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Abstract. The paper deals with orthogonal polynomials in the case where the orthogonality condi-
tion is related to semiclassical functionals. The polynomials that we discuss are a generalization of
Jacobi polynomials and Jacobi-type polynomials. More precisely, we study some algebraic properties
as well as the asymptotic behaviour of polynomials orthogonal with respect to the linear functional U

U = Jα,β + A1δ(x − 1)+ B1δ(x + 1)− A2δ
′(x − 1)− B2δ

′(x + 1),

where Jα,β is the Jacobi linear functional, i.e.

〈Jα,β , p〉 =
∫ 1

−1
p(x)(1 − x)α(1+ x)β dx, α, β > −1, p ∈ P,

and P is the linear space of polynomials with complex coefficients. The asymptotic properties are
analyzed in (−1, 1) (inner asymptotics) and C \ [−1, 1] (outer asymptotics) with respect to the
behaviour of Jacobi polynomials. In a second step, we use the above results in order to obtain the
location of zeros of such orthogonal polynomials. Notice that the linear functional U is a gener-
alization of one studied by T. H. Koornwinder when A2 = B2 = 0. From the point of view of
rational approximation, the corresponding Markov function is a perturbation of the Jacobi–Markov
function by a rational function with two double poles at±1. The denominators of the [n−1/n] Padé
approximants are our orthogonal polynomials.

Mathematics Subject Classifications (2000): 33C45, 42C05.
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1. Introduction

In this work we will study a generalization of the Jacobi polynomials introduced in
Koornwinder (1984). Such polynomials are orthogonal with respect to the Jacobi
measure ‘perturbed’ by the addition of two delta Dirac measures as well as their
derivatives at the points x = ±1.
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Such a kind of modification of a positive linear functional appear when an exten-
sion of the Gauss–Lobatto quadrature formulas is considered. In fact, in Bernardi
and Maday (1991) such quadrature formulas are used in a spectral method for
solving a one-dimensional fourth-order differential problem. Here, the boundary
conditions are values of the solution and its first derivative in the ends of the
interval (−1, 1).

The aforementioned modifications were firstly studied in Krall (1940) when he
considered the polynomial solution of certain fourth-order linear differential equa-
tions. There Krall obtained, apart the classical orthogonal polynomials (Hermite,
Jacobi, Laguerre and Bessel), three new families of orthogonal polynomials with
respect to positive measures with an absolutely continuous part plus some mass
points. More precisely, the so-called classical-type orthogonal polynomials appear.
Another approach to this subject was presented in Krall (1981).

The analysis of the asymptotic properties of polynomials orthogonal with re-
spect to a perturbation of a measure via the addition of mass points was introduced
by Nevai (1979). In particular, he proved how the location of the mass points with
respect to the support of the measure has an influence in the asymptotic behaviour
of perturbed polynomials.

The algebraic properties for such polynomials have attracted the interest of
many researchers. A general approach when a modification of a linear functional
in the linear space of polynomials with real coefficients via the addition of one
delta Dirac measure was started by Chihara (1985) in the positive definite case
and Marcellán and Maroni (1992) for quasi-definite linear functionals. From the
point of view of differential equations, see Marcellán and Ronveaux (1989). For
two point masses there exist very few examples in the literature (see Draïdi, 1990;
Koekoek, 1990; Koornwinder, 1984; Kwon and Park, 1997) but the difficulties
increase as shown in Draïdi and Maroni (1988).

Special emphasis was placed on the modifications of classical linear function-
als (Hermite, Laguerre, Jacobi and Bessel) within the framework of the so-called
semiclassical orthogonal polynomials. Notice that every positive linear functional
induces an inner product in a natural way. However, in general, if we consider a
linear functional, no inner product can be defined. Nevertheless, the concept of
orthogonality with respect to the linear functional has a sense (see Chihara, 1978;
Section 2 in Chapter 1). In Koornwinder (1984), the Jacobi case with two masses at
points x = ±1 was considered. The hypergeometric representation of the resulting
polynomials as well as the existence of a second-order differential equation that
such polynomials satisfy have been established. Also the particular cases of the
Krall-type polynomials (A. M. Krall, 1981; H. L. Krall, 1940) have been obtained
from this general case as special cases or limit cases. The Laguerre case was
considered in detail in Koekoek and Koekoek (1991), Koekoek (1988, 1990).

The perturbation of a linear functional via the addition of the derivatives of a
delta Dirac measure was started in Belmehdi and Marcellán (1992). In particular,
necessary and sufficient conditions for the existence of a sequence of polynomials
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orthogonal with respect to such a linear functional are obtained. Furthermore, an
extensive study for the new orthogonal polynomials was performed when the initial
functional is semiclassical. This problem can be considered as a limit case of two
masses located in two close points. The study of such a kind of modifications of a
linear functional has known an increasing interest during the past years since their
applications in approximation theory (see Gonchar (1975) for the bounded case
and López (1989) for the unbounded one).

First, in Álvarez-Nodarse and Marcellán (1995, 1996), the perturbation of the
Laguerre linear functional when we add the linear functional M0δ(x) + M1δ

′(x)
is analyzed. More precisely they studied the behavior of the polynomials and their
zeros as well as the hypergeometric character of them.

More recently, Arvesú et al. (1998) analyzed a generalization of the Bessel
polynomials, which appears when one perturbs the Bessel linear functional by the
addition of the linear functional M0δ(x)+M1δ

′(x). In particular, the hypergeomet-
ric character of these polynomials and the behavior of their zeros were studied. In
this paper, we will deal with the Jacobi case.

1.1. SUMMARY AND STRUCTURE OF THE PAPER

In spite of the long history (more than one hundred years ago) of studying of
orthogonal polynomials (OP) with respect to semiclassical functionals (see La-
guerre, 1885) the theory of semiclassical OP does not enjoy the same level of
development and completeness as the theory of classical OP, even, considering
the recent powerful modern tools developed to work out with them (see Draïdi,
1990; Draïdi and Maroni, 1988; Kwon and Park, 1997; Marcellán and Maroni,
1992; Maroni, 1991). The present paper intends to cover this void, and introduces
a constructive approach to the study of a special class of semiclassical OP. Also,
we show that the semiclassical Jacobi-type OP (see Section 3 below) inherits (up
to some adaptations) many of the remarkable properties which satisfy classical or-
thogonal polynomials: exact expression for the coefficients of the hypergeometric
series, recurrence relations, etc.

The plan of the paper is the following. Section 2 summarizes the basic notions
and tools to work out with the classical and semiclassical OP, with particular atten-
tion to Jacobi polynomials. In Section 3 we give necessary and sufficient conditions
in order to guarantee the existence of the semiclassical orthogonal polynomial
sequence. A symmetry property in the same sense as in Koornwinder (1984) is
considered. Also, the order of the class for the semiclassical linear functional U
(see (19) below) is established, together with the corresponding distributional equa-
tion. In Section 4 a general formula for the semiclassical Jacobi-type orthogonal
polynomials in terms of the classical ones and their first and second derivatives is
given. This fact allows us to study the asymptotic properties which are useful to
investigate in Section 5 the location, and asymptotic distribution of zeros of such
polynomials. Finally, Section 6 is devoted to conclusions and open problems.
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2. Preliminaries and Notations

Here we present the basic notions, definitions, and notations of the paper. Also,
we have enclosed some formulas for the Jacobi polynomials which are useful in
the analysis of polynomials orthogonal with respect to the linear functional (19),
see Section 3 below. Later on, we summarize the basic tools to work out with
semiclassical orthogonal polynomials.

2.1. CLASSICAL ORTHOGONAL POLYNOMIALS: JACOBI POLYNOMIALS

In this paper we will always be considering monic orthogonal polynomials from the
linear space P of polynomials with complex coefficients. Pn stands for the subset
of polynomials of degree not greater than n.

Most of the properties which are used to characterize the classical orthogonal
polynomials (OP) in a number of ways (see Chihara, 1978; Szegő, 1975) follow
from the fact that the weight functions ρ involved in the orthogonality condition∫

�

Pn(x)x
kρ(x) dx = 0, 0 � k < n− 1, (1)

satisfy the Pearson differential equation

[σ (x)ρ(x)]′ + τ(x)ρ(x) = 0, (2)

with σ , a polynomial of degree at most 2, and τ , a polynomial of degree exactly 1.
The position of the singularities of the first-order differential equation (2) leads to
four different possibilities of classical weights (see Table I).

One aspect in the theory of classical orthogonal polynomials is that the solu-
tions of the differential equation (2) together with the condition for the path of
integration �

σ(x)ρ(x)xk |� = 0, k = 0, 1, . . . , (3)

determine an integral moment functional

〈U, xk〉 =
∫
�

xkρ(x) dx. (4)

Table I. Classical weight functions.

Name σ(x) ρ(x)

Jacobi x(a − x) xβ(a − x)α

Laguerre x xαeβx

Hermite const eβx
2

Bessel x2 xαeγ /x
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Later, we will return to these types of classical moment functionals to study
their generalization.

Before proceeding to sketch some remarkable properties as well as some for-
mulas of the Jacobi polynomials, let us specify that we will use the Jacobi poly-
nomials, which are monic polynomials of degree n orthogonal to all lower degree
polynomials with respect to the weight function (1−x)α(1+x)β on [−1, 1], where
α, β > −1, i.e., they are orthogonal with respect to the linear functional Jα,β on
the linear space P of polynomials with real coefficients defined by

〈Jα,β , P 〉 =
∫ 1

−1
P(x)(1− x)α(1+ x)β dx, α, β > −1, P ∈ P, (5)

and we will denote these monic polynomials by P
α,β
n (x). Thus, the orthogonality

relation is∫ 1

−1
Pα,β
n (x)P α,β

m (x)(1− x)α(1+ x)β dx = δn,m‖Pα,β
n ‖2, (6)

where

‖Pα,β
n ‖2 = 2α+β+2n+1n!�(n+ α + 1)�(n+ β + 1)

�(n+ α + β + 1)(2n + α + β + 1)(n+ α + β + 1)2
n

,

and (n)k with k = 1, 2, . . . is the Pochhammer symbol or shifted factorial de-
fined by

(n)0 := 1, (n)k := n(n+ 1)(n+ 2) · · · (n+ k − 1) = �(n+ k)

�(n)
.

The change of variable x �→ (2x/a)− 1 gives Jacobi polynomials on [0, a] for
the weight function ρ(x) = xβ(a − x)α with singularities at 0 and a (see Table I).

Now, we will list several properties of the Jacobi polynomials, most of which
can be found in the literature of special functions, see for instance the classical
monograph Orthogonal Polynomials by Szegő (1975, Chapter 5).

The Jacobi polynomials P
α,β
n (x) are the polynomial solution of the second-

order linear differential equation of hypergeometric type

σ (x)y′′(x)+ τ(x)y′(x)+ λny(x) = 0, (7)

where

σ (x) = (1− x2), β − α − (α + β + 2)x,

λn = n(n+ α + β + 1),

respectively.
The notation y(k)(x) and Dky(x), k ∈ N are used along the paper to denote the

kth derivative. (y)(k)(x0) indicates that the kth derivative of y is evaluated at the
point x0.
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The Jacobi polynomials verify the differentiation formula

DνP α,β
n (x) = n!

(n− ν)!P
α+ν,β+ν
n−ν (x), ν = 0, 1, . . . , (8)

where n = 1, 2, . . .. Furthermore, the following symmetry property holds

Pα,β
n (x) = (−1)nP β,α

n (−x). (9)

Among other properties there is one very simple and useful for computing aims.
It is the exact expression, in terms of the coefficients of the polynomials σ and τ

only, for the coefficients of the so-called structure relation

(1− x2)P ′
n(x) = α̃nPn+1(x)+ β̃nPn(x)+ γ̃nPn−1(x), n � 0, (10)

where Pn(x) = P
α,β
n (x),

α̃n = −n,
β̃n = 2n(α − β)(n+ α + β + 1)

(2n+ α + β)(2n + 2+ α + β)
,

γ̃n = 4n(n+ α)(n+ β)(n+ α + β)(n+ α + β + 1)

(2n+ α + β − 1)(2n+ α + β)2(2n + α + β + 1)
,

(11)

and the three-term recurrence relation,

xPn(x) = Pn+1(x)+ βα,β
n Pn(x)+ γ α,β

n Pn−1(x), n � 0, (12)

where Pn(x) = P
α,β
n (x),

βα,β
n = β2 − α2

(2n+ α + β)(2n + 2+ α + β)
,

γ α,β
n = 4n(n+ α)(n+ β)(n+ α + β)

(2n+ α + β − 1)(2n+ α + β)2(2n + α + β + 1)
,

(13)

providing that P−1 = 0.
The Jacobi polynomials have the following representation as hypergeometric

series

Pα,β
n (x) = 2n(α + 1)n

(n+ α + β + 1)n
2F1

(−n, n+ α + β + 1
α + 1

∣∣∣∣1− x

2

)
, (14)

where

pFq

(
a1, a2, . . . , ap
b1, b2, . . . , bq

∣∣∣∣x
)
=

∞∑
k=0

(a1)k(a2)k · · · (ap)k
(b1)k(b2)k · · · (bq)k

xk

k! .

A consequence of this representation is

Pα,β
n (1) = 2n(α + 1)n

(n+ α + β + 1)n
, P α,β

n (−1) = (−1)n2n(β + 1)n
(n+ α + β + 1)n

. (15)
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Throughout this work we will use

Kα,β(p,q)
n (x, y) =

n∑
m=0

(P
α,β
m )(p)(x)(P

α,β
m )(q)(y)

‖Pα,β
m ‖2

= ∂p+q

∂xp∂yq
Kα,β(0,0)

n (x, y), (16)

in order to denote the kernels of the Jacobi polynomials, as well as their derivatives
with respect to x and y, respectively. For p = q = 0 and n = 1, 2, . . . the well-
known Christoffel–Darboux formula

n−1∑
m=0

P
α,β
m (x)P

α,β
m (y)

‖Pα,β
m ‖2

= P
α,β
n (x)P

α,β

n−1(y)− P
α,β

n−1(x)P
α,β
n (y)

(x − y)‖Pα,β

n−1‖2
, (17)

holds.

2.2. SEMICLASSICAL ORTHOGONAL POLYNOMIALS OF CLASS s:
CLASSIFICATION

The notion of classical orthogonal polynomials associated with classical weights
(see Table I) can be generalized in a very natural way by omitting the restriction on
the degrees of the polynomials σ and τ (they are polynomials of degree at most 2
and exactly 1, respectively) in Equation (2). So, the moment functional (4) defined
by (2) and (3) is called semiclassical of class s, being

s = min{max{deg σ − 2, deg τ − 1}, such that D(σU) = τU}.
For s = 0 one gets the ordinary classical case, and s > 0 corresponds to the

semiclassical case of class s.
Now, we will list some known results concerning semiclassical linear function-

als.
Let U be a linear functional on the linear space P of polynomials with complex

coefficients and let S(U)(z) be its Stieltjes function defined by

S(U)(z) = −
∑
n�0

Un

zn+1
,

where Un = 〈U, xn〉, n � 0, are the moments of U and 〈·, ·〉 means the duality
bracket. By a convention, we will suppose that U0 = 1.

Let P
′ be the algebraic dual space of P and D the linear space generated by

{Dnδ}n�0, where Dnδ means the nth derivative of the Dirac delta in the origin.
We consider the isomorphism I: D → P given as follows (see Maroni, 1991):
For

U =
∑
n�0

Un

(−1)n

n! Dnδ, I(U)(z) =
∑
n�0

Unz
n.
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Then,

S(U)(z) = −z−1I(U)(z−1).

Let introduce 〈pU, q〉 = 〈U, pq〉 for every polynomial q(z), and define

(Up)(z) =
n∑

m=0

(
n∑

j=m
ajUj−m

)
zm, p(z) =

n∑
j=0

ajz
j ,

and

(θ0 p)(z) = p(z)− p(0)

z
.

Hence, S(pU)(z) = p(z)S(U)(z)+ (Uθ0 p)(z), for a polynomial p(z).
We define the functional x−1U and the product of two linear functionals in the

following way

〈x−1U, p〉 = 〈U, θ0p〉, 〈UV, p〉 = 〈U,Vp〉.
Then it is straightforward to prove that

(i) x(x−1U) = U.
(ii) x−1(xU) = U−U0δ.

(iii) x−2(x2U) = x−1(x−1U) = U−U0δ +U1Dδ.

DEFINITION 1. A linear functional U is said to be a quasi-definite or regular
(see Chihara, 1978) functional if there exists a sequence of monic orthogonal
polynomials (MOPS), {Pn}n�0 with respect to U, i.e., it satisfies

(i) Pn(x) = xn + lower degree terms.
(ii) 〈U, PnPm〉 = knδnm, kn �= 0, n = 0, 1, 2, . . ..

A MOPS {Pn}n�0 with respect to a quasi-definite linear functional satisfies the
following three-term recurrence relation

Pn+2(x) = (x − βn+1)Pn+1(x)− γn+1Pn(x), n � 0,

P0(x) = 1, P1(x) = x − β0,

with γn �= 0, n � 0 and γ0 = 1 = 〈U, P 2
0 〉.

PROPOSITION 1 (Chihara, 1978). A linear functional U is quasi-definite if and
only if det[Ui+j ]ni,j=0 �= 0, for all n � 0.

Other results concerning the algebra of linear functionals are (see (Bouakkaz
and Maroni, 1991; Marcellán and Prianes, 1996; Maroni, 1991) for a more com-
prehensive approach):
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LEMMA 1. For p, q ∈ P and for U,V ∈ P
′, we have

(i) x−1 (pU)+ 〈U, θ0p〉δ = p(x−1U),
(ii) q(Uθ0 p)−Uθ0(q p) = −θ0[(pU)q],

(iii) θ0(Up) = U(θ0p),
(iv) U(pq) = (pU)q + xq(Uθ0p),
(v) p(UV) = (pV)U+ x(Vθ0p)U.

In terms of the Stieltjes functions,

LEMMA 2. For p ∈ P and for U,V ∈ P
′, we have

(i) S ′(U)(z) = S(DU)(z),
(ii) S(UV)(z) = −zS(U)(z)S(V)(z),

(iii) S(x−1U)(z) = z−1S(U)(z),
(iv) z−1(Uθ0p)(z) = −z−2S(〈U, θ0p〉, δ)(z−1)+ (Uθ2

0p)(z).

Finally,

THEOREM 1. Let U be a semiclassical linear functional, and define the set

X̃σ = {x̃ ∈ C : σ (x̃) = 0}.
Then, the order of the class of U is given by

s = max{deg σ − 2, deg τ − 1},
if and only if one of the following statements holds

(i) Either ∀x̃ ∈ X̃σ one has τ(x̃)− σ ′(x̃) �= 0.
(ii) Or if x̃ ∈ X̃σ satisfies τ(x̃) − σ ′(x̃) = 0 then 〈U, τ̃ + σ̃ ′〉 �= 0, where σ̃ (x)

and τ̃ (x) are two polynomials, such that

σ (x) = (x − x̃)σ̃ (x), τ (x)− σ ′(x) = (x − x̃)τ̃ (x).

2.3. CONNECTION WITH APPROXIMATION THEORY

The study of the modification of a measure via the addition of the derivatives of a
delta Dirac measure is intimately related with approximation theory (see Gonchar
(1975) for the bounded case and López (1989) for the unbounded one). In fact,
the denominators qn(x) of the main diagonal sequence for Padé approximants of
Stieltjes-type meromorphic functions∫

dµ(x)

z − x
+

m∑
j=1

Nj∑
i=0

Ai,j

i!
(z − cj )

i+1
, ANj ,j �= 0,
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satisfy the orthogonal relations∫
p(x)qn(x) dµ(x) +

m∑
j=1

Nj∑
i=0

Ai,j (p(z)qn(z))
(i)
∣∣∣
z=cj

= 0, (18)

where p(x) is a polynomial of degree at most n− 1.

3. The Definition and Orthogonal Relation

Consider the linear functional U on P, defined as

〈U, P 〉 = 〈Jα,β, P 〉 + A1P(1)+ B1P(−1)+ A2P
′(1)+ B2P

′(−1), (19)

where Jα,β is the Jacobi linear functional (5), and A1, B1, A2 and B2 are, in general,
complex numbers.

DEFINITION 2. If there exists a polynomial P̃n(x) such that it satisfies the fol-
lowing conditions:

(i) deg P̃n(x) � n,

(ii) 〈U, P̃n(x)x
k〉 = 0, 0 � k < n,

(20)

then, it is called a semiclassical Jacobi-type orthogonal polynomial.

The existence of P̃n(x) = ∑n
k=0 ak,nx

k (an,n = 1) is not always guaranteed,
in spite of its n unknown coefficients are ‘determined’ by using the orthogonality
condition, i.e., (20) gives a system of n linear algebraic homogeneous equations,
nevertheless the matrix of coefficients for such a system depends on n, A1, B1, A2

and B2, then it may have a trivial solution. However, the uniqueness is always
guaranteed.

Because we are not very skilled in doing heavy algebraic computation, we
cannot do anything different from it (or we do not know another way to avoid it)
when studying the algebraic properties of the semiclassical Jacobi-type orthogonal
polynomials. So, in this direction and for later development of the paper it will
be essential to be able to express the semiclassical Jacobi-type OP as a simple
combination of the Jacobi polynomials and their first and second derivatives. The
first step for this purpose is to obtain an explicit expression for the Jacobi kernels.
For this aim it will be convenient to have an expression of the Jacobi polynomial
Pn−1(x) in the form of a simple relation containing Pn(x) and P ′

n(x). Indeed:

LEMMA 3. The following expression

γ̂ α,β
n D P

α,β

n−1(x) = [x(n − 2)− (β̃n + nβα,β
n )]DPα,β

n (x)+
+ nP α,β

n (x)+ (1− x2)D2Pα,β
n (x), (21)
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where

D = d

dx
, γ̂ α,β

n = (2n+ α + β + 1)γ α,β
n ,

and β̃n, βα,β
n , γ α,β

n are given in (11) and (13), respectively, holds.
Proof. If one multiplies both sides of the three-term recurrence relation (12) by

α̃n (see (10)) and subtracts it from (10) one cancels the term Pn+1(x). Then, we
have

γ̂ α,β
n P

α,β

n−1(x) = [n(x − βα,β
n )− β̃n]Pα,β

n (x)+
+ (1− x2)D Pα,β

n (x). (22)

Hence, taking derivative in the above formula we obtain (21). ✷
The next proposition deals with Jacobi kernels, probably its proof results rather

tedious, but explicit knowledge of the Jacobi kernels will be useful in the later de-
velopment of the paper. All the work done here will rather simplify the subsequent
working out with semiclassical Jacobi-type OP. Now we will show how, for certain
particular cases of Jacobi kernels (see formula (16) and taking into account that p
and q can be 0 or 1, indistinctly) it is possible to write them as a simple relation
which combines the Jacobi polynomials and their derivatives.

PROPOSITION 2. Let the couple of integers (p, q) be (0, 0), (0, 1) and (1, 1).
Then, the Jacobi kernels (16) evaluated in the points x = 1 and y = ±1 are the
following:

K
α,β(0,0)
n−1 (1, 1) = n(n+ β)

(α + 1)
κα,β
n P α,β

n (1),

K
α,β(0,0)
n−1 (1,−1) = −nκα,β

n P α,β
n (−1),

(23)

K
α,β(0,1)
n−1 (1, 1) = (n− 1)(n+ β)

(α + 2)
κα,β
n (P α,β

n )′(1),

K
α,β(0,1)
n−1 (1,−1) = −(n− 1)κα,β

n (P
α,β
n )′(−1),

(24)

K
α,β(1,1)
n−1 (1, 1)

K
α,β(0,1)
n−1 (1, 1)

= (α + 2)(λn − n)− (α + 1)(α + β + 2)

2(α + 1)(α + 3)
,

K
α,β(1,1)
n−1 (1,−1)

K
α,β(0,1)
n−1 (1,−1)

= λn − (n+ α + β + 2)

2(α + 1)
,

(25)

where κ
α,β
n = P

α,β
n (1)‖Pα,β

n−1‖−2/γ̂
α,β
n .
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For the order of derivatives indicated in Proposition 2, the remaining three
couples of Jacobi kernels (16), at the points x = −1 and y = ±1 can be found
from (23)–(25) and

Kα,β(0,0)
n (x, y) = Kβ,α(0,0)

n (−x,−y),
Kα,β(0,1)

n (x, y) = −Kβ,α(0,1)
n (−x,−y),

Kα,β(1,1)
n (x, y) = Kβ,α(1,1)

n (−x,−y),
(26)

which follows from (16), (17), and (9).

Proof. Here we prove (23)–(25), in such a way, that the proof be useful to the
aim of expressing the semiclassical Jacobi-type OP as xn + b̃nx

n−1+ lower degree
terms (see formula (44) below).

Let us start with the kernel K
α,β(0,0)
n−1 (x, 1). Evaluating (17) in y = 1, and

replacing the terms Pα,β

n−1(1) and P
α,β

n−1(x) according to (22), we have

K
α,β(0,0)
n−1 (x, 1) = 1

x − 1

P
α,β
n (x)P

α,β

n−1(1)− P
α,β

n−1(x)P
α,β
n (1)

‖Pα,β

n−1‖2

= κα,β
n [(1+ x)D Pα,β

n (x)− nP α,β
n (x)]. (27)

Now, we continue with K
α,β(0,1)
n−1 (x, 1). By taking first derivative with respect to

y in both sides of (17), one yields

K
α,β(0,1)
n−1 (x, y)

=
n−1∑
m=0

P
α,β
m (x)DP

α,β
m (y)

‖Pα,β
m ‖2

= K
α,β(0,0)
n−1 (x, y)

(x − y)
+ P

α,β
n (x)D P

α,β

n−1(y)− P
α,β

n−1(x)D P
α,β
n (y)

(x − y)‖Pα,β

n−1‖2
. (28)

Evaluating (28) at y = 1 we get

K
α,β(0,1)
n−1 (x, 1) = K

α,β(0,0)
n−1 (x, 1)

x − 1
+ P

α,β
n (x)(P

α,β

n−1)
′(1)

‖Pα,β

n−1‖2(x − 1)
−

− (P
α,β
n )′(1)P α,β

n−1(x)

‖Pα,β

n−1‖2(x − 1)
. (29)

By using Lemma 3, i.e., the expression (21) evaluated at x = 1, one can sub-
stitute u(P

α,β

n−1)
′(1) according to (21), then using (22) one expresses P

α,β

n−1(x) in

terms of DP
α,β
n (x) and P

α,β
n (x). So, taking into account (27) the expression (29)

becomes

K
α,β(0,1)
n−1 (x, 1)
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= (P
α,β
n )′(1)[(1+ x)D P

α,β
n (x)− nP

α,β
n (x)]

‖Pα,β

n−1‖2γ̂
α,β
n

+

+ [(1+ x)P
α,β
n (1)D P

α,β
n (x)− 2(P α,β

n )′(1)P α,β
n (x)]

‖Pα,β

n−1‖2γ̂
α,β
n (x − 1)

. (30)

Now, based on the second-order linear differential Equation (7) one can trans-
form the rational part, in the right-hand side of (30), into a polynomial of degree
n− 1. In fact, using

(P α,β
n )′(1) = λn

2(α + 1)
P α,β
n (1), n � 1,

which also follows from (7), we get

(α + 1)Kα,β(0,1)
n−1 (x, 1)

= 2−1λnK
α,β(0,0)
n−1 (x, 1)+

+ κα,β
n

[(x + 1)(α + 1)D P
α,β
n (x)− λnP

α,β
n (x)]

(x − 1)
. (31)

This yields

(α + 1)Kα,β(0,1)
n−1 (x, 1)

= 2−1λnK
α,β(0,0)
n−1 (x, 1) − κα,β

n [(β + 1)D Pα,β
n (x)+

+ (x + 1)D2Pα,β
n (x)]. (32)

Handling as above, starting from (17) evaluated at y = −1, it is easy to obtain
similar expressions for the kernels Kα,β(0,0)

n−1 (x,−1) and K
α,β(0,1)
n−1 (x,−1). Indeed,

K
α,β(0,0)
n−1 (x,−1) = (−1)nκβ,α

n [(x − 1)D P
α,β
n (x)− nP

α,β
n (x)],

(β + 1)Kα,β(0,1)
n−1 (x,−1)

= −2−1λnK
α,β(0,0)
n−1 (x,−1)+

+ (−1)n+1κ
β,α
n [(α + 1)D P

α,β
n (x)+ (x − 1)D2P

α,β
n (x)].

(33)

Finally, we obtain the kernel Kα,β(1,1)
n−1 (x, 1) and K

α,β(1,1)
n−1 (x,−1) in terms of the

polynomials P
α,β
n (x) and their first, second, and third derivatives. From (32)–(33)

it is straightforward to compute them, i.e.,

2(α + 1)

κ
α,β
n

K
α,β(1,1)
n−1 (x, 1)

= [λn(x + 1)− 2(β + 2)]D2Pα,β
n (x)−

− [λn(n− 1)DPα,β
n (x)+ 2(x + 1)D3Pα,β

n (x)], (34)
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2(β + 1)

(−1)nκβ,α
n

K
α,β(1,1)
n−1 (x,−1)

= [λn(1− x)− 2(α + 2)]D2Pα,β
n (x)+

+ λn(n− 1)D Pα,β
n (x)+ 2(x − 1)D3Pα,β

n (x). (35)

As simple consequences of (27) and (32)–(35), the proposition holds. ✷
The asymptotic formulas for the Jacobi polynomials and their kernels (23)–(25)

will help us to establish a condition on the existence of the semiclassical Jacobi-
type orthogonal polynomials.

From the asymptotic formulas of the Jacobi kernels (see formulas (36)–(38)
below) we will conclude that for n large enough the polynomial P̃n(x) exists.

COROLLARY 1. The following asymptotic formulas and expressions for the Ja-
cobi kernels

K
α,β(0,0)
n−1 (1, 1) ∼ n2α+2

�(α + 1)�(α + 2)2α+β+1
,

K
α,β(0,0)
n−1 (1,−1) ∼ (−1)n+1nα+β+1

�(α + 1)�(β + 1)2α+β+1
,

(36)

K
α,β(0,1)
n−1 (1, 1) = (α + 1)Kα+1,β(0,0)

n−1 (1, 1),

K
α,β(0,1)
n−1 (1,−1) = −2(α + 1)Kα+1,β+1(0,0)

n−1 (1,−1),
(37)

K
α,β(1,1)
n−1 (1, 1) = (α + 2)Kα+1,β(0,1)

n−1 (1, 1),

K
α,β(1,1)
n−1 (1,−1) = 2(β + 2)Kα+1,β+1(0,1)

n−1 (1,−1),
(38)

hold.
The notation xn ∼ yn means that xn behaves as yn when n→∞, more precisely,

limn→∞ xn/yn = 1.

To obtain the other kernels, as well as their estimates, we can use the symmetry
properties (26) and (36)–(38).

Proof. Using the asymptotic formula for the Gamma function (see Olver (1974,
formula 8.16, p. 88) and (Szegő (1975))

�(ax + b) ∼ √2πe−ax(ax)ax+b−
1
2 , x � 1, a, b, x ∈ R, (39)

and taking into account (6), (8) and (15), we find the following asymptotic formulas
for k ∈ N

(P α,β
n )(k)(1) ∼

√
πnα+2k+ 1

2

�(α + k + 1)2n+α+β+k
, ‖Pα,β

n−1‖2 ∼ π

22n+α+β−2
. (40)

Hence, based on (40) and Proposition 2 (formulas (23)–(25)) the corollary
holds. ✷
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PROPOSITION 3. The orthogonal polynomial sequence {P̃k}k�0 with respect to
the moment functional U exists if and only if the determinant of the matrix K =
K(n) (see (46) below) is different from zero for every n � 0.

Proof. Assume the sequence {P̃k}k�0 exists. Hence, one can write the Fourier
expansion of the semiclassical Jacobi-type orthogonal polynomials in terms of the
Jacobi polynomials

P̃n(x) := Pα,β,A1,B1,A2,B2
n (x) = Pα,β

n (x)+
n−1∑
k=0

an,kP
α,β

k (x). (41)

The coefficients an,k can be found using the orthogonality of the polynomials P̃n(x)

with respect to U, i.e.,

〈U, P̃n(x)P
α,β

k (x)〉 = 0, 0 � k < n.

Putting (41) in (19) we get:

〈U, P̃n(x)P
α,β

k (x)〉
= 〈Jα,β , P̃n(x)P

α,β

k (x)〉 + A1P̃n(1)P
α,β

k (1)+ B1P̃n(−1)P α,β

k (−1)+
+ A2P̃n(x)P

α,β

k (x))′
∣∣
x=1 + B2(P̃n(x)P

α,β

k (x))′
∣∣
x=−1. (42)

If we use the decomposition (41), and taking into account the orthogonality
of the Jacobi polynomials with respect to the linear functional Jα,β , we find the
following expression for the coefficients an,k

an,k = − A1P̃n(1)P
α,β

k (1)+ B1(P̃n)
′(−1)P α,β

k (−1)

‖Pα,β

k ‖2
−

− A2[(P̃n)
′(1)P α,β

k (1)+ P̃n(1)(P
α,β

k )′(1)]
‖Pα,β

k ‖2
−

− B2[(P̃n)
′(−1)P α,β

k (−1)+ P̃n(−1)(P α,β

k )′(−1)]
‖Pα,β

k ‖2
. (43)

Thus, (41) becomes

P̃n(x) = Pα,β
n (x)− A1P̃n(1)K

α,β(0,0)
n−1 (x, 1)−

− B1P̃n(−1)Kα,β(0,0)
n−1 (x,−1)− A2(P̃n)

′(1)Kα,β(0,0)
n−1 (x, 1)−

− B2(P̃n)
′(−1)Kα,β(0,0)

n−1 (x,−1)− A2P̃n(1)K
α,β(0,1)
n−1 (x, 1)−

− B2P̃n(−1)Kα,β(0,1)
n−1 (x,−1). (44)

This is in accordance with the fact that P̃n(x) cannot vanish for every n � 0.
Now we show in a very simple form that det K �= 0, and by the way we write

P̃n(1), P̃n(−1), (P̃n)
′(1) and (P̃n)

′(−1) in terms of Jacobi polynomials, Jacobi
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kernels and masses A1, A2, B1 and B2. For both aims one takes derivatives in
(44) and evaluate the resulting equation, as well as (44), at x = 1 and x = −1.
This leads us to a linear system of equations

K · P̃n = Pn, (45)

being

K := I4 +K4(n), (46)

where I4 is the identity matrix and K4(n) = (M1|M2|M3|M4) with the following
column vectors

M1 = A1


K

α,β(0,0)
n−1 (1, 1)

K
α,β(0,0)
n−1 (1,−1)

K
α,β(0,0)
n−1 (1, 1)

K
α,β(0,1)
n−1 (1,−1)

+ A2


K

α,β(0,1)
n−1 (1, 1)

K
α,β(0,1)
n−1 (−1, 1)

K
α,β(0,0)
n−1 (1, 1)

K
α,β(1,1)
n−1 (1,−1)

 ,

M2 = B1


K

α,β(0,0)
n−1 (1,−1)

K
α,β(0,0)
n−1 (−1,−1)

K
α,β(0,1)
n−1 (−1, 1)

K
α,β(0,1)
n−1 (−1,−1)

+ B2


K

α,β(0,1)
n−1 (1,−1)

K
α,β(0,1)
n−1 (−1,−1)

K
α,β(1,1)
n−1 (1,−1)

K
α,β(1,1)
n−1 (−1,−1)

 ,

M3 = A2


K

α,β(0,0)
n−1 (1, 1)

K
α,β(0,0)
n−1 (1,−1)

K
α,β(0,1)
n−1 (1, 1)

K
α,β(0,1)
n−1 (1,−1)

 , M4 = B2


K

α,β(0,0)
n−1 (1,−1)

K
α,β(0,0)
n−1 (−1,−1)

K
α,β(0,1)
n−1 (−1, 1)

K
α,β(0,1)
n−1 (−1,−1)

 .

P̃n and Pn are the column vectors

P̃n =


P̃n(1)
P̃n(−1)
(P̃n)

′(1)
(P̃n)

′(−1)

 , Pn =


P
α,β
n (1)

P
α,β
n (−1)

(P
α,β
n )′(1)

(P
α,β
n )′(−1)

 ,

respectively.
Then, by the Cramer’s rule, the system (45) has a unique solution if and only if

the determinant of K is different from zero.
Moreover, if Kj (Pn) denotes the matrix obtained substituting the j column in

K by Pn. Then,

P̃n(1) = det K1(Pn)

det K
, P̃n(−1) = det K2(Pn)

det K
,

(P̃n)
′(1) = det K3(Pn)

det K
, (P̃n)

′(−1) = det K4(Pn)

det K
.

(47)
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Conversely, assume that det K does not vanish for every n � 0 and define P̃n(x)

by means of expressions (44) and (47). Then, {P̃k}k�0 is a monic OPS with respect
to U. ✷

Observe that det K depends on n, α, β, A1, B1, A2, and B2. So, the family of
manifolds Fn(α, β,A1, B1, A2, B2) = det K = 0 determines a set of parameters
for which the existence of semiclassical Jacobi-type orthogonal polynomials is not
guaranteed. How to cover this lack? What kind of conditions are needed to work out
with semiclassical Jacobi-type orthogonal polynomials? The following corollary
helps us to establish a certain existence condition for the nth OP P̃n(x).

COROLLARY 2. Let us define

c(α) = A2B2

24(α+1)�(α + 1)�(α + 2)�(α + 3)�(α + 4)
, (48)

and A1, B1, A2 and B2 be different from zero in the expression (19). Then, for n

large enough, the existence of P̃n(x) is always guaranteed. Furthermore,

lim
n→∞

det K

c(α)c(β)n16+4α+4β
= 1, α, β > −1,

where c(β) is obtained from (48) replacing α by β (α �→ β).
Proof. Substituting the asymptotic formulas (36)–(38) in (46), and doing a cum-

bersome calculation we find for n large enough a rather lengthy expression for
det K (any symbolic computer algebra package like Mathematica can help to
calculate it). So, we will not write it here, and provide only the order of n in the
power series decomposition of K . More precisely, it is

det K ∼ c(α)c(β)n16+4α+4β.

Hence, the corollary holds. ✷
The assumption ‘n large enough’ guarantees the existence of the semiclassical

Jacobi-type orthogonal polynomials for every nonzero value of the masses A1, B1,
A2 and B2. So, we work out with these kind of polynomials, without any problem,
forgetting about a possible ‘pathological’ election of the masses A1, B1, A2 and B2.

PROPOSITION 4. The following symmetry properties for the semiclassical Jacobi-
type orthogonal polynomials and their first derivatives hold

Pα,β,A1,B1,A2,B2
n (−x) = (−1)nP β,α,B1,A1,−B2,−A2

n (x), (49)

(P α,β,A1,B1,A2,B2
n )′(−x) = (−1)n+1(P β,α,B1,A1,−B2,−A2

n )′(x). (50)
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Proof. Using the definition of the functional U (see (19)) the proof is straight-
forward. ✷

3.1. ORDER OF THE CLASS AND DIFFERENTIAL DISTRIBUTIONAL EQUATION
FOR U

Here we will determine the order of the class for the Jacobi-type moment func-
tional (19), as well as the differential distributional equation that such a functional
satisfies.

Let us rewrite (19) in the form:

U = Jα,β + A1δ(x − 1)+ B1δ(x + 1)− A2δ
′(x − 1)− B2δ

′(x + 1). (51)

PROPOSITION 5. The moment linear functional U verifies the differential distri-
butional equation

D[(1− x2)3U] = [β − α − (α + β + 6)x](1 − x2)2U, (52)

being U a semiclassical functional of class s = 4.
Proof. The product of (1− x2)2 by the functional U leads to

(1− x2)2U = (1− x2)2Jα,β . (53)

Now, before taking derivatives in (53), it is convenient to remember the distrib-
utional equation for the Jacobi moment functional, i.e.,

D[(1− x2)Jα,β] = [β − α − (α + β + 2)x]Jα,β .

Thus, one has

D[(1− x2)2U]
= D[(1− x2)2Jα,β]
= −2x(1 − x2)Jα,β + (1− x2)D[(1− x2)Jα,β]
= −2x(1 − x2)Jα,β + (1− x2)[β − α − (α + β + 2)x]Jα,β

= (1− x2)[β − α − (α + β + 4)x]Jα,β .

If we multiply the above expression by (1− x2), then

(1− x2)D[(1− x2)2U] = [β − α − (α + β + 4)x](1 − x2)2Jα,β

= [β − α − (α + β + 4)x](1 − x2)2U,

from which (52) holds.
To determine the order of the class it is enough to apply Theorem 1. Thus,

s = 4. ✷

18



4. Hypergeometric Character

PROPOSITION 6. The semiclassical Jacobi-type orthogonal polynomial P̃n(x)

can be represented, up to a multiplicative constant, by a generalized hypergeomet-
ric series. More precisely,

P̃n(x) = γ
2n−3(α + 3)n−3

(n+ α + β + 1)n
×

× 6F5

(−n, n+ α + β + 1, β0 + 1, β1 + 1, β2 + 1, β3 + 1
α + 3, β0, β1, β2, β3

∣∣∣∣∣1− x

2

)
, (54)

where γ , β0, β1, β2 and β3 are constants depending on n, α, β, and the masses A1,
B1, A2, and B2.

Proof. Let us define the polynomials in k,

a1(k) = 8An(n+ α)(k + a1)(k + a2), a1 = α + 1, a2 = a1 + 1,

a2(k) = −4Bn(n+ α)(k + b1)(k + b2)(k + b3),

b1 = −n, b2 = −b1 + a1 + β, b3 = a2,

a3(k) = 8nCn(n+ α)(n+ α + 1)

(n+ b2)(n+ b2 + 1)
(k + c1)(k + c2)(k + c3),

c1 = a2, c2 = b2, c3 = b2 + 1,

a4(k) = 2Dn(n+ b2 − 2)(n+ b2 − 1)

(n− 1)
(k + d1)(k + d2)(k + d3),

d1 = b1, d2 = b1 + 1, d3 = a2,

a5(k) = 2nEn(n+ α)(k + e1)(k + e2)(k + e3)(k + e4),

e1 = b1, e2 = d2, e3 = b2, e4 = b2 + 1,

a6(k) = −4nFn(n+ α)(n− 1)b2

(n+ b2)(n+ b2 + 1)
(k + f1)(k + f2)(k + f3)(k + f4),

f1 = b1, f2 = b2, f3 = b2 + 1, f4 = b2 + 2,

a7(k) = Gn(n+ b2 − 2)(1− n− b2)

(n− 2)
(k + g1)(k + g2)(k + g3)(k + g4),

g1 = b1, g2 = b1 + 1, g3 = b1 + 2, g4 = b2.

Substituting (14) in (64) one finds

P̃n(x) = 2n−3(α + 3)n−3

(n+ α + β + 1)n

∞∑
k=0

[
7∑

i=1

ai(k)

]
×

×(−n)k(n+ α + β + 1)k
k!(α + 3)k

(
1− x

2

)k

. (55)
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Taking into account that the expression inside the quadratic brackets is a poly-
nomial in k of degree 4, and denoting it by

p4(k) =
[

7∑
i=1

ai(k)

]
:= p

(4)
4 (k)

4! (k + β0)(k + β1)(k + β2)(k + β3),

one can write

P̃n(x) = p
(4)
4 (k)

2n−3(α + 3)n−3

4! (n+ α + β + 1)n

∞∑
k=0

[
(−n)k(n+ α + β + 1)k

(α + 3)k
×

×(k + β0)(k + β1)(k + β2)(k + β3)

k!
(

1− x

2

)k]
, (56)

being p
(4)
4 (x)/4! the leading coefficient of p4(k)

p
(4)
4 (k)

4! = 2nEn(n+ α)− 4nFn(n− 1)(n+ α)(n+ a1)

(n+ b2)(n+ b2 + 1)
−

− Gn(n+ b2 − 1)(n+ b2 − 2)

(n− 2)
. (57)

Since

(k + βi) = βi(βi + 1)k
(βi)k

,

where −βi with i = 0, 1, 2, 3 are the zeros of p4(k) depending on n, α, β, A1, A2,
B1, B2, the expression in (56) becomes

P̃n(x) = γ (n)
2n−3(α + 3)n−3

(n+ α + β + 1)n

∞∑
k=0

[
(−n)k(n+ α + β + 1)k

k! (α + 3)k
×

×(1+ β0)k(1+ β1)k(1+ β2)k(1+ β3)k

(β0)k(β1)k (β2)k(β3)k

(
1− x

2

)k]
, (58)

where

γ (n) := 8An(n+ α)a1a2 + 4nBn(n+ α)a2b2+

+ 8nCn(n+ α)(n+ a1)a2b2(b2 + 1)

(n+ b2)(n+ b2 + 1)
+

+ 2nDna2 + 2n(n− 1)En(n+ α)b2(b2 + 1)+
+ 4n(n− 1)Fn(n+ α)(n+ a1)b2(b2 + 1)(b2 + 2)

(n+ b2)(n+ b2 + 1)
+

+ n(n− 1)Gnb2(n+ b2 − 2)(n+ b2 − 1), (59)
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which is nothing other than the hypergeometric representation (54). ✷
The zeros of p4(k) are in general complex numbers. If for some i = 0, 1, 2, 3,

the value of βi is a positive integer we need to take the analytic continuation of the
hypergeometric series (54).

5. Some Asymptotic Formulas

In this section we will study some asymptotic formulas for the semiclassical Jacobi-
type orthogonal polynomials. More precisely, the relative asymptotics
P̃n(x)/P

α,β
n (x) outside the interval [−1, 1] and the difference between the new

polynomials and the classical ones inside [−1, 1].
For such a purpose will be useful to have an explicit representation of the semi-

classical Jacobi-type orthogonal polynomials in terms of the classical ones. To do
that we rewrite Equation (44) in the form

P̃n(x) = (1+ nζn + nηn)P
α,β
n (x)+

+ [ζn(1− x)− ηn(1+ x)+ (β + 1)χn + (α + 1)ωn]DPα,β
n (x)+

+ [χn(1+ x)− ωn(1− x)]D2Pα,β
n (x), (60)

where

ζn =
[
B1 − λnB2

2(β + 1)

]
Cβ,α,B1,A1,−B2,−A2
n − B2D

β,α,B1,A1,−B2,−A2
n ,

ηn =
[
A1 + λnA2

2(α + 1)

]
Cα,β,A1,B1,A2,B2
n + A2D

α,β,A1,B1,A2,B2
n ,

(61)

(α + 1)χn = A2C
α,β,A1,B1,A2,B2
n ,

(β + 1)ωn = B2C
β,α,B1,A1,−B2,−A2
n ,

(62)

and

C
α,β,A1,B1,A2,B2
n = κ

α,β
n P̃n(1),

D
α,β,A1,B1,A2,B2
n = κ

α,β
n (P̃n)

′(1).
(63)

Notice that ζn, ηn, χn, and ωn depend on n, α, β,A1, B1, A2, and B2.
Now, using (8)–(12) we can rewrite (60) as follows

P̃n(x) = AnP
α,β
n (x)+ n[BnP

α+1,β+1
n−1 (x)+ CnP

α+1,β+1
n (x)]+

+ n[DnP
α+1,β+1
n−2 (x)+ (n− 1)EnP

α+2,β+2
n−2 (x)]+

+ n(n− 1)[FnP
α+2,β+2
n−1 (x)+GnP

α+2,β+2
n−3 (x)], (64)
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where

Bn = ζn − ηn + Cnβ
α+1,β+1
n−1 + (β + 1)χn + (α + 1)ωn,

An = 1− nCn, Cn = −(ζn + ηn), Dn = Cnγ
α+1,β+1
n−1 ,

En = χn − ωn + Fnβ
α+2,β+2
n−2 , Fn = χn + ωn, Gn = Fnγ

α+2,β+2
n−2 .

(65)

Remark 1. The semiclassical Jacobi-type orthogonal polynomials satisfy a sec-
ond-order linear differential equation (SODE). To deduce it one can rewrite the
representation formula (60) in terms of the polynomials and their first derivatives,
and using the fact that the Jacobi polynomials satisfy a SODE.

THEOREM 2. For n large enough the semiclassical Jacobi-type OP satisfy the
following outer and inner asymptotics, respectively,

P̃n(z)

P
α,β
n (z)

= 1+ 2(β + 2)

n

[
1−

√
z− 1

z+ 1

]
+

+ 2(α + 2)

n

[
1−

√
z + 1

z − 1

]
+ o

(
1

n

)
, (66)

where z ∈ C\[−1, 1],

2n+α+β [P̃n(x)− Pα,β
n (x)]

∼ [sin( θ2 )]−α−
3
2 [cos( θ2 )]−β−

3
2

n
×

× {(α + β + 4) sin θ cos
[
nθ + 1

2 (α + β + 1)θ −− 1
2 (α + 1

2 )π
]−

− 2(α + 2) cos
[
nθ + 1

2(α + β + 3)θ −− 1
2(α + 3

2 )π
]}+ O

(
1

n2

)
,(67)

x ∈ (−1, 1).
Proof. The existence of P̃n(x) for n large enough is guaranteed for any choice of

nonzero masses A1, B1, A2 and B2. Now using the symmetry property (9) and the
asymptotic formulas (36) and (40), we can compute the asymptotic behavior of the
semiclassical Jacobi-type orthogonal polynomials, as well as their first derivatives
at the points ±1, i.e.,

P̃n(1) ∼
√
π�(α + 4)

2n−2A2n
7
2+α

, P̃n(−1) ∼ (−1)n+1

√
π�(β + 4)

2n−2B2n
7
2+β

,

(P̃n)
′(1) ∼ −

√
π�(α + 3)

2n−1A2n
3
2+α

, (P̃n)
′(−1) ∼ (−1)n+1√π�(β + 3)

2n−1B2n
3
2+β

.

(68)

22



From (40)–(68) we can give the estimates for the constants defined by (61)–(63)

Cα,β,A1,B1,A2,B2 ∼ 2
�(α + 4)

A2�(α + 1)n4
,

Dα,β,A1,B1,A2,B2 ∼ − �(α + 3)

A2�(α + 1)n2
,

ζn ∼ 2
(β + 2)

n2
, ηn ∼ 2

(α + 2)

n2
, χn ∼ 2

(α + 2)(α + 3)

n4
,

ωn ∼ −2
(β + 2)(β + 3)

n4
.

(69)

Finally, from (60), taking derivatives twice and using (40) and (69), we find

(P̃n)
′′(1) ∼ −

√
πnα+ 9

2 (α + 2)(α + 5)

�(α + 5)2n+α+β+2
. (70)

To obtain the relative asymptotics P̃n(z)/P
α,β
n (z), outside the interval [−1, 1]

we need to do some handling. First, we multiply (60) by σ (z), and using the SODE
(7) we find the following equivalent representation formula

σ (z)P̃n(z) = a(z;n)P α,β
n (z)+ b(z;n)DPα,β

n (z), (71)

where a(z;n), b(z;n) are polynomials of uniformly bounded degree in z with
coefficients depending on n given by

a(z;n) = (1+ nζn + nηn)σ (z)− λn[χn(1+ z)− ωn(1− z)],
b(z;n) = [ζn(1− z)− ηn(1+ z)+ (β + 1)χn + (α + 1)ωn]σ (z)−

− τ(z)[χn(1+ z)− ωn(1− z)].
(72)

Second, we will rewrite (71) in the form

P̃n(z) = ã(z;n)P α,β
n (z)+ b̃(z;n)DPα,β

n (z), (73)

where

ã(z;n) = (1+ nζn + nηn)− λn

[
χn

(1− z)
− ωn

(1+ z)

]
∼ 1+ 2

(α + β + 4)

n
−

− 2

n2

[
(α + 2)(α + 3)

(1− z)
+ (β + 2)(β + 3)

(1+ z)

]
, (74)

b̃(z;n) = [ζn(1− z)− ηn(1+ z)+ (β + 1)χn + (α + 1)ωn] −
− τ(x)

[
χn

(1− z)
− ωn

(1+ z)

]
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∼ 2

n2
[(β + 2)(1− z)− (α + 2)(1+ z)] +

+ 2

n4
[(β + 1)(α + 2)(α + 3)− (α + 1)(β + 2)(β + 3)] −

− 2
[β − α − (α + β + 2)z]

n4
×

×
[
(α + 2)(α + 3)

(1− z)
+ (β + 2)(β + 3)

(1+ z)

]
. (75)

Then, from (73) and using (74)–(76), as well as,

1

n

D P
α,β
n (z)

P
α,β
n (z)

= 1√
z2 − 1

+ o(1), (76)

we obtain the following estimate for the ratio (66).
In order to obtain the asymptotic behavior of the difference between the new

polynomials and the classical ones, when z belongs to [−1, 1], we use the Dar-
boux formula for the asymptotics of the Jacobi polynomials on the interval θ ∈
[ε, π − ε], 0 < ε � 1 (Szegő, 1975, Equation 8.21.10, p. 196)

anP
α,β
n (cos θ) = (sin θ

2 )
−α− 1

2 (cos θ
2 )
−β− 1

2√
nπ

×

× cos
[
nθ + 1

2 (α + β + 1)θ − 1
2 (α + 1

2 )π
]+ O

(
1

n
3
2

)
,(77)

with an = (n+α+β+1)n
2n n! ∼ 2n+α+β√

nπ
.

The expression (64), as well as the following asymptotic estimates for the coef-
ficients

An ∼ 1+ 2
(α + β + 4)

n
, Bn ∼ 2

(β − α)

n2
,

Cn ∼ −2
(α + β + 4)

n2
, Dn ∼ −(α + β + 4)

2n2
,

En = O

(
1

n6

)
, Fn = O

(
1

n4

)
, Gn = O

(
1

n4

)
,

(78)

follow from (69).
Then, using (64) and (77)–(78) we deduce (67). ✷

6. Zeros

Here we will study the properties of the zeros of the semiclassical Jacobi-type
orthogonal polynomials, for nonzero values of the masses, and will present some
results concerning their asymptotic behaviour.
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THEOREM 3. Suppose n � N (N ∈ N). Then, the semiclassical Jacobi-type
orthogonal polynomial P̃n(x) has at least n− 4 different real zeros in (−1, 1).

Proof. Since, for n large enough

〈U, P̃n(x) (1− x2)2〉 = 〈Jα,β , P̃n(x) (1 − x2)2〉 = 0,

the semiclassical orthogonal polynomial P̃n(x) changes its sign in the interval
(−1, 1). Let x1, x2, . . . , xk be the different real zeros of odd multiplicity of P̃n(x) in
(−1, 1). Hence, if q(x) = (x−x1)(x−x2) . . . (x−xk), then the product P̃n(x)q(x)

does not change its sign in (−1, 1).
Now define

h(x) = (1− x2)2q(x).

Thus

〈U, P̃n(x) h(x)〉 = 〈Jα,β, P̃n(x) h(x)〉 > 0,

so deg h(x) � n, i.e., k � n− 4. ✷
COROLLARY 3. Suppose that all the masses involved in the linear functional U
(see (19)) are real, and A2, B2 have the same sign. Then, for n large enough the
semiclassical Jacobi-type orthogonal polynomial has exactly n − 3 different real
zeros belonging to the interval (−1, 1).

Proof. Let us consider the case of even n and A2, B2 > 0 (the procedure to
prove the other cases is completely analog to the developed here).

Since P̃n(1) > 0 and P̃ ′
n(1) < 0 (see (68)), then for some positive x > 1, the

polynomial P̃n(x) has a minimum. This implies that on the right of x = 1 it has
only two zeros (see the argument below for the point −1), which can be complex
conjugates, real and simple or with multiplicity 2. Again from (68), since P̃n(−1)
and P̃ ′

n(−1) are negative the polynomial P̃n(x) is a convex upward function for
x < −1 and has a simple real zero; otherwise the number of zeros off [−1, 1]
would be greater than 4, which yields a contradiction. ✷
COROLLARY 4. Let A1, A2, B1, B2 be real numbers, and A2 > 0, B2 < 0.
Then, for n large enough the semiclassical Jacobi-type orthogonal polynomial has
exactly 4 zeros off [−1, 1]. Two of them are located on the right of x = 1, and the
other two are on the left of x = −1. Thus, in (−1, 1) are n − 4 real and simple
zeros.

Proof. Its enough to take into account the formulas (68) and analyze two cases:
First, when n is even; second, when n is odd. So, counting the number of possible
zeros outside the interval (−1, 1) the corollary holds. ✷

By the two previous corollaries we can deduce the existence of complex conju-
gate zeros outside the interval (−1, 1). Then it is interesting to give some bounds
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for them, in order to have some control about their asymptotic behaviour. The
following proposition deals with Corollaries 3 and 4, and the masses are subjected
to the restrictions imposed there.

PROPOSITION 7. Let ε and δ be real and complex numbers, respectively, where
0 < ε < 2, and  δ > 0. Let z1,2 denotes z1, z2, indistinctly, and z1 = z̄2 (the same
for z′1,2). Then, for n large enough, the bounds for the real and imaginary part of
complex conjugate zeros z1 = z̄2 and z′1 = z̄′2, located on the right-hand side of the
point x = 1, and on the left-hand side of x = −1, respectively, are the following:

1 <  (z1,2) < 1+  (δ)
n

ε
2
,

0 � "(z1,2) < P̃n(1), n� N, N ∈ N.

−1−  (δ)
n

ε
2

<  (z′1,2) < −1,

0 � "(z′1,2) < P̃n(−1).

(79)

The above proposition guarantees that the complex conjugate zeros off the
orthogonality interval (−1, 1), tend to the end points.

Proof. Let us consider the situation when two zeros belong to the domain
C \ {z : −∞ <  z � 1} (analogously for C \ {z : −1 �  z < ∞}). Now,
observe that for n large enough, from (40) and (68), the semiclassical polynomial
P̃n(x) in x = 1 takes a positive value tending to zero, while its first derivative is
a negative value tending to zero, whereas the classical Jacobi polynomials and its
first derivative P

α,β
n (1) and (P

α,β
n )′(1), respectively, tend to +∞.

Let {z̃k}∞k=1 be the sequence

z̃k = 1+ δ

k2−ε ,

where 0 < ε < 2, and δ ∈ C is any complex constant number such that  δ > 0.
Notice that, such a sequence converges to 1 when k tends to ∞.

Theorem 2 gives the outer asymptotics for z ∈ C\[−1, 1], so for n large enough
one can evaluate (66) in the point z̃n. Thus,

P̃n(z̃n)

P
α,β
n (z̃n)

= 1− 2(α + 2)

n
ε
2

(
2

δ

) 1
2

+ O

(
1

n

)
. (80)

So, (80) shows that for n � N (N ∈ N) the polynomials P
α,β
n (z) and P̃n(z)

have the same asymptotic behaviour in z̃n. Now, taking into account the aforemen-
tioned fact on the asymptotic behavior of classical and semiclassical polynomials,
respectively, in the point x = 1, the complex conjugate zeros of the semiclassical
Jacobi-type orthogonal polynomials are inside the disk of radius |z̃n| centered on
z = 1. Then, |z1|, |z2| < |z̃n|, n � N (N ∈ N). Moreover, for the imaginary part
of z1, z2 one can establish a sharp bound due to the fact that P̃n(x) in x = 1 is

26



positive, its first derivative is negative, and P̃n(x) → ∞, when x → ∞. Hence,
the result holds. ✷

The above proposition is also valid when the two zeros off the interval [−1, 1]
are real and simple or with multiplicity 2 (of course, omitting the analysis of
imaginary part).

PROPOSITION 8. Suppose that A1, A2, B1, B2 ∈ R. Then, for n large enough, if
A2 < 0 and B2 > 0 the semiclassical polynomial P̃n(x), orthogonal with respect
to the linear functional U has exactly n− 2 zeros belonging to the set (−1, 1), and
the two remainder zeros are outside the interval (−1, 1) being one positive and the
other one negative.

Proof. Let x1, x2, . . . , xk be the different real zeros of odd multiplicity of P̃n(x)

on the interval (−1, 1) and

q(x) = (x − x1)(x − x2) . . . (x − xk).

Obviously, the product P̃n(x)q(x) does not change its sign in (−1, 1). Now
define a new polynomial h(x) as

h(x) = (1− x2)q(x) = (1− x2)(x − x1)(x − x2) . . . (x − xk),

since, for n large enough, the signs of∫ 1

−1
(1− x2)q(x)P̃n(x)ρ(x) dx and 2[−A2P̃n(1)q(1) + B2P̃n(−1)q(−1)]

are the same, then

〈U, P̃n(x) h(x)〉 �= 0, (81)

which yields deg h(x) � n, i.e. k � n− 2.
To prove that P̃n(x) has one simple negative zero and one simple positive zero

outside [−1, 1] we use the fact that for n large enough P̃n(1) < 0, P̃ ′
n(1) > 0

(formula (68)) and the fact that the polynomial P̃n(x) is a continuous convex up-
ward function for x > 1, then in some positive value x > 1 it changes its sign.
Using the same argument when n is even, and equivalently when n is odd, we can
prove (based on the expressions (68)) that the polynomial P̃n(x) has one simple
real negative zero on the left-hand side of x = −1. This implies that k = n − 2,
hence the proposition holds. ✷

When A2 < 0, B2 > 0 by Proposition 8 we have only 2 zeros outside the
interval (−1, 1). So, we denote the zero on the left-hand side of −1 by xn,1 < −1
(analogously for the other case xn,n > 1). Now we proceed to study, in more detail,
the speed of convergence of these zeros (xn,1 and xn,n) to the end points of the
interval (−1, 1).
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COROLLARY 5. For n large enough 1 < xn,n < 1 + 2(α + 3)/n2 and −1 >

xn,1 > −1− 2(β + 3)/n2.
Proof. Let us start with the zero xn,n. Using the formulas (68) one can define a

linear function

f (x) = (P̃n)
′(1)(x − 1)+ P̃n(1), (82)

whose zero (denoted by x0) bounds by the right the zero xn,n of P̃n(x), i.e., 1 <

xn,n < x0. Hence, from (82) one has

1 < xn,n < x0 = 1+ 2(α + 3)

n2
+ o(n−2).

A similar procedure leads to prove the bound of xn,1, i.e., one gets a linear
function which passes by the point (−1, P̃n(−1)), such that f ′(x) = (P̃n)

′(−1).
So, the corollary holds. ✷

Remark 2. If n tends to infinity, all the zeros of the semiclassical Jacobi-type
orthogonal polynomial P̃n(x) off [−1, 1] tend to ±1.

Concerning the distribution of zeros for the semiclassical Jacobi-type orthogo-
nal polynomials inside [−1, 1] the next result shows that it is an arcsin distribution.

THEOREM 4. Let νn be the discrete unit measure defined on the Borel sets in C

having mass 1/n at each zero of P̃n(x). Then

νn
∗−→ 1

π
√

1− x2
, (83)

in the weak star topology.
Proof. From (64) and (78), we get

‖P̃n(x)‖[−1,1]
� |An|‖Pα,β

n (x)‖[−1,1] + n|Bn|‖Pα+1,β+1
n−1 (x)‖[−1,1] +

+ n|Cn|‖Pα+1,+1
n (x)‖[−1,1] + n|Dn|‖Pα+1,β+1

n−2 (x)‖[−1,1] +
+ n(n− 1)

[|En|‖Pα+2,+2
n−2 (x)‖[−1,1] + |Fn|‖Pα+2,β+2

n−1 (x)‖[−1,1]
]+

+ n(n− 1)|Gn|‖Pα+2,β+2
n−3 (x)‖[−1,1], (84)

where ‖ · ‖[−1,1] denotes the sup-norm in the interval [−1, 1]. Because of
limn→∞‖Pα,β

n (x)‖1/n
[−1,1] = 1/2 (see Szegő, 1975), we deduce

lim
n→∞‖P̃n(x)‖1/n

[−1,1] � 1
2 . (85)

Thus, from Theorem 2.1 in Blatt et al. (1988)

νn
∗−→ 1

π
√

1− x2
. ✷ (86)
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Comparison between classical (bold
line) and semiclassical polynomials for
n = 5, A1 = −0.5, B1 = 0, A2 = 0,
B2 = 0, α = β = 0, and
x ∈ [−1.2, 1.2].

Comparison between classical (bold
line) and semiclassical polynomials for
n = 20, A1 = 0, B1 = 0, A2 = −4,
B2 = 2, α = β = 1, and
x ∈ [−1.1, 1.1].

Figure 1. Numerical tests performed by using the symbolic computer algebra package
Mathematica to compare the behaviour between the Jacobi orthogonal polynomials and semi-
classical Jacobi-type orthogonal polynomials as well as their number of zeros inside the
orthogonality interval. Notice, that owing to the small value of the degree n, the parameters
Ai , Bi , i = 1, 2, α and β are given in such a way that the existence of semiclassical or-
thogonal polynomials is guaranteed. Observe that, even for small n, the zeros of semiclassical
Jacobi-type orthogonal polynomials go out the interval of orthogonality.

Comparison between classical (bold
line) and semiclassical polynomials for
n = 6, A1 = B1 = 0, A2 = 10,
B2 = −103, α = 0, β = 10, and
x ∈ [−1.1, 1.5].

Comparison between classical (bold
line) and semiclassical polynomials for
n = 5, A1 = B1 = 0, A2 = −0.5,
B2 = −106, α = β = 0, and
x ∈ [−1.2, 1.2].

Figure 2. Numerical tests performed by using the symbolic computer algebra package
Mathematica to compare the behaviour between the Jacobi orthogonal polynomials and semi-
classical Jacobi-type orthogonal polynomials as well as their number of zeros inside the
orthogonality interval. Notice, that owing to the small value of the degree n, the parameters
Ai , Bi , i = 1, 2, α and β are given in such a way that the existence of semiclassical or-
thogonal polynomials is guaranteed. Observe that, even for small n, the zeros of semiclassical
Jacobi-type orthogonal polynomials go out the interval of orthogonality.

In Figures 1 and 2 we show some numerical examples when the zeros are
located outside the interval [−1, 1].
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7. Conclusions and Open Problems

The notion of semiclassical OP seems to be very appropriate to generalize the very
classical OP of Jacobi, Laguerre, and Hermite. So, the example analyzed in this
paper (semiclassical Jacobi-type OP with respect to a moment functional of class
s = 4) is, probably, a good starting point, since other semiclassical cases like
Laguerre-type, Hermite-type (see Álvarez-Nodarse and Marcellán, 1995; Koekoek
and Koekoek, 1991; Koekoek, 1988), and, of course, the very classical OP should
be connected by limit transitions to the semiclassical Jacobi-type OP as the starting
family. The present paper helps us to understand the analysis of semiclassical OP
(very close to the classical ones), and then one has a good basis for studying other
extensions, for which there are quite a few possibilities for research.

The semiclassical Jacobi-type OP inherit some of the most remarkable prop-
erties of classical Jacobi polynomials. Then, the powerful tools which have been
created for the treatment of classical OP may be used (up to a some adaptation) for
an analysis of semiclassical OP. Obviously, such a mathematical aspect gives the
opportunity for the theory of semiclassical OP to develop as far as the theory of
classical OP.

The semiclassical OP are easily classified by using the order of the class of
the semiclassical moment functional from which they are coming from (see the
distributional equation (52)). Thus, some open problems can be raised:

(1) The semiclassical Jacobi-type OP show new interesting phenomena: They can
be represented by means of generalized hypergeometric series (6F5). Can any
semiclassical ‘classical-type’ OP be represented as s+pFs+q hypergeometric
functions? (where p and q correspond to the hypergeometric representation of
classical OP, and s is the order of the new class).

(2) The classical OP of Jacobi, Laguerre, and Hermite satisfy a linear second-
order differential equation. There is a linear differential equation of order

O = 2(s + 1)+ 2(α + r̃ − r),

for the semiclassical symmetric ‘classical-type’ OP, being α > −1, s the
order of the class of the corresponding semiclassical functional U, r̃ the total
number of masses in U, and r the number of different masses?

A deeper problem is to characterize all the semiclassical OP satisfying a
O-order linear differential equation, extending the Bochner’s result for clas-
sical OP.

We suggest the reader to consult the excellent survey (W. N. Everitt,
K. H. Kwon, L. L. Littlejohn, and R. Wellman 2001) as well as the reference
contained therein, for the latest known results concerning the classification of
differential equations.
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