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Abstract

Firmly nonexpansive mappings play an important role in metric fixed point theory
and optimization due to their correspondence with maximal monotone operators. In
this paper we do a thorough study of fixed point theory and the asymptotic behaviour
of Picard iterates of these mappings in different classes of geodesic spaces, such as
(uniformly convex) W -hyperbolic spaces, Busemann spaces and CAT(0) spaces. Fur-
thermore, we apply methods of proof mining to obtain effective rates of asymptotic
regularity for the Picard iterations.
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1 Introduction

Let C be a closed convex subset of a Hilbert space H . Firmly contractive mappings were
defined by Browder [5] as mappings T : C → H satisfying the following inequality for all
x, y ∈ C:

‖Tx− Ty‖2 ≤ 〈x− y, Tx− Ty〉. (1)
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As Browder points out, these mappings play an important role in the study of (weak) con-
vergence for sequences of nonlinear operators. An example of a firmly contractive mapping is
the metric projection PC : H → H , defined by PC(x) = argminy∈C{‖x−y‖}. One can easily
see that any firmly contractive mapping T is nonexpansive, i.e. satisfies ‖Tx−Ty‖ ≤ ‖x−y‖
for all x, y ∈ C. The converse is not true, as one can see by taking T = −Id.

In his study of nonexpansive projections on subsets of Banach spaces, Bruck [6] defined a
firmly nonexpansive mapping T : C → E, where C is a closed convex subset of a real Banach
space E, to be a mapping with the property that for all x, y ∈ C and t ≥ 0,

‖Tx− Ty‖ ≤ ‖(1− t)(Tx− Ty) + t(x− y)‖. (2)

In Hilbert spaces these mappings coincide with the firmly contractive ones introduced by
Browder. As Bruck shows, to any nonexpansive selfmapping T : C → C that has fixed
points, one can associate a ’large’ family of firmly nonexpansive mappings having the same
fixed point set with T . Hence, from the point of view of the existence of fixed points
on convex closed sets, firmly nonexpansive mappings exhibit a similar behaviour with the
nonexpansive ones. However, this is not anymore true if we consider non-convex domains
[43]. Firmly nonexpansive mappings in Banach spaces have also been studied in [7] and [39].

If T is firmly nonexpansive and has fixed points, it is well known [5] that the Picard
iterate (T nx) converges weakly to a fixed point of T for any starting point x, while this is
not true for nonexpansive mappings (take again T = −Id). This is a first reason for the
importance of firmly nonexpansive mappings.

A second reason for the importance of this class of mappings is their correspondence with
maximal monotone operators, due to Minty [34].

The resolvent of a monotone operator was introduced by Minty [34] in Hilbert spaces and
by Brézis, Crandall and Pazy [3] in Banach spaces. Among other applications, the resolvent
has proved to be very useful in the study of the asymptotic behaviour of the solutions of
the Cauchy abstract problem governed by a monotone operator, see for instance [16, 36, 47].
Given a maximal monotone operator A : H → 2H and µ > 0, its associated resolvent of
order µ, defined by JA

µ := (Id+ µA)−1, is a firmly nonexpansive mapping from H to H and
the set of fixed points of JA

µ coincides with the set of zeros of A. We refer to [2] for a very
nice presentation of this correspondence. Rockafellar’s [42] proximal point algorithm uses
the resolvent to approximate the zeros of maximal monotone operators.

The subdifferential of a proper, convex and lower semicontinuous function F : H →
(−∞,∞] is a maximal monotone operator, hence the resolvent associated to the subdiffer-
ential is a firmly nonexpansive mapping, that coincides with the proximal map introduced
by Moreau [35]. The proximal point algorithm for approximating the minimizers of F is
based on the weak convergence towards a fixed point of the Picard iterate of the resolvent
and the fact that the minimizers of F are the fixed points of the resolvent.
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In the last 20 years a fruitful direction of research consists of extending techniques and
results obtained in normed spaces to metric spaces without linear structure. For instance
minimization problems associated to convex functionals have been solved in the setting of
Riemannian manifolds [15, 31], while some problems have been modelled as abstract Cauchy
equations in the framework of nonpositive curvature geodesic metric spaces (see [33, 45] and
references therein). Although apparently the framework and the conceptual approach in the
previous problems are quite different, it is possible, as in the case of normed spaces, to find
a bridge between them through firmly nonexpansive mappings.

The goals of our work are twofold. First we generalize known results on firmly nonex-
pansive mappings in Hilbert or Banach spaces to suitable classes of geodesic spaces. Second
we obtain effective results on the asymptotic behaviour of Picard iterations.

In Section 2 we give basic definitions and properties of the classes of geodesic spaces we
consider in this paper: W -hyperbolic spaces, UCW -hyperbolic spaces, Busemann spaces and
CAT(0) spaces. We recall properties of asymptotic centers in such spaces, that are essential
for our results.

Firmly nonexpansive mappings in the Hilbert ball and, more generally, in hyperbolic
spaces, have already been studied in [18, 40, 41] and, more recently, in the paper by Kopecká
and Reich [27]. In Section 3 we extend Bruck’s definition of firmly nonexpansive mapping to
our class of W -hyperbolic spaces. We show that, in the setting of CAT(0) spaces, the metric
projection on a closed convex set and the resolvent of a proper, convex and lower semicon-
tinuous mapping are firmly nonexpansive. Furthermore, Bruck’s association of a family of
firmly nonexpansive mappings to any nonexpansive mapping is adapted to Busemann spaces.

Section 4 contains a fixed point theorem for firmly nonexpansive mappings defined on
finite unions of closed convex subsets of a complete UCW -hyperbolic space. Our result
generalizes and strengthens Smarzewski’s [43] fixed point theorem for uniformly convex Ba-
nach spaces. In this section we also obtain new results about periodic points of (firmly)
nonexpansive mappings.

In the next section we study the asymptotic behaviour of Picard iterates of firmly non-
expansive mappings, extending to W -hyperbolic spaces results of Reich and Shafrir [40, 41].
As a consequence, we get that any firmly nonexpansive mapping with bounded orbits is
asymptotically regular.

A concept of weak convergence in geodesic spaces is the so-called ∆-convergence, defined
by Lim [32]. Applying our asymptotic regularity result and general properties of Fejér
monotone sequences, we prove in Section 6, in the setting of complete UCW -hyperbolic
spaces, the ∆-convergence of Picard iterates of a firmly nonexpansive mapping to a fixed
point. As a consequence, one gets the ∆-convergence of a proximal point like algorithm to
a minimizer of a proper, convex and lower semicontinuous mapping defined on a CAT(0)
space.

In the final section of the paper we obtain effective rates of asymptotic regularity for Pi-
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card iterations, applying methods of proof mining, similar to the ones used for Krasnoselski-
Mann iterations of nonexpansive mappings by Kohlenbach [23] in Banach spaces and the
second author [29] in UCW -hyperbolic spaces. We point out that our results are new even
for uniformly convex Banach spaces. In the case of CAT(0) spaces we obtain a quadratic
rate of asymptotic regularity. Proof mining is a paradigm of research concerned with the
extraction, using tools from mathematical logic, of hidden finitary and combinatorial con-
tent, such as algorithms and effective bounds, from proofs that make use of highly infinitary
principles. We refer to Kohlenbach’s book [25] for details.

2 Classes of geodesic spaces - definitions and proper-

ties

A W -hyperbolic space (X, d,W ) is a metric space (X, d) together with a convexity mapping
W : X ×X × [0, 1] → X satisfying

(W1) d(z,W (x, y, λ)) ≤ (1− λ)d(z, x) + λd(z, y),

(W2) d(W (x, y, λ),W (x, y, λ̃)) = |λ− λ̃| · d(x, y),

(W3) W (x, y, λ) = W (y, x, 1− λ),

(W4) d(W (x, z, λ),W (y, w, λ)) ≤ (1− λ)d(x, y) + λd(z, w).

The convexity mappingW was first considered by Takahashi in [46], where a triple (X, d,W )
satisfying (W1) is called a convex metric space. W -hyperbolic spaces were introduced by
Kohlenbach [24] and we refer to [25, p.384] for a comparison between them and other notions
of ’hyperbolic space’ that can be found in the literature (see for example [21, 17, 41]). The
class of W -hyperbolic spaces includes (convex subsets of) normed spaces, the Hilbert ball
(see [18] for a book treatment) as well as CAT (0) spaces [4].

We shall denote a W -hyperbolic space simply by X , when the metric d and the mapping
W are clear from the context. One can easily see that

d(x,W (x, y, λ)) = λd(x, y) and d(y,W (x, y, λ)) = (1− λ)d(x, y). (3)

Furthermore, W (x, y, 0) = x, W (x, y, 1) = y and W (x, x, λ) = x.
Let us recall now some notions concerning geodesics. Let (X, d) be a metric space. A

geodesic path in X (geodesic in X for short) is a map γ : [a, b] → X satisfying

d(γ(s), γ(t)) = |s− t| for all s, t ∈ [a, b]. (4)

A geodesic segment in X is the image of a geodesic in X . If γ : [a, b] → X is a geodesic in
X , γ(a) = x and γ(b) = y, we say that the geodesic γ joins x and y or that the geodesic
segment γ([a, b]) joins x and y; x and y are also called the endpoints of γ.
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A metric space (X, d) is said to be a (uniquely) geodesic space if every two distinct points
are joined by a (unique) geodesic segment.

If γ([a, b]) is a geodesic segment joining x and y and λ ∈ [0, 1], z := γ((1 − λ)a + λb) is
the unique point in γ([a, b]) satisfying

d(z, x) = λd(x, y) and d(z, y) = (1− λ)d(x, y). (5)

In the sequel, we shall use the notation [x, y] for the geodesic segment γ([a, b]) and we shall
denote this z by (1− λ)x⊕ λy, provided that there is no possible ambiguity.

Given three points x, y, z in a metric space (X, d), we say that y lies between x and z
if these points are pairwise distinct and if we have d(x, z) = d(x, y) + d(y, z). Obviously,
if y lies between x and z, then y also lies between z and x. Furthermore, the relation of
betweenness satisfies also a transitivity property (see, e.g., [38, Proposition 2.2.13]):

Proposition 2.1. Let X be a metric space and x, y, z, w be pairwise distinct points of X.
The following statements are equivalent:

(i) y lies between x and z and z lies between x and w.

(ii) y lies between x and w and z lies between y and w.

The following betweenness property expresses another form of ’transitivity’, which is not
true in general metric spaces:

for all x, y, z, w ∈ X , if y lies between x and z and z lies between y and w,
then y and z lie both between x and w.

(6)

By induction one gets

Lemma 2.2. Let X be a metric space satisfying (6). For all n ≥ 2 and all x0, x1, . . . , xn ∈ X,
we have that

if for all k = 1, . . . , n− 1, xk lies between xk−1 and xk+1,
then for all k = 1, . . . , n− 1, xk lies between x0 and xk+1.

(7)

The next lemma collects some well-known properties of geodesic spaces. We refer to [38]
for details.

Lemma 2.3. Let (X, d) be a geodesic space.

(i) For every pairwise distinct points x, y, z in X, y lies between x and z if and only if
there exists a geodesic segment [x, z] containing y.

(ii) For every points x, y, z, w and any geodesic segment [x, y], if z, w ∈ [x, y], then either
d(x, z) + d(z, w) = d(x, w) or d(w, z) + d(z, y) = d(w, y).
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(iii) For every geodesic segment [x, y] in X and λ, λ̃ ∈ [0, 1],

d
(

(1− λ)x⊕ λy, (1− λ̃)x⊕ λ̃y
)

= |λ− λ̃|d(x, y).

(iv) Let γ : [a, b] → X be a geodesic that joins x and y. Define

γ− : [a, b] → X, γ−(s) = γ(a+ b− s).

Then γ− is a geodesic that joins y and x such that γ−([a, b]) = γ([a, b]).

(v) Let γ, η : [a, b] → X be geodesics. If γ([a, b]) = η([a, b]) and γ(a) = η(a) (or γ(b) =
η(b)), then γ = η.

(vi) The following two statements are equivalent:

(a) X is uniquely geodesic.

(b) For any x 6= y ∈ X and any λ ∈ [0, 1] there exists a unique element z ∈ X such
that

d(x, z) = λd(x, y) and d(y, z) = (1− λ)d(x, y).

Lemma 2.4. Let X be a uniquely geodesic space.

(i) For all x, y ∈ X, [x, y] = {(1− λ)x⊕ λy | λ ∈ [0, 1]}.

(ii) For every pairwise distinct points x, y, z in X, y lies between x and z if and only if
y ∈ [x, z].

(iii) Let x, y, z, w be pairwise distinct points in X such that y = (1 − λ)x ⊕ λz and z =

(1− α)x⊕ αw for some λ, α ∈ (0, 1). Then z = (1− µ)y ⊕ µw, where µ =
(1− λ)α

1− αλ
.

Proof. (i),(ii) are obvious.
(iii) Applying (ii), Lemma 2.3.(i) and Proposition 2.1, one gets that z ∈ [y, w]. Thus,
z = (1− µ)y ⊕ µw for some µ ∈ (0, 1). Furthermore,

d(z, y) = (1− λ)d(x, z) = (1− λ)αd(x, w) =
(1− λ)α

1− α
d(z, w)

=
(1− λ)α

1− α
· (1− µ)d(y, w) =

(1− λ)α

1− α
·
1− µ

µ
d(z, y).

Thus,
(1− λ)α

1− α
·
1− µ

µ
= 1 and the conclusion follows immediately.
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Let (X, d,W ) be a W -hyperbolic space. For all x, y ∈ X , let us define

[x, y]W := {W (x, y, λ) | λ ∈ [0, 1]}. (8)

Then [x, x]W = {x} for all x ∈ X . A subset C ⊆ X is convex if [x, y]W ⊆ C for all x, y ∈ C.
Open and closed balls are convex sets. A nice feature of our setting is that any convex subset
is itself a W -hyperbolic space.

Following [46], we call a W -hyperbolic space strictly convex if for any x 6= y ∈ X and any
λ ∈ (0, 1) there exists a unique element z ∈ X (namely z =W (x, y, λ)) such that

d(x, z) = λd(x, y) and d(y, z) = (1− λ)d(x, y). (9)

Proposition 2.5. Let (X, d,W ) be a W -hyperbolic space. Then

(i) X is a geodesic space and for all x 6= y ∈ X, [x, y]W is a geodesic segment joining x
and y.

(ii) X is a uniquely geodesic space if and only if it is strictly convex.

(iii) If X is uniquely geodesic, then

(a) W is the unique convexity mapping that makes (X, d,W ) a W -hyperbolic space.

(b) For all x, y ∈ X and λ ∈ [0, 1], W (x, y, λ) = (1− λ)x⊕ λy.

Proof. (i) For x 6= y ∈ X , the map Wxy : [0, d(x, y)] →,

Wxy(α) = W

(

x, y,
α

d(x, y)

)

. (10)

is a geodesic satisfying Wxy([0, d(x, y)]) = [x, w]W .

(ii) By Lemma 2.3.(vi).

(iii) (b) is obvious. We prove in the sequel (a). Let W ′ : X ×X × [0, 1] → X be another
convexity mapping such that (X, d,W ′) is a W -hyperbolic space. For λ ∈ [0, 1] and
x ∈ X one has W (x, x, λ) = W ′(x, x, λ) = x. Let x, y ∈ X, x 6= y. Then [x, y]W and
[x, y]W ′ are geodesic segments that join x and y, hence we must have that [x, y]W =
[x, y]W ′, that is Wxy([0, d(x, y)]) = W ′

xy([0, d(x, y)]). Since Wxy(0) = W ′
xy(0) = x, we

can apply Lemma 2.3.(v) to get that Wxy =W ′
xy, so that W (x, y, λ) = W ′(x, y, λ).
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An important class of W -hyperbolic spaces are the so-called Busemann spaces, used by
Busemann [9, 10] to define a notion of ’nonpositively curved space’. We refer to [38] for
an extensive study. Let us recall that a map γ : [a, b] → X is an affinely reparametrized
geodesic if γ is a constant path or there exist an interval [c, d] and a geodesic γ′ : [c, d] → X
such that γ = γ′ ◦ ψ, where ψ : [a, b] → [c, d] is the unique affine homeomorphism between
the intervals [a, b] and [c, d].

A geodesic space (X, d) is a Busemann space if for any two affinely reparametrized
geodesics γ : [a, b] → X and γ′ : [c, d] → X , the map

Dγ,γ′ : [a, b]× [c, d] → R, Dγ,γ′(s, t) = d(γ(s), γ′(t)) (11)

is convex. Examples of Busemann spaces are strictly convex normed spaces. In fact, a
normed space is a Busemann space if and only if it is strictly convex.

Proposition 2.6. Let (X, d) be a metric space. The following two statements are equivalent:

(i) X is a Busemann space.

(ii) There exists a (unique) convexity mappingW such that (X, d,W ) is a uniquely geodesic
W -hyperbolic space.

Proof. (i) ⇒ (ii) Assume that X is Busemann. By [38, Proposition 8.1.4], any Busemann
space is uniquely geodesic. For any x, y ∈ X , let [x, y] be the unique geodesic segment that
joins x and y and define

W : X ×X × [0, 1] → X, W (x, y, λ) = (1− λ)x⊕ λy. (12)

Let us verify (W1)-(W4): (W4) follows from [38, Proposition 8.1.2.(ii)]; (W2) follows from
Lemma 2.3.(iii); (W1) follows from (W4) applied with z = x and the fact thatW (x, x, λ) = x;
(W3) follows by Lemma 2.3.(iv).

(ii) ⇒ (i) Apply [38, Proposition 8.1.2.(ii)] and (W4).

A very useful feature of Busemann spaces is the following (see [38, Proposition 8.2.4])

Lemma 2.7. Every Busemann space satisfies the betweenness property (6). Hence, Lemma
2.2 holds in Busemann spaces.

CAT(0) spaces are another very important class ofW -hyperbolic spaces. A CAT(0) space
is a geodesic space satisfying the CN inequality of Bruhat-Tits [8]: for all x, y, z ∈ X and

all m ∈ X with d(x,m) = d(y,m) =
1

2
d(x, y),

d(z,m)2 ≤
1

2
d(z, x)2 +

1

2
d(z, y)2 −

1

4
d(x, y)2. (13)
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We refer to [4, p. 163] for a proof that the above definition is equivalent with the one
using geodesic triangles. In the setting of W -hyperbolic spaces, we consider the following
reformulation of the CN inequality: for all x, y, z ∈ X ,

CN− : d

(

z,W

(

x, y,
1

2

))2

≤
1

2
d(z, x)2 +

1

2
d(z, y)2 −

1

4
d(x, y)2. (14)

We refer to [25, p. 386-388] for the proof of the following result.

Proposition 2.8. Let (X, d) be a metric space. The following statements are equivalent:

(i) X is a CAT(0) space.

(ii) There exists a (unique) convexity mapping W such that (X, d,W ) is a W -hyperbolic
space satisfying the CN− inequality (14).

Convention: Given a W-hyperbolic space (X, d,W ) and x, y ∈ X , λ ∈ [0, 1], we shall
use from now on the notation (1− λ)x⊕ λy for W (x, y, λ).

2.1 UCW-hyperbolic spaces

We define uniform convexity in the setting of W -hyperbolic spaces, following [18, p. 105].
Thus, a W -hyperbolic space (X, d,W ) is uniformly convex [29] if for any r > 0 and any
ε ∈ (0, 2] there exists δ ∈ (0, 1] such that for all a, x, y ∈ X ,

d(x, a) ≤ r
d(y, a) ≤ r
d(x, y) ≥ εr







⇒ d

(

1

2
x⊕

1

2
y, a

)

≤ (1− δ)r. (15)

A mapping η : (0,∞) × (0, 2] → (0, 1] providing such a δ := η(r, ε) for given r > 0 and
ε ∈ (0, 2] is called a modulus of uniform convexity. We call η monotone if it decreases with
r (for a fixed ε).

Proposition 2.9. Any uniformly convex W -hyperbolic space is a Busemann space.

Proof. Apply [29, Proposition 5], Proposition 2.5.(ii) and Proposition 2.6.

Following [30], we shall refer to uniformly convex W -hyperbolic spaces with a monotone
modulus of uniform convexity as UCW -hyperbolic spaces. Furthermore, we shall also use
the notation (X, d,W, η) for a UCW -hyperbolic space having η as a monotone modulus of
uniform convexity.

As it was proved in [29], CAT (0) spaces are UCW -hyperbolic spaces with a modulus

of uniform convexity η(r, ε) =
ε2

8
, that does not depend on r and is quadratic in ε. In

particular, any CAT (0) space is also a Busemann space.
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The following lemma collects some useful properties of UCW -hyperbolic spaces. We refer
to [29, 30] for the proofs.

Lemma 2.10. Let (X, d,W, η) be a UCW -hyperbolic space. Assume that r > 0, ε ∈ (0, 2]
and a, x, y ∈ X are such that

d(x, a) ≤ r, d(y, a) ≤ r and d(x, y) ≥ εr.

Let λ ∈ [0, 1] be arbitrary.

(i) d((1− λ)x⊕ λy, a) ≤
(

1− 2λ(1− λ)η(r, ε)
)

r;

(ii) For any 0 < ψ ≤ ε,

d((1− λ)x⊕ λy, a) ≤
(

1− 2λ(1− λ)η(r, ψ)
)

r ;

(iii) For any s ≥ r,
d((1− λ)x⊕ λy, a) ≤ (1− 2λ(1− λ)η (s, ε)) r .

2.2 Asymptotic centers

One of the most useful tools in metric fixed point theory is the asymptotic center technique,
introduced by Edelstein [11, 12].

Let (X, d) be a metric space, (xn) be a bounded sequence in X and C ⊆ X be a nonempty
subset of X . We define the following functional:

r(·, (xn)) : X → [0,∞), r(y, (xn)) = lim sup
n→∞

d(y, xn).

The asymptotic radius of (xn) with respect to C is given by

r(C, (xn)) = inf{r(y, (xn)) | y ∈ C}.

A point c ∈ C is said to be an asymptotic center of (xn) with respect to C if

r(c, (xn)) = r(C, (xn)) = min{r(y, (xn)) | y ∈ C}.

We denote with A(C, (xn)) the set of asymptotic centers of (xn) with respect to C. When
C = X , we call c an asymptotic center of (xn) and we use the notation A((xn)) for A(X, (xn)).

The following lemma will be very useful in the sequel.
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Lemma 2.11. [30]
Let (xn) be a bounded sequence in X with A(C, (xn)) = {c} and (αn), (βn) be real sequences
such that αn ≥ 0 for all n ∈ N, lim sup

n→∞

αn ≤ 1 and lim sup
n→∞

βn ≤ 0.

Assume that y ∈ C is such that there exist p,N ∈ N satisfying

∀n ≥ N

(

d(y, xn+p) ≤ αnd(c, xn) + βn

)

.

Then y = c.

A classical result is the fact that in uniformly convex Banach spaces, bounded sequences
have unique asymptotic centers with respect to closed convex subsets. For the Hilbert ball,
this was proved in [18, Proposition 21.1]. The following result shows that the same is true
for complete UCW -hyperbolic spaces.

Proposition 2.12. [30] Let (X, d,W ) be a complete UCW -hyperbolic space. Every bounded
sequence (xn) in X has a unique asymptotic center with respect to any nonempty closed
convex subset C of X.

2.3 Convex functions

Let (X, d) be a geodesic space and F : X → (−∞,∞]. The mapping F is said to be convex
if, for any geodesic γ in X , the function F ◦ γ is convex. Let us recall that the effective
domain of F is the set domF := {x ∈ X | F (x) < ∞} and that F is proper if domF is
nonempty.

For the rest of this section F is a proper convex function.
If x ∈ domF and γ : [0, c] → X is a geodesic starting at x, the directional derivative

DγF (x) of F at x in the direction γ is defined by

DγF (x) := lim
t→0+

F (γ(t))− F (x)

t
.

As F is convex, the above limit (possibly infinite) always exist. Indeed, one can easily see

that DγF (x) = inf
t>0

F (γ(t))− F (x)

t
.

Proposition 2.13. Let x ∈ domF . The following statements are equivalent:

(i) x is a local minimum of F .

(ii) x is a global minimum of F .

(iii) DγF (x) ≥ 0 for any geodesic γ : [0, c] → X starting at x.

11



Proof. (i) ⇒ (ii) Let ε > 0 be such that F (x) ≤ F (x) for all x ∈ B(x, ε). Let z 6= x
be arbitrary and γ : [0, d(x, z)] → X be a geodesic in X that joins x and z. For all
t < min{ε, d(x, z)} we have that d(γ(t), x) = t < ε, so that

F (x) ≤ F (γ(t)) = (F ◦ γ)

((

1−
t

d(x, z)

)

0 +
t

d(x, z)
d(x, z)

)

≤

(

1−
t

d(x, z)

)

F (x) +
t

d(x, z)
F (z).

Hence F (x) ≤ F (z).
(ii) ⇒ (i) and (ii) ⇒ (iii) are immediate.
(iii) ⇒ (ii) Let z 6= x be arbitrary. We shall prove that F (z) ≥ F (x). If F (z) = ∞,

the conclusion is obvious, so we can assume that z ∈ domF . Let γ : [0, d(x, z)] → X be a
geodesic that joins x and z. As F is convex, one gets that for all t ∈ [0, d(x, z)],

F (γ(t)) ≤

(

1−
t

d(x, z)

)

F (x) +
t

d(x, z)
F (z) <∞.

Thus, F◦γ : [0, d(x, z)] → R is a convex real function satisfying (F◦γ)′(0) = DγF (x) ≥ 0.
One gets that F (x) = (F◦γ)(0) ≤ (F◦γ)(d(x, z)) = F (z).

3 Firmly nonexpansive mappings

Firmly nonexpansive mappings were introduced by Bruck [6] in the context of Banach spaces
and by Browder [5], under the name of firmly contractive, in the setting of Hilbert spaces.
We refer to [18, Section 24] for a study of this class of mappings in the Hilbert ball.

Bruck’s definition can be extended to W -hyperbolic spaces. Let (X, d,W ) be a W -
hyperbolic space, C ⊆ X and T : C → X . Given λ ∈ (0, 1), we say that T is λ-firmly
nonexpansive if for all x, y ∈ C,

d(Tx, Ty) ≤ d((1− λ)x⊕ λTx, (1− λ)y ⊕ λTy) for all x, y ∈ C. (16)

If (16) holds for all λ ∈ (0, 1), then T is said to be firmly nonexpansive.
Applying (W4) one gets that any λ-firmly nonexpansive mapping is nonexpansive, i.e. it

satisfies d(Tx, Ty) ≤ d(x, y) for all x, y ∈ C.
The first example of a firmly nonexpansive mapping is the metric projection in a CAT(0)

space. Let us recall that a subset C of a metric space (X, d) is called a Chebyshev set if to
each point x ∈ X there corresponds a unique point z ∈ C such that d(x, z) = d(x, C), where
d(x, C) = inf{d(x, y) | y ∈ C}. If C is a Chebyshev set, the metric projection PC : X → C
can be defined by assigning z to x.
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By [4, Proposition II.2.4], any closed convex subset C of a CAT(0) space is a Chebyshev
set, the metric projection PC is nonexpansive and PC((1 − λ)x ⊕ λPCx) = PC(x) for all
x ∈ X and all λ ∈ (0, 1). It is well known that in the setting of Hilbert spaces the metric
projection is firmly nonexpansive. We remark that for the Hilbert ball this was proved in
[18, p. 111]. The following result shows that the same holds in general CAT(0) spaces.

Proposition 3.1. Let C be a nonempty closed convex subset of a CAT(0) space (X, d). The
metric projection PC onto C is a firmly nonexpansive mapping.

Proof. Let x, y ∈ X and λ ∈ (0, 1). One gets that

d(PCx, PCy) = d
(

PC((1− λ)x⊕ λPCx), PC((1− λ)y ⊕ λPCy)
)

≤ d((1− λ)x⊕ λPCx, (1− λ)y ⊕ λPCy).

Bruck [6] showed for Banach spaces that one can associate to any nonexpansive mapping
a family of firmly nonexpansive mappings having the same fixed points. Goebel and Reich
[18] obtained the same result for the Hilbert ball. We show in the sequel that Bruck’s
construction can be adapted also to Busemann spaces.

Let C be a nonempty closed convex subset of a complete Busemann space X and T :
C → C be nonexpansive. For t ∈ (0, 1) and x ∈ C define

T x
t : C → C, T x

t (y) = (1− t)x⊕ tT (y). (17)

Using (W4), one can easily see that T x
t is a contraction, so it has a unique fixed point zxt ∈ C,

by Banach’s Contraction Mapping Principle. Let

Ut : C → C, Ut(x) = zxt . (18)

Then Ut(x) = (1− t)x⊕ tT (Ut(x)) for all x ∈ C.

Proposition 3.2. Ut is a firmly nonexpansive mapping having the same set of fixed points
as T .

Proof. Let λ ∈ (0, 1) and x, y ∈ C. Denote u := (1−λ)x⊕λUt(x) and v := (1−λ)y⊕λUt(y).
We can apply Lemma 2.4.(iii) twice to get that

Ut(x) = (1− µ)u⊕ µT (Ut(x)), Ut(y) = (1− µ)v ⊕ µT (Ut(y)), where µ =
(1− λ)t

1− λt
.

It follows that

d(Ut(x), Ut(y)) = d((1− µ)u⊕ µT (Ut(x)), (1− µ)v ⊕ µT (Ut(y)))

≤ (1− µ)d(u, v) + µd(T (Ut(x)), T (Ut(y)))

≤ (1− µ)d(u, v) + µd(Ut(x), Ut(y)).

13



Thus, d(Ut(x), Ut(y)) ≤ d(u, v), so Ut is λ-firmly nonexpansive.
The fact that Ut and T have the same set of fixed points is immediate.

A third example of a firmly nonexpansive mapping is the resolvent of a proper, convex
and lower semicontinuous mapping in a CAT(0) space.

Let (X, d) be a CAT(0) space, F : X → (−∞,∞] and µ > 0. Following Jost [20], the
Moreau-Yosida approximation F µ of F is defined by

F µ(x) := inf
y∈X

{

µF (y) + d(x, y)2
}

. (19)

We refer to [1, 45] for applications of the Moreau-Yosida approximation in CAT(0) spaces.
Jost proved [20, Lemma 2] that if F : X → (−∞,∞] is proper, convex and lower

semicontinuous, then for every x ∈ X and µ > 0, there exists a unique yµ ∈ X such that

F µ(x) = µF (yµ) + d(x, yµ)
2.

We denote this yµ with Jµ(x) and call Jµ the resolvent of F of order µ.
In the same paper, Jost shows that for all µ > 0 the resolvent Jµ is nonexpansive [20,

Lemma 4] and, furthermore, that for all λ ∈ [0, 1],

J(1−λ)µ

(

(1− λ)x⊕ λJµ(x)
)

= Jµ(x) (see [20, Corollary 1]) (20)

Proposition 3.3. Let F : X → (−∞,∞] be proper, convex and lower semicontinuous. Then
for every µ > 0, its resolvent Jµ is a firmly nonexpansive mapping.

Proof. Let x, y ∈ X and λ ∈ (0, 1). Then

d(Jµ(x), Jµ(y)) = d(J(1−λ)µ

(

(1− λ)x⊕ λJµ(x)
)

, J(1−λ)µ

(

(1− λ)y ⊕ λJµ(y)
)

)

≤ d
(

(1− λ)x⊕ λJµ(x), (1− λ)y ⊕ λJµ(y)
)

.

Another example of a firmly nonexpansive mapping, given by Kopecká and Reich [27,
Lemma 2.2], is the resolvent of a coaccretive operator in the Hilbert ball.

4 A fixed point theorem

Given a subset C of a metric space (X, d), a nonexpansive mapping T : C → C and x ∈ C,
the orbit O(x) of x under T is defined by O(x) = {T nx | n = 0, 1, 2, . . .}. As an immediate
consequence of the nonexpansiveness of T , if O(x) is bounded for some x ∈ C, then all
other orbits O(y), y ∈ C are bounded. If this is the case, we say that T has bounded orbits.
Obviously, if T has fixed points, then T has bounded orbits.

In this section we prove the following fixed point theorem.

14



Theorem 4.1. Let (X, d,W ) be a complete UCW -hyperbolic space, C =

p
⋃

k=1

Ck be a union

of nonempty closed convex subsets Ck of X, and T : C → C be λ-firmly nonexpansive for
some λ ∈ (0, 1). The following two statements are equivalent:

(i) T has bounded orbits.

(ii) T has fixed points.

Let us remark that fixed points are not guaranteed if T is merely nonexpansive, as the
following trivial example shows. Let x 6= y ∈ X , take C1 = {x}, C2 = {y}, C = C1 ∪C2 and
T : C → C, T (x) = y, T (y) = x. Then T is fixed point free and nonexpansive. If T were
λ-firmly nonexpansive for some λ ∈ (0, 1), we would get

0 < d(x, y) = d(Tx, Ty) ≤ d((1− λ)x⊕ λTx, (1− λ)y ⊕ λTy)

= d((1− λ)x⊕ λy, λx⊕ (1− λ)y) = |2λ− 1|d(x, y) by (W2)

< d(x, y),

that is a contradiction.
As an immediate consequence, we get a strengthening of Smarzewski’s fixed point theorem

for uniformly convex Banach spaces [43], obtained by weakening the hypothesis of Ck being
bounded for all k = 1, . . . , p to T having bounded orbits.

Corollary 4.2. Let X be a uniformly convex Banach space, C =

p
⋃

k=1

Ck be a union of

nonempty closed convex subsets Ck of X, and T : C → C be λ-firmly nonexpansive for some
λ ∈ (0, 1).

Then T has fixed points if and only if T has bounded orbits.

Theorem 4.1 follows from the following Propositions 4.5 and 4.3.

Proposition 4.3. Let X be a Busemann space, C ⊆ X be nonempty and T : C → C be
λ-firmly nonexpansive for some λ ∈ (0, 1). Then any periodic point of T is a fixed point of
T .

Proof. Let x be a periodic point of T andm ≥ 0 be minimal with the property that Tm+1x =
x. If m = 0, then x is a fixed point of T , hence we can assume that m ≥ 1. Since T is
nonexpansive, we have

d(x, Tmx) = d(Tm+1x, Tmx) ≤ d(Tmx, Tm−1x) ≤ · · · ≤ d(Tx, x)

= d(Tx, Tm+1x) ≤ d(x, Tmx),
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hence we must have equality everywhere, that is

d(Tx, x) = d(T 2x, Tx) = . . . = d(Tmx, Tm−1x) = d(x, Tmx) := γ > 0, (21)

since Tmx 6= x, by the hypothesis on m. Applying now the fact that T is λ-firmly nonex-
pansive, we get for all k = 1, . . . , m

γ = d(T k+1x, T kx) ≤ d((1− λ)T kx⊕ λT k+1x, (1− λ)T k−1x⊕ λT kx)

≤ d((1− λ)T kx⊕ λT k+1x, T kx) + d(T kx, (1− λ)T k−1x⊕ λT kx)

= λd(T kx, T k+1x) + (1− λ)d(T k−1x, T kx) = λγ + (1− λ)γ = γ.

Hence, we must have
γ = d(αk, βk) = d(αk, T

kx) + d(T kx, βk), (22)

where

αk := (1− λ)T kx⊕ λT k+1x,

βk := (1− λ)T k−1x⊕ λT kx = λT kx⊕ (1− λ)T k−1x.

We have the following cases:

(i) m = 1, hence k = 1. Then Tm−1x = x and

α1 := (1− λ)Tx⊕ λx, β1 = λTx⊕ (1− λ)x.

It follows by (W2) that

γ = d(α1, β1) = |λ− (1− λ)|d(x, Tx) = |2λ− 1|γ,

hence |2λ− 1| = 1, which is impossible, since λ ∈ (0, 1).

(ii) m ≥ 2, hence m− 1 ≥ 1. Since T kx lies between βk and αk and, furthermore, αk lies
between T kx and T k+1x, we can apply Lemma 2.7 twice to get firstly that T kx lies
between βk and T k+1x and secondly, since βk lies between T k−1x and T kx, that T kx
lies between T k−1x and T k+1x for all k = 1, . . . , m.

Apply now Lemma 2.2 to conclude that Tm−1x lies between x and Tmx, hence

γ = d(x, Tmx) = d(Tm−1x, Tmx) + d(Tm−1x, x) = γ + d(Tm−1x, x) > γ,

since Tm−1x 6= x. We have got a contradiction.
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We remark that Proposition 4.3 holds for strictly convex Banach spaces too, as they are
Busemann spaces.

Lemma 4.4. Let (X, d) be a metric space, C =

p
⋃

k=1

Ck be a union of nonempty subsets Ck

of X, and T : C → C be nonexpansive. Assume that T has bounded orbits and that for
some z ∈ C, the orbit (T nz) of T has a unique asymptotic center xk with respect to every
Ck, k = 1, . . . , p.

Then one of xk, k = 1, . . . , p is a periodic point of T .

Proof. Since T is nonexpansive, we have that

d(Txk, T
n+1z) ≤ d(xk, T

nz) for all n ≥ 0, k = 1, . . . , p, hence (23)

r(Txk, (T
nz)) ≤ r(xk, (T

nz)) for all k = 1, . . . , p. (24)

If there exists k0 ∈ {1, . . . , p} such that Txk0 ∈ Ck0, then applying Lemma 2.11 with y =
Txk0 , p = 1, αn = 1, βn = 0 and xn = T nz, we have that Txk0 = xk0 , that is, xk0 is a fixed
point of T . In particular, xk0 is a periodic point of T .

Otherwise, assume that Txk 6∈ Ck for all 1 ≤ k ≤ p. It is easy to see that there
exist integers {n1, n2, . . . , nm} ⊆ {1, 2, . . . , p}, with m ≥ 2, such that Txnk

∈ Cnk+1
for all

k = 1, . . . , m− 1 and Txnm
∈ Cn1

.
Applying repeatedly (24) and the fact that xnk

is the unique asymptotic center of (T nz)
with respect to Cnk

, we get that

r(xn1
, (T nz)) ≤ r(Txnm

, (T nz)) ≤ r(xnm
, (T nz)}) ≤ . . . ≤ r(Txn1

, (T nz))

≤ r(xn1
, (T nz)).

Thus, we must have equality everywhere. We get that r(xn1
, (T nz)) = r(Txnm

, (T nz))
and r(Txnk

, (T nz)) = r(xnk+1
, (T nz)) for all k = 1, . . . , m − 1. By the uniqueness of the

asymptotic centers, we get that

xn1
= Txnm

and Txnk
= xnk+1

for all k = 1, . . . , m− 1. (25)

It follows that Tmxn1
= xn1

, hence xn1
is a periodic point of T .

Proposition 4.5. Let (X, d,W ) be a complete UCW -hyperbolic space, C =

p
⋃

k=1

Ck be a union

of nonempty closed convex subsets Ck of X, and T : C → C be a nonexpansive mapping
having bounded orbits.

Then T has periodic points.

Proof. By Proposition 2.12, for all z ∈ C and for all k = 1, . . . , p, the orbit (T nz) has a
unique asymptotic center xk with respect to Ck. Apply Lemma 4.4 to get that one of the
asymptotic centers xk, k = 1, . . . , p is a periodic point of T .
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5 Asymptotic behaviour of Picard iterations

The second main result of the paper is a theorem on the asymptotic behaviour of Picard
iterations of λ-firmly nonexpansive mappings, which generalizes results obtained by Reich
and Shafrir [40] for firmly nonexpansive mappings in Banach spaces and the Hilbert ball.

Theorem 5.1. Let C be a subset of a W-hyperbolic space X and T : C → C be a λ-firmly
nonexpansive mapping with λ ∈ (0, 1). Then for all x ∈ X and k ∈ Z+,

lim
n→∞

d(T n+1x, T nx) =
1

k
lim
n→∞

d(T n+kx, T nx) = lim
n→∞

d(T nx, x)

n
= rC(T ),

where rC(T ) := inf{d(x, Tx) | x ∈ C} is the minimal displacement of T .

The mapping T is said to be asymptotically regular at x ∈ C if lim
n→∞

d(T nx, T n+1x) = 0.

If this is true for all x ∈ C, we say that T is asymptotically regular.
Before proving Theorem 5.1, we give the following immediate consequences.

Corollary 5.2. The following statements are equivalent:

(i) T is asymptotically regular at some x ∈ C.

(ii) rC(T ) = 0.

(iii) T is asymptotically regular.

Corollary 5.3. If T has bounded orbits, then T is asymptotically regular.

Remark 5.4. As Adriana Nicolae pointed out to us in a private communication, one can
easily see that Proposition 4.3 is an immediate consequence of the above corollary. However,
our proof of this proposition holds (with small adaptations) also in more general spaces like
geodesic spaces with the betweenness property (see [37]), for which it is not known whether
Corollary 5.3 is true.

5.1 Proof of Theorem 5.1

In the sequel, X is a W -hyperbolic space, C ⊆ X and T : C → C.

Lemma 5.5. Assume that T is nonexpansive and x ∈ C.

(i) For all k ≥ 1, Rk := lim
n→∞

d(T n+kx, T nx) exists and Rk ≤ kR1.

(ii) L := lim
n→∞

d(T nx, x)

n
exists and equals inf

n≥1

d(T nx, x)

n
. Moreover, L is independent of x.
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(iii) L ≤ rC(T ) ≤ R1.

Proof. (i) Since the sequence (d(T n+kx, T nx))n is nonincreasing, obviously Rk exists. Re-
mark that

d(T n+kx, T nx) ≤
k−1
∑

i=0

d(T n+ix, T n+i+1x) ≤ kd(T n+1x, T nx)

and let n→ ∞ to conclude that Rk ≤ kR1.

(ii) One has that for all m,n ≥ 1,

d(Tm+nx, x) ≤ d(Tm+nx, T nx) + d(T nx, x) ≤ d(Tmx, x) + d(T nx, x),

hence the sequence (d(T nx, x)) is subadditive. Apply now Fekete’s subadittive lemma

[14] to get that L = inf
n≥1

d(T nx, x)

n
. The independence of x follows from the fact that

for all x, y ∈ C,

d(T nx, x)− d(T ny, y) ≤ d(T nx, T ny) + d(x, y) ≤ 2d(x, y).

(iii) Obviously, R1 = inf
n≥1

d(T nx, T n+1x) ≥ rC(T ). Given ε > 0, there is a point y ∈ C such

that rC(T ) ≤ d(y, Ty) < rC(T ) + ε. It follows that

L = lim
n→∞

d(T nx, x)

n
= lim

n→∞

d(T ny, y)

n
= inf

n≥1

d(T ny, y)

n
≤ d(Ty, y)

< rC(T ) + ε.

As ε > 0 was arbitrary, we get that L ≤ rC(T ).

Lemma 5.6. Let T be λ-firmly nonexpansive for some λ ∈ (0, 1). Then for all x, y ∈ C,

d(Tx, Ty) ≤
1− λ

1 + λ
d(x, y) +

λ

1 + λ
(d(Tx, y) + d(x, Ty)). (26)

Proof. Apply (W1) more times to get that

d(Tx, Ty) ≤ d((1− λ)x⊕ λTx, (1− λ)y ⊕ λTy))

≤ (1− λ)d((1− λ)x⊕ λTx, y) + λd((1− λ)x⊕ λTx, Ty)

≤ (1− λ)2d(x, y) + λ(1− λ)
(

d(Tx, y) + d(x, Ty)
)

+ λ2d(Tx, Ty).
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Proof of Theorem 5.1

We prove that Rk = kR1 for all k ≥ 1 by induction on k. Assume that Rj = jR1 for all
j = 1, . . . , k and let ε > 0. Since (d(T n+jx, T nx)) is nonincreasing, we get Nε ≥ 1 such that
for any j = 1, . . . , k and for all n ≥ Nε,

R1 ≤
1

j
d(T n+jx, T nx) ≤ R1 + ε (27)

Let n ≥ Nε. By (26), we get that

d(T n+1x, T n+k+1x) ≤
1− λ

1 + λ
d(T nx, T n+kx) +

λ

1 + λ

(

d(T n+1x, T n+kx) + d(T nx, T n+k+1x)
)

,

hence

d(T nx, T n+k+1x) ≥
1 + λ

λ
d(T n+1x, T n+k+1x)−

1− λ

λ
d(T n+kx, T nx)−

−d(T n+1x, T n+kx)

≥
1 + λ

λ
k R1 −

1− λ

λ
k (R1 + ε)− (k − 1)(R1 + ε)

= (k + 1)R1 +

(

1−
k

λ

)

ε.

By letting n → ∞, it follows that Rk+1 ≥ (k + 1)R1, as ε > 0 is arbitrary. Apply now
Lemma 5.5.(i) to conclude that Rk+1 = (k + 1)R1.

Since d(T n+kx, T nx) ≤ d(T kx, x) for all k, n ≥ 1, let n → ∞ to get that R1 ≤
d(T kx, x)

k
for all k ≥ 1 and, as a consequence, R1 ≤ L. Apply now Lemma 5.5.(iii) to conclude that
L = R1 = rC(T ).

6 ∆-convergence of Picard iterates

In 1976, Lim [32] introduced a concept of convergence in the general setting of metric spaces,
which is known as ∆-convergence. Kuczumow [28] introduced an identical notion of conver-
gence in Banach spaces, which he called almost convergence. As shown in [22], ∆-convergence
could be regarded, at least for CAT(0) spaces, as an analogue to the usual weak convergence
in Banach spaces. Jost [19] introduced a notion of weak convergence in CAT(0) spaces, which
was rediscovered by Esṕınola and Fernández-León [13], who also proved that it is equivalent
to ∆-convergence. We refer to [44] for other notions of weak convergence in geodesic spaces.

Let (xn) be a bounded sequence of a metric space (X, d). We say that (xn) ∆-converges
to x if x is the unique asymptotic center of (un) for every subsequence (un) of (xn). In this

case, we write xn
∆
−→ x or ∆− lim

n→∞
xn = x and we call x the ∆-limit of (xn).
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Let (X, d) be a metric space and F ⊆ X be a nonempty subset. A sequence (xn) in X is
said to be Fejér monotone with respect to F if

d(p, xn+1) ≤ d(p, xn) for all p ∈ F and n ≥ 0. (28)

Thus each point in the sequence is not further from any point in F than its predecessor.
Obviously, any Fejér monotone sequence (xn) is bounded and moreover (d(xn, p)) converges
for every p ∈ F .

The following lemma is very easy to prove.

Lemma 6.1. Let (X, d) be a metric space, F ⊆ X be a nonempty subset and (xn) be Fejér
monotone with respect to F . Then

(i) For all p ∈ F , (d(p, xn)) converges and r(p, (xn)) = lim
n→∞

d(p, xn).

(ii) Every subsequence (un) of (xn) is Fejér monotone with respect to F and for all p ∈ F ,
r(p, (un)) = r(p, (xn)). Hence, r(F, (un)) = r(F, (xn)) and A(F, (un)) = A(F, (xn)).

(iii) If A(F, (xn)) = {x} and A((un)) ⊆ F for every subsequence (un) of (xn), then (xn)
∆-converges to x ∈ F .

Furthermore, one has the following result, whose proof is very similar to the one in strictly
convex Banach spaces. For the sake of completeness, we give it here.

Lemma 6.2. Let C be a nonempty closed convex subset of a uniquely geodesic space (X, d)
and T : C → C be nonexpansive. Then the set Fix(T ) of fixed points of T is closed and
convex.

Proof. The fact that Fix(T ) is closed is immediate from the continuity of T . We shall prove
its convexity. Let x, y ∈ Fix(T ) be distinct and z ∈ [x, y]. Then

d(x, y) ≤ d(x, Tz) + d(Tz, y) = d(Tx, Tz) + d(Tz, Ty) ≤ d(x, z) + d(z, y) = d(x, y).

Thus, d(x, Tz)+ d(Tz, y) = d(x, y), so that Tz ∈ [x, y]. We apply now Lemma 2.3.(ii) to get
the following cases:

(i) d(x, z) + d(z, T z) = d(x, Tz) = d(Tx, Tz) ≤ d(x, z),

(ii) d(y, z) + d(z, T z) = d(y, T z) = d(Ty, Tz) ≤ d(y, z).

In both cases, it follows that Tz = z.

Proposition 6.3. Let (X, d,W ) be a complete UCW -hyperbolic space, C ⊆ X be nonempty
closed convex and T : C → C be a nonexpansive mapping with Fix(T ) 6= ∅. If T is
asymptotically regular at x ∈ C, then the Picard iterate (T nx) ∆-converges to a fixed point
of T .

21



Proof. By Lemma 6.2, the nonempty set F := Fix(T ) is closed and convex. Furthermore,
one can see easily that (T nx) is Fejér monotone with respect to F and, by Theorem 2.12,
(T nx) has a unique asymptotic center with respect to F . Let (un) be a subsequence of (T nx)
and u be its unique asymptotic center. Then

d(Tu, un) ≤ d(Tu, Tun) + d(Tun, un) ≤ d(u, un) + d(un, Tun),

so we can use Lemma 2.11 to obtain that Tu = u, i. e. u ∈ F . Apply Lemma 6.1.(iii) to get
the conclusion.

By [30, Theorem 3.5] one can replace in the above theorem the assumption that T has
fixed points with the equivalent one that T has bounded orbits.

We get the following ∆-convergence result for the Picard iteration of a firmly nonexpan-
sive mapping.

Theorem 6.4. Let (X, d,W ) be a complete UCW -hyperbolic space, C ⊆ X be nonempty
closed convex and T : C → C be a λ-firmly nonexpansive mapping for some λ ∈ (0, 1).
Assume that Fix(T ) 6= ∅. Then for all x in C, (T nx) ∆-converges to a fixed point of T .

Proof. Since Fix(T ) 6= ∅, we get that rC(T ) = 0, so, by Corollary 5.2, that T is asymptoti-
cally regular. Apply now Proposition 6.3.

6.1 An application to a minimization problem

Let (X, d) be a complete CAT(0) space and F : X → (−∞,∞] be a proper, convex and
lower semicontinuous mapping. We shall apply Theorem 6.4 to approximate the minimizers
of F , that is the solutions of the minimization problem min

x∈X
F (x).

Let argmin
y∈X

F (y) = {x ∈ X | F (x) ≤ F (y) for all y ∈ X} be the set of minimizers of F .

The following result is a consequence of the definition of the resolvent and Proposition 2.13.

Proposition 6.5. For all µ > 0, the set Fix(Jµ) of fixed points of the resolvent associated
with F coincides with the set argmin

y∈X

F (y) of minimizers of F .

Proof. Let µ > 0.
” ⊇ ” If x̄ is a minimizer of F , one gets that µF (x̄) ≤ µF (y) + d(x̄, y)2. It follows that
x̄ ∈ argmin

y∈X

{

µF (y) + d(x̄, y)2
}

. By the definition of Jµ, it follows that Jµ(x̄) = x̄.

” ⊆ ” Assume that Jµ(x̄) = x̄, so µF (x̄) ≤ µF (y) + d(x̄, y)2 for all y ∈ X . Let γ : [0, c] → X
be a geodesic starting with x̄. Then for all t ∈ [0, c], one has that

F (γ(t))− F (x̄)

t
≥ −

d(x̄, γ(t))2

µt
= −

t2

µ
.
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It follows that DγF (x̄) ≥ 0, hence we can apply Proposition 2.13 to conclude that F (x̄) ≤
F (y) for all y ∈ X .

As the resolvent is a firmly nonexpansive mapping, one can apply Theorem 6.4 and the
above result to obtain

Corollary 6.6. Assume that F has a minimizer. Then for all µ > 0 and all x ∈ X, the
Picard iterate (Jn

µ (x)) ∆-converges to a minimizer of F .

We remark that a more general result was obtained recently by Bačák [1] using different
methods. Thus, Bačák obtained in the setting of CAT(0) spaces the following proximal point
algorithm: if F has minimizers, then for all x0 ∈ X and all sequences (λn) divergent in sum,
the sequence

xn+1 := argmin
y∈X

(

F (y) +
1

2λn
d(y, xn)

2

)

∆-converges to a minimizer of F .

7 Effective rates of asymptotic regularity

As we have proved in Section 5, any λ-firmly nonexpansive mapping T : C → C defined on
a nonempty subset C of a W-hyperbolic space X is asymptotically regular, provided T has
bounded orbits.

In this section we shall obtain, for UCW -hyperbolic spaces, a rate of asymptotic regular-
ity of T , that is a rate of convergence of the sequence (d(T nx, T n+1)) towards 0. The methods
of proof are inspired by those used by Kohlenbach [23] and the second author [29] for com-
puting rates of asymptotic regularity for the Krasnoselski-Mann iterations of nonexpansive
mappings in uniformly convex Banach spaces and UCW -hyperbolic spaces.

For x ∈ C and b, ε > 0, let us denote

Fixε(T, x, b) := {y ∈ C | d(y, x) ≤ b and d(y, Ty) < ε}.

If Fixε(T, x, b) 6= ∅ for all ε > 0, we say that T has approximate fixed points in a b-
neighborhood of x.

Theorem 7.1. Let b > 0, λ ∈ (0, 1) and η : (0,∞) × (0, 2] → (0, 1] be a mapping that
decreases with r for fixed ε. Then for all UCW-hyperbolic spaces (X, d,W, η), nonempty
subsets C ⊆ X, λ-firmly nonexpansive mappings T : C → C and all x ∈ C such that T has
approximate fixed points in a b-neighborhood of x, the following holds:

∀ε > 0 ∀n ≥ Φ(ε, η, λ, b)
(

d(T nx, T n+1x) ≤ ε
)

, (29)
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where

Φ(ε, η, λ, b) :=































b+ 1

ε λ (1− λ) η

(

b+ 1,
ε

b+ 1

)









for ε < 2b,

0 otherwise.

(30)

Remark 7.2. If, moreover, η(r, ε) can be written as η(r, ε) = ε · η̃(r, ε) such that η̃ increases
with ε (for a fixed r), then the bound Φ(ε, η, λ, b) can be replaced for ε < 2b by

Φ̃(ε, η, λ, b) =









b+ 1

ε λ (1− λ) η̃

(

b+ 1,
ε

b+ 1

)









(31)

Before proving the above results, let us give two consequences.

Corollary 7.3. Let b, λ, η be as in the hypothesis of Theorem 7.1. Then for all UCW-
hyperbolic spaces (X, d,W, η), bounded subsets C ⊆ X with diameter dC ≤ b, λ-firmly non-
expansive mappings T : C → C and all x ∈ C,

∀ε > 0 ∀n ≥ Φ(ε, η, λ, b)
(

d(T nx, T n+1x) ≤ ε
)

,

where Φ(ε, η, λ, b) is given by (30).

Proof. If C is bounded, then T is asymptotically regular by Corollary 5.3. Hence, for all
b ≥ dC , T has approximate fixed points in a b-neighborhood of x for all x ∈ C.

Thus, for bounded C, we get that T is asymptotically regular with a rate Φ(ε, η, λ, b)
that only depends on ε, on X via the monotone modulus of uniform convexity η, on C via
an upper bound b on its diameter dC and on the mapping T via λ. The rate of asymptotic
regularity is uniform in the starting point x ∈ C of the iteration and other data related with
X,C and T .

As we have remarked in Section 2, CAT(0) spaces are UCW -hyperbolic spaces with a

quadratic (in ε) modulus of uniform convexity η(ε) =
ε2

8
, which has the form required in

Remark 7.2. As an immediate consequence, we get a quadratic (in 1/ε) rate of asymptotic
regularity in the case of CAT(0) spaces.

Corollary 7.4. Let b > 0 and λ ∈ (0, 1). Then for all CAT(0) spaces X, bounded subsets
C ⊆ X with diameter dC ≤ b, λ-firmly nonexpansive mappings T : C → C and x ∈ C, the
following holds

∀ε > 0 ∀n ≥ Ψ(ε, λ, b)
(

d(T nx, T n+1x) ≤ ε
)

,
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where

Ψ(ε, λ, b) :=







[

8(b+ 1)

λ (1− λ)
·
1

ε2

]

for ε < 2b,

0 otherwise.

7.1 Proof of Theorem 7.1 and Remark 7.2

One can easily see that d(T nx, T n+1x) ≤ 2b for all n ∈ N, hence the case ε ≥ 2b follows.
Assume now that ε < 2b and denote

N := Φ(ε, η, λ, b) =









b+ 1

ε λ (1− λ) η

(

b+ 1,
ε

b+ 1

)









. (32)

Let δ > 0 be such that δ <
1

4(N + 1)
, so that (N +1)δ <

1

4
< 1. By hypothesis, there exists

y ∈ C satisfying
d(x, y) ≤ b and d(y, Ty) < δ. (33)

We shall prove that there exists n ≤ N such that d(T nx, T n+1x) ≤ ε and apply the fact
that (d(T nx, T n+1x)) is nonincreasing to get the conclusion. Assume by contradiction that
d(T nx, T n+1x) > ε for all n = 0, . . . , N . In the sequel, we fix such an n. For simplicity we
shall use the notation

rn := d(T nx, y) + d(y, Ty). (34)

One gets by an easy induction that

rn ≤ d(x, y) + (n+ 1) d(y, Ty) ≤ b+ (N + 1)δ < b+ 1.

Since

d(T n+1x, y) ≤ d(T n+1x, Ty) + d(Ty, y) ≤ rn, d(T nx, y) ≤ rn,

d(T nx, Ty) ≤ d(T nx, y) + d(y, Ty) = rn, d(T n+1x, Ty) ≤ rn

and d(T nx, T n+1x) > ε, we can apply twice Lemma 2.10.(iii) with r := rn and s := b+ 1 to
get that

d((1− λ)T nx⊕ λT n+1x, y) ≤

(

1− 2λ(1− λ)η

(

b+ 1,
ε

b+ 1

))

rn,

d((1− λ)T nx⊕ λT n+1x, Ty) ≤

(

1− 2λ(1− λ)η

(

b+ 1,
ε

b+ 1

))

rn.
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As T is λ-firmly nonexpansive, it follows that

d(T n+1x, Ty) ≤ d((1− λ)T nx⊕ λT n+1x, (1− λ)y ⊕ λTy)

≤ (1− λ) d((1− λ)T nx⊕ λT n+1x, y) +

+λ d((1− λ)T nx⊕ λT n+1x, Ty) by (W1)

≤

(

1− 2λ(1− λ)η

(

b+ 1,
ε

b+ 1

))

rn

= d(T nx, y) + d(y, Ty)− 2rnλ(1− λ)η

(

b+ 1,
ε

b+ 1

)

≤ d(T nx, y) + δ − ελ(1− λ)η

(

b+ 1,
ε

b+ 1

)

,

since d(y, Ty) ≤ δ and

ε

2
<

1

2
d(T nx, T n+1x) ≤

1

2

(

d(T nx, y) + d(y, Ty) + d(Ty, T n+1x)
)

≤ rn.

Using now the fact that d(T n+1x, y) ≤ d(T n+1x, Ty) + d(y, Ty), we get that

d(T n+1x, y) ≤ d(T nx, y) + 2δ − ελ(1− λ)η

(

b+ 1,
ε

b+ 1

)

. (35)

Adding (35) for n = 0, . . . , N , it follows that

d(TN+1x, y) ≤ d(x, y) + 2(N + 1)δ − (N + 1)ελ(1− λ)η

(

b+ 1,
ε

b+ 1

)

≤ b+
1

2
− (N + 1)ελ(1− λ)η

(

b+ 1,
ε

b+ 1

)

≤ b+
1

2
− (b+ 1) < 0,

that is a contradiction.

To prove Remark 7.2, observe that, by denoting

N := Φ̃(ε, η, λ, b) =









b+ 1

ε λ (1− λ) η̃

(

b+ 1,
ε

b+ 1

)









,
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and following the proof above with rn instead of b+ 1 we obtain

d(T n+1x, Ty) ≤ d(T nx, y) + δ − rnλ(1− λ)η

(

rn,
ε

rn

)

≤ d(T nx, y) + δ − rnλ(1− λ)η

(

b+ 1,
ε

rn

)

since η is monotone

= d(T nx, y) + δ − ελ(1− λ)η̃

(

b+ 1,
ε

rn

)

≤ d(T nx, y) + δ − ελ(1− λ)η̃

(

b+ 1,
ε

b+ 1

)

since η̃ increases with ε.

Follow now the proof above to get the conclusion. �
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[8] M. Bruhat, J. Tits, Groupes réductifs sur un corps local. I. Données radicielles valuées,
Inst. Hautes Études Sci. Publ. Math. 41 (1972), 5-251.

[9] H. Busemann, Spaces with nonpositive curvature, Acta Math. 80 (1948), 259-310.

[10] H. Busemann, The geometry of geodesics, Pure Appl. Math. 6, Academic Press, New
York, 1955.

[11] M. Edelstein, The construction of an asymptotic center with a fixed-point property,
Bull. Amer. Math. Soc. 78 (1972), 206-208.

[12] M. Edelstein, Fixed point theorems in uniformly convex Banach spaces, Proc. Amer.
Math. Soc. 44 (1974), 369-374.
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