,

Γ1 ⊂ H=(u, β∗)

Γ2 ⊂ H≥(u, β∗),

and H=(u, β∗) contains 1 +dim(Γ1) affinely independent points of ext(Γ1) ⊂
ext(Γ1) ∪ ext(Γ2), as asserted.
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Now we consider the remaining case in which dim(Γ1 − Γ2) = d. By
assumption,

0 6∈ relint(Γ1)− relint(Γ2) = relint(Γ1 − Γ2),

see Corollary 6.6.2 of [15]. Hence, by Theorem 11.3 of [15], there must exist
a hyperplane separating the origin and Γ1 − Γ2. In other words, there must
exist σ = (u, β) ∈ H such that

0 ∈ H≥(σ)

Γ1 − Γ2 ⊂ H≤(σ).

This means

β ≤ 0 (27)

〈 u ; x1 〉 ≤ 〈 u ; x2 〉+ β ∀x1 ∈ Γ1, x2 ∈ Γ2. (28)

Set β∗ = maxx1∈Γ1〈u, x1〉 − β. Then, (27)-(28) imply that

〈u, x1〉 ≤ β∗ ∀x1 ∈ Γ1 (29)

〈u, x2〉 ≥ β∗ ∀x2 ∈ Γ2. (30)

Define the set T ⊂ Rd × R

(u, β) ∈ T iff

{ 〈 u ; x1 〉 ≤ β ∀x1 ∈ ext(Γ1)
〈 u ; x2 〉 ≥ β ∀x2 ∈ ext(Γ2)

Since Γ1,Γ2 are polytopes, T is polyhedral. Define also the affine function
g,

g(u, β) =
∑

x1∈ext(Γ1)

(β − 〈 u ; x1 〉) +
∑

x2∈ext(Γ2)

(〈 u ; x2 〉 − β),

and the polyhedron P,

(u, β) ∈ P iff

{
(u, β) ∈ T
g(u, β) = g(u, β∗)

Clearly P is non-empty: by (29)-(30), (u, β∗) ∈ P. Note also that g(u, β) ≥
0 for any (u, β) ∈ P , so g(u, β∗) ≥ 0. Now in case g(u, β∗) = 0 we would
have by (29)-(30) that

〈 u ; x1 〉 = β∗ ∀x1 ∈ ext(Γ1)

〈 u ; x2 〉 = β∗ ∀x2 ∈ ext(Γ2),
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and thus Γ1−Γ2 ⊂ H=(u, 0), contradicting the assumption that Γ1−Γ2 has
full dimension. Hence,

g(u, β∗) > 0. (31)

Now if (0, β) ∈ P, we would have by definition of T that 0 ≤ β ≤ 0, i.e.,
β = 0, or (0, 0) ∈ P , in contradiction with (31). It follows that

u 6= 0 ∀(u, β) ∈ P. (32)

Moreover, P is bounded. Indeed, if it were not the case, P would contain
a ray. In other words, there would exist (u, β) 6= (0, 0) such that

〈 u ; x1 〉 ≤ β ∀x1 ∈ ext(Γ1)
〈 u ; x2 〉 ≥ β ∀x2 ∈ ext(Γ2)∑

x1∈ext(Γ1)(β − 〈 u ; x1 〉) +
∑

x2∈ext(Γ2)(〈 u ; x2 〉 − β) = 0,

implying that
〈 u ; x1 〉 = β ∀x1 ∈ ext(Γ1)
〈 u ; x2 〉 = β ∀x2 ∈ ext(Γ2),

thus Γ1−Γ2 ⊂ H=(u, 0), which contradicts the assumption that Γ1−Γ2 has
full dimension. Hence, P is bounded.

Let σ be an extreme point of P, which, by (32), defines a hyperplane. We
then have by construction that

Γ1 ⊂ H≤(σ)

Γ2 ⊂ H≥(σ),

and, since at least d linearly independent inequalities defining P must be
binding at σ, at least d ≥ max{dim(Γ1), dim(Γ2)} affinely independent points
of ext(Γ1) ∪ ext(Γ2) are contained in H=(σ), as asserted. 2

Theorem 13 In the single-norm case, when SX|Y=1, SX|Y=−1, S
∗
A, S

∗
B are

quasipolytopal sets, there exists an optimal σ such that H=(σ) passes through
at least d∗ affinely independent points of ext(SX|Y=1)∪ext(SX|Y=−1)∪ext(S∗A)∪
ext(S∗B), where d∗ is defined as

d∗ = max{dim(conv(SX|Y=1)), dim(conv(SX|Y=−1)), dim(S∗A), dim(S∗B)}.

Proof. Let σ0 = (u0, β0) define an optimal solution to (24), existence
of which has been guaranteed in Theorem 2. In particular,

S∗A ⊂ H≤(σ0), S∗B ⊂ H≥(σ0).
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Let us consider separately the cases in which the optimal value f(σ0) is
zero or it is strictly positive.

Case f(σ0) = 0. This implies that

SX|Y=1 ∪ S∗A ⊂ H≤(σ0)

SX|Y=−1 ∪ S∗B ⊂ H≥(σ0).

Since, by assumption, SX|Y=1, SX|Y=−1, S
∗
A, S

∗
B are quasipolytopal sets, we

have that

conv((SX|Y=1 ∪ S∗A) ∩H≤(σ0)) = conv(SX|Y=1 ∪ S∗A)

conv((SX|Y=−1 ∪ S∗B) ∩H≥(σ0)) = conv(SX|Y=−1 ∪ S∗B)

and both are polytopes, separated by H=(σ0).

In case relint(conv(SX|Y=1∪S∗A))∩ relint(conv(SX|Y=−1∪S∗B)) 6= ∅, then

conv(SX|Y=1 ∪ S∗A) ⊂ H=(σ0)

conv(SX|Y=−1 ∪ S∗B) ⊂ H=(σ0).

and so

ext(SX|Y=1) ∪ ext(SX|Y=−1) ∪ ext(S∗A) ∪ ext(S∗B) ⊂ H=(σ0),

showing σ0 satisfies the conditions.

On the other hand, in case relint(conv(SX|Y=1∪S∗A))∩relint(conv(SX|Y=−1∪
S∗B)) = ∅, the hyperplane σ of Lemma 12 for Γ1 = SX|Y=1 ∪ S∗A and
Γ2 = SX|Y=−1 ∪ S∗B, satisfies the conditions.

Case f(σ0) > 0. Define the set T ⊂ Rd × R as

(u, β) ∈ T iff





〈 u ; x 〉 ≤ β ∀x ∈ H≤(σ0) ∩ ext(SX|Y=1)
〈 u ; x 〉 ≤ β ∀x ∈ H≤(σ0) ∩ ext(SX|Y=−1)
〈 u ; x 〉 ≤ β ∀x ∈ ext(S∗A)
〈 u ; x 〉 ≥ β ∀x ∈ H≥(σ0) ∩ ext(SX|Y=1)
〈 u ; x 〉 ≥ β ∀x ∈ H≥(σ0) ∩ ext(SX|Y=−1)
〈 u ; x 〉 ≥ β ∀x ∈ ext(S∗B).

Since (u0, β0) ∈ T , and by assumption, SX|Y=1 and SX|Y=−1 are quasipoly-
topal, T is a non-empty polyhedron. Moreover, the function g : Rd ×R→ R,

g(u, β) = τδA

∫

a∈H>(σ0)

(〈 u ; a 〉 − β)dFA(a) + (1− τ)δB

∫

b∈H<(σ0)

(β − 〈 u ; b 〉)dFB(b)

= 〈 u ; τδA

∫

a∈H>(σ0)

a dFA(a)− (1− τ)δB

∫

b∈H<(σ0)

b dFB(b) 〉

+β(1− τ)δBP
[
X ∈ H<(σ0)|Y = −1

]− βτδAP
[
X ∈ H>(σ0)|Y = 1

]
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is affine.

Consider the polyhedron P in Rd × R defined as

P = { (u, β) ∈ T g(u, β) = g(u0, β0) },
which is non-empty since (u0, β0) ∈ P.

Moreover,
g(u0, β0) 6= 0, (33)

since otherwise we would have by definition of g that

SX|Y=1 ⊂ H≤(σ0), SX|Y=−1 ⊂ H≥(σ0),

and thus f(σ0) = 0, which is a contradiction. Hence, (33) holds, and thus,

g(u, β) 6= 0 ∀(u, β) ∈ P.
implying that

(0, 0) /∈ P. (34)

Let us show now that P is bounded, and thus a polytope. Indeed, if
unbounded, there would exist some (u, β) 6= (0, 0) such that (λu + u0, λβ +
β0) ∈ P , for all λ ≥ 0. This would mean that we would have

〈 u ; a 〉 ≤ β ∀a ∈ (H≤(σ0) ∩ SX) ∪ S∗A
〈 u ; b 〉 ≥ β ∀b ∈ (H≥(σ0) ∩ SX) ∪ S∗B
g(u, β) = 0

which, by the definition of g, implies that

SX|Y=1 ⊂ H≤(σ0), SX|Y=−1 ⊂ H≥(σ0),

which contradicts again the assumption that the optimal value is strictly
positive.

Therefore P is compact, and hence a polytope. It contains the optimal so-
lution (u0, β0), so any solution minimizing f on P is also an optimal solution
for problem (24). Moreover,

∀(u, β) ∈ P : f(u, β) =
g(u, β)

ν◦(u)

=
g(u0, β0)

ν◦(u)
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So minimizing f on P turns out to be equivalent to maximizing the func-
tion (u, β) 7→ ν◦(u) on P. Since this function is convex, it attains its max-
imum on P at some extreme point σ1 = (u1, β1) of P . Moreover, by (34),
(u1, β1) 6= (0, 0).

Since σ1 is obtained as the point common to d hyperplanes bounding
linearly independent halfspaces defining P , and each such halfspace has as
boundary a hyperplane passing through some point of either ext(conv(SX|Y=1)),
ext(conv(SX|Y=−1)), ext(S∗A) or ext(S∗B), the hyperplaneH=(σ1) passes through
d affinely independent points of the union of the sets above, as asserted. 2

The result in the preceding Theorem is no longer true if the compactness of
the supports, or the quasipolytopal structure of their convex hulls is removed,
as shown in the following example:

Example 14 In Rd, let X|(Y = 1), X|(Y = −1) have unbounded supports

SX|Y=1 = {(a1, a2, . . . , ad) : ad ≥ ea1+...+ad−1}
SX|Y=−1 = {(b1, b2, . . . , bd) : bd ≤ −eb1+...+bd−1}

and let S∗A = S∗B = ∅. It is easy to check that the hyperplane σ = (u1, u2, . . . , ud, β) =
(0, . . . , 0, 1, 0) is the unique hyperplane which separates SX|Y=1 and SX|Y=−1.
Since f(σ) = 0, it is the (unique) optimal solution. However, it does not in-
tersect SX|Y=1 ∪ SX|Y=−1.

Now consider in Rd random vectors whose compact (but not quasipoly-
topal) supports are the spheres centered at the points (0, 0, . . . , 0, 1) and
(0, 0, . . . , 0,−1) and unit radius,

SX|Y=1 = {(a1, a2, . . . , ad) : a2
1 + a2

2 + . . .+ a2
d−1 + (ad − 1)2 ≤ 1}

SX|Y=−1 = {(b1, b2, . . . , bd) : b2
1 + b2

2 + . . .+ b2
d−1 + (bd + 1)2 ≤ 1}

It is easy to check that the hyperplane σ = (u1, u2, . . . , ud, β) = (0, 0, . . . , 0, 1, 0)
is the unique hyperplane which separates SX|Y=1 and SX|Y=−1. It has f(σ) =
0, and is the (unique) optimal solution. However, it intersects SX|Y=1 ∪
SX|Y=−1 at a unique single point, namely, the point of tangency of both
spheres. 2

4.2 Mixed norm or gauge distance

We extend now the previous localization result to the case in which γA, γB
are (possibly different) gauges.
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Theorem 15 Let SX|Y=1, SX|Y=−1, S
∗
A, and S∗B be quasipolytopal sets. Then,

there exists an optimal σ such that H=(σ) passes through at least d∗ − 1
affinely independent points of ext(SX|Y=1)∪ext(SX|Y=−1)∪ext(S∗A)∪ext(S∗B),
where d∗ is defined as

d∗ = max{dim(conv(SX|Y=1)), dim(conv(SX|Y=−1)), dim(S∗A), dim(S∗B)}.

Proof.

Let σ0 = (u0, β0) be an optimal separating hyperplane.

The case f(σ0) = 0 yields the stronger result that H=(σ) passes through
at least d∗ affinely independent points. The proof is identical to the first part
of Theorem 13 and will not be repeated here. Hence, we assume in the sequel
that f(σ0) > 0. Define the functions fA, fB, f

0, g as

fA(u, β) =
τ

γ◦A(−u)

∫

H≥(σ0)

(〈 u ; a 〉 − β) dFA(a)

fB(u, β) =
1− τ
γ◦B(u)

∫

H≤(σ0)

(β − 〈 u ; a 〉) dFB(b)

f 0(u, β) = fA(u, β) + fB(u, β)

g(u, β) =
τ

γ◦A(−u0)

∫

H≥(σ0)

(〈 u ; a 〉 − β) dFA(a) +
1− τ
γ◦B(u0)

∫

H≤(σ0)

(β − 〈 u ; a 〉) dFB(b).

Observe that
g(u0, β0) = f 0(u0, β0) = f(u0, β0),

while g is linear and f 0 is nonlinear.

Define also the set P as

(u, β) ∈ P iff





〈 u ; x 〉 ≤ β ∀x ∈ H≤(σ0) ∩ ext(SX|Y=1)
〈 u ; x 〉 ≤ β ∀x ∈ H≤(σ0) ∩ ext(SX|Y=−1)
〈 u ; x 〉 ≤ β ∀x ∈ ext(S∗A)
〈 u ; x 〉 ≥ β ∀x ∈ H≥(σ0) ∩ ext(SX|Y=1)
〈 u ; x 〉 ≥ β ∀x ∈ H≥(σ0) ∩ ext(SX|Y=−1)
〈 u ; x 〉 ≥ β ∀x ∈ ext(S∗B)
g(u, β) = f(u0, β0).

(35)

We have that

f 0(u, β) = f(u, β) ∀(u, β) ∈ P. (36)
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It is easy to see by similar arguments as used in Theorem 13 that P is a
polytope, with (0, 0) 6∈ P, (u0, β0) ∈ P.

Moreover, both fA and fB are quasiconcave on P, see e.g. [1]. Indeed,
their upper level sets at level α are respectively given by inequalities of the
form

αγ◦A(−u)−
∫

H>(σ0)

(〈 u ; a 〉 − β)dFA(a) ≤ 0

and

αγ◦B(u)−
∫

H<(σ0)

(−〈 u ; b 〉+ β)dFB(b) ≤ 0

which, by convexity of γ◦A and γ◦B, define convex sets.

Consider the biobjective quasiconcave minimization problem on the poly-
tope P

min
(u,β)∈P

(fA(u, β), fB(u, β)) . (37)

Since (u0, β0) minimizes f on H, (36) shows that (u0, β0) also minimizes
f 0 = fA + fB on P. Hence, (u0, β0) is an efficient solution for (37).

It was shown in [5] that in this case the set of edges (one-dimensional
faces) of P constitutes a dominator of P , i.e. for any (u, β) ∈ P there exists
some (u′, β′) on some edge of P with fA(u′, β′) ≤ fA(u, β) and fB(u′, β′) ≤
fB(u, β). Since (u0, β0) ∈ P there is some (u′, β′) belonging to an edge of P
such that

fA(u′, β′) ≤ fA(u0, β0)

fB(u′, β′) ≤ fB(u0, β0),

and thus, by (36),
f(u′, β′) ≤ f(u0, β0).

Since (u0, β0) was assumed to minimize f on P, it follows that (u′, β′) also
minimizes f on P and thus also on H.

Any point in an edge of P ⊂ Rd×R, satisfies at least d linearly independent
equations among those defining P in (35). Since, in the definition (35) there is
just one equality constraint, (u′, β′) corresponds to a halfspace with boundary
hyperplane H=(u′, β′) passing through d − 1 ≥ d∗ − 1 affinely independent
points of ext(SX|Y=1) ∪ ext(SX|Y=−1) ∪ ext(S∗A) ∪ ext(S∗B), as asserted. 2

Particularizing Theorems 13 and 15 to Problem (26), we obtain the fol-
lowing results previously derived in [14].
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Corollary 16 Define d∗ as

d∗ = max{dim(conv(SX|Y=1)), dim(conv(SX|Y=−1))}.

There exists σ, optimal solution to (26), such that H=(σ) passes through
at least d∗ − 1 affinely independent points of ext(SX|Y=1) ∪ ext(SX|Y=−1).
Moreover, in the single-norm case, such H(σ) passes through d∗ affinely in-
dependent points.
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