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Abstract. The purpose of this paper is to briefly outline the uniqueness of the helicoid and En-
neper’s surface among maximal surfaces in the Lorentz-Minkowski space R3
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INTRODUCTION

The Euclidean helicoid H0 is the third minimal surface in R3 to be known, after the plane
and the catenoid (J. B. Meusnier, 1776). It is also the only minimal surface foliated by
straight lines, besides the plane (Catalan, 1842), and its name derives from its similarity
to the helix (see Figure 1, (a)). A surface in R3 is said to be minimal if it represents
a local minima for the area functional, or equivalently, if it has zero mean curvature.
Topologically, H0 is a properly embedded surface in R3 homeomorphic to the plane,
and can be described by the following parametric equations:

x = ρ cos(θ), y = ρ sin(θ), z = θ , where(ρ,θ) ∈ R2.

It appears in nature in both macroscopic and microscopic scale (e.g., spiral galaxies,
DNA structure), and has inspired architecture and art across the world (e.g., the helicoid
of Caracas (Caracas, Venezuela) and the Sagrada Familia (Barcelona, Spain)).

The geometry of H0 is concentrated in the axis, which is the vertical line of points
with horizontal normal vector and maximal Gaussian curvature. Figure 1, (b) corre-
sponds to a half of the helicoid bounded by the vertical axis.

By definition, the Lorentzian helicoid H is the spacelike part of the Euclidean one
when viewed in the Lorentz-Minkowski space R3

1. Recall that, by definition, R3
1 is the

space R3 endowed with the indefinite metric of signature (1,1,−1) given by 〈x,y〉 =
x1y1 + x2y2− x3y3. To be more precise, H coincides with the relative complement of
the rigid circular cylinder {(x,y,z) : x2 + y2 + z2 ≤ 1} in half of the Euclidean helicoid,
as suggested in Figure 2. Amazingly, H also represents a critical point for the area
functional associated to variations by spacelike surfaces in R3

1, but in this case it is a
local maximum. This kind of surfaces are said to be maximal, and like in the Euclidean
case, they are characterized by the property of having zero mean curvature. As a matter
of fact, O. Kobayashi [3] proved that spacelike planes and Lorentzian helicoids are the
only maximal surfaces which are also minimal surfaces with respect to the Euclidean
metric on the ambient 3-space.
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FIGURE 1. (a) The Euclidean Helicoid; (b) Half of the Euclidean Helicoid.

FIGURE 2. The Lorentzian Helicoid.

The boundary behavior of H focuses on relevant geometrical information of the
surface. Indeed, its boundary consists of a lightlike helix with infinite rotation number
which projects onto the unit circle in {z = 0}. By the rotation number we mean the
change of the tangent angle it its orthogonal projection on the plane {z = 0}.

Furthermore, and roughly speaking, the boundary curve ∂ (H ) is an integral curve of
the intrinsic gradient of the third coordinate function. This condition is equivalent to the
property that any conformal embedding X : M ≡ {Im(z) ≥ 0} → R3

1 of the Lorentzian
helicoid folds back at ∂ (M), that is to say, X extends harmonically to the double of
M being invariant under the mirror involution. Maximal surfaces with regular lightlike
boundary and satisfying this symmetry property are said to have lightlike boundary of
mirror symmetry, or simply ∗maximal surfaces.

Another interesting example of properly embedded ∗maximal surface in R3
1 is the so

called Lorentzian Enneper surface E = {(x,y, t) : 32(y−t)3−3(y+t)+24(y−t)x = 0}
described by Kobayashi in [3]. Unlike the Lorentzian helicoid, the Lorentzian Enneper
surface has well defined lightlike tangent plane at infinity and its boundary does not
spiral indefinitely (that is to say, it has finite rotation number).

MAXIMAL MULTIGRAPHS

Properly embedded ∗maximal surfaces with connected boundary are multigraphs in a
generalized sense. Indeed, if M is a such surface then its boundary ∂ (M) is a lightlike
regular curve satisfying the cone property (i.e., for any p ∈ ∂ (M), ∂ (M)−{p} lies in
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FIGURE 3. The Lorentzian Enneper surface.

the interior of the lightcone with vertex p), ∂ (M) projects onto a locally convex planar
curve γ in {z = 0} and the orthogonal projection π : M →{z = 0} is locally inyective. In
particular, M is simply connected and can be imagined as a series of pieces (or leaves)
matching like the steps of a stair. One can define the rotation number θ(M) of M as the
change of the tangent angle of γ.

On the other hand, a proper curve α ∼= [0,1[ is said to be affinely spacelike if it lies in
a spacelike wedge of R3

1 (i.e., a closed wedge foliated by spacelike half planes with the
same edge), and surfaces that are disjoint from an affinely spacelike curve are said to be
ω-surfaces (ω∗-surfaces if in addition they are ∗maximal).

Viewing the Lorentzian helicoid as maximal multigraph, we can observe that the
curvature of any of its leaves decays to zero at infinity. As a consequence:

(I) Every leaf L of the Lorentzian helicoid admits, when viewed as a maximal graph
u(x,y), the gradient estimate ‖∇u‖ < 1− ε on L −V, where ε > 0 and V is a
neighborhood of ∂ (L )∩∂ (H ).

(II) The intrinsic metric in L −V is equivalent to the pull-back of the Euclidean one
in {z = 0} via the orthogonal projection.

(III) The Lorentzian helicoid is ω∗-maximal.

Returning to the general context of properly embedded ∗maximal surfaces with con-
nected boundary, it is not hard to check that (I) ⇒ (III) and (II) ⇒ (III). Moreover, the
notions of ω∗-maximal and ∗maximal are equivalent when the rotation number of the
multigraph is finite (although it is expected that this occurs in the general case).

Our main result (see [2]) asserts:

Main Theorem. The Lorentzian helicoid and the Lorentzian Enneper surface are the
only properly embedded w∗-maximal surfaces with connected boundary.

The family of ω∗-maximal surfaces with non connected boundary is very vast. There-
fore, the connectedness of the boundary is a crucial hypothesis: Figure 4 shows a Rie-
mann type properly embedded maximal surface bounded by two lightlike arcs of mirror
symmetry (see [5]). The authors conjecture that the theorem remains valid if we replace
the hypothesis w∗-maximal for the more general one of ∗maximal.

The above theorem is a sort of Lorentzian compilation in the context of ω∗-maximal
surfaces of two recent Riemannian theorems. Indeed, W.H. Meeks and H. Rosenberg
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FIGURE 4. A Riemann type maximal surface.

[7] have characterized H0 as the unique non flat properly embedded simply connected
minimal surface in R3, and likewise, J. Pérez [6] has proved that half of the Enneper
minimal surface is the only properly embedded non flat oriented stable minimal surface
bounded by a straight line and having quadratic area growth.

SKETCH OF THE PROOF

The proof strategy of the theorem has essentially three ingredients: Colding-Minicozzi
theory for properly embedded maximal surfaces, Meeks-Rosenberg theory for properly
embedded maximal surfaces and a finiteness theorem for disjointly supported maximal
graphs. For more details we refer to [2].

The original Colding-Minicozzi theory is devoted to the study of the asymptotic be-
havior of properly embedded minimal surfaces at infinity. In other words, to understand
the geometry of any homothetical blow down of a such surface [1].

The homothetical blow downs of H are degenerated planar multigraphs with a
singular point, that is to say, the leaves of H accumulate at the plane {z = 0} and
the entire helicoid is sucked into the origin. A similar analysis can be done with the
Lorentzian Enneper surface, but in this case the blow down limit is a lightlike plane. The
deepest part of our Main Theorem consists of proving the following theorem:

Theorem 1. If M is a w∗-maximal surface with connected boundary, then any ho-
mothetical blow down of M converges to a plane Σ∞ as degenerated multigraph with a
singular point. Furthermore:

• The blow down plane Σ∞ is spacelike if and only if ∂ (M) spirals indefinitely to the
top and to the bottom. In particular, θ(M) = +∞.

• Σ∞ is lightlike if and only if θ(M) < +∞.

This result is quite technical and requires some regularity theorems for solutions of
the maximal surface equation and parabolicity criteria for maximal surfaces.

Meeks-Rosenberg theory [7] consists of establishing under what geometrical and
topological conditions the Gauss map of the surface omits a given direction in the sphere.
In this setting the following theorem plays a fundamental role:

156



Theorem 2. Let M be a properly embedded ω∗maximal surface with connected
boundary. Then, there exists an exhaustion of R3

1 by closed non compact regions {Cn}n∈N
(not necessarily cylinders), and a sequence of foliations {Fn}n∈N such that:

• Fn is a foliation of Cn by maximal discs with boundary lying in ∂ (Cn).
• Any disc in Fn and M meet transversally into a Jordan arc.
• {Fn}n∈N converges to the foliation of R3

1 by planes parallel to Σ∞.

By a Morse theory argument we can prove the following corollary:

Corollary 1. M omits the normal direction to Σ∞.

Finally, the finiteness theorem deals with the question of how many disjointly sup-
ported maximal graphs over the plane {z = 0} can exist. Inspired by the work [4] by Li
and Wang for minimal graphs, we have obtained the following result:

Theorem 3. Let {Gi}k
i=1 be a set of k maximal simply connected graphs in R3

1
defined by the functions {ui}k

i=1 with disjoint supports in {z = 0}. Let us assume that
‖∇ui‖0 ≤ 1− ε, for any i = 1, . . . ,k, where ε > 0. Then k ≤ 8

ε(2−ε) .

We use this theorem and the previous ingredients to infer that M∩Σ consits of finitely
many proper arcs, and with a little more effort, of a unique proper arc, for any plane Σ

parallel to the blow down plane Σ∞.
The above results let us control the conformal structure and Weierstrass data of any

ω∗-maximal surface with connected boundary, leading to our uniqueness result.
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