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a b s t r a c t

In this paper a kernel for time-series data is introduced so that it can be used for any data mining task that relies on a 
similarity or distance metric. The main idea of our kernel is that it should recognize as highly similar time-series that are 
essentially the same but may be slightly perturbed from each other: for example, if one series is shifted with respect to 
the other or if it slightly misaligned. Namely, our kernel tries to focus on the shape of the time-series and ignores small 
perturbations such as misalignments or shifts. First, a recursive formulation of the kernel directly based on its definition 
is proposed. Then it is shown how to efficiently compute the kernel using an equivalent matrix-based formulation. To 
validate the proposed kernel three experiments have been carried out. As an initial step, several synthetic datasets have 
been generated from UCR time-series repository and the KDD challenge of 2007 with the purpose of validating the 
kernel-derived distance over shifted time-series. Also, the kernel has been applied to the original UCR time-series to 
analyze its potential in time-series classification in conjunction with Support Vector Machines. Finally, two real-world 
applications related to ozone concentration in atmosphere and electricity demand have been considered.

1. Introduction

Time-series analysis is an important problem with application in 
domains as diverse as engineering, medicine, astronomy or finance 
[11,29]. In particular, the problem of time-series classification and 
prediction is attracting a lot of attention among researchers. One of the 
most successful and popular methods for classification and prediction 
are kernel-based methods such as support vector machines (SVM)
[26,12,35,25]. Despite their popularity, there seem to be only a handful 
of kernels designed for time-series. This paper tries to fill this gap, and 
proposes a kernel exclusively designed for time-series. Moreover, using 
a standard trick, we are able to convert our kernel into a distance for 
time-series, therefore allowing us to use our kernel in distance-based 
algorithms as well.

A crucial aspect when dealing with time-series is to find a good 
measure, either a kernel similarity or a distance, that captures the 
essence of the time-series according to the domain of application.

For example, Euclidean distance between time-series is com-
monly used due to its computational efficiency; however, it is very 
brittle and small shifts in one time-series can result in huge changes

in the Euclidean distance. Therefore, more sophisticated distances
have been devised and designed to be more robust to small
fluctuations of the input time-series. Notably, Dynamic Time Warp-
ing (DTW) [30] is held as the state-of-the-art method for comparing
the similarity among time-series. The DTW is very powerful in the
sense that it can deal optimally with contractions, expansions and
shifts in time-series in addition to being able to handle time-series of
different lengths. Unfortunately, computing the DTW distance is
prohibitively costly for many practical applications [33]. Moreover, it
cannot be used to define a positive definite kernel since it violates
the triangle inequality [3].

Therefore, researchers are coming up with distances for time-
series that approximate the DTW at lower computational costs
either by adding global path constraints [30,36] or by reducing the
number of instances e.g. in nearest neighbor classification [35].

In this paper we introduce a new kernel, called MUlti-Scale
Smoothing Kernel (MUSS). The basic idea behind our kernel is to
take into account many smoothed versions of the time-series and
compute the similarity of the time-series as the aggregation of the
similarities of the multiple smoothed versions of the original time-
series. The underlying idea is that by smoothing the original time-
series we will get rid of slight perturbations, and so the basic trends
will become apparent and more easily detected. The main strength of
this kernel is the integration of multiple time-scales, that is, at a high
level, the MUSS kernel is a combination of linear kernels obtained by
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using several smoothed versions over different scales from the
original time-series. In a sense, the kernel-derived distance that is
proposed here tries to fix the brittleness of Euclidean distance
without incurring in the high computational costs of DTW. Moreover,
our kernel can easily be adapted to deal with multidimensional time
series by considering multi-variate versions of the point-wise dis-
tance between time-series. In addition, we can derive a distance
metric from the kernel definition that satisfies the triangle inequality.

The main goal of the proposed kernel is to recognize as similar
time-series that may be slightly perturbed from one another. Namely,
it tries to focus on the shape of the time-series and not so much on
the details. It is conceivable that small errors in measurement or
delivery of data may result in slight shifts or misalignments of time-
series. Consequently, any data that is sent through complicated
machinery can suffer from this type of misalignment as for example
astronomic data, and could benefit from our kernel.

In this work, two ways of computing the kernel are presented: a
recursive formulation and an equivalent matrix-based formulation.
To evaluate the proposed kernel three experiments have been carried
out. As an initial step, several synthetic datasets have been generated
from UCR time-series repository [20] and the KDD challenge of 2007
[19], with the purpose of validating our kernel-derived distance over
shifted time-series. In particular, a comparison with DTW and
Euclidean distances shows that our kernel-derived distance outper-
forms the Euclidean distance and is competitive with respect to the
DTW distance while having a much lower computational cost. The
DTW distance is designed to deal with misalignments and shifts
optimally. Therefore, our objective is not to beat the DTW, but to
approach its performance without incurring its high computational
cost. On the other hand, the Euclidean distance has been considered
as baseline distance. In the second experiment, the proposed kernel
has been applied to the original UCR time-series [20] to analyze its
potential in time-series classification using an SVM. In this case, the
proposed kernel shows a remarkable performance when comparing
with a kernel based on DTW [10] and a linear kernel. Finally, two
real-world applications related to ozone concentration in atmosphere
and electricity demand have been considered to show the perfor-
mance of the MUSS kernel over very specific datasets. In this case, an
accuracy ranging from 97% to 99% has been obtained.

The paper is structured as follows. Section 2 presents the most
relevant related works found in literature. Section 3 describes our
time-series kernel and its corresponding derived distance. The experi-
mental results are presented in Sections 4–6. Finally, Section 7
concludes with a summary of our main contributions and possible
directions for future work.

2. Related work

Similarity and distance measures for time-series are a crucial
ingredient in solving time-series classification and forecasting
problems [29,15]. For this reason, many distances have been
proposed. For example, [1] defines a distance between two time-
series representing the convexities/concavities of two shape con-
tours. In [4] the authors modify the Euclidean distance with a
correction factor based on the complexity of the input time-series.

The success and popularity of Support Vector Machines has
motivated researchers to design kernels that capture similarity
between time-series and sequences. For example, [32] define a
kernel for the particular task of handwritten character recognition.
In this work, the authors approximate each time-series by a linear
combination of piecewise polynomial functions and the kernel is
based on the product of the coefficients and functions that form
part of this approximation. Another family of kernels for time-
series based on Echo State Network [23,27] with a deterministic
reservoir architecture is proposed in [6]. Their kernel is defined by

Gaussian kernel with the L2 distance between the corresponding
readouts for each time-series from the same reservoir.

It is well-known that the DTW distance is not a distance in a
strict sense as it does not satisfy the triangle inequality and,
therefore, it cannot be used to define a positive definite kernel
[3]. Despite this disadvantage, many variants of DTW and defini-
tions of kernels based on DTW have been recently proposed in the
literature. As an example, [17] use Gaussian kernel and the DTW
distance with a special support vector machine, which has the
ability to handle non positive-definite kernel matrices.

Another example of the use of (a weighted variant of) DTW for
time-series classification, this time based on nearest neighbors is
[18]. The weights penalize instances with higher phase difference
between a reference point and a testing point with the purposes of
minimizing the distortion caused by outliers.

More recently, non-linear kernels have been proposed for time-
series classification. In [10] a new kernel based on the DTW
distance is defined by global alignments (GA-DTW). In particular,
the kernel is defined as the sum of the exponential function of the
distances for all possible alignments. However, this kernel has a
high computational cost and similar constraints on alignments to
that of [30] are presented to speed-up the computation in [8]. The
same author presents another kernel based on the idea that
similar time-series should be fit well by the same models [9].
The author used autoregressive models and thus the name of
autoregressive kernel. In particular, these two global alignment-
based and autoregressive kernels defined in [8] and [9] have been
recently used in machine olfaction applications in conjunction
with SVM [33]. An extension of SVM based on nonlinear dynamical
systems theory is presented in [16]; here it is shown that these
non-linear methods perform better and faster than the DTW
distance-based methods. However, linear kernels may still be
preferred over their more accurate non-linear counterparts due
to their interpretability, computational efficiency and the lack of
metaparameters that need tuning.

A kernel for periodic time-series arising in the field of astron-
omy is presented in [34]. This kernel is similar to a global
alignment kernel as it consists of the sum of the exponential
function of the inner products for all possible shifts of a time series
instead of alignments.

Finally, another kernel for time-series is proposed in [22]. In
particular, the time series are represented with a summarizing
smooth curve in a Hilbert space and the learning method of the
kernel is based on Gaussian processes.

In the lasts years, several approaches have been proposed to
combine multiple kernels instead of using a single kernel. In [28] a
combination of kernels for long-term time-series forecasting is
presented. In particular, a kernel that takes into account the
seasonality of the time-series to improve the performance of the
predictor is combined with the well-known Gaussian or rational
quadratic kernel. A detailed description can be found in [14].

Due to the fact that annotation of class labels in time-series is
very expensive, researchers are exploring the semi-supervised
methodology to the problem of time-series classification. The
main strategies within this line of work are the extension of
well-known semi-supervised techniques for static data classifica-
tion to time-series problems [21], and the definition of new
distances for time-series that work well in semi-supervised
classification [7].

3. Kernel description

This section presents the notation used in this paper and also
provides the definitions underlying the proposed kernel.



3.1. Preliminaries

Definition 1. Time-series. A time-series X is a set of temporally
sorted sequence of real values. In this work, X ¼ fx1;…; xNg, where
N is the length of the time-series.

Definition 2. Subsequence time-series. A subsequence of length k
of a time-series X ¼ fx1;…; xNg is a time-series Xk

j ¼ fxj; xjþ1;

…; xjþk�1g for 1r jrN�kþ1.

Definition 3. fk; jg-Order partial sum. A fk; jg-order partial sum of a
time-series X, sXk;j, is the sum of the values of the Xk

j subsequence
time-series of length k. That is

sXk;j ¼
Xk�1

i ¼ 0

xjþ i ¼ xjþxjþ1þ⋯þxjþk�1:

Definition 4. k-Order partial sum time-series. A k–order partial
sum time-series is a time-series SXk whose values are sXk;j for
1r jrN�kþ1, that is, the sum of all the values of the subse-
quences of length k of the time-series X.

SXk ¼ fsXk;1; sXk;2;…; sXk;N�kþ1g:

For example, the fk; jg-order partial sums and the k-order partial
sum time-series for the X ¼ f3;2;4;1g time-series are

sX2;1 ¼ 3þ2¼ 5

sX2;2 ¼ 2þ4¼ 6; SX2 ¼ f5;6;5g
sX2;3 ¼ 4þ1¼ 5

sX3;1 ¼ 3þ2þ4¼ 9; SX3 ¼ f9;7g
sX3;2 ¼ 2þ4þ1¼ 7

sX4;1 ¼ 3þ2þ4þ1¼ 10; SX4 ¼ f10g

3.2. Motivation

The main motivation in the definition of the MUSS kernel
proposed in this paper is to obtain a similarity measure for time-
series that yields high values when two time-series X and Y have
the same shape but may be slightly perturbed from each other. As
an illustration, Fig. 1 shows two time-series that are in fact similar
in the sense that they follow the same trend, however, the
Euclidean distance between the two time-series is high and so it
fails at detecting the similarity. As a consequence, using the
Euclidean distance in distance-based classification algorithms
may lead to poor results. The purpose of this work is to propose
a kernel that yields high similarity for time-series that have similar
shapes with a reasonable time complexity.

Fig. 2 shows the different time-series composed by the values
of the partial sums of the X and Y time-series for orders
kAf1;20;60;200g. Note that when the order is k¼1 the time-
series are the original X and Y time-series. It can be readily
observed that the greater the order of partial sums is, the
smoother the time-series become. In fact, the partial sums are
essentially unnormalized window-average smoothing over the
original series.

The MUSS kernel proposed here is obtained by adding the inner
products of partial sum time-series over all possible orders. It is not
necessary to discover the best alignment between two time-series,
in contrast to the DTW distance, as all partial sums will be included
in the kernel definition. Moreover, as it is shown in Section 4 the
MUSS kernel can be calculated very fast when compared to the
DTW distance since finding an optimal alignment is not necessary.

3.3. Definition of the kernel

Let X and Y be two time-series of length N. Let UX and UY be two
upper triangular matrices defined as

UX ¼ ½UX
1 ;…;UX

N � ð1Þ

UY ¼ ½UY
1 ;…;UY

N � ð2Þ
where UX

i and UY
i are the i-th rows of the matrices UX and UY,

respectively, which are defined by the elements uXij and uYij as
follows:

uX
ij ¼

sXi;j if 1r jrN� iþ1

0 if j4N� iþ1

(
ð3Þ

uY
ij ¼

sYi;j if 1r jrN� iþ1

0 if j4N� iþ1

(
ð4Þ

Finally, the MUSS kernel is defined as the sum of the scalar
products among the rows of the UX and UY matrices. That is,

KernelðX;YÞ ¼
XN
i ¼ 1

〈UX
i ;U

Y
i 〉 ð5Þ

where UX
i and UY

i are defined by Eqs. (1)–(4) and 〈�; �〉 is the scalar
product of two vectors in RN . It is obvious that the function
defined by Eq. (5) is indeed a kernel as it can be represented by a
inner product in the high-dimensional feature space ϕð�Þ defined
as follows:

KernelðX;YÞ ¼ 〈ϕðXÞ;ϕðYÞ〉 ð6Þ
where

ϕ : RN⟶RN2

X⟶ϕðXÞ ¼ ðUX
1 ;…;UX

NÞ

Next, we show an illustrative example for the time-series
X ¼ f3;2;4;1g and Y ¼ f1; �1;0;2g. Firstly, the UX and UY matrices
comprising the partial sums of the X and Y time-series have to be
computed. It is necessary only to estimate the partial sums for all
the orders greater than or equal to 2 as the 1 order partial sums
are the own values of the time-series. The 2-order partial sums for
X and Y are SX2 ¼ f5;6;5g and SY2 ¼ f0; �1;2g, respectively. Analo-
gously, the 3 and 4 order partial sums are SX3 ¼ f9;7g, SY3 ¼ f0;1g,

Fig. 1. Example of two similar time-series. These time-series represent measure-
ments taken each second over an 11 min period. One of the time-series (thin,
dotted blue) has been obtained from the other (thick, red continous) as follows:
within each minute block, the values of the original (red) time-series have been
circularly shifted with an offset of 30 measurements. The Euclidean distance, as
illustrated by the shaded regions between these two time-series, is high. On the
other hand our kernel should recognize both time-series as very similar. Plot is best
seen in color. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)



SX4 ¼ f10g and SY4 ¼ f2g. Therefore, the matrices are

UX ¼

3 2 4 1
5 6 5 0
9 7 0 0
10 0 0 0

2
6664

3
7775; UY ¼

1 �1 0 2
0 �1 2 0
0 1 0 0
2 0 0 0

2
6664

3
7775

The second step consists in calculating the scalar products of
the rows of the UX matrix and the corresponding rows of the UY

matrix. That is,

〈UX
1 ;U

Y
1 〉¼ 3 � 1þ2 � ð�1Þþ4 � 0þ1 � 2¼ 3

〈UX
2 ;U

Y
2 〉¼ 5 � 0þ6 � ð�1Þþ5 � 2¼ 4

〈UX
3 ;U

Y
3 〉¼ 9 � 0þ7 � 1¼ 7

〈UX
4 ;U

Y
4 〉¼ 10 � 2¼ 20

where UX
i and UY

i are the i rows of the UX and UY matrices,
respectively.

Finally, the MUSS kernel is defined as the sum of the above-
mentioned scalar products. Therefore,

KernelðX;YÞ ¼ ð3þ4þ7þ20Þ ¼ 34

3.4. Speeding-up the computation

The MUSS kernel can be computed following from the defini-
tion given above. However, an exhaustive analysis provides two
different schemes to compute the kernel at a far lower computa-
tional cost. In this subsection these two schemes are described in
detail.

3.4.1. Recursive scheme
This scheme is based on the fact that the i-th row of the UX matrix

can be recursively obtained from the ði�1Þ�th row and the original
values of the time-series X. Continuing the previous example, the

following relationships hold:

UX
2;1 ¼ 5¼UX

1;1þx2 ¼ 3þ2

UX
2;2 ¼ 6¼UX

1;2þx3 ¼ 2þ4

UX
2;3 ¼ 5¼UX

1;3þx4 ¼ 4þ1

UX
3;1 ¼ 9¼UX

2;1þx3 ¼ 5þ4

UX
3;2 ¼ 7¼UX

2;2þx4 ¼ 6þ1

UX
4;1 ¼ 10¼UX

3;1þx4 ¼ 9þ1

In general, the (i,j)-element of the UX matrix can be obtained
from the recursive formula as follows:

UX
i;j ¼UX

i�1;jþxjþ i�1

3.4.2. Matrix-based scheme
This scheme is based on the observation that each row UX

i of
the matrix UX can be obtained by multiplying a matrix Mi by the
row vector composed of the values of the time-series. That is,

UX
i ¼ ðx1;‥; xNÞ �Mi ð7Þ

where Mi ¼ Aij0½ � is the N � N matrix capturing the partial sums of
order i and the Ai ¼ failjg1r l;jrN

matrix is defined by ailj ¼ 1 for all

l; j such that 1r lr i and 1r jrN� iþ1, and 0 otherwise.
The matrix Mi has two well-differentiated blocks, a first block,

Ai, comprising a diagonal band matrix of width i composed of 1's
and two null triangular matrices of dimensions ðN� iÞ � ðN� iÞ and
a second block, composed of a null matrix of dimensions N� ði�1Þ.
It can be observed that the structure of theMi matrix is mainly due
to the definition of the i-order partial sums as the diagonal band of
width i represents the i-order partial sums for the different sub-
sequence time-series of length i. On the other hand, the null
matrix of dimension N � ði�1Þ is because of the columns of the UX

matrix are equal to 0 when j4N� iþ1.

Fig. 2. Example of k-order partial sum time-series for k¼ 1;20;60;200 on the time-series of Fig. 1. The reader should notice that as k increases, the smoothed versions of the
orignal time-series become more and more similar. Our kernel is computed as the sum of the similarities over all possible k. We chose explicitly to give all k equal weight
since a priori there is no reason why one should pay more attention to one particular scale. Plot is best seen in color.



We define

KernelðX;YÞ ¼
XN
i ¼ 1

〈UX
i ;U

Y
i 〉

¼
XN
i ¼ 1

UX
i � ðUY

i Þt

¼
XN
i ¼ 1

ðx �MiÞ � ðy �MiÞt

¼
XN
i ¼ 1

x � ðMi �Mt
i Þ � yt

¼ x �
XN
i ¼ 1

Mi �Mt
i

 !
� yt

where x and yt are the row and column vectors composed by the
values of the time-series X and Y, respectively, and ð�Þt denotes the
transpose. Let Z be the matrix defined by

Z ¼
XN
i ¼ 1

Mi �Mt
i ð8Þ

and thus KernelðX;YÞ ¼ x � Z � yt .
It can be easily seen that the Z matrix is symmetric since it is

the sum of symmetric matrices. Moreover, it is positive semidefi-
nite because it defines an inner product (cf. Eq. (6)). On the other
hand, this matrix only depends on the length of the time-series N.
Thus, the matrix can be precomputed just once when computing
the pair-wise kernel of a whole dataset providing a reduction of
the computing time. Most of kernels for time series proposed in
the literature cannot be represented by a matrix, which is not
depending on the values of the time series [6,10,34]. Moreover, the
structure of the Z ¼ fzijg1r i;jrN matrix can be obtained by unwrap-
ping Eq. (8):

zij ¼
i � ðN�ðj�1ÞÞ if jZ i

j � ðN�ði�1ÞÞ if i4 j

(

Continuing with the previous example, it can be observed that,
for all i¼ 1;…;4

UX
i ¼ ð3;2;4;1Þ �Mi

where M1 is the identity matrix of dimension 4�4 and the
remaining matrices and the resulting Z are

M2 ¼

1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 0

2
6664

3
7775; M3 ¼

1 0 0 0
1 1 0 0
1 1 0 0
0 1 0 0

2
6664

3
7775

M4 ¼

1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

2
6664

3
7775; Z ¼

4 3 2 1
3 6 4 2
2 4 6 3
1 2 3 4

2
6664

3
7775

It should be noted that a distance metric can be obtained from
any positive definite kernel Ker using the standard transformation
described in the following Eq. [31]:

dðu; vÞ ¼ Kerðu;uÞþKerðv; vÞ�2 � Kerðu; vÞ:
Therefore, when this work refers to the MUSS kernel as a distance
it really means the derived distance from the kernel.

4. Results

This section presents the results obtained by the application of
the MUSS kernel to forty datasets for measuring the similarity in

shifted time-series. Section 4.1 provides a detailed description of
all datasets used in the experiments. In Section 4.2 the kernel has
been applied to forty time-series to validate its potential for
separating classes in shifted time series. Finally, a statistical
analysis of the results is reported in Section 4.3.

4.1. Description of datasets

The MUSS kernel has been initially tested on several synthetic
datasets from the UCR time-series repository [20] and from data
from the 2007 KDD Challenge [19]. In particular, a synthetic
dataset derived from each available dataset in the aforementioned
repositories has been created in the following way: for each
different class existing in a dataset, a time-series belonging to this
class is chosen uniformly at random. Then, shifted time-series
copies with varying offsets are created from the selected chosen
time-series having the same label as the original time-series the
copies were created from.

Time-series lengths in our datasets range from 60 to 637, with
the average and the median being 282.1 and 272.5, respectively.
Computation times are highly sensitive to the time-series length,
especially for the DTW algorithm, which is quadratic in this
parameter. Relevant information about these datasets is summar-
ized in Tables 1 and 2. The class labels for the test KDD datasets are
not available.

4.2. Validation

A statistic based on pair-wise distances has been developed to
show howwell the MUSS kernel is able to separate classes in time-
series. Let D be a labeled dataset of M time-series of the same
length N. Let c(X) be the class of the time-series XAD. Then, the
SM separation measure is defined as follows:

SM¼ ðINTRA� INTERÞ=MAX

where INTRA and INTER are the average pair-wise distance of time
series belonging to the same and to different classes, respectively,
and MAX is the maximum pair-wise distance over the whole
dataset. Namely, let A¼ fðX;YÞjX;YAD; cðXÞ ¼ cðYÞg and B¼ fðX;YÞj
X;YAD; cðXÞacðYÞg. That is, A is the set of pairs of time series that
belong to the same class, and B is the set of pairs of time-series
that belong to different classes. Then,

INTRA¼ 1
jAj

X
ðX;YÞAA

dðX;YÞ

INTER¼ 1
jBj

X
ðX;YÞAB

dðX;YÞ

MAX ¼ max
X;YAD

dðX;YÞ

where d is any distance defined in RN � RN and N is the length of
the time-series in D. Observe that the higher the value for this
measure, the better the separation among classes obtained by
distance d is. A positive value of the SM measure means that, on
average, time-series belonging to the same class are closer than
the time-series of different classes. A negative value of the SM
measure means the opposite, that is, pairs of series of different
classes tend to be closer than the pairs of the same class. Notice
that for negative or values of the SM measure close to 0, any
distance-based classifier such as Nearest Neighbors is doomed
to fail.

Table 3 presents a comparison of the separation statistic and
computation time of the following distances: the Euclidean distance,
the one derived from the MUSS kernel (which we call MUSS distance),
and the DTW distance. The comparison is over the synthetic 40
datasets from UCR and KDD repositories. The computation times have



been obtained with a laptop of 8 GB of RAM and an Intel Core i7
processor running at 2.7 GHz. The distance that better separates the
existing classes for each dataset is marked in bold style. It can be seen
that the average of the separation measure for the MUSS kernel is
better than that of the Euclidean distance and similar to that of the
DTW distance. However, further statistical analysis shows that the
differences between the DTW distance and the MUSS are not
significant, while the differences between the Euclidean distance
and the MUSS distance are. When looking at the columns for com-
putation times, it is very clear that the Euclidean distance is by far the
fastest one to compute, followed by our MUSS distance using
(roughly) an order of magnitude extra CPU time. The DTW distance
is by far the slowest, needing two more orders of magnitude than our
MUSS distance.

We further analyze some of the rows of Table 3, in particular, the
rows corresponding to the FISH and KDD-03datasets. These two rows
are representatives of opposite behavior of the SD measure: for FISH
all distances have negative values in the SM measure, while for KDD-
03 all of them perform quite well. We try to explain why this should
be the case in what follows. Remember that in order to generate the
synthetic datasets, we chose one representative of each class at

random and then created circularly shifted copies from each repre-
sentative as time-series of the same class. Depending on the chosen
representatives, some of the resulting synthetic datasets are thus
inconsistent in their labels and therefore all distance measures
perform poorly. Fig. 3 shows one example of this (poor behavior in
FISH), and Fig. 4 shows a case of good behavior across all distances
(KDD-03).

Table 4 further summarizes Table 3, where the reader can observe
that the behavior of the MUSS distance is similar to that of DTW on
average (1.75 versus 1.70), and both outperform the Euclidean
distance (1.75 and 1.70 versus 2.55). From this table, it can be noticed
that the MUSS kernel reaches the highest rank in 14 datasets, the
second position and third positions in 21 and 4 datasets, respectively,
the DTW distance reaches the highest rank in 24 datasets, the second
position for 4 datasets (kdd13, kdd16, Coffee, Face (Four)) and the
third position for the 12 remaining datasets, and finally, the Eucli-
dean distance obtains the highest ranking just for 2 datasets (kdd13
and FISH), the second position for 14 datasets and the third position
for the remaining 24 datasets. The average ranking for each distance
is summarized in Table 4. It can be observed that DTW and the MUSS
kernel present similar behavior on average.

Table 5 shows the wins matrix for pairs of distances over the 40
datasets. That is, in how many datasets a distance separates better
than another distance. It should be read as follows: if row i and
column j contains number m, then distance i has beaten distance j a
total of m times. It can be noticed that the MUSS distance beats the
Euclidean distance in 34 datasets, and beats the DTW distance in 16
datasets. The DTW distance wins in 28 datasets to the Euclidean
distance and in 24 datasets to the MUSS kernel, and finally, the
Euclidean distance wins in 6 and 12 datasets to the MUSS and DTW
distances, respectively.

4.3. Statistical analysis

A statistical analysis has been conducted to evaluate the
significance of the MUSS kernel, following the non-parametric
procedures discussed in [13]. Non-parametric tests have to be
selected because the conditions of normality and homoscedasticity
are not met. All tests applied in this work have been obtained by
using the open-source platform KEEL [2].

Friedman and Iman–Davenport (ID) tests have been applied to
assess whether there are global differences in the separation
measure obtained by the three distances compared. The p-values
obtained by both tests at the level of significance α¼ 0:05 are
1.12�10�4 for the Friedman test, and 4.25�10�5 for the ID test.
As the p-values obtained from both of the tests are lower than the
level of significance considered, it can be stated that there exist
significant differences among the results obtained by three dis-
tances and a post-hoc statistical analysis is required.

The Holm and Shaffer tests have been applied to perform pair-
wise comparisons. Table 6 shows the sorted p-values obtained by all
comparisons for two levels of significance (α¼ 0:05 and α¼ 0:10).
Both of the tests allow concluding that the MUSS distance is better
than the Euclidean distance and similar to DTW distance for both
levels of significance, as the two tests reject the hypotheses for the
MUSS kernel and DTW distance versus Euclidean distance but do not
reject the null hypotheses for the MUSS kernel versus DTW distance.

5. Time-series classification

In our second experiment, we use Support Vector Machines to
perform classification using three different kernels: our MUSS
kernel, the GA-DTW kernel based on global alignments in [8], and
a linear kernel. We compare the prediction accuracy achieved by
these three kernels over the 20 datasets of the UCR repository [20].

Table 1
Datasets from UCR time-series repository.

Datasets from UCR Num. Instances Num. Classes Length

50 Words 450 50 270
Adiac 296 37 176
Beef 45 5 470
CBF 21 3 128
Coffee 18 2 286
ECG 14 2 96
Fish 63 7 463
Face (All) 112 14 131
Face (Four) 36 4 350
Gun-point 16 2 150
Lighting-2 20 2 637
Lighting-7 63 7 319
OSU Leaf 54 6 427
Olive Oil 40 4 570
Swedish leaf 105 15 128
Trace 36 4 275
Two patterns 28 4 128
Synth. control 36 6 60
Wafer 16 2 152
Yoga 18 2 426

Table 2
Datasets derived from the 2007 KDD Challenge.

Datasets from KDD 2007 Training size Test size Num. classes Length

kdd01 80 20 3 1024
kdd02 10 20 2 24
kdd03 18 72 4 512
kdd04 18 72 3 512
kdd05 44 33 1 1639
kdd06 55 33 10 1092
kdd07 54 45 4 398
kdd08 70 56 5 99
kdd09 14 35 4 70
kdd10 14 18 2 65
kdd11 14 21 2 82
kdd12 30 60 2 1024
kdd13 36 9 2 345
kdd14 14 28 4 84
kdd15 24 184 4 166
kdd16 16 24 1 136
kdd17 18 27 2 405
kdd18 77 33 6 1882
kdd19 112 56 7 131
kdd20 225 27 5 270



Table 3
Separation measure among classes and computing times when using several distances.

Separation measure CPU times (s)

Datasets Euclidean distance MUSS distance DTW distance Euclidean distance MUSS distance DTW distance

kdd01 0.004 0.010 0.129 829.8 2906.6 54 550.3
kdd02 0.076 0.128 0.174 0.2 0.3 1.8
kdd03 0.499 0.637 0.718 0.7 40.2 2733.9
kdd04 0.588 0.670 0.388 0.7 41.6 2696.3
kdd05 0.193 0.389 0.869 1.5 1838.0 54 971.2
kdd06 0.013 0.020 �0.014 2.1 1187.6 35 261.7
kdd07 0.159 0.229 0.056 2.3 68.3 5147.5
kdd08 0.131 0.208 0.396 3.6 10.9 534.6
kdd09 �0.037 �0.041 0.096 0.3 0.7 20.4
kdd10 0.012 0.109 0.335 0.2 0.5 23.6
kdd11 0.017 0.000 0.031 0.3 0.6 25.1
kdd12 0.364 0.387 0.439 1.2 587.2 18 344.6
kdd13 �0.028 0.009 �0.018 0.7 24.4 1187.5
kdd14 0.083 0.095 0.208 0.3 0.7 34.0
kdd15 �0.048 �0.007 0.134 2.1 10.2 827.4
kdd16 0.019 0.044 0.040 0.3 1.1 80.0
kdd17 �0.036 0.004 0.158 0.4 10.5 799.0
kdd18 0.157 0.058 0.015 3.7 5993.7 184 957.3
kdd19 �0.009 �0.024 0.050 7.9 33.1 2016.0
kdd20 0.089 0.147 0.080 24.2 285.5 25 279.4
50 Words 0.155 0.196 0.498 177.4 3653.3 176 629.5
Adiac �0.042 �0.040 �0.027 83.8 387.5 32 702.9
Beef 0.696 0.894 0.557 1.8 93.7 5505.9
CBF 0.150 0.311 0.557 0.5 4.9 94.2
Coffee �0.015 0.111 �0.015 0.3 5.8 316.9
ECG 0.045 0.054 0.126 0.2 3.8 22.8
FISH �0.004 �0.008 �0.018 10.3 46.4 2690.4
Face (all) 0.007 0.110 0.387 1.1 46.7 1928.6
Face (four) �0.005 0.016 0.011 3.4 131.1 10 576.4
Gun-point 0.136 0.113 0.345 0.3 1.2 83.3
Lighting-2 0.126 0.152 0.263 0.4 29.0 1964.2
Lighting-7 0.137 0.268 0.279 3.6 67.1 4767.3
OSU leaf 0.229 0.346 0.098 1.4 94.0 6396.3
Olive oil �0.063 �0.041 �0.027 2.5 100.8 6459.6
Swedish leaf 0.104 0.144 0.048 9.3 39.2 2286.0
Trace 0.300 0.303 0.091 1.2 3.1 65.1
Two patterns 0.113 0.165 0.585 1.1 19.2 1195.1
Synth. control 0.103 0.293 0.580 0.7 3.9 174.5
Wafer 0.126 0.172 0.015 0.3 1.0 72.9
Yoga �0.000 0.073 �0.005 0.3 11.0 724.1

Average 0.114 0.168 0.216 29.6 444.6 16103.7

Fig. 3. The left plot shows the 7 representatives chosen for each of the 7 classes found in the FISH dataset. The right plot shows in red are the 9 copies made out of the first
representative, and in blue are the 9 copies made out of the second representative. Since the representatives are, in fact, quite alike, it turns out that the copies are further
apart from their representatives than from other copies of other representatives, and therefore any reasonable distance measure is going to have low scores in the SM
measure. Plots are best seen in color. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)



The results in this section show that our kernel is able to achieve
good results for general time-series (not necessarily shifted). We
have used the implementation LIBSVM [5] of SVM due to its wide
acceptance in the literature. Code for the GA-DTW kernel has been
taken from.1

Table 7 shows the accuracy of the three methods. The last row
presents the average and the standard deviation in brackets for all
datasets. It can be appreciated that the MUSS kernel is better than

the linear kernel and similar to the GA-DTW kernel having in
addition the lowest standard deviation.

On the other hand, Table 8 reports the time (in seconds)
needed for the kernel computations. The MUSS kernel proposed
here is much faster than the GA-DTW kernel and as fast as the
linear kernel. In fact, the GA-DTW kernel is not applicable to high-
dimensional real-world problems that require the computation of
the kernel for many instances.

These results show that our MUSS kernel achieves comparable
accuracy to the DTW-based kernel but at a much lower com-
putational cost.

6. Real-world applications: ozone concentration in
atmosphere and electricity demand classification

Finally, we present results in two real-world applications:
atmospheric pollutants (ozone), and electricity demand. The
pattern recognition in ozone time-series data is an important task
as it allows governments to activate alert protocols and implement
good environmental policies if high ozone concentration levels are
predicted. On the other hand, electricity-producing companies are
interested in predicting spikes of demand in order to schedule the
energy production to maximize their profit.

Ozone time-series have been retrieved from a meteorological
station placed in the outskirts of Seville city (Spain), providing 312
times series composed of 168 hourly records each one. The dataset
is classified into two classes corresponding to high and low ozone
level periods (165 and 147 time-series, respectively). The time-
series have been split into a training set of 218 time-series, and a
test set of 94 time-series, preserving the proportion between two
existing classes.

Electricity demand time-series from 2008 to 2012 for the
Spanish electricity market have been collected [24], providing
261 times series composed of 168 hourly records each. Four
datasets, called Demand-2, Demand-3, Demand-4 and Demand-
5, have been used depending on the necessary number of classes
that an electrical engineering can consider useful to determine the
behavior of the demand. The time-series data have been split in
training set (182, 182, 181 and 181 time-series for each one of
4 datasets, respectively) and test set (79, 19, 80 and 80, respec-
tively) preserving the proportion among existing classes.

Fig. 4. The plot shows in red are the copies made out of the first representative for
dataset KDD-03, and in blue are the copies made out of the second representative.
In this case, both representatives are in fact quite different and thus the copies are
more similar among themselves than with respect to copies of other classes.
Therefore, all SM measures are positive. Plot is best seen in color. (For interpreta-
tion of the references to color in this figure caption, the reader is referred to the
web version of this paper.)

Table 4
Number of times each distance achieves the first, second and third positions over
all datasets and average rank.

Distances #1st #2nd #3rd Avg. Rank

Euclidean 2 14 24 2.55
MUSS 14 21 5 1.75
DTW 24 4 12 1.70

Table 5
Win matrix for pairs of distances.

Distances Euclidean MUSS DTW

Euclidean – 6 12
MUSS 34 – 16
DTW 28 24 –

Table 6
Holm and Shaffer tests results.

i Distances z p α=i ðα¼ 0:05Þ α=i (α¼ 0:10)

3 Euclidean vs. DTW 3.35 7.96 � 10�4 0.016 0.033
2 Euclidean vs. MUSS 3.02 2.54 � 10�3 0.025 0.05
1 MUSS vs. DTW 0.33 0.74 0.05 0.10

Table 7
Accuracy (%) obtained by the SVM classifier when using different kernels.

Datasets GA-DTW kernel Linear kernel MUSS kernel

50 Words 81.54 66.37 65.49
Adiac 50.38 51.66 62.92
Beef 46.67 46.67 70.00
CBF 100.00 88.00 96.00
Coffee 78.57 96.43 92.86
ECG 81.00 82.00 80.00
FISH 95.43 84.57 80.57
Face (all) 82.49 74.73 75.68
Face (four) 96.59 86.36 88.64
Gun-point 96.00 88.67 92.67
Lighting-2 65.57 67.21 70.49
Lighting-7 75.34 65.75 65.75
OSU leaf 52.89 46.69 45.87
Olive oil 40.00 40.00 63.33
Swedish leaf 92.80 85.60 80.00
Trace 99.00 75.00 91.00
Two patterns 97.60 81.08 83.85
Synth. control 97.33 94.00 96.33
Wafer 80.37 94.79 88.63
Yoga 49.23 65.40 60.20

Average 77.94 (20.17) 74.05 (17.25) 77.51 (14.07)

1 http://www.iip.ist.i.kyoto-u.ac.jp/member/cuturi/Code/DTWkernel.cpp.

http://www.iip.ist.i.kyoto-u.ac.jp/member/cuturi/Code/DTWkernel.cpp


The MUSS kernel has been used to classify the ozone time-
series into weeks of high or low ozone concentration and likewise
the demand into weeks of different behavior (valley, spikes, etc).
More concretely, we have used SVMs in conjunction with the same
three kernels as in the previous section.

Tables 9 and 10 show the percentage of time-series correctly
classified in the test sets and the time in seconds obtained by the
application of the SVM classifier for all real-world datasets when
using several kernels. The last row presents the average and the
standard deviation in brackets for all datasets. It can be observed
that the MUSS kernel presents the better results in accuracy for all
datasets. Moreover, the MUSS kernel is 440 times faster than the
GA-DTW kernel approximately and it provides a mean error of
classification by 3% and 5% lower than the remaining kernels.

7. Conclusions

In this paper we have presented the MUSS kernel for time-
series data and its associated distance metric. Initial experiments
show promise in detecting similarity between time-series. The
MUSS kernel has been compared to the Euclidean distance as a
reference distance and the DTW distance as one of the most
competitive distances that exist in the literature. Also, the MUSS
kernel has been used in conjunction with the SVM classifier to
time-series classification and compared with the GA-DTW kernel
[8] and the linear kernel. The kernel has shown to be efficient in
separating different classes in time-series from well-known repo-
sitories, and also, it has been successfully applied to real-world
time-series. In particular, a low error for the classification of the
ozone in low and high concentrations in the atmosphere and
classification of the electricity demand has been obtained.

For future work, we would like to generalize our MUSS kernel to
multivariate time-series and time-series that differ in length. More-
over, we would like to adapt our ideas so that they can be used in a
stream setting where time-series keep growing unboundedly.
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