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1. Introduction

There are several machine learning techniques to deal with a
classification problem, such as neural networks, radial basis
functions, rules and decision trees. A review of them can be found
in [1]. The explosion of available information complicates this
problem. Moreover, redundancy or noise may be present on data
[2]. Neural networks models play a crucial role in pattern
recognition [3]. For many practical problems, the possible inputs
to an Artificial Neural Network (ANN) can be huge. There may be
some redundancy among different inputs. A large number of
inputs to an ANN increase its size and thus require more training
data and longer training times in order to achieve reasonable
generalization ability. Pre-processing is often needed to reduce the
number of inputs to an ANN. The application of feature selection
(FS) approaches has become a real prerequisite for model building
due to the multi-dimensional nature of many modelling task in
some fields. Theoretically, having more features should give us
more discriminating power. However, this can cause several
problems: an increased computational complexity and cost, too
many redundant or irrelevant features, and degradation in the
classification error estimation.

Our objective is to improve the accuracy and to reduce the
complexity (measured by means of the number of inputs) of the

networks. The enhanced methodology has been tried out with four filters using 18 data sets that report test error
rates about 20 % or above with reference classifiers such as C4.5 or 1-NN. The proposal has also been evaluated in a
liver-transplantation real-world problem with serious troubles in the data distribution and classifiers get low
performance. The study includes an overall empirical comparison between the models obtained with and without
feature selection using different kind of neural networks, like RBF, MLP and other state-of-the-art classifiers.
Statistical tests show that our proposal significantly improves the test accuracy of the previous models. The reduction
percentage in the number of inputs is, on average, above 55 %, thus a greater efficiency is achieved.

models of Evolutionary ANNs (EANNs) with product units (PUs) that
have been employed to date by us. The training of databases for
classification, which have different numbers of patterns, features and
classes, is dealt with by means of ANNs. The computational cost is
very high if Evolutionary Algorithms (EAs) with different parameter
settings are employed for the training of the above-mentioned
networks. However, in this paper we use a specialization of an EA
called TSEA (Two-Stage Evolutionary Algorithm) [4] which add
broader diversity at the beginning of the evolution. First of all, FS is
applied to the data sets in order to eliminate redundant and irrelevant
variables. In this way, the complexity could be reduced and the
accuracy could be increased. The reduction in the number of inputs
could decrement the number of nodes in the hidden-layer and, hence,
also simplify the associated model. Several runs of the TSEA have
been performed to smooth the stochastic character using mean
values in order to complete a statistical analysis of the results
obtained. This paper is organized as follows: Section 2 describes
some concepts about FS and the classification with TSEA in evolu-
tionary product unit neural networks (PUNNs); Section 3 presents the
description of our proposal; Section 4 details the experimentation
process; then Section 5 shows and analyzes the results obtained;
finally, Section 6 states the concluding remarks.

2. Methodology
2.1. Feature selection

The selection of features and the removal or reduction of
redundant information unrelated to the classification task on
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hand will not only reduce the complexity of the problem and
improve the efficiency of the processing but also simplify sig-
nificantly the design of the classifier. The FS is one of the essential
and frequently used techniques in machine learning. A FS method
generates different candidates from the feature space and
assesses them based on an evaluation criterion to find the best
feature subset [5]. On the basis of the evaluation criterion, FS can
be divided into filter methods and wrapper methods. Filters
assess the relevance of features by looking only at the intrinsic
properties of the data, such as distance, consistency, and correla-
tion [5-7]. These criteria are independent of any inductive
learning algorithm. In contrast, the wrapper approach requires
one predetermined mining algorithm and uses its performance to
evaluate and determine which features are selected [8]. Wrappers
often select features that have a higher accuracy; however, they
are criticized for their high computational cost and low general-
ity. To take advantage of the above two approaches, a hybrid
model was proposed to handle large data sets [9]. Moreover, some
methods, known as embedded, use internal information of the
classification model to perform FS [10,11].

Based on the generation procedure, FS can be divided into
individual feature ranking (FR) and feature subset selection (FSS)
[10,12]. FR measures the relevance of each feature to the class and
then ranks features by their scores and selects the top-ranked
features. These methods are widely used because of their simpli-
city, scalability, and good empirical success [10,13]. However, FR
is criticized because it can capture only the relevance of the
features to the target concept, whereas the redundancy and basic
interactions between features are not discovered. Additionally,
the number of features retained is difficult to determine; as a
result, a threshold is required. In contrast, FSS attempts to find a
set of features that have good performance. This method inte-
grates the metric for measuring the feature-class relevance and
the feature-feature interactions. In [14] Liu and Yu, a large
number of selection methods are categorized, in which different
algorithms address these issues distinctively. We found different
search strategies, namely exhaustive, heuristic and random
searches, and combined them with several types of measures to
form different algorithms. The time complexity is exponential in
terms of the data dimensionality for an exhaustive search, and it
is quadratic for a heuristic search. The complexity can be linear
with the number of iterations in a random search, but experi-
ments show that, to find the best feature subset, the number of
iterations required is usually at least quadratic to the number of
features [15]. In this categorization, to handle large data sets, a
hybrid model was also proposed to combine the advantages of the
FR and FSS techniques. These methods decouple relevance analy-
sis and redundancy analysis, and they have been proven to be
more effective than ranking methods and more efficient than
subset evaluation methods on many traditional high-dimensional
data sets. In this framework, [16] proposed a hybrid search
algorithm. Yu and Liu [17] proposed a fast correlation-based filter
algorithm (FCBF) that used a correlation measure to obtain
relevant features and to remove redundancy. Ding and Peng
[18] used mutual information for gene selection, finding max-
imum relevance with minimal redundancy by solving a simple
two-objective optimization.

2.2. C(lassification with evolutionary product unit neural networks
based on a two-stage algorithm

There are several kinds of neural networks, being the single-
hidden-layer feed-forward network architecture the most popular
one. Multiplicative neural networks contain nodes that multi-
ply their inputs instead of adding them. This class of neural
networks comprises such types as sigma-pi networks and product

Fig. 1. Structure of a product unit neural network model for a bi-classification
problem.

unit networks. The latter type was introduced by R. Durbin and
D. Rumelhart [19]. The methodology employed here consists of
the use of an EA as a tool for learning the architecture and weights
of a PUNN model [20]. More details about PUNNSs, such as some of
the advantages, the universal approximation theorem, problems
and learning methods, can be found in [4,21].

Fig. 1 shows the structure of a PUNN model with a k:m:1
architecture for a bi-classification problem; this is a three-layer
architecture, that is, k nodes in the input layer, m ones (product
units) and a bias one in the hidden layer and one node in the
output layer.

The transfer function of each node in the hidden and output
layers is the identity function. Thus, the functional model
obtained by each of the nodes in the output layer with ] classes
is given by:
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Next, we are going to describe briefly the TSEA applied. A full
explanation of it and the details about common parameters can
be read in Section 3 of [4]. TSEA is used to design the structure
and learn the weights of PUNNs in two sequential phases. The
population is subjected to the operations of replication and
mutation; two types of mutations have been applied: parametric
and structural ones. The TSEA pseudo-code for a classification
problem appears in Fig. 2. In the first stage, TSEA evolves two
populations for a small number of generations. The best half
individuals of each one are merged in a new population that
follows the full evolutionary cycle. The main parameters of the
TSEA are the maximum number of generations (gen) and the
maximum number of nodes in the hidden layer (neu). The
minimum number of nodes is an unit lower than neu. The
remaining parameters will be described further on. At the end
of the TSEA, it returns the best PUNN model with a number of
nodes between neu and neu+1 in the hidden layer.

We have considered a standard soft-max activation function,
associated with the g network model, given by:

go=—"DIW iy @
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where J is the number of classes in the problem, f;(x) is the output
of node j for pattern x and g;(x) is the probability that this pattern
belongs to class j.

Given a training set D= (x;y;)i=1,...N, a function of cross-
entropy error is used to evaluate a network g with the instances of
a problem



Program: Two-Stage Evolutionary Algorithm
Data: Training and test sets
Input parameters: gen, neu

Output: Best ANN model

- £, (P5(t) {ind,, ..
S Py(t) € Py(t) {ind,, ..
2 Py(t) € Py(t) {indy,... indjgpo}

// First Stage

t<0

// Population P,
Py(t) € {indy, ..., ind;gogo} // Individuals of P, have neu nodes in the hidden layer
i (Py(t) {indy, ..., indjgoe0}) € fitness (Py(t) {ind,. ..., indjg0}) // Calculate fitness

Pi(t) € Pi(t) {@ndl, o ind;gpoo }
Py(t) € Py(t) {ind,,... indgpo}

// Sort individuals
// Retain the 1000 best ones
// Population P,
., ind;g00} // Individuals of P, have neu+1 nodes in the hidden layer
., indjgg0}) € fitness (P(t) {ind,, ..., indgpgo}) // Calculate fitness
., indjgee0}  // Sort individuals
// Retain the 1000 best ones
// Evolution of populations P; and P, until 0.1*gen generations

Py(t) € {ind,, ..

14: for each P;
15: current generation € 0

43: end while
44: return best (P(last_generation) {ind,})

16:  while current_generation < 0.1*gen not met do

17: Pi(t) {indyyy,...ind g0} € Pi(t) {indy, ..., ind;o} // Best 10% replace the worst 10%

18: Pi(t+1) € Py(t) {ind, ..., indggo}

19: Py(t+1) € pm (Pi(t+1) {ind,, ..., indgo}) // Parametric mutation (10% P; (t+1))
20: Pi(t+1) € sm (Py(t+1) {indyy, ..., indgeo}) // Structural mutation (90% P; (t+1))
21: fi(Pi(t+1) {ind,, .. indogo}) € fitness (Pi(t+1) {ind,, ..., indggo}) // Evaluate

22: Py(t+1) € Py(t+1) (ind,, ..., indgge) U Pi(t){indoyy, ..., ind;go0}

23: Pi(t+1) € Py(t+1){indy, ..., indjgeo} // Sort individuals

24: current_generation € current_generation + 1

25:  end while

26: end for

27: P(t) € Py {ind,, ..., indspo} U P,{ind,, ..., indspo} // Individuals of P has [neu, neu+1]
28: // nodes in the hidden layer

29: P(t) € P(t) {indy, ..., ind;peo} // Sort individuals by fitness: ind; > ind;.,

30: // Second Stage

31: // Input: gen, neut1

32: t€0

33: while stop criterion not met do // main loop

34: P(t) {indgy,...indg00} € P(t) {ind,, ..., ind oo} // Best 10% replace the worst 10%

35: P(t+1) € P(t) {ind,, ..., indggo}

36: P(t+1) € pm (P(t+1) {ind, ..., indgy}) // Parametric mutation (10% P(t+1))
37: P(t+1) € sm (P(t+1) {indy), ..., indgeo}) // Structural mutation (90% P(t+1))
38: f(P(t+1) {ind,, .. indepo}) €< fitness (P(t+1) {ind,, ..., indgeo}) // Evaluate

39: P(t+1) € P(t+1) (indy, ..., indegy) U P(t) {indoyy, ..., ind;ggo}

40: P(t+1) € P(t+1){ind,, ..., ind;g00} // Sort individuals

41: t & t+l

42: last_generation € t

Fig. 2. Pseudo-code of the TSEA for a classification problem.

The TSEA loops are repeated until the maximum number of
generations, in each case, is reached or until the best individual or
the population mean fitness does not improve during gen-
without-improving generations (20 in this paper).

3. Proposal description

Our attention is focused on evolutionary PUNNSs for classifica-
tion problems. The current paper presents TSEAFS methodology
that is based on a combination between TSEA and a pre-processing
stage. First of all, some feature selectors are applied independently
to the training set of all data sets in order to obtain a list of
attributes, for each of them, considered for training and test phases.
In this way, two reduced sets (reduced training and test sets) are
generated, where only most relevant features are included. It
is important to point out that the FS is performed only with
training data; the reduced test set has the same features as the
reduced training set. These reduced sets are taken as input to TSEA.

TSEAFS operates with four filters as independent feature selectors.
As a result of the FS stage, a list of relevant features is obtained
with each of the FS methods for each data set. Fig. 3 presents the
framework of the proposed methodology. TSEAFS has two phases:
(i) feature selection and (ii) classification by means of TSEA.
There are two different configurations in TSEA, named 1* and
2*. The TSEAFS features are the following: (a) PUNN have been
employed, with a number of neurons in the input layer equal to
the number of variables in the problem after FS; a hidden layer
with a number of nodes that depends on the data set to be
classified and the number of selected features; and the number of
nodes in the output layer equal to the number of classes minus
one because a softmax-type probabilistic approach has been
used; (b) two different configurations (1*# and 2*#) are applied
to subsets obtained with each of the selectors, for each data set.
The parameters of each configuration are neu#, gen# and o,. The
first two ones take specific values depending on the data set and
the last one depends on the configuration number (1*#,...). o, is
related with the parametric mutation and acts on the coefficients
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Description of the TSEA/TSEAFS configurations.

Methodology Config. Num. of neurons Size of Num. gener. in a,
in each pop. each pop. each pop.
TSEA 1* neu and neu+1 1000 0.1%gen 1
TSEA 2% neu and neu+1 1000 0.1*gen 1.5
TSEAFS 1% neu# and neu#+1 1000 0.1*gen# 1
TSEAFS 24 neu# and neu#+1 1000 0.1*gen# 1.5
Table 2

of the output-layer (ﬁ}). Moreover, o, parameter controls the
diversity of the individuals in the population; an experimental
study about it was performed in [4,22]. Table 1 shows the main
aspects of TSEA/TSEAFS configurations.

4. Experimentation
4.1. Data sets, parameters and validation technique

Table 2 describes the data sets employed. All of them, except
the last one, are publicly available at the UCI repository [23]. The
following 19 have been used: Appendicitis, Breast Cancer, Breast
Tissue (Breast-t), Cardiotocography, Statlog (Heart), Hepatitis, Labor
Relations, Led24, Lymphography, Parkinsons, Pima Indians diabetes,
Steel Plates Faults, Molecular Biology (Promoter Gene Sequences),
SPECTF, Vowel, Waveform database generator (version 2), Wine
Quality (Winequality-red), Yeast and Liver-transplantation, a real-
world problem.

These data sets are complex problems that report error rates in
test accuracy about 20% or above with reference classifiers such
as C4.5 [24] or 1-NN [25,26]. The last data set has an important
problem with the distribution of the data and will be explained in
their own section. Since we are using neural networks, all
nominal variables have been converted to binary ones. Also, the
missing values have been replaced in the case of nominal
variables by the mode or, when concerning continuous variables,
by the mean, taking into account the full data set. The experi-
mental design uses the cross validation technique called stratified
hold-out [27] that consists of splitting the data into two sets:
training and test set, maintaining the class distribution of the
samples in each set approximately equal as in the original data
set. Their sizes are approximately 3N/4 and N/4, where N is the
number of patterns in the problem [28]. Some data sets were
prearranged in the repository, so we maintain the original
distribution.

Regards to TSEA methodology, the concrete values of neu and
gen parameters depend on the data set and are shown in the
eighth column of Table 2. With respect to the number of
generations, we have defined three kinds of values: small (150,
300), medium (500) and large (1000). We have given, in some
cases, values of our choice to the two parameters depending on
the complexity of the data set (number of classes, inputs,
instances,...). Other times the values are based on a previous

Summary of the 19 data sets used and parameter values for TSEA and TSEAFS methodologies.

Data set Size Train Test Features Inputs Classes Neu; Gen Neu#; Gen#
Appendicitis 106 80 26 7 7 2 4; 300 4; 100
Breast 286 215 71 9 15 2 9; 500 9; 300
Breast-t 106 81 25 9 9 6 5; 300 5; 150
Cardiotocography 2126 1594 532 23 31 3 6; 300 5; 150
Heart 270 202 68 13 13 2 6; 500 4; 20
Hepatitis 155 117 38 19 19 2 3; 300 3; 300
Labor 57 43 14 16 29 2 6; 300 5; 300
Led24 3200 200 3000 24 24 10 8; 500 8; 500
Lymphography 148 111 37 18 38 4 6; 500 6; 100
Parkinsons 195 146 49 23 22 2 6; 300 6; 300
Pima 768 576 192 8 8 2 4; 150 4; 150
Plates 1941 1457 484 27 27 7 6; 500 6; 500
Promoter 106 80 26 58 114 2 11; 500 6; 300
SPECTF 267 80 187 44 44 2 6; 500 6; 300
Vowel 990 528 462 12 11 11 6; 1000 6; 1000
Waveform 5000 3750 1250 40 40 3 3; 500 3; 500
Winequality-red 1599 1196 403 11 11 6 6; 300 4; 300
Yeast 1484 1112 372 8 8 10 11; 1000 11; 1000
Liver-transplantation 615 462 153 39 53 2 6; 500 6; 300




work [4]. In TSEAFS, again there are two parameters, neu# and
gen#, whose value is defined for each data set. The last column of
the Table 2 presents the values of them along with the ones of
TSEA to have a general view of the differences. In TSEAFS the
number of neurons is upper bounded by TSEA value. It is
important to note that aforementioned values of the parameters
concern to the base configuration (1*/1*#). The gen# parameter
takes values similar to gen with the exception of Heart in whose
case is very small (20) since the search converges quickly. The
values of the remaining configurations are presented further on.

4.2. Filter-based feature selection methods

Table 3 depicts the methods used in the experimentation.
There are four ones with and one without feature selection that
belong respectively to TSEAFS (the current proposal) and TSEA
methodologies. The feature selectors are filters. Last column
defines an abbreviated name for each of them that is employed
in next sections.

In a previous work, we proposed BIRS (Best Incremental
Ranked Subset) [16] method. BIRS belongs to a hybrid category
where the selection process is divided into two stages: in the first
one, features are evaluated individually, providing a ranking
based on a criterion; in stage two, a feature subset evaluator is
applied to a certain number of features in the previous ranking
following a search strategy. BIRS can use any evaluator in the two
phases. In the cited work, BIRS uses as a subset evaluator CFS
(Correlation-based Feature Selection) [7] and CNS (consistency

Table 3
List of methods employed in experimentation with and without feature selection.

Feature selector Ranking method Subset Methodology Abb.

name evaluation name

- None None TSEA FSO

spBI _CFS spBI CFS TSEAFS FS1

cnBl _CNS cnBI CNS TSEAFS FS2

FCBF Symmetrical FCBF TSEAFS FS3
Uncertainty

BestFirst_CFS BestFirst CFS TSEAFS FS4

sp stands for SOAP, BI for BIRS and cn for CNS

Table 4

based measure) [6] - that are established on correlation and
consistency concepts — at the second phase, and SOAP (Selection
Of Attributes by Projection) [29] measure and the own subset
evaluator at the first phase as a ranking evaluator. The hybrid
algorithm FCBF (Fast Correlation-Based Filter) uses symmetrical
uncertainty (SU) in two steps. In the first step generate a ranking
based on the SU between each feature and the class. Second step
starts with a full set of features and begins eliminating some, that
is, it finds the best subset using a backward selection technique
with sequential search strategy, analyzing whether a feature is
discarded or not depending on the feature-feature SU correlation.
BestFirst [7] is a well-known search strategy use with CFS
evaluation measure.

As previously mentioned, four FS methods implemented as
filters have been applied to each data set. Table 4 illustrates for
each data set the number of inputs of the original train set (see
column labelled FSO) and those that have been obtained with the
different feature selectors (see columns labelled FS1-4) along
with the reduction percentage in the inputs of each selector
compared to the original data set. Last row shows the average of
the number of inputs and reduction percentage of the test bed for
each experimented method on this paper.

The reduction percentage of the number of inputs is defined as:

Inputs(FSi)
- Inputs(FSO)) 100 i

1,..

Reduction_of_Inputs(%) = <1 4 3
where i is the FS method index and Inputs(j) represents the
number of inputs of a given data set with method j.

In all cases, FS methods successfully decreased the data
dimensionality by selecting, in mean, much less than the half of
the original features.

5. Results

This section details the results obtained, measured in Correct
Classification Ratio (CCR) in the test set or in the test subset
depending on that FS has been considered or not. First of all, we
present the results obtained with TSEA and TSEAFS. After that, a
statistical analysis compares them to determine whether there
are significant differences between applying or not FS. Next, the

Number of inputs and reduction percentage for the 19 data sets with and without feature selection.

Data set Inputs Reduction (%)
FSO FS1 FS2 FS3 FS4 FS1 FS2 FS3 FS4

Appendicitis 7 4 2 2 5 42.86 71.43 71.43 28.57
Breast 15 4 2 3 4 73.33 86.67 80.00 73.33
Breast-t 9 6 6 4 6 3333 33.33 55.56 33.33
Cardiotocography 31 9 21 8 7 70.97 32.26 74.19 77.42
Heart 13 7 9 6 7 46.15 30.77 53.85 46.15
Hepatitis 19 10 5 6 10 47.37 73.68 68.42 47.37
Labor 29 7 5 8 8 75.86 82.76 72.41 72.41
Led24 24 6 6 6 6 75.00 75.00 75.00 75.00
Lymphography 38 11 9 8 12 71.05 76.32 78.95 68.42
Parkinsons 22 5 6 4 6 77.27 72.73 81.82 72.73
Pima 8 3 5 4 4 62.50 37.50 50.00 50.00
Plates 27 16 21 6 10 40.74 22.22 77.78 62.96
Promoter 114 7 7 11 10 93.86 93.86 90.35 91.23
SPECTF 44 12 9 6 12 72.73 79.55 86.36 72.73
Vowel 11 3 9 7 3 72.73 18.18 36.36 72.73
Waveform 40 14 15 5 14 65.00 62.50 87.50 65.00
Winequality-red 11 5 8 4 4 54.55 27.27 63.64 63.64
Yeast 8 5 7 6 7 37.50 12.50 25.00 12.50
Liver-transplantation 53 13 11 7 12 75.47 79.25 86.79 77.36
Average 27.24 7.65 8.82 6.00 7.65 62.94 53.95 68.07 62.17




Table 5
Results obtained in 18 data sets applying TSEA and TSEAFS.

Data set Method Topology Mean + SD
Config 1*/1%# Config 2*[2*#
Appendicitis FSO 7:[14,5]:1 81.66 + 4.24 80.51 +2.84
FS1 4:(4,5]:1 82.82 +2.19 81.02 + 2.65
FS2 2:[4,5]:1 80.89 + 0.70 80.76 + 0.00
FS3 2:[4,5]:1 80.38 +2.73 79.61 +3.21
FS4 5:(4,5]:1 81.79 +2.00 81.66 +2.97
Breast FSO 15:[9,10]:1 65.96 + 2.89 62.76 +3.08
FS1 4:(9,10]:1 69.85 + 1.50 68.21+1.08
FS2 2:[9,10]:1 69.01 + 0.00 69.01 +0.00
FS3 3:[9,10]:1 68.92 +0.73 69.10 + 0.36
FS4 4:[9,10]:1 69.01 + 0.00 69.01 + 0.00
Breast-t FSO 9:[5,6]:5 54.53 +7.89 55.33 +£9.16
FS1 6:[5,6]:5 54.40 +6.77 48.93 +8.83
FS2 6:[5,6]:5 55.73 +8.72 57.87 +6.87
FS3 4:[5,6]:5 60.93 +4.77 56.53 +7.03
FS4 6:[5,6]:5 59.47 + 8.90 56.00 + 6.96
Cardiotocography FSO 31:[6,7]:2 81.69 + 3.56 81.55+2.90
FS1 9:[5,6]:2 85.26 + 2.27 84.88 +2.11
FS2 21:[5,6]:2 71.20 +2.55 76.71 +1.04
FS3 8:[5,6]:2 81.55+1.69 81.12+1.80
FS4 7:[5,6]:2 81.58 +2.48 82.38 +2.42
Heart FSO 13:[6,7]:1 76.62 +2.33 77.45 +3.09
FS1 7:[4,5]:1 7745 +2.16 77.69 +2.28
FS2 9:[4,5]:1 78.57 +1.99 77.79 + 1.60
FS3 7:[4,5]:1 75.24+2.70 75.34+2.80
FS4 7:[4,5]:1 7745 +2.16 77.69 +2.28
Hepatitis FSO 19:[3,4]:1 82.10+4.44 87.01 + 3.78
FS1 10: [3,4]:1 90.78 + 1.79 89.29 +1.53
FS2 5:[3,4]:1 86.14 + 1.81 87.45 +1.49
FS3 6: [3,4]:1 85.00 + 1.56 91.05 + 2.55
FS4 10: [3,4]:1 90.78 +1.79 89.29 +1.53
Labor FSO 29:[6,7]:1 85.24 +8.78 86.90 + 5.96
FS1 7:[5,6]:1 93.09 +4.39 96.19 +4.08
FS2 5:[5,6]:1 87.62 +4.16 88.33 +4.39
FS3 8:[5,6]:1 90.95 +5.28 90.48 +5.73
FS4 8:[5,6]:1 89.76 + 6.41 89.76 +5.20
Led24 FSO 24:[8,9]:9 50.29 + 6.59 51.03 + 5.58
FS1 6:[8,9]:9 67.26 + 1.46 68.30 + 0.57
FS2 6:(8,9]:9 67.26 + 1.46 68.30 + 0.57
FS3 6:[8,9]:9 67.26 + 1.46 68.30 + 0.57
FS4 6:[8,9]:9 67.26 + 1.46 68.30 + 0.57
Lymphography FSO 38:[6,7]:3 79.37 +4.73 78.73 +4.79
FS1 11:[6,7]:3 79.09 +5.71 78.55 +4.42
FS2 9:[6,7]:3 80.18 +3.27 80.36 +4.54
FS3 8:[6,7]:3 79.18 +5.17 80.61 +3.12
FS4 12:[6,7]:3 78.19 +3.88 80.90 +5.71
Parkinsons FSO 22:[6,7]:1 73.94+2.43 78.09 + 3.51
FS1 5:(6,7]:1 78.36 +2.86 78.77 + 1.66
FS2 6:[6,7]:1 80.13 +2.26 80.06 +3.73
FS3 4:[6,7]:1 82.52 +2.92 82.79 + 2.50
FS4 6:[6,7]:1 79.25+2.15 76.05 +3.47
Pima FSO 8:[4,5]:1 78.38 +1.59 79.21 +1.53
FS1 3:[4,5]:1 79.35 + 1.09 79.72 + 1.08
FS2 5:[4,5]:1 78.52 +0.80 78.54 +1.37
FS3 4:(4,5]:1 78.42 +1.35 79.53 +0.98
FS4 4:(4,5]:1 7842 +1.35 79.53 +0.98
Plates FSO 27:(6,7]:6 50.74 + 4.24 51.46 + 3.03
FS1 16:[6,7]:6 53.81+3.99 53.38 +4.17
FS2 21:[6,7]:6 56.93 +2.43 54.40 +4.95
FS3 6:[6,7]:6 50.87 +4.75 51.87 +3.06
FS4 10:[6,7]:6 48.84 + 4.60 48.53 +2.58
Promoter FSO 114:[11,12]:1 65.76 &+ 8.99 68.20 +9.52
FS1 7:16,7]:1 83.84+3.83 85.64 +4.03
FS2 7:16,7]:1 80.00 +2.74 76.30 +4.10
FS3 11:[6,7]:1 73.66 + 6.77 75.12 +4.48
FS4 10:[6,7]:1 74.74 £ 5.11 73.97 +3.73
SPECTF FSO 44:[6,7]:1 60.17 +4.15 61.56 +4.97
FS1 12:[6,7]:1 73.20+2.18 73.85 +2.71
FS2 9:(6,7]:1 72.07 +1.16 71.64 +1.56
FS3 6:[6,7]:1 73.99 + 1.30 70.60 + 1.84
FS4 12:[6,7]:1 72.35 +1.69 73.76 + 1.02
Vowel FSO 11:[6,7]:10 45.04 +2.93 47.18 +4.03
FS1 3:[6,7]:10 48.07 +3.11 54.31 +2.29

FS2 9:[6,7]:10 47.65 +5.01 46.80 +4.27



Table 5 (continued )

Data set Method Topology Mean + SD
Config 1%/1*# Config 2%[2*#
FS3 7:16,7]:10 48.12 +£3.40 49.45 +2.54
FS4 3:[6,7]:10 48.07 +£3.11 54.31+2.29
Waveform FSO 40:[3,4]:2 84.46 + 0.92 82.01 +1.48
FS1 14:[3,4]:2 86.35 + 0.85 86.89 + 0.71
FS2 15:[3,4]:2 86.02 +2.16 85.67 + 0.96
FS3 5:[3,4]:2 79.96 + 0.47 80.67 +0.37
FS4 14:[3,4]:2 86.35 +0.85 86.89 +0.71
Winequality-red FSO 11:[6,7]:5 60.95 + 1.58 61.11 + 1.02
FS1 5:[4,5]:5 61.63 +1.09 61.25 +1.62
FS2 8:[4,5]:5 61.47 +£0.95 60.87 +1.29
FS3 4:[4,5]:5 61.65 + 0.95 60.95 + 0.91
FS4 5:[4,5]:5 61.63 +1.09 61.25 +1.62
Yeast FSO 8:[11,12]:9 60.05 +1.21 60.16 +1.10
FS1 5:[11,12]:9 59.25+1.44 60.06 + 1.09
FS2 7:011,12]:9 60.78 + 1.29 59.43 +1.29
FS3 6:[11,12]:9 5829 +1.18 57.91 +1.32
FS4 7:[11,12]:9 60.78 +1.29 59.43 +1.29

proposal is evaluated in a real-world problem related to liver-
transplantation in Spain.

5.1. Results applying TSEA and TSEAFS

The results obtained by applying TSEA methodology [4] are
presented, along with those obtained with TSEAFS. Table 5 shows
the mean and standard deviation (SD) of the test accuracies for
each data set for a total of 30 runs. The best results without and
with FS appear in boldface for each data set. From the analysis of
the data, it can be concluded, from a purely descriptive point of
view, that the TSEAFS methodology obtains best results for all
data sets. In most of cases, the SD reduction with TSEAFS is clear
and it expresses more homogeneous results compared to TSEA.

5.1.1. Statistical analysis

We follow the recommendations pointed out by J. Demsar [30]
to perform non-parametric statistical tests. To determine the
statistical significance of the differences in rank observed for
each method with all data sets, a non-parametric test might be
used. There are two methods, Friedman [31] and Iman-Davenport
[32] tests. The former test is equivalent to the repeated-measures
ANOVA and is based on y? statistic; the null hypothesis states that
all algorithms perform equal, so a rejection of it implies the
existence of significant differences. The latter test is a derivation
of the former based on Fr which is a better statistic, derived from
%2, and is not undesirably conservative. Fr is distributed according
to the F-distribution with (k—1) and (k—1)(N—1) degrees of free-
dom with k algorithms and N data sets. If the null-hypothesis is
rejected, we can proceed with a post-hoc test. Bonferroni-Dunn
[33] has been performed. It compares some methods with a
control method. The critical difference (CD) can be computed
from critical values - that can be found in any statistical book -, k
and N. The considered significance levels have been 0.05 for Iman-
Davenport test, and 0.05 and 0.10 for the post-hoc methods.

The average ranks of all methods without (FSO) and with FS
(FS1-4), taking into account the best average between the two
configurations, are respectively 4.33, 2.28, 3.14, 2.72 and 2.53.
According to Iman-Davenport test results, since the Fr=6.03
statistic is higher than the critical value at o=0.05
(F(4,68)=2.51) the null-hypothesis is rejected. Therefore, we
apply a post-hoc Bonferroni-Dunn test that compares a number
of methods with a control method, by determining whether the
average ranks differ by at least the CD. In our case, we make a

Table 6
Critical difference values and ranking differences of TSEA and TSEAFS by means of
a Bonferroni-Dunn test (FSO is the control method).

FSO vs. Ranking difference (control
method-compared method)

Significant for
compared method

Fs1 2.05 a
FS2 1.19 b
FS3 1.61 a
FS4 1.80 a

CD(0 = 0.05) = 1.32; CD(x = 0.10) = 1.18

2 Statistically significant difference with o = 0.05.
b Statistically significant difference with o= 0.10.

comparison of the methods that employ FS (FS1-4) versus the
control method (FSO) that does not use FS. Table 6 shows the
Bonferroni—-Dunn test results where the ranking difference, the
CD (at =0.05 and o =0.10) and the detected significant differ-
ence level. Next, the Bonferroni-Dunn test results are analysed
and these enable us to ascertain the following. There are sig-
nificant differences between TSEA applying each of the FS
methods and without FS. The statistical tests points out that
PUNN performance improves significantly pre-processing the
data set with any of the FS methods employed in this paper.
However, FS1, FS3 and FS4 are better regarding to statistical
significance level.

5.1.2. Results obtained with a variety of classifiers

Now, a comparison is performed between TSEA and other
machine learning algorithms. These methods are C4.5, k-nearest
neighbours (k-NN), -where k is 1-, SVM [34], PART [35], the MLP
model [3] with a learning Back-Propagation method (BP) and the
RBF model [36]. Since, C4.5, 1-NN, SVM, PART, MLP and RBF are
implemented in WEKA tool [37], we have used the same cross-
validation, thus the same instances in each of the partitions,
whose results were shown in Table 5. Regarding the parameters,
for BP were the following: learning rate # = 0.3 and momentum
o = 0.2. The remaining algorithms have been run with the WEKA
default values. The number of runs for MLP and RBF was 30, thus
the results are averaged. We have reported in Table 7 the results
without and with FS for each data set and algorithm. For each
filter, the best average appears in boldface and the second best
one in italics.



Table 7

Results obtained in 18 data sets for several classifiers with and without feature selection.

Data set Method €45 1-NN SVM PART MLP RBF TSEAFS
Appendicitis FSO 73.08 69.23 84.62 73.08 76.92 74.67 81.66
Fs1 80.77 69.23 76.92 80.77 78.85 80.00 82.82
FS2 76.92 57.69 76.92 76.92 77.95 77.05 80.89
FS3 80.77 80.77 80.77 80.77 80.77 74.49 8038
Fs4 80.77 65.38 76.92 80.77 79.23 79.36 81.79
Breast FSO 70.42 64.79 64.79 69.01 60.80 68.78 65.96
FS1 69.01 70.42 66.20 71.83 69.01 67.46 69.85
FS2 69.01 70.42 64.79 69.01 69.01 69.01 69.01
FS3 69.01 70.42 64.79 69.01 69.53 67.65 69.10
FS4 69.01 70.42 66.20 71.83 69.01 67.46 69.01
Breast-t FSO 52.00 60.00 52.00 44.00 63.20 61.20 55.33
Fs1 56.00 52.00 60.00 44.00 65.33 58.67 54.40
FS2 52.00 52.00 64.00 52.00 67.20 61.20 57.87
FS3 48.00 48.00 56.00 48.00 65.60 60.40 60.93
Fs4 68.00 56.00 60.00 56.00 65.47 60.67 59.47
Cardiotocography FSO 82.71 76.32 83.65 82.52 80.75 81.80 81.69
FS1 77.07 81.77 81.20 82.52 81.94 83.40 85.26
FS2 75.19 63.91 75.19 75.00 68.29 65.91 76.71
FS3 77.82 81.20 81.20 77.26 80.13 80.50 81.55
FS4 7838 80.45 81.39 81.20 80.86 84.12 82.38
Heart FSO 70.59 7353 76.47 73.53 74.85 78.53 77.45
Fs1 7353 73.53 76.47 77.94 72.50 78.24 77.69
FS2 72.06 75.00 76.47 75.00 74.85 77.60 78.57
FS3 73.53 70.59 77.94 75.00 74.90 76.37 75.34
Fs4 7353 73.53 76.47 77.94 72.50 78.53 77.69
Hepatitis FSO 84.21 86.84 89.47 81.58 84.73 89.30 87.01
FS1 84.21 89.47 86.84 84.21 87.28 89.30 90.78
FS2 89.47 84.21 89.47 84.21 84.21 88.42 87.45
FS3 89.47 84.21 89.47 86.84 87.72 90.79 91.05
Fs4 84.21 89.47 86.84 84.21 87.28 89.30 90.78
Labor FSO 85.71 71.43 78.57 85.71 69.52 71.67 86.90
Fs1 85.71 71.43 78.57 85.71 64.29 71.43 96.19
FS2 85.71 64.28 78.57 78.57 78.57 64.29 88.33
FS3 85.71 78.57 71.43 78.57 7143 64.29 90.95
Fs4 85.71 64.29 71.43 85.71 57.62 71.43 89.76
Led24 FSO 65.67 39.43 58.97 55.80 57.48 55.14 51.03
FS1 68.10 67.90 67.93 68.50 68.44 67.42 68.30
FS2 68.10 67.90 67.93 68.50 68.44 67.42 68.30
FS3 68.10 67.90 67.93 68.50 68.44 67.42 68.30
FS4 68.10 67.90 67.93 68.50 68.44 67.42 68.30
Lymphography FSO 75.68 83.78 91.89 75.68 86.58 70.99 79.37
Fs1 88.29 78.38 83.78 7027 7324 68.92 79.09
FS2 75.68 70.27 78.38 64.86 71.89 75.77 80.36
FS3 $1.08 75.68 81.08 7027 74.50 69.64 80.61
Fs4 $1.08 81.08 81.08 64.86 80.45 69.16 80.90
Parkinsons FSO 71.43 77.55 75.51 75.51 77.62 7027 78.09
FS1 75.51 79.59 75.51 77.55 81.56 77.75 78.77
FS2 79.59 79.59 75.51 81.63 75.65 7347 80.13
FS3 $1.63 73.47 79.59 77.55 84.83 80.27 82.79
Fs4 73.47 81.63 75.51 79.59 83.13 77.55 79.25
Pima FSO 74.48 73.96 78.13 74.48 75.94 77.34 79.21
FS1 76.04 74.48 77.60 76.04 78.18 79.17 79.72
FS2 74.48 67.19 78.65 74.48 76.89 75.64 78.54
FS3 76.04 67.71 79.17 76.04 79.01 80.28 79.53
FS4 76.04 67.71 79.17 76.04 78.73 80.28 79.53
Plates FS0 39.05 49.17 57.02 46.69 53.50 59.94 51.46
Fs1 40.50 51.24 51.03 46.90 56.71 64.08 53.81
FS2 38.22 50.62 55.17 44,63 5524 62.17 56.93
FS3 4463 43.18 45.04 49.79 52.85 55.88 51.87
Fs4 54.75 47.31 51.65 51.65 57.33 59.88 48.84
Promoter FSO 69.23 65.38 88.46 53.85 86.03 79.36 68.20
FS1 73.08 57.69 84.62 80.77 84.49 83.46 85.64
FS2 80.77 57.69 84.62 76.92 75.64 85.00 80.00
FS3 73.08 76.92 73.08 80.77 7821 79.74 75.12
FS4 73.08 69.23 73.08 80.77 76.28 80.00 74.74
SPECTF FS0 67.91 61.50 72.19 70.59 71.28 76.19 61.56
Fs1 66.84 59.36 72.19 72.19 73.67 76.24 73.85
FS2 65.78 60.96 70.05 65.78 70.02 74.60 72.07
FS3 67.91 59.36 65.24 64.71 69.57 74.58 73.99
Fs4 66.84 57.75 73.26 70.05 72.26 74.63 73.76
Vowel FSO 39.39 48.48 4545 38.53 45.87 47.25 47.18
FS1 4524 46.54 54.33 4459 52.79 43.12 5431
FS2 38.53 51.52 48.48 40.04 52.05 4473 47.65
FS3 41.56 46.97 4134 36.58 44.97 46.95 49.45
FS4 4524 46.54 54.33 44,59 52.79 4312 5431



Table 7 (continued )

Data set Method c4.5 1-NN SVM PART MLP RBF TSEAFS
Waveform FSO 74.80 68.96 86.24 76.88 84.85 87.29 84.46
FS1 74.40 75.36 86.88 77.04 83.21 82.24 86.89
FS2 74.40 76.64 87.12 79.68 86.27 82.22 86.02
FS3 74.72 69.12 78.80 74.00 77.57 76.88 80.67
FS4 74.40 75.36 86.88 77.04 83.21 82.24 86.89
Winequality-red FSO 53.85 49.88 59.55 51.36 56.35 57.11 61.11
FS1 50.87 48.88 59.80 52.11 59.36 59.00 61.63
FS2 50.12 49.63 58.81 52.85 57.04 59.19 61.47
FS3 51.36 50.37 59.31 49.13 59.64 59.17 61.65
FS4 50.87 48.88 59.80 52.11 59.36 59.00 61.63
Yeast FSO 54.84 48.39 55.91 56.72 59.94 58.31 60.16
FS1 53.49 48.92 54.03 54.84 60.20 58.48 60.06
FS2 54.03 49.46 54.84 54.30 60.20 5891 60.78
FS3 52.69 48.12 51.61 52.96 58.96 58.78 58.29
FS4 54.03 49.46 54.84 54.30 60.20 58.91 60.78
Average FSO 66.95 64.92 72.16 65.86 70.34 70.29 69.88
FS1 68.81 66.46 71.88 69.32 71.73 71.58 74.39
FS2 67.78 63.83 71.39 67.47 70.52 70.14 72.84
FS3 68.73 66.25 69.10 67.54 71.03 70.23 72.87
FS4 69.86 66.25 70.93 69.84 71.34 71.28 73.32
@ FSO W FS1 [JFS2 [JFS3 W FS4
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Fig. 4. Overall results in 18 data sets for each classifier with and without feature selection.

From a purely descriptive analysis of the results, we can assert
the following. Focusing on FS, it can be concluded that the TSEA
method obtains the best result for 7 out of 18 data sets.
Furthermore, TSEA reports the highest mean accuracy (74.39%)
followed by SVM (71.88%) that indicates the excellent perfor-
mance of the product units. The important achievement of the FS
combined with TSEA lets the proposed methodology, TSEAFS, to
improve the accuracy very much. Fig. 4 shows a bar plot of the
overall results obtained for each classifier and filter.

5.2. Application of TSEAFS to a real-world liver-transplantation
problem

Liver-transplantation is strongly limited by the availability of
proper liver donors. The imbalance between demand and supply
is unfortunately followed by the terrible scenario of waiting list
deaths. Several efforts have been made for successful donor pool
expansion and the prioritization of recipients on waiting lists.
Donor and graft acceptance - considering organ shortage and pool
expansion -, prioritization of candidates - including waiting list
mortality — and allocation policy - combining equity, utility and
efficiency principles — depict a complex scenario that is not easy
to model. More than 100 variables can be considered in a

particular clinical decision for donor and organ acceptance,
allocation and donor-recipient “best matching”.

A multicentered retrospective analysis from 11 Spanish units
of liver-transplantation was conducted, including all the conse-
cutive liver transplants performed between January 1, 2007 and
December 31, 2008. All transplant recipients aged 18 years or
older were included. Recipient and donor characteristics were
reported at the time of transplant. 19 recipient characteristics, 20
donor characteristics and 3 operative factors were reported for
each donor-recipient pair, D-R. The end-point variable for classi-
fication was 3-month graft mortality. A total of 1031 liver
transplants were initially included. The follow-up period was
fulfilled in 1003 liver transplants. 28 cases were excluded because
of the absence of graft survival data.

The acceptance model consists of a neural network based on
product units to predict the probability of graft survival 3 months
following liver-transplantation. This model tries to maximize the
probability that a D-R pair has belonged to the “graft
survival” class.

The data set contains 615 instances, which are imbalanced
with a 1:8 ratio. Thus, this data set can generate distorted models
for many learning algorithms for which (i) the impact of some
factors can be hidden and (ii) the prediction accuracy can be
misleading. This is due to the fact that most data mining



Table 8
Results obtained in liver-transplantation problem with and without feature
selection.

Classifier Measures Method
FSO FS1 FS2 FS3 FS4
C4.5 CCR 89.54 89.54 89.54 89.54 89.54
MS 0.00 0.00 0.00 0.00 0.00
1-NN CCR 73.78 85.62 82.35 32.06 86.92
MS 0.00 18.75 31.25 68.75 25.00
SVM CCR 89.54 89.54 89.54 89.54 89.54
MS 0.00 0.00 0.00 0.00 0.00
PART CCR 80.39 87.58 88.89 89.54 84.96
MS 0.00 0.00 12.50 0.00 6.25
MLP CCR 83.70 85.86 87.67 89.54 87.32
MS 4.16 438 10.83 0.00 4.38
RBF CCR 89.54 88.89 89.39 89.52 89.37
MS 0.00 0.00 1.25 0.00 0.80
TSEA CCR 88.69 87.27 89.71 89.54 89.25
MS 2.91 9.37 11.46 9.58 9.75

algorithms assume balanced data sets. When dealing with imbal-
anced data sets, there are two alternatives, either (i) sampling or
balancing techniques: over-sampling algorithms aimed at balan-
cing the class distribution increasing the minority class, or under—
sampling algorithms that balance the class removing instances
from the majority classes; and (ii) to apply algorithms that are
robust to this problem.

Moreover, in order to measure the performance of the classi-
fier, we also consider the minimum sensitivity (MS) of the test set
(or subset). It is very important to evaluate successfully instances
of the class with the lowest number of instances. A good classifier
must reach a high CCR and classify correctly as many as possible
of the minority class. For instance, a classifier can identify all
instances of the majority class and none of the other class, thus
the CCR would very high.

A technique called SMOTE [38] is applied in the training set in
order to try to balance the subset. After that, the feature selection
is applied over the new training set. Once we have the list of
selected features, we use only these features of the original train
and test sets.

In this second experiment, we have used the same filters of the
previous experiment. The number of selected features is depicted
in the last part of Table 4. Next, we present in Table 8 the results
with different classifiers and filters. For TSEA and TSEAFS we only
report the best result of the two configurations.

TSEA obtains the best CCR with filter FS2, and their MS is
11.46; it means that some instances of the minority class are well
detected. With filter FS2, 1-NN gets the highest value, 31.25%, for
MS; however, the CCR is 82.35, so a hit in minority class needs
more than three errors in majority class. Other classifiers do not
classify properly any instance of the minority class. FS helps to
TSEA to classify some instances while maintaining the CCR.

6. Conclusions

This paper presented a methodology to enhance a classifier
based on two-stage evolutionary algorithm in product unit neural
networks in low performance problems. Specifically, a mixture of
our previous TSEA methodology and FS, called TSEAFS, has been
introduced. FS is performed by means of filters. The models
obtained with the proposal have the advantages that are more
accurate and less complex, taking into consideration the number
of inputs and/or the number of nodes in the hidden-layer. Also,
the current proposal is much more efficient, the reduction of the
input size is about 55 %.

An empirical study on 18 UCI classification problems, that
present test error rates about 20 % or above with C4.5 or 1-NN
classifiers, has been performed to compare TSEAFS and TSEA
methodologies, both of them based on evolutionary artificial
product unit neural networks. The average accuracy has reached
about 74% starting close to 70%. The statistical analysis reveals
that differences are significant in favour for any considered filter.

Also other state-of-the-art classifiers have been tested with
the 19 (18 from UCI repository and a real-world liver-transplan-
tation problem) data sets in order to get an overall outlook.

Nonparametric statistical tests have been applied and the
main conclusions achieved are as follows. The considered FS
methods help to improve significantly the accuracy of the models
with product units in all cases. The filters with the best average
ranks are, in this order, FS1 (spBI_CFS), FS4 (BestFirst_CFS), and
FS3 (FCBF).

In regard to the comparison with other classifiers, TSEAFS gets
the best average results in 7 out of the 18 data sets. The liver-
transplantation problem throws new issues like the sturdiness of
the classifier based on product units.
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