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Abstract. In this paper a kernel for time-series data is presented. The
main idea of the kernel is that it is designed to recognize as similar time
series that may be slightly shifted with one another. Namely, it tries to
focus on the shape of the time-series and ignores the fact that the series
may not be perfectly aligned. The proposed kernel has been validated
on several datasets based on the UCR time-series repository [1]. A com-
parison with the well-known Dynamic Time Warping (DTW) distance
and Euclidean distance shows that the proposed kernel outperforms the
Euclidean distance and is competitive with respect to the DTW distance
while having a much lower computational cost.

1 Introduction

Time-series analysis is an important problem with application in domains as 
diverse as engineering, medicine, astronomy or finance [2,3]. In particular, the 
problem of time-series classification is attracting a lot of attention among re-
searchers [4]. Among the most successful and popular methods for classifica-
tion are kernel-based methods such as support vector machines. Despite their 
popularity, there seem to be only a handful of kernels designed for time-series. 
This paper tries to fill this void, and proposes a kernel exclusively designed for 
time-series. Moreover, using a standard trick, we are able to convert our kernel 
into a distance metric for time-series, therefore allowing us to use our kernel in 
distance-based algorithms as well.

A crucial aspect when dealing with time-series is to find a good measure, 
either a kernel similarity or a distance, that captures the essence of the time-
series according to the domain of application. For example, Euclidean distance 
between time-series is commonly used due to its computational efficiency; how-
ever, it is very brittle and small shifts in of one time-series can result in huge 
changes in the Euclidean distance. Therefore, more sophisticated distances have 
been devised designed to be more robust to small fluctuations of the input time-
series. Notably, Dynamic Time Warping (DTW) is held as the state-of-the-art 
method for comparing time-series. Unfortunately, computing the DTW distance



is prohibitely costly for many practical applications. Therefore, researchers are
coming up with distances for time-series that approach the DTW at lower com-
putational costs [5,4,6]. In a sense, the kernel-derived distance that is proposed
here tries to fix the brittleness of Euclidean distance without incurring in the
high computational costs of DTW. At a high level, our proposed distance is
a combination of the Euclidean distances obtained by using several smoothed
versions or the original time-series.

Many other distances have been proposed depending on the invariants re-
quired by the domain. For example, [7] define a distance between two time-series
representing the convexities/concavities of two shape contours. In [8] the authors
modify the Euclidean distance with a correction factor based on the complexity
of the input time-series.

It is known that the DTW distance is not a distance in a strict sense as it does
not fulfill the triangular inequality and, therefore, it can not be used to define
a positive definite kernel. A more general theory of learning instead of positive
semi-definite kernels and the relationship between good kernels and similarity
functions is presented in [9]. In [10] a new kernel is defined by global alignments
from the DTW distance. In particular, the kernel is defined as the sum of the
exponential function of the distances for all possible alignments. However, this
kernel has a high computational cost and constraints on alignments, similar to
that of [5], are presented to speed-up the computation in [11]. The same authors
present in [12] a kernel based on the idea that similar time series should be fit
well by the same models. They use autoregressive models and thus the name
of autoregressive kernel. A kernel for periodic time-series arising in the field of
astronomy is presented in [13]. This kernel is similar to a global alignment kernel
as it consists in the sum of the exponential function of the inner products for
all possible shifting of a time series instead of computing the best alignment.
Another kernel for time-series is proposed in [14]. In particular, the time series
are represented with a summarizing smooth curve in a Hilbert space and the
learning method of the kernel is based on Gaussian processes.

The paper is structured as follows. Section 2 describes our time-series kernel
and its corresponding derived distance. Section 3 presents an empirical compar-
ison using 20 different datasets. Finally, Section 5 concludes with a summary of
our main contributions and possible directions of future work.

2 Kernel Description

This Section presents the notation used in this paper and also provides the
definitions underlying the proposed kernel.

Definition 1 (Time-series). A time-series X is a set of temporally sorted
real-valued data. In this work, X = {x1, ..., xN}, where N is the length of the
time-series.

Definition 2 (Subsequence time-series). A subsequence of length k of a
time-series X = {x1, ..., xN} is a time-series Xj = {xj , xj+1, ..., xj+k−1} for
1 ≤ j ≤ N − k + 1.
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Fig. 1. Example of two shifted time-series

Definition 3 ({k, j}–Order partial sum). A {k, j}–order partial sum of a
time-series X, sXk,j, is the sum of the values of the Xj subsequence time-series
of length k. That is:

sXk,j = xj + xj+1 + · · ·+ xj+k−1.

Definition 4 (k–Order partial sum time-series). A k–order partial sum
time-series is a time-series SX

k whose values are sXk,j for 1 ≤ j ≤ N −k+1, that
is, the sum of all the values of the subsequences of length k of the time-series X.

SX
k = {sXk,1, sXk,2, ..., sXk,N−k+1}.

For example, the {k, j}–order partial sums and the k–order partial sum time-
series for the X = {3, 2, 4, 1} time-series are:

sX2,1 = 3 + 2 = 5
sX2,2 = 2 + 4 = 6 SX

2 ={5,6,5}
sX2,3 = 4 + 1 = 5
sX3,1 = 3 + 2 + 4 = 9 SX

3 ={9,7}
sX3,2 = 2 + 4 + 1 = 7
sX4,1 = 3 + 2 + 4 + 1 = 10 SX

4 ={10}

2.1 Motivation

The main motivation in the definition of the kernel proposed here is to obtain
a similarity measure for time-series that yields high values when two time-series
X and Y have the same shape but may be shifted of one another. Notice that the
Euclidean distance does not take this into account as illustrated in Figure 1. It can
be observed that both time-series are very similar (the Y time-series is obtained by
shifting X). However, the Euclidean distance between the two time-series is very
high. As a consequence, bad results could be obtained were the Euclidean distance
to be used in distance-based classification algorithms, for instance. The purpose
of this work is to propose a kernel that yields high similarity for time-series that
have similar shapes.



The kernel proposed here is obtained by adding the inner products of partial
sum time-series for all orders. It is not necessary to discover the best alignment
between two time-series, in contrast with the DTW distance, as all partial sums
will be included in the kernel definition.

2.2 Definition of the Kernel

Let X and Y be two time-series of length N . Let UX and UY be two upper
triangular matrices defined as:

UX = [UX
1 , ..., UX

N ]

UY = [UY
1 , ..., UY

N ]

where UX
i and UY

i are the i-th rows of the matrices UX and UY , respectively,
which are defined by:

UX
ij =

{
sXi,j if 1 ≤ j ≤ N − i+ 1
0 if j > N − i+ 1

(1)

UY
ij =

{
sYi,j if 1 ≤ j ≤ N − i+ 1
0 if j > N − i+ 1

(2)

Finally, the kernel is defined as the sum of the scalar products among the rows
of the UX and UY matrices. That is,

Kernel(X,Y ) =

N∑
i=1

< UX
i , UY

i > (3)

where UX and UY are defined by Equations (1) and (2) and < ·, · > is the
scalar product of two vectors in R

N . It is obvious that the function defined by
Equation (3) is indeed a kernel as it can be represented by a inner product in
the high–dimensional feature space φ(·) defined as follows:

Kernel(X,Y ) =< φ(X), φ(Y ) > (4)

where

φ : RN −→ R
N2

X −→ φ(X) = (UX
1 , ..., UX

N )

Next, we show an illustrative example for the time-series X = {3, 2, 4, 1} and
Y = {1,−1, 0, 2}. Firstly, the UX and UY matrices comprising the partial sums
of the X and Y time-series have to be computed. The 2-order partial sums for
X and Y are SX

2 = {5, 6, 5} and SY
2 = {0,−1, 2}, respectively. Analogously,

the 3 and 4 order partial sums are SX
3 = {9, 7}, SY

3 = {0, 1}, SX
4 = {10} and

SY
4 = {2}. Therefore, the matrices are:

UX =

⎡
⎢⎢⎣

3 2 4 1
5 6 5 0
9 7 0 0
10 0 0 0

⎤
⎥⎥⎦UY =

⎡
⎢⎢⎣
1 −1 0 2
0 −1 2 0
0 1 0 0
2 0 0 0

⎤
⎥⎥⎦



The second step consists in calculating the scalar products of the rows of the
UX matrix and the corresponding rows of the UY matrix. That is,

< UX
1 , UY

1 > = 3 · 1 + 2 · (−1) + 4 · 0 + 1 · 2 = 3

< UX
2 , UY

2 > = 5 · 0 + 6 · (−1) + 5 · 2 = 4

< UX
3 , UY

3 > = 9 · 0 + 7 · 1 = 7

< UX
4 , UY

4 > = 10 · 2 = 20

where UX
i and UY

i are the i rows of the UX and UY matrices, respectively.
Finally, the kernel is defined as the sum of the above-mentioned scalar prod-

ucts. Therefore,

Kernel(X,Y ) = (3 + 4 + 7 + 20) = 34.

It should be noted that a distance metric can be obtained from any positive
definite kernel Ker using the standard transformation described in the following
equation [15]:

d(u, v) = Ker(u, u) +Ker(v, v) − 2 ·Ker(u, v).

Therefore, when this work refers to the proposed kernel as a distance it really
means the derived distance from the kernel.

3 Results

This section presents the results obtained by the application of the proposed ker-
nel to the classification of multi–class time series. Section 3.1 provides a detailed
description of all datasets used in the experiments. In Section 3.2 the kernel has
been applied to twenty time-series to validate its potential for separating classes
in time-series. Finally, a real-world dataset composed by ozone time series is
considered in Section 3.3.

3.1 Description of Datasets

The new kernel has been initially tested on several datasets from the UCR
time-series repository [1]. Time series lengths in our datasets range from 60
to 637, with the average and the median being 282.1 and 272.5, respectively.
Computation times are highly sensitive to the time-series length, especially for
the DTW algorithm, which is quadratic in this parameter. Relevant information
about these datasets is summarized in Table 1.



Table 1. Datasets from UCR time-series Repository [1]

Dataset Num. Num. Length of Dataset Num. Num. Length of
Instances Classes Series Instances Classes Series

50Words 450 50 270 Lighting-2 20 2 637
Adiac 296 37 176 Lighting-7 63 7 319
Beef 45 5 470 OSU Leaf 54 6 427
CBF 21 3 128 OliveOil 40 4 570
Coffee 18 2 286 Swedish Leaf 105 15 128
ECG 14 2 96 Trace 36 4 275
Fish 63 7 463 Two Patterns 28 4 128
Face (All) 112 14 131 Synthetic Control 36 6 60
Face (Four) 36 4 350 Wafer 16 2 152
Gun-Point 16 2 150 Yoga 18 2 426

3.2 Validation

A statistic based on pair-wise distances has been developed to show how well
the proposed kernel is able to separate classes in time-series.

Let D be a labeled dataset of M time-series of the same length N . Let c(X)
be the class of the time-series X ∈ D. Then, the SM separation measure is
defined as follows,

SM =
INTRA− INTER

MAX

where INTRA and INTER are the average pair-wise distance of time series be-
longing to the same and to different classes, respectively, and MAX is the maxi-
mum pair-wise distance over the whole dataset. Namely, let A = {(X,Y )|X,Y ∈
D, c(X) = c(Y )} and B = {(X,Y )|X,Y ∈ D, c(X) �= c(Y )}. That is, A is the
set of pairs of time series that belong to the same class, and B is the set of pairs
of time-series that belong to different classes. Then,

INTRA =
1

|A|
∑

(X,Y )∈A

d(X,Y )

INTER =
1

|B|
∑

(X,Y )∈B

d(X,Y )

MAX = max
X,Y ∈D

d(X,Y )

where d is any distance defined in R
N x R

N and N is the length of the time-series
in D.

In a sense, the SM measure is designed to show how well the proposed distance
separates instances in different classes as opposed to instances within the same
class. Since we are taking averages, it is a measure of the global separability
ability of the distance. This distance is reminiscent to the cost function used in
the problem of correlation clustering in weighted graphs [16,17], if we were to
cluster all instances using their class.



Table 2 presents a comparison of the separation statistic and computation
time of the following distances: the Euclidean distance, the one derived from
the kernel proposed here (which we call Kernel-based distance), and the DTW
distance. The comparison is over the 20 datasets from the UCR repository [1].
The distance that better separates the existing classes for each dataset is marked
in bold style. It can be seen that the average of the separation measure for the
proposed kernel is better than that of the Euclidean distance and similar to that
of the DTW distance. When looking at the columns for computation times, it
is very clear that the Euclidean distance is by far the fastest one to compute,
followed by our proposed distance using (roughly) an order or magnitude extra
CPU time. The DTW distance is by far the slowest, needing two more orders or
magnitude than our kernel-based distance.

Table 3 further summarizes Table 2. On the table on the left, the reader
can observe that the behavior of the kernel-based distance is better than that of
DTW on average (1.65 versus 1.85), and both outperform the Euclidean distance
(1.65 and 1.85 versus 2.40). The table on the right shows the wins matrix for
pairs of distances over the 20 datasets. That is, in how many datasets a distance
separates better than another distance.

Table 2. Separation measure among classes and computing times

Separation Measure CPU Times (in s.)

Dataset Eucl Kernel DTW Eucl Kernel DTW

50Words 0.155 0.196 0.498 177.4 3653.3 176629.5
Adiac -0.042 -0.040 -0.027 83.8 387.5 32702.9
Beef 0.696 0.894 0.557 1.8 93.7 5505.9
CBF 0.150 0.311 0.557 0.5 4.9 94.2
Coffee -0.015 0.111 -0.015 0.3 5.8 316.9
ECG 0.045 0.054 0.126 0.2 3.8 22.8
FISH -0.004 -0.008 -0.018 10.3 46.4 2690.4
Face (All) 0.007 0.110 0.387 1.1 46.7 1928.6
Face (Four) -0.005 0.016 0.011 3.4 131.1 10576.4
Gun-Point 0.136 0.113 0.345 0.3 1.2 83.3
Lighting-2 0.126 0.152 0.263 0.4 29.0 1964.2
Lighting-7 0.137 0.268 0.279 3.6 67.1 4767.3
OSU Leaf 0.229 0.346 0.098 1.4 94.0 6396.3
OliveOil -0.063 -0.041 -0.027 2.5 100.8 6459.6
Swedish Leaf 0.104 0.144 0.048 9.3 39.2 2286.0
Trace 0.300 0.303 0.091 1.2 3.1 65.1
Two Patterns 0.113 0.165 0.585 1.1 19.2 1195.1
Synthetic Control 0.103 0.293 0.580 0.7 3.9 174.5
Wafer 0.126 0.172 0.015 0.3 1.0 72.9
Yoga -0.000 0.073 -0.005 0.3 11.0 724.1

Average 0.115 0.182 0.202 15 237.13 12732.8



Table 3. Left: comparison of the number of times each distance achieves the first,
second and third positions over all datasets and average rank. Right: Win matrix for
pairs of distances, it should be read as follows: if row i and column j contains number
m, then distance i has beaten distance j a total of m times. For example, the Euclidean
distance beats the Kernel-based distance in 2 datasets, and beats the DTW distance
in 8 datasets.

Distance #1st #2nd #3rd Avg. Rank

Euclidean 1 7 11 2.40

Kernel 8 11 1 1.65

DTW 11 1 8 1.85

Distance Euclidean Kernel DTW

Euclidean – 2 8

Kernel 18 – 9

DTW 12 11 –

4 A Real Application: Classification of Ozone
Concentration in Atmosphere

Finally, an environmental application related to atmospheric pollutants such as
the tropospheric ozone is presented. The pattern recognition in ozone time data
is an important task as it is neccessary activate environmental politics and alert
protocols by the government when the ozone reaches high ozone concentration
levels in atmosphere. Ozone time series have been retrieved from a meteorological
station placed in the outskirts of Seville city (Spain), providing 312 times series
composed of 168 hourly records each one. The dataset is classified into two
classes corresponding to high and low ozone level periods (165 and 147 time
series, respectively). The time series data have been split in training set (218
time series) and test set (94 time series) preserving the proportion between the
two existing classes.

We have used the well-known nearest neighbor method (1-NN) with the three
competing distances to classify the ozone time series into weeks of high or low
ozone concentration. Table 4 shows the error in percentage and the time in
seconds obtained from the application of the 1-NN method to classify the test set
when using several distances. It can be observed that the kernel-based distance
presents better results in both error and CPU time.

Table 4. Percentage of error and time in seconds required to classify the test set

Distance Error Time

Euclidean 9.5% 0.5
Kernel-based 4.2% 23.3
DTW 6.3% 3692.9



5 Conclusions and Future Work

In this paper we have presented a kernel for time-series data and its associated
distance metric. Initial experiments show promise in detecting similarity between
time-series. The proposed kernel has been compared to the Euclidean distance
as a reference distance and the DTW distance as one of the most competitive
distances that exist in the literature. The kernel is shown to efficiently separate
different time-series classes, and also, its application to real-world data has been
successful. In particular, it achieves low error in the classification of the ozone
atmosphere concentration. This paper is an initial step in the study of this kernel
and its possible variants. Further experimentation including comparison to other
state-of-the-art kernels are underway in the context of classification with kernel-
based methods. In the future, we plan to generalize our kernel to time-series that
differ in length. We would also like to adapt our ideas so that they can be used
in a streaming setting where time-series keep growing unboundedly.
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