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INVARIANTS AND COINVARIANTS OF THE SYMMETRIC GROUP

IN NONCOMMUTING VARIABLES

NANTEL BERGERON, CHRISTOPHE REUTENAUER, MERCEDES ROSAS, AND MIKE ZABROCKI

Abstract. We introduce a natural Hopf algebra structure on the space of noncommuta-
tive symmetric functions which was recently studied as a vector space by Rosas and Sagan
[12]. The bases for this algebra are indexed by set partitions. We show that there exist
a natural inclusion of the Hopf algebra of noncommutative symmetric functions studied
in [17] in this larger space. We also consider this algebra as a subspace of noncommuta-
tive polynomials and use it to understand the structure of the spaces of harmonics and
coinvariants with respect to this collection of noncommutative polynomials.

1. Introduction

In the commutative world there are two constructions of the Hopf algebra of symmetric
functions; the more classical one as the invariants of the symmetric group on the polynomial
ring, the other is the commutative free algebra generated by one element in each degree
(e.g. [9] vs. [13]). These two constructions lead to the same algebra.

In the noncommutative world, these perspectives lead to two very different algebras; a
free algebra with one generator at each degree, NSym (see for instance [17] and references
therein), and the algebra of noncommutative invariant polynomials, NCSym (studied in [2],
[12], [18]). These algebras are clearly not isomorphic since the index set of a homogeneous
basis of NSym is the set of compositions, with dimension 2n−1 at degree n, and NCSym
is indexed by the set partitions, with dimension given by the Bell numbers for each graded
component.

An obvious question that was first posed in the work of [12] was to understand the connection
between the two algebras. In this paper we present an incredibly beautiful relationship
between them. We answer this question by first introducing a natural Hopf algebra structure
on the space of noncommutative polynomial invariants. The structure imposed by having
both a product and a coproduct is much richer than just the algebra structure alone. This
places so many conditions on a Hopf algebra embedding from NSym to NCSym that there
is only one solution given a set of generators of Sym.

In the development of the proof that the embedding is injective, we compute the determi-
nant of a combinatorial matrix indexed by compositions. It arises that the determinant is
expressed as a product of the number of permutations with no global descents. This is a sur-
prising fact since these numbers also happen to be the number of free generators/primitives
of the Malvenuto-Reutenauer Hopf algebra of permutations (see [1], [5]).
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In section 5 we digress and mention several other relationships between NCSym and NSym
by examining some quotients and embeddings of the algebra structure. In particular, we
show that, as a graded algebra, NCSym in two variables is isomorphic to NSym.

An interesting question that is natural to consider once one understands NCSym as the
space of invariants is to try to understand the ‘coinvariants.’ An important classical theorem
of Chevalley [4], and later extended to other finite reflection groups by Steinberg [16], says
that the ring of polynomials is isomorphic as an Sn-module to the tensor product of its
invariants times its coinvariants. We next ask ourselves if it is possible to obtain a version
of Chevalley’s theorem in the noncommutative setting.

The first step in answering this question is to determine what is meant by the coinvariants
in noncommutative variables. In the commutative case there are two characterizations of
this Sn-module. First, they can be defined as the solution space of the system of equations
obtained by looking at symmetric functions without constant term as differential operators
(e.g. p2(∂)f = ∇f = 0). The solution space is called the harmonics of the symmetric group.
The coinvariants can also be defined as the quotient of Q[X]/〈Sym+

n 〉, where 〈Sym+
n 〉 is

the ideal generated by all symmetric functions without constant term. Indeed, in the
commutative case these two definitions lead to isomorphic spaces.

In the noncommutative setting we have to be more careful. There are several possibilities
for the meaning of a noncommutative derivative. First, we study study the harmonics of the
symmetric group with regard to the Hausdorff derivative [11], the differential operator that
acts on letters by ∂ab = δa,b, and that satisfies Leibniz rule ∂a(pq) = (∂ap) · q+ p · (∂aq). We
define the harmonics of the symmetric group in the noncommutative setting as the space
of noncommutative polynomial solutions of the system of equations obtained by looking
at symmetric functions without constant term as differential operators with regard to the
Hausdorff derivative. We denote this space by MHarn.

In section 6, we give an elegant characterization of this space in terms of the free Lie
algebra. We show that this space satisfies a mixed commutative/noncommutative version
of Chevalley’s theorem. More precisely, Q〈Xn〉 ≃MHarn⊗Symn where Symn is the space
of symmetric polynomials in n variables.

In section 8, we look at the coinvariants of the symmetric group in noncommutative vari-
ables, defined as the left quotient

Q〈Xn〉/〈NCSym
+
n 〉

where 〈NCSym+
n 〉 is the left ideal generated by the symmetric functions in NCSymn

without constant term. We obtain the Hilbert series of this space in terms of the number
of Wolf’s irreducible generators [18] which we present in a precise combinatorial manner in
section 7.

In addition, we show that Chevalley’s theorem holds in the noncommutative setting. More
explicitely, we show that

Q〈Xn〉 ≃ NCSymn ⊗ Q〈Xn〉/〈NCSym
+
n 〉.

This is done by observing that the coinvariants of the symmetric group that we just described
are isomorphic to the space of harmonic polynomials with respect to the twisted derivative
defined by da(bv) = δa,bv.
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2. Combinatorics of set partitions

A set partition A ofm is a collection of nonempty subsetsA1, A2, . . . , Ak ⊆ [m] = {1, 2, . . . ,m}
such that Ai ∩Aj = {} for i 6= j and A1 ∪A2 ∪ · · · ∪Ak = [m]. We will indicate that A is a
set partition of m by the notation A ⊢ [m]. The subsets Ai are called the parts of the set
partition and the number of nonempty parts is referred to as the length and will be denoted
by ℓ(A).

There is a natural mapping from set partitions to integer partitions given by λ(A) =
(|A1|, |A2|, . . . , |Ak|), where we assume that the blocks of the set partition have been listed
in weakly decreasing order of size. If λ is a partition of n (integer partition), we shall use
ℓ(λ) to refer to the length (the number of parts) of the partition and |λ| will be the size of
the partition (the sum of the parts), while ni(λ) shall refer to the number of parts of the par-
tition of size i. As a convention, lowercase Greek letters λ, µ and ν will be used to represent
integer partitions while uppercase letters A,B and C will be used for set partitions.

When writing examples of set partitions we will use the notation that the sets of numbers
are separated by the symbols , and the entire set partition is enclosed by { and }. For
example, {{1, 3, 5}, {2}, {4}} will be represented in our notation by {135, 2, 4}. Although
there is no order on the parts of a set partition, we will impose an implied order such
that the parts are arranged by increasing value of the smallest element in the subset. This
implied order will allow us to reference the ith block of the set partition without ambiguity.

The number of set partitions is well known and given by the Bell numbers. These can be
defined by the recurrence B0 = 1 and Bn =

∑n−1
i=0

(

n−1
i

)

Bi. The next seven Bell numbers
are 1, 2, 5, 15, 52, 203, 877.

For a set S = {s1, s2, . . . , sk} of integers si and an integer n we will use the notation
S + n to represent the set {s1 + n, s2 + n, . . . , sk + n}. For A ⊢ [m] and B ⊢ [r] set
partitions with parts Ai, 1 ≤ i ≤ ℓ(A) and Bi, 1 ≤ i ≤ ℓ(B) respectively, we will set
A|B = {A1, A2, . . . , Aℓ(A), B1 + m,B2 + m, . . . , Bℓ(B) + m}, therefore A|B ⊢ [m + r] and
that this operation is noncommutatative in the sense that, in general, A|B 6= B|A .

There is a natural lattice structure on the set partitions. We will define for A,B ⊢ [n] that
A ≤ B if for each Ai ∈ A there is a Bj ∈ B such that Ai ⊆ Bj (otherwise stated, that A
is finer than B). The set of set partitions of [n] with this order forms a poset with rank
function given by n − k where k the length of the set partition. This poset has minimal
element {1, 2, · · · , n} and maximal element {12 · · · n}. The largest element smaller than
both A and B will be denoted A ∧ B = {Ai ∩ Bj : 1 ≤ i ≤ ℓ(A), 1 ≤ j ≤ ℓ(B)} while the
smallest element larger than A and B is denoted A ∨B.

Example 2.1. Let A = {138, 24, 5, 67} and B = {1, 238, 4567}. A and B are not compa-
rable in the inclusion order on set partitions. We calculate that A ∧B = {1, 2, 38, 4, 5, 67}
and A ∨B = {12345678}.

When a collection of disjoint sets of positive integers is not a set partition because the union
of the parts is not [n] for some n, we may lower the values in the sets so that they keep their
relative values so that the resulting collection is a set partition. This operation is referred
to as the ‘standardization’ of a set of disjoint sets A and the resulting set partition will be
denoted st(A).
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Now for A ⊢ [m] and S ⊆ {1, 2, . . . , ℓ(A)} with S = {s1, s2, . . . , sk}, we define AS =
st({As1, As2 , . . . , Ask

}) which will be a set partition of |As1 | + |As2 | + . . . + |Ask
|. By

convention A{} is the empty set partition.

Example 2.2. If A = {1368, 2, 4, 579}, then

A{1} = {1234} A{2} = {1} A{3} = {1}

A{4} = {123} A{1,2} = {1345, 2} A{1,3} = {1245, 3}

A{1,4} = {1246, 357} A{2,3} = {1, 2} A{2,4} = {1, 234}

A{3,4} = {1, 234} A{1,2,3} = {1356, 2, 4} A{1,2,4} = {1357, 2, 468}

A{1,3,4} = {1257, 3, 468} A{2,3,4} = {1, 2, 345} A{1,2,3,4} = {1368, 2, 4, 579}

3. The Hopf algebra of noncommutative symmetric functions

Consider for a fixed n > 0 the space Q〈Xn〉 consisting of the linear span of monomials in
noncommuting variables Xn = {x1, x2, . . . , xn}. There is a natural Sn action on the basis
elements defined by

(1) σ(xi1xi2 · · · xik) = xσ(i1)xσ(i2) · · · xσ(ik).

We can therefore consider Q〈Xn〉 as both an Sn module and an algebra where the product
of two monomials is given by the concatenation of the words.

Let xi1xi2 · · · xim be a monomial in the space Q〈Xn〉. We will say that the type of this
monomial is the set partition A ⊢ [m] with the property that ia = ib if and only if a
and b are in the same block of the set partition. This set partition will be denoted as
∇(i1, i2, . . . , im) = A. Notice that the length of ∇(i1, i2, . . . , im) will be equal to the number
of different values which appear in (i1, i2, . . . , im).

The vector space NCSymn will be defined as the linear span of the elements

mA[Xn] =
∑

∇(i1,i2,...,im)=A

xi1xi2 · · · xim

forA ⊢ [m], where the sum is over all sequences with 1 ≤ ij ≤ n. For the empty set partition,
we define by convention m{}[Xn] = 1. If ℓ(A) > n we must have that mA[Xn] = 0. Since
for any permutation σ ∈ Sn, ∇(i1, i2, . . . , im) = ∇(σ(i1), σ(i2), . . . , σ(im)), we also know
σmA[Xn] = mA[Xn].

Example 3.1. We list below the monomial NCSFs corresponding to set partitions of size
3 in a polynomial algebra with 4 variables.

m{123}[X4] = x1x1x1 + x2x2x2 + x3x3x3 + x4x4x4.
m{12, 3}[X4] = x1x1x2 + x1x1x3 + x1x1x4 + x2x2x1 + x2x2x3 + x2x2x4+

x3x3x1 + x3x3x2 + x3x3x4 + x4x4x1 + x2
4x2 + x2

4x3.
m{13, 2}[X4] = x1x2x1 + x1x3x1 + x1x4x1 + x2x1x2.+ x2x3x2 + x2x4x2+

x3x1x3 + x3x2x3 + x3x4x3 + x4x1x4 + x4x2x4 + x4x3x4.
m{23, 1}[X4] = x2x1x1 + x3x1x1 + x4x1x1 + x1x2x2.+ x3x2x2 + x4x2x2+

x1x3x3 + x2x3x3 + x4x3x3 + x1x4x4 + x2x4x4 + x3x4x4.
m{1, 2, 3}[X4] =

∑

σ∈S4
xσ(1)xσ(2)xσ(3).
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Now let NCSymn be the space of polynomials of Q〈Xn〉 which are invariant under the
action of Sn. For any element f ∈ NCSymn, if ∇(i1, i2, . . . , ik) = ∇(j1, j2, . . . , jk) then
the coefficient of xi1xi2 · · · xim in f is equal to the coefficient of xj1xj2 · · · xjk

in f . We
therefore conclude that {mA[Xn]}ℓ(A)≤n is a basis for NCSymn. In addition NCSymn has
a ring structure where the product in this ring is defined as the natural extension of the
ring structure on Q〈Xn〉.

Our motivation for the following definitions is to extend this algebra to a Hopf algebra.
Define the vector space NCSymn = L{mA}A⊢[n] where here we have used mA as a symbol
representing a basis element for A a set partition. NCSym =

⊕

n≥0NCSym
n is now the

space of noncommutative symmetric functions (as opposed to the space of noncommutative
symmetric polynomials). The degree of a basis element mA is given by |A|. This graded
vector space is endowed with a product map µ : NCSymn ⊗ NCSymm −→ NCSymm+n

which is defined on the basis elements mA ⊗ mB by

(2) µ(mA ⊗ mB) :=
∑

C⊢[m+n]

mC

where the sum is over all set partitions C ofm+n such that C∧({1 . . . n}|{1 . . . m}) = (A|B).

This definition is chosen to agree with the product map defined on mA[Xn] since we have
the following proposition.

Proposition 3.2. Let A ⊢ [r] and B ⊢ [m], we have

(3) mA[Xn]mB [Xn] =
∑

C

mC [Xn]

where the sum is over all set partitions C of r+m such that C∧({1 . . . r}|{1 . . . m}) = (A|B)
with ℓ(C) ≤ n.

Proof. The coefficient of any monomial xi1xi2 · · · xim+r
in the expression mA[Xn]mB [Xn]

as a product in Q〈Xn〉 will have the value either 1 or 0. As we are working in Q〈Xn〉 we
must have that ℓ(∇(i1, . . . , ir+m)) ≤ n. We note that the coefficient will be 1 if and only if
∇(i1, . . . , ir) = A and ∇(ir+1, . . . , ir+m) = B. This will hold if and only if ∇(i1, . . . , ir+m)∩
{1, . . . , r} = A and ∇(i1, . . . , ir+m)∩ {r+ 1, . . . , r+m} = B+ r. This is exactly equivalent
to the condition that ∇(i1, . . . ir+m) ∧ ({1 . . . r}|{1 . . . m}) = A|B. �

We can conclude that for any n, the map φn : NCSym→ NCSymn is a surjective algebra
homomorphism where φn is defined as the linear function whose action on the basis is given
by φn(mA) = mA[Xn] for ℓ(A) ≤ n and φn(mA) = 0 otherwise. We state this precisely in
the following corollary.

Corollary 3.3. The map φn is an algebra morphism. That is,

(4) φn(µ(mA ⊗ mB)) = φn(mA)φn(mB)

Even though it is defined as an abstract algebra, NCSym can be realized as the formal
series of bounded degree in an infinite number of variables which are invariant under all
permutations of the indices. The map φn is the specialization of this algebra so that the
variables xn+1 = xn+2 = xn+3 = · · · = 0. In fact we have,

(5) φn(F ) = 0 for all n ≥ 1 if and only if F = 0.
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The algebra NCSym was originally considered by Wolf [18] in extending the fundamental
theorem of symmetric functions to this algebra and later by Bergman and Cohn [2]. More
recently Rosas and Sagan [12] considered this space to define natural bases which generalize
the bases of the symmetric functions. Our point of departure is to consider NCSym as a
Hopf algebra so that we may examine it from another perspective.

To this end we define a coproduct map ∆ : NCSymn −→
⊕n

k=0NCSym
k ⊗ NCSymn−k

as

(6) ∆(mA) =
∑

S⊆[ℓ(A)]

mAS
⊗ mASc

where Sc = [ℓ(A)]\S.

Assume that the Xn and Yn are two sets of variables which each set is noncommutative
but we have the relations xiyj = yjxi. Let φX

n (mA) = mA[Xn] and φY
n (mA) = mA[Yn], as

before.

Proposition 3.4. For F ∈ NCSym, we have

ψ ◦ (φX
n ⊗ φY

n ) ◦ ∆(F ) = F [Xn, Yn]

where F [Xn, Yn] represents the noncommutative symmetric polynomial in 2n variables with
the additional relations mentioned above and ψ(f [Xn, Yn]⊗g[Xn, Yn]) = f [Xn, Yn]g[Xn, Yn].

Proof. It suffices to prove this relation for the mA basis. We know then that

(7) ψ ◦ (φX
n ⊗ φY

n ) ◦ ∆(mA) =
∑

S⊆[ℓ(A)]

mAS
[Xn]mASc [Yn].

Now in addition

mA[Xn, Yn] =
∑

∇(i1,i2,...,ir)=A

xi1xi2 · · · xir

where the sum is over the sequences with 1 ≤ ik ≤ 2n and we are identifying xi+n = yi for
1 ≤ i ≤ n. Now for each part of A, Ai = {k1, k2, . . . , k|Ai|}, has ik1 = ik2 = · · · = ik|Ai|

. For

a fixed S ⊆ [ℓ(A)], consider only the terms with the property that if i ∈ S and ik ∈ Ai then
1 ≤ ik ≤ n and if i /∈ S then all ik ∈ Ai will have n+ 1 ≤ ik ≤ 2n (that is xik = yik−n). If
we restrict the sum to these sequences, then we have

∑

∇(i1,i2,...,ir)=A
ik<n+1 ⇐⇒ ik∈Ai,i∈S

xi1xi2 · · · xir = mAS
[Xn]mASc [Yn].

This implies

mA[Xn, Yn] =
∑

S⊆[ℓ(A)]

∑

∇(i1,i2,...,ir)=A
ik<n+1 ⇐⇒ ik∈Ai,i∈S

xi1xi2 · · · xir

=
∑

S⊆[ℓ(A)]

mAS
[Xn]mASc [Yn]

and this is equal to (7). �
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In order to have a Hopf algebra we need, in addition, that the coproduct map is an algebra
morphism in the following sense.

Proposition 3.5. Let τ(F ⊗G) = G⊗ F for F,G ∈ NCSym, then

(8) ∆ ◦ µ = (µ⊗ µ) ◦ (id⊗ τ ⊗ id) ◦ (∆ ⊗ ∆).

Proof. We will use the previous results and (5) to derive this identity. First we note that
for F,G ∈ NCSym, and for any n we have by Proposition 3.2 and Proposition 3.4,

ψ ◦ (φX
n ⊗ φY

n ) ◦ ∆ ◦ µ(F ⊗G) = F [Xn, Yn]G[Xn, Yn].

The fact that theXn and Yn variables commute implies that ψ◦τ◦(φX
n ⊗φY

n ) = ψ◦(φX
n ⊗φY

n ).

Therefore, since

ψ ◦ (φX
n ⊗ φY

n ) ◦ (µ⊗ µ) ◦ (id⊗ τ ⊗ id) ◦ (∆ ⊗ ∆)(mA ⊗ mB)

=
∑

S⊆[ℓ(A)]

∑

T⊆[ℓ(B)]

mAS
[Xn]mBT

[Xn]mASc [Yn]mBTc [Yn]

=
∑

S⊆[ℓ(A)]

mAS
[Xn]mASc [Yn]

∑

T⊆[ℓ(B)]

mBT
[Xn]mBTc [Yn]

= mA[Xn, Yn]mB [Xn, Yn].

Now, since it suffices to prove the relation for the mA basis and by Proposition 3.4

ψ ◦ (φX
n ⊗ φY

n ) ◦ ∆ ◦ µ = ψ ◦ (φX
n ⊗ φY

n ) ◦ (µ⊗ µ) ◦ (id⊗ τ ⊗ id) ◦ (∆ ⊗ ∆)

holds for any n, we must have that equation (8) holds on NCSym. �

4. Hopf Algebras

One of the main reasons for looking at this space as a Hopf algebra is that we are able
to put it in context with other well known Hopf algebras. To this end, we introduce the
space of symmetric functions Sym and another algebra referred to as the noncommutative
symmetric functions NSym.

For each graded bialgebra H, we will have an implicit unit map uH sending the 1 in the
field to the degree 0 basis element (also denoted by 1) and the counit εH which sends all
terms of degree greater than 0 to 0 and the 1 of the algebra to the 1 of our base field (in
the following algebras will always be Q).

In each of the following bialgebras, the product µH and coproduct ∆H respect the grading
in the sense that µH : Hn ⊗Hm → Hn+m and ∆H : Hn →

⊕n
k=0 H

k ⊗Hn−k where we will
indicate the vector spaces Hn as the homogeneous components of the algebra of degree n.
It is a well known result that every graded bialgebra where the degree 0 component has
dimension 1 is a Hopf algebra (i.e., is a connected Hopf algebra) [15].

We will not give the antipode explicitly on the algebras but it is defined uniquely for any
graded, connected Hopf algebra by the defining relation:

µH ◦ (id⊗ SH) ◦ ∆H = uH ◦ εH.
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To compute the action of the antipode on an element f of homogeneous degree greater than
0, we write ∆H(f) = 1 ⊗ f +

∑

i g
′
i ⊗ g′′i . It then follows that

0 = µH ◦ (id⊗ SH) ◦ ∆H(f) = SH(f) +
∑

i

µH(g′i ⊗ SH(g′′i ))

which can be used to solve for SH(f) while the SH(g′′i ) will be of smaller degree and can
be computed recursively.

From this discussion and Proposition 3.5 we can conclude

Theorem 4.1. NCSym is a Hopf algebra.

4.1. Symmetric functions. We will define the algebra of symmetric functions Sym as
the free commutative algebra generated by elements hk for k ≥ 1. The product on this
algebra is the standard commutative product with a grading defined by deg(hk) = k and
following convention we will denote Symn = L{hλ}λ⊢n with hλ := hλ1hλ2 · · ·hλℓ(λ)

and set

Sym =
⊕

n≥0 Sym
n = Q[h1, h2, h3, . . .].

We may define the graded dual algebra Sym∗ by defining the graded component of degree
n is the vector space defined (Sym∗)n = L{mλ}λ⊢n and space is Sym∗ =

⊕

n≥0(Sym
∗)n

where the basis mλ is dual to hλ in the dual pairing. It arises that Sym∗ ≃ Sym. In fact,

(9) hn =
∑

λ⊢n

mλ.

The product and coproduct on the mλ basis can be determined from the product and
coproduct on the h-basis. It develops that,

(10) mλmµ =
∑

ν

rν
λµmν

where the coefficients rν
λµ are the number of pairs of vectors (α, β) such that α ∼ λ, β ∼ µ

such that αi +βi = νi for all i and α ∼ λ means that the sequence of values of α rearranges
to the partition λ.

The coproduct is given by the formulas

(11) ∆Sym(hn) =

n
∑

k=0

hk ⊗ hn−k

and

(12) ∆Sym∗

(mλ) =
∑

µ⊎ν=λ

mµ ⊗mν

where we have denoted in the sum by µ ⊎ ν = λ that µ and ν are partitions satisfying
ni(ν) + ni(µ) = ni(λ) for all i ≥ 1.

4.2. The other Hopf algebra of noncommutative symmetric functions. There ex-
ists a noncommutative algebra which can be seen as an analogue to Sym (while NCSym =
⊕

n≥0 L{mA}A⊢[n] is more clearly an analogue of Sym∗ =
⊕

n≥0 L{mλ}λ⊢n), see for ex-

ample [17]. NSym is defined as the noncommutative polynomial ring generated freely by
elements hk for k ≥ 1 where deg(hk) = k. For a composition α of n (denoted α |= n) we
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set hα := hα1hα2 · · ·hαℓ(α)
and NSymn = L{hα}α|=n. The graded algebra is then defined

as
NSym =

⊕

n≥0

NSymn = Q〈h1,h2,h3, . . .〉.

The compositions of n are in bijection with the subsets of {1, 2, . . . , n−1} by the correspon-
dence D(α) = {α1, α1 +α2, . . . , α1 +α2 + · · ·+αℓ(α)−1} (the descent set of the composition

α) and hence dim(NSymn) = 2n−1.

The product on NSym is defined so that µNSym : NSymn ⊗NSymm → NSymn+m as the
free noncommutative product µNSym(hα ⊗ hβ) = hαhβ .

The coproduct is given by the following formula and the fact that ∆NSym is an algebra
homomorphism.

(13) ∆NSym(hn) =

n
∑

k=0

hk ⊗ hn−k

There is a significant difference between the dimensions of the two Hopf algebras of noncom-
mutative symmetric functions. The dimension of NCSymn is the number of set partitions
of [n], and for n > 2 this is larger than the dimension of NSymn which is the number of
compositions of n or dim(NSymn) = 2n−1.

4.3. Relations between Sym, NSym, and NCSym. The symbol χ will represent the
‘forgetful’ map which sends elements of a noncommutative algebra to the commutative
counterpart (the map which ‘forgets’ that expressions are noncommutative). In our case we
will begin by considering two such maps. The first of which is χ : NSym→ Sym given by
the linear homomorphism χ(hα) = hα1hα2 · · · hαℓ(α)

.

Proposition 4.2. The linear map χ : NSym → Sym where χ(hα) = hα is a Hopf mor-
phism.

Proof. This is easy to check on the hα basis since χ(hαhβ) = hαhβ and

(χ⊗ χ) ◦ ∆NSym(hn) =

n
∑

k=0

hk ⊗ hn−k = ∆Sym ◦ χ(hn).

Since both χ and ∆ are algebra homomorphisms, this relation will hold as well on basis
elements hα. �

In addition we will use the same symbol χ to represent the map χ : NCSym → Sym ∼=
Sym∗ given by the linear homomorphism χ(mA) = λ(A)!mλ(A) where we denote λ! =
(
∏

i≥1 ni(λ)!). By contrast, we will use λ! = λ1!λ2! · · · λℓ(λ)! (these conventions use the

notation introduced in section 2 and are consistent with the notation of [12]). This map is
inspired from the expression mA[Xn] since if the variables were allowed to commute then
the expression is equal to λ(A)!mλ(A)[Xn] where for a partition λ, mλ[Xn] =

∑

α∼λ x
α is

the monomial symmetric polynomial.

Proposition 4.3. The linear map χ : NCSym → Sym where χ(mA) = λ(A)!mλ(A) is a
Hopf morphism.
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Proof. As we remarked above, χ : NCSym→ Sym is the restriction of the map

χ : Q〈x1, x2, x3, . . .〉 −→ Q[x1, x2, x3, . . .]

which is the map that forgets the variables are noncommutative. Clearly this map is an
algebra morphism. It follows that the restriction of this map to NCSym and Sym will also
be an algebra morphism.

In addition we need to show that (χ⊗χ)◦∆NCSym = ∆Sym◦χ. We remark that for a given µ
the number of subsets S such that λ(AS) = µ and λ(ASc) = ν with ni(µ)+ni(ν) = ni(λ(A))

is equal to λ(A)!

µ!ν! . Therefore

(χ⊗ χ) ◦ ∆NCSym(mA) =
∑

S⊆[ℓ(A)]

λ(AS)! λ(ASc)!mλ(AS) ⊗mλ(ASc)

=
∑

µ⊎ν=λ(A)

µ!ν !

(

λ(A)!

µ!ν !

)

mµ ⊗mν

=
∑

µ⊎ν=λ(A)

λ(A)!mµ ⊗mν

= ∆Sym(λ(A)!mλ(A)) = ∆Sym(χ(mA)).

Therefore χ is also a morphism with respect to the coproduct and hence is a Hopf morphism.
�

There is a natural pullback of χ : NCSym → Sym which was considered by Rosas and
Sagan in [12]. They called the linear homomorphism χ̃ : Sym → NCSym defined by
χ̃(mλ) = λ!

|λ|!

∑

λ(A)=λ mA the lifting map and showed it has the following property.

Proposition 4.4. [12, Proposition 4.1] χ ◦ χ̃ is the identity map on Sym.

For our purposes, the important property of the lifting map will be from the following
proposition.

Proposition 4.5.

(14) ∆NCSym ◦ χ̃ = (χ̃⊗ χ̃) ◦ ∆Sym.
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Proof. Equation (6) allows us to deduce this property by direct computation.

∆NCSym(χ̃(mλ)) =
λ!

|λ|!

∑

C:λ(C)=λ

∆NCSym(mC)

=
λ!

|λ|!

∑

C:λ(C)=λ

∑

S⊆[ℓ(λ)]

mCS
⊗ mCSc

=
λ!

|λ|!

∑

C:λ(C)=λ

∑

µ⊎ν=λ

∑

S⊆[ℓ(λ)]
λ(CS )=µ

mCS
⊗ mCSc

=
λ!

|λ|!

∑

C:λ(C)=λ

∑

µ⊎ν=λ

∑

A:λ(A)=µ
B:λ(B)=ν

∑

S⊆[ℓ(λ)]
CS=A
CSc=B

mA ⊗ mB

Now to complete this computation we exchange the sums and notice that for a fixed set

partitions A and B, there are exactly
(|C|
|A|

)

different set partitions C such that there is an

S ⊆ [ℓ(C)] with CS = A and CSc = B.

=
λ!

|λ|!

∑

µ⊎ν=λ

∑

A:λ(A)=µ
B:λ(B)=ν

(

|λ|

|µ|

)

mA ⊗ mB

=
∑

µ⊎ν=λ

∑

A:λ(A)=µ
B:λ(B)=ν

λ!

|λ|!

|λ|!

|µ|!|ν|!
mA ⊗mB

=
∑

µ⊎ν=λ

∑

A:λ(A)=µ
B:λ(B)=ν

λ!

|µ|!|ν|!
mA ⊗ mB.

Now since µ ⊎ ν = λ then we have that λ! = µ!ν! and hence the equation above is equal to

=
∑

µ⊎ν=λ

χ̃(mµ) ⊗ χ̃(mν) = (χ̃⊗ χ̃) ◦ ∆Sym(mλ)

�

This last proposition leads us to identifying an important relationship between the algebra
of NSym of noncommutative symmetric functions and the algebra of NCSym.

Theorem 4.6. Define I : NSym→ NCSym by the action

I(hn) = χ̃(hn) =
∑

A⊢[n]

λ(A)!

n!
mA

and extend this as an algebra morphism by defining for the linear basis hα,

I(hα) = χ̃(hα1)χ̃(hα2) · · · χ̃(hαℓ(α)
).

I is a Hopf morphism and I an inclusion map so that NSym is a natural subalgebra of
NCSym.
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Before proceeding with the proof of the theorem we introduce an important lemma. For
each α a composition of n, we have a canonical corresponding set partition,

(15) A(α) = {1, 2, . . . , α1, α1 + 1, . . . , α1 + α2, · · · , α1 + · · · + αℓ(α)−1, . . . , |α|}.

Lemma 4.7. The coefficient of mA(β) in I(hα) is equal to (α ∪ β)!/α! where α ∪ β is
the composition with descent set equal to D(α) ∪ D(β) and α! = α1!α2! · · ·αℓ(α)! for a
composition α.

Proof. Note that I(hα) = I(hα̃)I(hαℓ(α)
) where α̃ = (α1, α2, . . . , αℓ(α)−1). Let B̃ =

A(β)
∣

∣

{1,...,|α̃|}
which corresponds to a composition β̃ and B̄ = st(A(β)

∣

∣

{|α̃|+1,...,|α|})
). When

mA(β) arises as the coefficient of I(hα) the coefficient will be the coefficient of mB̃ in I(hα̃)
times the coefficient of mB̄ in I(hαℓ(α)

). By induction on the number of parts of α we can

assume that this coefficient is (α̃∪β̃)!
α̃!

λ(B̄)!
αℓ(α)!

= (α̃∪β̃)!λ(B̄)!
α! = (α∪β)!

α! . �

Proof of Theorem. Proposition 4.5 says that

∆NCSym(I(hn)) = (χ̃⊗ χ̃) ◦ ∆Sym(hn)

=

n
∑

k=0

χ̃(hk) ⊗ χ̃(hn−k)

= (I ⊗ I) ◦ ∆NSym(hn).

Clearly we have that I(hαhβ) = I(hα)I(hβ) so we know that I is a Hopf morphism. In
order to show that I is an inclusion of NSym into NCSym we need to show that the
generators of NSym, I(hn), are algebraically independent. This is equivalent to showing
that the elements I(hα1)I(hα2) · · · I(hαℓ(α)

) are linearly independent.

In order to show that I(hα) are linearly independent, it suffices to examine the minor of
coefficients of mA(β) in I(hα) and show that the determinant of this minor is nonzero. The
coefficient of mA(β) in I(hα) is (α ∪ β)!/α! by Lemma 4.7.

The proof follows by showing that the 2n−1×2n−1 determinant of the matrix [(α ∪ β)!]α,β|=n

is nonzero. In Theorem 4.8 below we compute that this matrix has a nonzero determinant
(in fact we compute it explicitly) and hence conclude that I is an inclusion. �

By writing the first few matrices and their determinants gives a clue on how to show that
it has a nonzero determinant. Begin by ordering the compositions in lexicographic order so
that (11) < (2), (111) < (12) < (21) < (3), and (1111) < (112) < (121) < (13) < (211) <
(22) < (31) < (4) are the order of the indices of the matrices below.

1 1
1 2

= 1

1 1 1 1
1 2 1 2
1 1 2 2
1 2 2 6

= 3
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1 1 1 1 1 1 1 1
1 2 1 2 1 2 1 2
1 1 2 2 1 1 2 2
1 2 2 6 1 2 2 6
1 1 1 1 2 2 2 2
1 2 1 2 2 4 2 4
1 1 2 2 2 2 6 6
1 2 2 6 2 4 6 24

= 117 = 32 · 13

The next two values of this determinant are 2915757 = 35·132·71 and 458552896435013913 =
312 · 135 · 712 · 461. Although the sequence of determinants is not familiar, the factors which
appear in it are. The sequence 1, 1, 3, 13, 71, 461, . . . are found in the OLEIS [14] as sequence
A003319, the permutations of n with no global descents. A global descent is a value k such
that πi > πj for all i ≤ k and j > k. The number of these can be calculated with the
recurrence a1 = 1 and for n > 1,

(16) an = n! −
n−1
∑

i=1

ai(n− i)!.

The permutations with no global descents arise in the Hopf algebra of permutations due to
Malvenuto-Reutenauer as the primitive elements/generators of the Hopf algebra [1]. This
begs an explanation of why these numbers should arise in this computation. The expression
for the determinant is summarized in the following theorem.

Theorem 4.8.

(17) det |(α ∪ β)!|α,β|=n =
∏

α|=n

ℓ(α)
∏

i=1

aαi

where an is the number of permutations of n with no global descents.

One could prove this theorem by induction using the identity for a block matrix (see [10])

det

[

A B
C D

]

= det(A)det(D − CA−1B)

and the recursive structure of the matrix [(α ∪ β)!]α,β|=n. Instead we present a proof sug-

gested to us by A. Lascoux [8] which makes the formula of Theorem 4.8 transparent.

Proof. It is easy to see that any permutation can be decomposed uniquely as a concatenation
of permutations with no global descents. For example, 465312 can be decomposed as 465 ·
3 · 12.

Using this decomposition, we associate to any permutation a composition. For instance to
465 · 3 · 12 we associate the composition (3, 1, 2). Therefore, the set of all permutations in
Sn can be partitioned into a disjoint union of subclasses indexed by compositions.

In addition, the cardinality of the class indexed by α |= n is aα := aα1aα2 · · · aαℓ(α)
, where

aj is the number of permutations with no global descents.
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We conclude that
∑

α|=n

aα = n! .

An analogous statement holds for any Young subgroup of Sn. To wit,

(18)
∑

β≤α

aβ = α!

with ≤ representing the standard refinement order on compositions. Now our notation for
α∪β means that for η ≤ (α∪β) that η ≤ α and η ≤ β and so using the notation ([true]) = 1
and ([false]) = 0 we have the expression

(19) (α ∪ β)! =
∑

η≤(α∪β)

aη =
∑

η

([η ≤ α])([η ≤ β]) aη.

Let D represent the 2n−1 × 2n−1 diagonal matrix indexed by compositions η with aη the
entries along the diagonal. Also let C = [([β ≤ α])]α,β|=n, a matrix with entry 1 at (α, β) if

β ≤ α and 0 otherwise. Now look at the (α, β) entry in the product CDCT . This will be
∑

δ,θ|=n

([δ ≤ α])([δ = θ]) aθ ([θ ≤ β]) =
∑

δ|=n

([δ ≤ α])([δ ≤ β]) aδ = (α ∪ β)! .

We conclude that CDCT = [(α ∪ β)!]α,β|=n and hence det [(α ∪ β)!]α,β|=n = det D (since

det C = 1). This demonstrates (17) since D is a diagonal matrix with determinant equal to
∏

α|=n aα. �

Remark 1. NSym is also generated by the analogs of the power and elementary bases
of the symmetric functions and there are formulas for expressing these into the h-basis.
The map I is not unique since we could just as easily lift these other bases (as we defined
I(hn) = χ̃(hn)) and by direct computation one can verify that these other inclusions of
NSym in NCSym are not the same as I. For example, e3 = h3 − h12 − h21 + h111 and

I(e3) =
1

6
m{1, 2, 3} +

1

3
m{13, 2} −

1

6
m{12, 3} −

1

6
m{1, 23} 6= χ̃(e3) =

1

6
m{1, 2, 3}.

Therefore the inclusion that we present here is not unique, but once we fix a set of generators
of Sym there is a natural embedding of NSym to NCSym.

We conclude this section with a summary of these results stating that the Hopf algebra
morphisms which relate NSym, NCSym and Sym can be drawn in a commutative diagram.

Theorem 4.9. The following diagram commutes and all maps are Hopf morphisms.

NSym
I

−−−−→ NCSym




y

χ





y

χ

Sym Sym∗



NONCOMMUTATIVE INVARIANTS AND COINVARIANTS OF Sn 15

5. Remarks on the algebra structure of noncommutative symmetric
functions

There are other relationships between NCSym and NSym that are worth considering but
are not as structured because they only hold on the level of algebras and do not respect
the coproduct. First, we shall examine a graded algebra isomorphism between the graded
algebras NSym and NCSym2.

This algebra isomorphism implies that the structure constants for NCSym2 with respect
to the monomial basis coincide with the structure constants for NSym in the ribbon Schur
basis, which are know to be related to the representation theory of the Hecke algebra at
q = 0, see for example [7].

In general, the structure constants of NCSymn with respect to the monomial basis (as well
as those of NCSym) are also nonnegative integers. A natural question to ask is whether
the representation theoretical interpretations of NCSym2 can be extended to NCSym, as
well as to its specializations NCSymn, for each value of n.

The number of set partitions of [n] with at most two blocks is 2n−1. Therefore, there
is a bijection between set partitions of [n] with at most two parts and compositions of n.
Compositions are the indexing set of the algebra NSym of subsection 4.2 and so it is natural
to look for a connection through this structure. In fact, this observation gives us a way of
relating NCSym2 and NSym. That is, NSym is isomorphic, as an algebra, to NCSym2.

To any set partition A = {A1, A2}, we associate the ribbon shape obtained by reading
numbers 1, 2, · · · , n sequentially, and placing the (i+ 1)st box to the right of the ith box if
i and i+ 1 are in the same block of A, or placing the (i+ 1)st box immediately below the
ith box otherwise. For instance, the ribbon associated to A = {1245, 3678} is

1 2

3

4 5

6 7 8

.

Note that we are placing numbers inside the boxes for the sake of clarity only. We denote
by c(A) the composition of n obtained by recording the lengths of the horizontal segments
in the corresponding ribbon. In our example, c(A) = (2, 1, 2, 3).

Following [17], we define a second and very important basis for NSym, the ribbon Schur
functions. Recall that the set of all compositions of n is equipped with the reverse refinement
order of the descent sets, denoted by ≤. For instance, (2, 2, 1) ≤ (4, 1). The ribbon Schur
functions (Rα) are defined by the following expression:

Rα =
∑

β≤α

(−1)ℓ(α)−ℓ(β)hα

Let ι : NCSym2 7→ NSym by the linear homomorphism such that

ι(m{A, B}) = Rc({A, B}),

where c({A,B}) denotes the composition corresponding to {A,B} under the bijection just
stated.
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Proposition 5.1. The map ι : NCSym2 7→ NSym is an isomorphism of algebras.

Proof. The monomials in NCSym2 multiply according to the following rule

m{A1, A2} m{B1, B2} = m{A1∪(B1+|A|),A2∪(B2+|A|)} + m{A1∪(B2+|A|), A2∪(B1+|A|)}.

For instance, if A = {1346, 2578} and B = {12, 345}, then B+ 8 = {9 10, 11 12 13}, and the
two terms in the product of mA[x1, x2] and mB [x1, x2] are indexed by

{A1 ∪ (B1 + 8), A2 ∪ (B2 + 8)} = {13469 10, 2578 11 12 13}

and

{A1 ∪ (B2 + 8), A2 ∪ (B1 + 8)} = {1346 11 12 13, 25789 10}.

On the other hand, it is well known that the ribbon Schur functions multiply as RαRβ =
Rα⊲β + Rα·β , where α⊲ β is the composition obtained by adding the last part of α to the
first part of β, and α · β is the composition obtained by concatenation. Hence, multiplying
ribbons Rα and Rβ is equivalent to placing the first box of Rβ next to the last box of Rα

either vertically or horizontally.

To finish our argument, note that if α = c({A1, A2}), and β = c({B1, B2}). Then, α⊲ β =
c({A1 ∪ (B1 + |A|), A2 ∪ (B2 + |A|)}) and α · β = c({A1 ∪ (B2 + |A|), A2 ∪ (B1 + |A|)}).
This is best done looking at our running example and noticing that joining the last row of
α and the first row of β corresponds to joining blocks A1 and B1 together, and placing the
the first row of β below the last row of α corresponds to joining blocks A1 and B2 together
(or vice-versa, depending on the position of largest element in {A,B}).

1

2

3 4

5

6

7 8

·
1 2

3 4 5
=

1

2

3 4

5

6

7 8 9 10

11 12 13

+

1

2

3 4

5

6

7 8

9 10

11 12 13

�

This algebra isomorphism also arises as a quotient space. Define the two sided ideal of
NCSym generated by the monomials {mA | ℓ(A) ≥ 3} as I3. Notice that if A has ℓ(A) ≥ 3
then every term in the product mAmB will be indexed by a set partition of length greater
than or equal to 3 and hence the ideal is linearly spanned by this set of monomials as well.
We have then that NCSym/I3 ≃ NSym since the quotient will be linearly spanned by the
mA for ℓ(A) ≤ 2.

There is another closely related copy of NSym sitting inside NCSym. Let α be a com-
position, and let A(α) be the corresponding canonical set partition from equation (15).
We define Mα to be the sum of all monomials in NCSym indexed by those set parti-
tions A that can be obtained from A(α) by gluing nonconsecutive blocks. For instance, if
α = (2, 1, 3, 2), then A(α) = {12, 3, 456, 78}, and we can only obtain the following five set
partitions {12, 3, 456, 78}, {12456, 3, 78}, {12, 378, 456}, {12456, 378}, {1278, 3, 456}. A sec-
ond way of describing Mα is as the sum of all monomials in Q〈x1, x2, . . .〉 whose exponents
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are given by composition α. For instance, M(2,1,3,2) =
∑

i6=j 6=k 6=l x
2
ixjx

3
kx

2
l where in the sum

we allow any of the possibilities of i = k, i = ℓ or j = ℓ.

Proposition 5.2. The map ζ : NSym → NCSym by ζ(Rα) = Mα is an injective algebra
homomorphism.

Proof. The map ζ is clearly injective, hence it suffices to show that ζ(RαRβ) = ζ(Rα)ζ(Rβ).
We have that

ζ(RαRβ) = ζ(Rα⊲β + Rα·β)

=
∑

i1 6=···6=iℓ(α)=j1 6=···6=jℓ(β)

xα1
i1

· · · x
αℓ(α)

iℓ(α)x
β1
j1

· · · x
βℓ(β)

jℓ(β)

+
∑

i1 6=···6=iℓ(α) 6=j1 6=···6=jℓ(β)

xα1
i1

· · · x
αℓ(α)

iℓ(α)x
β1
j1

· · · x
βℓ(β)

jℓ(β)

=





∑

i1 6=···6=iℓ(α)

xα1
i1

· · · x
αℓ(α)

iℓ(α)









∑

j1 6=···6=jℓ(β)

xβ1
j1

· · · x
βℓ(β)

jℓ(β)





= ζ(Rα)ζ(Rβ).

�

The following observation, due to Florent Hivert [6], shows us that NSym is also a quotient
of NCSym.

When A is not equal to A(α) for any α then we will say that A has crossings. We remark
that if A has crossings then so will every term in the expansion of mAmB . Consider the
two sided ideal I generated by all mA such that A has crossings. This ideal is then linearly
spanned by all mA such that A has crossings.

Now consider the quotient NCSym/I. It is linearly spanned by the basis mA(α) for α a
composition. The proof that the elements I(hα) are all linearly independent also shows
that they will be linearly independent in the quotient NCSym/I.

Corollary 5.3.

NSym ≃ NCSym/I.

as algebras. The isomorphism is given explicitly as ρ : NCSym→ NSym by

ρ(mA) =

{

mA if A has no crossings
0 otherwise

.

A computation of ∆NCSym ◦ρ◦I(h3) and (ρ⊗ρ)◦∆NCSym ◦I(h3) shows that these spaces
are not isomorphic as Hopf algebras since I is not a Hopf ideal.

6. The Harmonics with respect to the Hausdorff derivative.

We give an elegant characterization of the space of harmonics in noncommuting variables
with respect to the Hausdorff derivative in terms of the free Lie algebra. We will require
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some basic definitions and results for which we refer the reader to [11] for references and
their proofs.

A Lie algebra over Q is a Q-module L, together with a bilinear mapping

L × L → L

(x, y) 7→ [x, y]

called the Lie bracket. This bracket must satisfy two identities, [x, y] = −[y, x] and
[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0. Subalgebras of Lie algebras, homomorphisms and mod-
ules are defined as usual for Lie algebras. Any associative algebra A over Q acquires a
natural structure of a Lie algebra when [x, y] is defined by [x, y] = xy − yx. The free Lie
algebra can be realized as the linear span of the minimal set of polynomials in Q〈Xn〉 which
include the variables {x1, x2, . . . , xn} and is closed under the bracket operation.

For a Lie algebra L ⊆ Q〈Xn〉 with the natural bracket operation, the enveloping algebra
of L is the subalgebra of Q〈Xn〉 generated by the elements of L under the concatenation
product.

Let L = L(Xn) be the free Lie algebra generated by the noncommutative alphabet Xn =
{x1, x2, · · · , xn}, and let L′ = [L,L] be the Lie subalgebra generated by the brackets [P,Q]
where both P and Q are in L. Let A′ be the enveloping algebra of L′. In particular,
L = L′ + QXn, where QXn denotes the linear polynomials.

We want to characterize the harmonics of the symmetric group in noncommuting variables.
Recall that in the commutative setting the harmonics are defined as the set of solutions for
the system of PDE obtained by looking at symmetric functions as differential operators.

Our goal is to compute the harmonics of the symmetric group in the noncommutative
setting. To this end, we should start by defining what we mean by the derivative of a
noncommutative polynomial. We first focus our attention on the Hausdorff derivative, the
most common definition for derivative in the noncommutative setting.

Let w be a monomial in Q〈X〉, that is, a word. The Hausdorff derivative of w with regard
to the letter x is defined as the sum of all subwords w′ obtained from w by deleting an
occurrence of letter x, and then extended by linearity. For instance, ∂xxyx

2y = yx2y +
2xyxy, and ∂x[x, y] = ∂x(xy) − ∂x(yx) = 0.

The following theorem can be found in [11] and characterizes the elements of A′ as the
elements of Q〈Xn〉 that are killed by each derivation.

Proposition 6.1. ([11])
⋂

x∈Xn

ker ∂x = A′ .

For any polynomial f ∈ Q〈Xn〉, we will denote by f(∂Xn) the linear differential operator
formed by replacing each of the monomials xi1xi2 · · · xik by the differential ∂xi1

∂xi2
· · · ∂xik

.

Note that ∂x∂y = ∂y∂x and so we have that the operator mA(∂Xn) acts up to constant as
mλ(A)(∂Xn). More precisely, mA(∂Xn)(f(Xn)) = χ(mA)(∂)(f(Xn)).

Definition 1. Let Xn = {x1, x2, . . . , xn} be a finite noncommuting alphabet, the harmonics
with respect to the Hausdorff derivative are defined as the space of solutions of the system
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of PDEs

f(∂Xn)Q(Xn) = 0

for all f ∈ NCSymn without constant term. We denote the solution space by MHarn.

Theorem 6.2. (Poincaré-Birkhoff-Witt) Let L be a Lie algebra and consider L as a vector
space with a totally ordered basis (wi)i∈I . Let A0 be its enveloping algebra and ϕ0 : L → A0

be the natural Lie algebra homomorphism. Then A0 is a vector space over Q with basis
ϕ0(wi1) . . . ϕ0(win), where n ≥ 0, i1, . . . , in ∈ I, and i1 ≥ . . . ≥ in.

Let L be the free Lie algebra in the variables Xn. Take a basis B′ of L′ = [L,L], then the
linear polynomials QXn satisfy L = L′ ⊕ QXn and

B = B′ ∪Xn

is a basis for L. Next, order the basis in such a way that the elements of B′ are strictly
bigger than the elements of Xn.

The enveloping algebra of the free Lie algebra L is Q〈Xn〉. Therefore, the theorem of
Poincaré-Birkhoff-Witt implies that decreasing products of elements of B form a basis of
Q〈Xn〉. Moreover, since A′ is the enveloping algebra of L′, the theorem of Poincaré-Birkhoff-
Witt also implies that decreasing products of B′ are a basis of A′. We also know that
decreasing products of Xn are isomorphic to Q[Xn]. We conclude that, as vector spaces,

(20) Q〈Xn〉 ≃ A′ ⊗ Q[Xn] ≃ A′[Xn]

Furthermore, this isomorphism is compatible with derivations ∂a. That is, for a P (Xn) ∈
Q〈Xn〉 where P (Xn) =

∑

i bifi(Xn) and bi ∈ A′ and fi(Xn) ∈ Q[Xn], we have

∂aP (Xn) =
∑

i

bi∂afi(Xn)

for a ∈ Xn. This follows because ∂a(A
′) = 0.

We have from this discussion the following theorem.

Theorem 6.3. Let Hn be the classical harmonics. That is,

Hn = {f(Xn) ∈ Q[Xn] : p(∂Xn)f(Xn) = 0 for all p(Xn) ∈ Symn with p(0) = 0}.

Then, as vector spaces,

MHarn ≃ A′ ⊗Hn.

Moreover, Chevalley [4] showed that Hn the linear span of derivatives of the Vandermonde
polynomial

∆n =
∏

1≤i<j≤n

(xi − xj) =
∑

π∈Sn

sgn(π) xπ1−1
n xπ2−1

n−1 · · · xπn−1
1 .

Note that from the existence of the isomorphism (20) and the classical characterization for
the harmonics in the commutative case, we obtain that N∆n ∈MHarn, where N∆n is the
noncommutative Vandermonde, defined as

N∆n =
∑

π∈Sn

sgn(π) xπ1−1
n xπ2−1

n−1 · · · xπn−1
1 .
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It is interesting to note that all other possible noncommutative Vandermondes (obtained by
fixing an order in the variables) are also harmonics, but one suffices to describe this space.
To see this, we only need to order Xn in all possible ways before applying the Poincaré-
Birkhoff-Witt theorem. Likewise, we have that each derivative of N∆n is in MHarn.
Therefore, Span∂ [N∆n] ⊆ MHarn. Theorem 6.3 implies that MHarn is equal to the
A′-module generated by N∆n and all its derivatives.

A famous theorem due to Chevalley says that the ring of polynomials is isomorphic to the
tensor product of its invariants times its coinvariants (that in the commutative case are
show to be isomorphic to the harmonics).

Theorem 6.4 (Chevalley [4]). As Sn-modules,

Hn ⊗ Symn ≃ Q[Xn] .

We conclude a mixed commutative/noncommutative version of Chevalley’s theorem which
holds on the level of vector spaces which we derive from the results above. But to get the
isomorphism as Sn-module we need some more tools.

We first define on Q〈Xn〉 a commutative product. The shuffle product, denoted by ⊔⊔, is
the bilinear operation recursively defined as follow. Given variables x, y and monomials
v,w ∈ Q〈Xn〉,

1⊔⊔u = u⊔⊔1 = u and xu⊔⊔yv = x(u⊔⊔yv) + y(xu⊔⊔v).

This is a well known commutative product on Q〈Xn〉. It is clear that the forgetful map
χ : Q〈Xn〉 → Q[Xn] acts as

χ(xi1⊔⊔xi2⊔⊔ · · · ⊔⊔xik) = k!xi1xi2 · · · xik .

Define now p̃k =
∑n

i=1 xi⊔⊔xi⊔⊔ · · · ⊔⊔xi = m{[k]}[Xn] where the variable xi is shuffled
with itself k times. For λ = (λ1, λ2, . . . , λℓ(λ)) ⊢ m a partition of the integer m we let
p̃λ = p̃λ1⊔⊔ · · · ⊔⊔p̃λℓ(λ)

. We then have that

(21) χ(p̃λ) = λ!pλ1pλ2 · · · pλℓ(λ)
,

where pk =
∑n

i=1 x
k
i ∈ Symn is the classical power sum symmetric polynomial. If we denote

by S̃ymn ⊆ Q〈Xn〉 the vector space spanned by the p̃λ with 1 ≤ λi ≤ n.

Lemma 6.5. As graded Sn-modules, S̃ymn ≃ Symn.

Proof. It is well known that Symn = Q[p1, p2, . . . , pn]. The map χ in equation (21) restricted

to S̃ymn gives us a surjective linear map χ : S̃ymn → Symn. This map preserves the degree
of the polynomial, so we can restrict our attention to the homogeneous component of degree

m, S̃ym
m

n . Since the product ⊔⊔ is commutative, dim(S̃ym
m

n ) ≤ dim(Symm
n ) the number

of partitions λ ⊢ m with 1 ≤ λi ≤ n. Hence χ : S̃ymn → Symn is an isomorphism of graded

vector spaces. Since each element of S̃ymn is Sn invariant (as is Symn), S̃ymn and Symn

are isomorphic as Sn modules as well. �

Let us denote by NCSym+
n the set of f ∈ NCSymn without constant term. Recall that the

map χ : NCSymn → Symn is surjective and also that the Hausdorff derivative commutes.
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We thus have f(∂) = χ(f)(∂) for all f ∈ Q〈Xn〉. Combining these remarks, we get

MHarn = {P ∈ Q〈Xn〉 | f(∂)P = 0, ∀f ∈ NCSym+
n }

= {P ∈ Q〈Xn〉 |χ(f)(∂)P = 0, ∀f ∈ NCSym+
n }

= {P ∈ Q〈Xn〉 | pk(∂)P = 0, 1 ≤ k ≤ n}.

Now let 〈 , 〉 denote the scalar product on Q〈Xn〉 for which the monomials forms an or-
thonormal basis. For all variable x ∈ Xn and monomials u, v ∈ Q〈Xn〉 we easily see that

(22) 〈x⊔⊔u, v〉 = 〈u, ∂xv〉.

Finally let 〈p̃k : 1 ≤ k ≤ n〉⊔⊔ ⊆ Q〈Xn〉 denote the ideal generated using the shuffle product.
That is

〈p̃k : 1 ≤ k ≤ n〉⊔⊔ =

{

n
∑

k=1

p̃k⊔⊔qk | qk ∈ Q〈Xn〉

}

.

Lemma 6.6.

MHarn = 〈p̃k : 1 ≤ k ≤ n〉⊥⊔⊔.

.

Proof. If P ∈ MHarn then for all 1 ≤ k ≤ n we have pk(∂)P = 0. Given any F ∈ 〈p̃k :
1 ≤ k ≤ n〉⊔⊔, F =

∑n
k=1 pk⊔⊔qk where qk ∈ polys and we calculate

〈F,P 〉 =
n
∑

k=1

n
∑

i=1

〈xi⊔⊔ · · · ⊔⊔xi⊔⊔qk, P 〉

=
n
∑

k=1

n
∑

i=1

〈qk, ∂
k
xi
P 〉 =

n
∑

k=1

〈qk, pk(∂)P 〉 = 0,

where we have use the identity (22) k times in the summands. Hence P ∈MHarn implies
P ∈ 〈p̃k : 1 ≤ k ≤ n〉⊥⊔⊔. Conversely if P 6∈ MHarn, then there is a 1 ≤ k ≤ n such that
pk(∂)P 6= 0. This means we can find q ∈ Q〈Xn〉 such that

0 6= 〈q, pk(∂)P 〉 =
n
∑

i=1

〈q, ∂k
xi
P 〉 = 〈p̃k⊔⊔q, P 〉

and conclude that P 6∈ 〈p̃k : 1 ≤ k ≤ n〉⊥⊔⊔. �

At this point, we have shown that Q〈Xn〉 = MHarn ⊕ 〈p̃k : 1 ≤ k ≤ n〉⊔⊔. This gives us
for any G ∈ Q〈Xn〉

(23) G = P +

n
∑

k=1

p̃k⊔⊔qk = 1⊔⊔P +

n
∑

k=1

p̃k⊔⊔qk,

where P ∈MHarn and deg(qk) < deg(G). If we repeat the use of equation (23) recursively
on the qk we get that

G =
∑

λ

p̃λ⊔⊔Pλ,



22 N. BERGERON, C. REUTENAUER, M. ROSAS, AND M. ZABROCKI

where the sum runs over λ = (λ1, . . . , λℓ(λ)) such that 1 ≤ λi ≤ n and Pλ ∈ MHarn. Also
by convention we allow λ = () and p̃() = 1. This equation shows that the graded linear map

(24) ψ : S̃ymn ⊗MHarn → Q〈Xn〉,

defined by ψ(p̃λ ⊗ P ) = p̃λ⊔⊔P , is surjective.

Theorem 6.7. As graded Sn-modules,

Symn ⊗MHarn ≃ Q〈Xn〉 .

Proof. By equation (20) and Theorems 6.3 and 6.4, we have

Symn ⊗MHarn ≃ Symn ⊗Hn ⊗A′ ≃ Q[Xn] ⊗A′ ≃ Q〈Xn〉.

as vector spaces. Combined with Lemma 6.5 and the surjectivity of ψ, this shows that

ψ ◦ (χ−1 ⊗ id) : Symn ⊗MHarn → S̃ymn ⊗MHarn → Q〈Xn〉

is surjective, and hence an isomorphism of vector spaces.

To view the result as an isomorphism of Sn-modules, we first need to make sure that
MHarn is indeed an Sn-module. This follows from the fact that for any P ∈MHarn, any
σ ∈ Sn and for all 1 ≤ k ≤ n, pk(∂)σ(P ) = σ(pk(∂)P ) = 0 and thus σ(P ) ∈ MHarn. We

already know that χ restricted to S̃ymn is a morphism of Sn-modules. It thus remains to
show that ψ ◦ (χ−1 ⊗ id) is also a morphism of Sn-modules. For this let σ ∈ Sn:

σ ◦ ψ(p̃λ ⊗ P ) = σ(p̃λ⊔⊔P ) = (σp̃λ)⊔⊔(σP ) = ψ((σp̃λ) ⊗ (σP )) = ψ ◦ (σ ⊗ σ)(p̃λ ⊗ P ).

Since both p̃λ and pλ are both Sn invariant, σ ◦ ψ ◦ (χ−1 ⊗ id) = ψ ◦ (χ−1 ⊗ id) ◦ (σ ⊗ σ)
and our proof is then complete. �

7. Noncommutative invariants of the symmetric group

In classical invariant theory of the symmetric group (see [9, 16]) the ring of symmetric
polynomials in n (commuting) variables is free. In particular it is a polynomial ring with n
generators, one in each degree. In [18], Wolf was the first to study NCSymn as invariants
in noncommuting variables. Her main theorem shows that the space of noncommutative
invariants of the symmetric group is also free.

In her proof, it is not obvious how to construct the generators and the combinatorics of
set partitions is not fully developed. In particular, it is not clear what the Hilbert series of
the invariant polynomial ring in n noncommutative variables is. In the final section of this
article we will need her result and the associated Hilbert series. We thus present it here
along with a constructive proof.

Given two set partitions A = {A1, . . . , Ak} ⊢ [n] and B = {B1, . . . , Bℓ} ⊢ [m], we define

A ◦B =







{A1 ∪ (B1 + n), . . . , Ak ∪ (Bk + n), (Bk+1 + n), . . . , (Bℓ + n)} if k ≤ ℓ

{A1 ∪ (B1 + n), . . . , Aℓ ∪ (Bℓ + n), Aℓ+1, . . . , Ak} if k > ℓ
.
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Recall that the parts of A and B are ordered according to the minimum elements in each
part. For example, if A = {13, 2} and B = {1, 2, 3} then A ◦B = {134, 25, 6} and B ◦ A =
{146, 25, 3}. We note that ℓ(A ◦B) = max(ℓ(A), ℓ(B)).

If A = B ◦ C for B and C nonempty set partitions, then we say that A splits. If it is not
possible to split A, then we say that it is nonsplitable. By convention, only non-empty set
partitions are nonsplitable.

Example 7.1. For n = 3. the list of all set partitions is

{123} = {1} ◦ {1} ◦ {1} {1, 23} nonsplitable {13, 2} = {1, 2} ◦ {1}

{12, 3} = {1} ◦ {1, 2} {1, 2, 3} nonsplitable

As we remarked in Section 3 a basis for NCSymn is given by {mA[Xn]}ℓ(A)≤n. Consider
the set Xn as an alphabet where x1 < x2 < · · · < xn. A monomial in these noncommutative
variables can be viewed as a word in the alphabet Xn. Given A such that ℓ(A) ≤ n, we
order the monomials of mA[Xn] by lexicographic order and denote by LT (mA[Xn]) the
smallest monomial in mA[Xn]. For example, LT (m{14, 25, 3}[X6]) = x1x2x3x1x2. In general,
the kth variable of LT (mA[Xn]) is xi exactly when k ∈ Ai and the parts of A are ordered
according to the minimum elements in each part.

Lemma 7.2. For any set partitions A and B with at most n parts, we have

(25) LT
(

mA[Xn]mB [Xn]
)

= LT (mA[Xn])LT (mB[Xn]) .

Proof. This is a direct consequence of the following well known fact about lexicographic
order. Given four words (monomials) u1, u2, v1, v2 in the alphabet Xn such that u1 ≤lex v1
and u2 ≤lex v2, then u1u2 ≤lex v1v2. So the smallest term of mA[Xn]mB [Xn] is the product
of the smallest term of mA[Xn] with the smallest term of mB[Xn], and all terms have
coefficient equal to 1. �

We now proceed to show the main results of Wolf.

Proposition 7.3. NCSymn is freely generated as an algebra by

{mA[Xn] : ℓ(A) ≤ n and A is nonsplitable}.

Proof. Let B ⊢ [m] be a set partition such that ℓ = ℓ(B) ≤ n. Let 1 ≤ k ≤ m be the
smallest integer such that

min(Bi ∩ [k]c) ≤ min(Bj ∩ [k]c) for each 1 ≤ i < j ≤ ℓ(B)

where we use the convention that [k]c = {k + 1, . . . ,m} and min(∅) = ∞.

Let B(1) = {Bi ∩ [k] : i ≤ r} ⊢ [k], then by the choice of k, B(1) is nonsplitable.

If k = m, then B = B(1) is nonsplitable, otherwise k < m and B̃ = {(Bi∩{k+1, . . . ,m})−k :

i ≤ ℓ} ⊢ [m− k] with B = B(1) ◦ B̃. Repeating this process recursively, we obtain a unique

decomposition of B into nonsplitable set partitions:

B = B(1) ◦B(2) ◦ · · · ◦B(s).
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Now consider the following expansion:

(26) WB[Xn] := mB(1) [Xn]mB(2) [Xn] · · ·mB(s) [Xn] =
∑

D⊢[m]

cDmD[Xn].

Since LT (mB(1) [Xn] · · ·mB(s) [Xn]) = LT (mB [Xn]) we have that cB = 1 and cD = 0 when-
ever LT (mD[Xn]) <lex LT (mB [Xn]). This implies that the change of basis matrix between
the basis {mB [Xn] : ℓ(B) ≤ n} and the set W = {WB [Xn] : ℓ(B) ≤ n} is upper tri-
angular and therefore W is a linear basis of NCSymn. We now remark that W is also
a basis of the free noncommutative algebra generated by the set {mA[Xn] : ℓ(A) ≤
n and A is nonsplitable} and this concludes the proof. �

Let Sm,k denote the number of set partitions of m with exactly k parts (the Stirling numbers
of the second kind). Then the number of set partition of m with at most n parts is
∑n

k=1 Sm,k. We thus have that

Bn(q) =
∑

m≥0

dimm(NCSymn)qm =
∑

m≥0

n
∑

i=1

Sm,iq
m,

where dimm(NCSymn) is the dimension of the homogeneous component of degree m in
NCSymn. Let wm,n be the number of nonsplitable set partitions of m with at most n
parts and let Wn(q) =

∑

m≥0 wm,nq
m. A direct consequence of the previous theorem is that

Bn(q) = (1 −Wn(q))−1. Thus

(27) Wn(q) = 1 −
1

Bn(q)
.

As we will require the use of these numbers later, we include a table of the values of wm,n

for 1 ≤ m,n ≤ 8.

m/n 1 2 3 4 5 6 7 8
1 1 1 1 1 1 1 1 1
2 0 1 1 1 1 1 1 1
3 0 1 2 2 2 2 2 2
4 0 1 5 6 6 6 6 6
5 0 1 13 21 22 22 22 22
6 0 1 34 78 91 92 92 92
7 0 1 89 297 406 425 426 426
8 0 1 233 1143 1896 2119 2145 2146

Notice that the differences between adjacent entries in this tables is the number of generators
of a fixed length as described by Wolf.

8. The coinvariants of the symmetric group

Let Xn be an alphabet with n letters, and let Q〈Xn〉 be the corresponding ring of noncom-
mutative polynomials.
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We denote by 〈NCSym+
n 〉 = L{P (Xn)mA[Xn] | k ≥ 1, A ⊢ [k], P (Xn) ∈ Q〈Xn〉} the left

ideal of Q〈Xn〉 generated by all elements of NCSym without constant term. The coinvariant
algebra of the symmetric group in noncommutative variables will be defined as the quotient:

Q〈Xn〉/〈NCSym
+
n 〉 .

To find a linear basis of the space Q〈Xn〉/〈NCSym
+
n 〉 we use some standard techniques of

the theory of languages, that can be found in [3]. We start by introducing some definitions.

Let L∗ be the free monoid generated by L, an alphabet for the monoid. A suffix set is a
subset C of L∗ such that for all u and v in L∗, if v, uv are both in C implies that u = ∅.

A subset P of L∗ is prefix closed (resp. suffix closed) if uv ∈ P (resp. vu ∈ P ) implies
u ∈ P for all words u and v. There is a bijection between suffix sets and suffix closed sets.
To a suffix set C is associated the suffix-closed set P = L∗ \ L∗C, that is the set of words
which do not end with an element of C. Moreover, L∗ = PC∗.

For a polynomial P (Xn) ∈ Q〈Xn〉, the leading term with respect to the lexicographic order
will be denoted LT (P (Xn)) (without the leading coefficient, hence LT (P (Xn)) will be an
element of X∗

n).

Noncommutative monomial symmetric functions indexed by set partitions have the prop-
erty that {LT (mA[Xn]) |A a set partition} is a prefix closed set. That is, any prefix u of
LT (mA[Xn]) is the leading term of mB [Xn] for some set partition B. In particular B will
be equal to A restricted to {1, 2, . . . , |u|}. For example, if A = {13, 246, 5} has leading term
x1x2x1x2x3x2 and the heads of these monomials are x1, x1x2, x1x2x1, x1x2x1x2, x1x2x1x2x3

corresponding to the leading terms of m{1}[Xn], m{1, 2}[Xn], m{13, 2}[Xn],m{13, 24}[Xn], and
m{13, 24, 5}[Xn].

We established in the previous section that the WA[Xn] of equation (26) for A a set partition
with ℓ(A) ≤ n are a basis for NCSymn we will use this to show that the polynomials
umA[Xn] for A nonsplitable and u ∈ X∗

n form a basis for 〈NCSym+
n 〉.

Proposition 8.1. Let

C = {LT (mA[Xn]) |A nonsplitable, ℓ(A) ≤ n}.

C is a suffix set of the language X∗
n.

Proof. Suppose u and vu are both in C and v 6= ∅. Then since vu = LT (mA[Xn]) for A
nonsplitable then v = LT (mB [Xn]) for some nonempty set partition B since it is the head of
the monomial LT (mA[Xn]). Because u = LT (mC [Xn]) for some nonsplitable set partition
C, we can conclude that A = B ◦ C, but this contradicts that A is nonsplitable. �

For any left ideal I of Q〈Xn〉 we note that the set MI = {LT (f) | f ∈ I} is a left monomial
ideal. That is, for each v ∈MI and for each u ∈ X∗

n, uv ∈MI .

Now we are ready to describe precisely the quotient Q〈Xn〉/〈NCSym
+
n 〉. Consider the set

of leading terms of 〈NCSym+
n 〉, M〈NCSym+

n 〉 = {LT (f) | f ∈ 〈NCSym+
n 〉}, which is a left
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monomial ideal. We note that

M〈NCSym+
n 〉 = {vLT (mA[Xn]) | v ∈ X∗

n, A set partition}

= {vLT (mA[Xn]) | v ∈ X∗
n, A nonsplitable set partition}.

That is, M〈NCSym+
n 〉 = X∗

nC where C is given Proposition 8.1. We conclude then by the
correspondence between suffix closed sets and suffix sets that

M c
〈NCSym+

n 〉 = X∗
n \M〈NCSym+

n 〉 = X∗
n \X∗

nC

is suffix closed.

Proposition 8.2. The set

{umA[Xn] |u ∈ X∗
n, A nonsplitable set partition}

is a linear basis of 〈NCSym+
n 〉 and any element of w ∈M〈NCSym+

n 〉 = X∗
nC can be decom-

posed uniquely as w = uv where u ∈ X∗
n and v ∈ C.

Proof. Assume uv = u′v′ ∈ X∗
nC with v, v′ ∈ C. Without loss of generality assume v =

wv′ ∈ C. Since C is a suffix set then w = ∅ and hence v = v′ and u = u′. Therefore the
decomposition of uv ∈M〈NCSym+

n 〉 is unique.

Next consider the set {umA[Xn] |u ∈ X∗
n, A nonsplitable set partition}. Since the leading

terms of the elements of this set are all distinct, they are linearly independent. This set must
also span the ideal 〈NCSym+

n 〉 because every element of the form vWA[Xn] ∈ 〈NCSym+
n 〉

is in the linear span of this set and the vWA[Xn] are certainly a spanning set of the ideal. �

Proposition 8.3. M c
〈NCSym+

n 〉
is a basis for Q〈Xn〉/〈NCSym

+
n 〉.

Proof. First we show that M c
〈NCSym+

n 〉
spans the vector space. Since the words of X∗

n span

Q〈Xn〉, it suffices to show that for v ∈ X∗
n,

v ≡
∑

u∈Mc

〈NCSym
+
n 〉

auu mod 〈NCSym+
n 〉.

Assume that v is the smallest such monomial which is not a linear combination of u ∈
M c

〈NCSym+
n 〉

. Since v /∈M c
〈NCSym+

n 〉
, then v ∈ X∗

nC = M〈NCSym+
n 〉 and so v = uLT (mA[Xn])

for some nonsplitable set partition A. Now v − umA[Xn] is equal to a sum of terms which
are smaller than v in lexicographic order and hence are equivalent to a linear combination
of elements of M c

〈NCSym+
n 〉

.

The monomials in M c
〈NCSym+

n 〉
are also linearly independent since if we assume that

(28) P (Xn) =
∑

u∈Mc

〈NCSym
+
n 〉

auu ≡ 0 mod 〈NCSym+
n 〉 ,

then P (Xn) ∈ 〈NCSym+
n 〉 and hence LT (P (Xn)) ∈M〈NCSym+

n 〉. Since the leading term of

P (Xn) is one of the monomials of M c
〈NCSym+

n 〉
, the only way this can happen is if P (Xn) =

0. �

We conclude from Propositions 8.2 and 8.3 the following corollary.
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Corollary 8.4. The dimension of the subspace of degree k in Q〈Xn〉/〈NCSym
+
n 〉 is equal

to

nk −
∑

i≤k

wi,n n
k−i

where wm,k is the number of nonsplitable set partitions of size m and with length less than
or equal to k.

Define the following three generating functions:

Tn(q) :=
∑

k

dimk(Q〈Xn〉) q
k =

1

1 − nq

Bn(q) :=
∑

k

dimk(NCSymn) qk =
1

1 −Wn(q)
=

1

1 −
∑

k≥0wk,nqn

Cn(q) :=
∑

k

dimk(Q〈Xn〉/〈NCSym
+
n 〉) q

k =
∑

k≥0

(

nk −
∑

i≤k

wi,nn
k−i
)

qk

Observe that we have the relationship Tn(q) = Bn(q)Cn(q) by the following calculation.

Bn(q)Cn(q) = Bn(q)
(

∑

n≥0

nkqk
)

−Bn(q)
(

∑

k≥0

nkqk
)(

∑

k≥0

wk,nq
k
)

= Bn(q)
(

∑

n≥0

nkqk
)(

1 −
∑

k≥0

wk,nq
k
)

=
∑

n≥0

nkqk =
1

1 − nq
= Tn(q).

We conclude that as graded vector spaces

Q〈Xn〉/〈NCSym
+
n 〉 ⊗NCSymn ≃ Q〈Xn〉 .

As mentioned in the introduction, the twisted derivative provides a second definition of
derivation in Q〈Xn〉 (see for example [11]). It is defined as

da(w) =

{

w′ if w = aw′

0 otherwise
.

We can show that space of noncommutative coinvariants of the symmetric group is isomor-
phic the space of harmonics of the symmetric group with respect to the twisted derivative.

Recall that the scalar product is defined with the monomials as an orthonormal basis. The
twisted derivative has the property analogous to equation (22) for the Hausdorff derivative.
For x ∈ Xn and u, v ∈ Q〈Xn〉,

(29) 〈xu, v〉 = 〈u, dxv〉.

In particular, for P,Q ∈ Q〈Xn〉,

〈P,Q〉 = P (dXn)τ(Q)
∣

∣

x1=x2=···=xn=0
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where τ be the operator on Q〈Xn〉 that any monomial is sent to the monomial obtained by
reading its entries from right-to-left.

Definition 2. Let Xn = {x1, x2, · · · , xn} be a finite noncommuting alphabet. The har-
monics of the symmetric group, with respect to the twisted derivative, are defined as the
space of solutions for the system of PDEs:

f(dXn)Q(Xn) = 0

for all f ∈ NCSymn without constant terms. We denote them as NCHarn.

Lemma 8.5.

NCHarn = 〈NCSym+
n 〉

⊥
.

Proof. By definition, it is immediate that NCHarn ⊆ 〈NCSym+
n 〉

⊥
.

Suppose that f ∈ 〈NCSym+
n 〉

⊥
. Then, for all P in 〈NCSym+

n 〉,

P (dXn)f(Xn)|x1=x2=···=xn=0 = 0.

We claim that this implies that P (dXn)f(Xn) = 0. Suppose this is not the case. Then,
let u be the smallest monomial in lexicographic order that appears with nonzero coefficient
in P (dXn)f(Xn). Since P is in the left ideal 〈NCSym+

n 〉, so is uP . But by construction

(uP )(dXn) f(Xn) 6= 0. Contradiction. Hence, NCHarn = 〈NCSym+
n 〉

⊥
. �

Now we proceed as we did before in the case of MHarn. We have shown that Q〈Xn〉 =
NCHarn ⊕ 〈NCSym+

n 〉 and by Proposition 8.2 any G(Xn) ∈ Q〈Xn〉 can be expressed
uniquely as

G(Xn) = f(Xn) +
∑

A

PA(Xn)mA[Xn]

where the sum is over nonsplitable set partitions A, f(Xn) ∈ NCHarn, and PA(Xn) ∈
Q〈Xn〉 is of degree strictly smaller than the degree of G. This procedure can be repeated
recursively on PA(Xn) and the products of mA[Xn] expanded in terms of other basis ele-
ments for NCSym so that

G(Xn) =
∑

A

fA(Xn)mA[Xn]

where the sum is over all set partitions A of size smaller than or equal to the degree
of G(Xn) and each fA(Xn) ∈ NCHarn. This reduction is unique and so the map ψ :
NCHarn ⊗ NCSymn → Q〈Xn〉 defined as the linear extension of the map ψ(f(Xn) ⊗
P [Xn]) = f(Xn)P [Xn] is an isomorphism of vector spaces.

Proposition 8.6. As graded Sn-modules,

NCHarn ≃ Q〈Xn〉/〈NCSym
+
n 〉

Proof. For each G(Xn) ∈ Q〈Xn〉, we know by the previous discussion that since Q〈Xn〉 =
NCHarn⊕〈NCSym+

n 〉, there is a unique expression G(Xn) = f(Xn)+
∑

A PA(Xn)mA[Xn]
(A are nonsplitable) and hence we have that G(Xn) ≡ f(Xn) (mod 〈NCSym+

n 〉). Since for
each non-empty set partition A, σ(PA(Xn)mA[Xn]) = σ(PA(Xn))mA[Xn] ∈ 〈NCSym+

n 〉
we have that σG(Xn) ≡ σf(Xn) (mod 〈NCSym+

n 〉). �
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Theorem 8.7. As graded Sn-modules,

NCHarn ⊗NCSymn ≃ Q〈Xn〉 .

Proof. Now consider the Sn action on the space NCHarn ⊗NCSymn. Clearly NCSymn

is an Sn module since each element is Sn invariant. For f(Xn) ∈ NCHarn and for each
P (Xn) ∈ NCSymn, P (dXn)f(Xn) = 0. Since σ(P (dXn)f(Xn)) = σ(P (dXn))σ(f(Xn)) =
P (dXn)σ(f(Xn)), hence σf(Xn) ∈ NCHarn also.

Now for G(Xn) = ψ (
∑

A fA(Xn) ⊗ mA[Xn]), we notice that

(30) σG(Xn) = σ

(

∑

A

fA(Xn)mA[Xn]

)

=
∑

A

σ(fA(Xn))mA[Xn]

and hence σ ◦ ψ = ψ ◦ (σ ⊗ σ) and therefore the isomorphism holds on the level of Sn-
modules. �

We provide below a table of values of the dimensions of the graded component of degree
k of the space Q〈Xn〉/〈NCSym

+
n 〉. This is computed using the table of values in section

7 and the formula given in Corollary 8.4. The rows in the table below correspond to the
coefficients of Cn(q).

n/k 0 1 2 3 4 5 6 7
1 1 0 0 0 0 0 0 0
2 1 1 1 1 1 1 1 1
3 1 2 5 13 34 89 233 610
4 1 3 11 42 162 627 2430 9423
5 1 4 19 93 459 2273 11274 55964
6 1 5 29 172 1026 6134 36712 219847
7 1 6 41 285 1989 13901 97215 680079
8 1 7 55 438 3498 27962 223604 1788406
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