
SOME BOUNDS AND LIMITS IN THE THEORY OF
RIEMANN’S ZETA FUNCTION

JUAN ARIAS DE REYNA AND JAN VAN DE LUNE

Abstract. For any real a > 0 we determine the supremum of the
real σ such that ζ(σ+ it) = a for some real t. For 0 < a < 1, a = 1,
and a > 1 the results turn out to be quite different.

We also determine the supremum E of the real parts of the
‘turning points’, that is points σ+ it where a curve Im ζ(σ+ it) =
0 has a vertical tangent. This supremum E (also considered by
Titchmarsh) coincides with the supremum of the real σ such that
ζ ′(σ + it) = 0 for some real t.

We find a surprising connection between the three indicated
problems: ζ(s) = 1, ζ ′(s) = 0 and turning points of ζ(s). The al-
most extremal values for these three problems appear to be located
at approximately the same height.

1. Introduction.

In this paper we study various bounds and limits related to the
values of Riemann’s ζ(s) = ζ(σ + it) with s in the half-plane σ > 1.
For example, in Titchmarsh [8, Theorem 11.5(C)] it is shown that E :=
the supremum of all σ such that ζ ′(σ+ it) = 0 for some t ∈ R, satisfies
2 < E < 3. Also, one of us [3] proved that σ0 := the unique solution to
the equation

∑
p arcsin(p−σ) = π

2
, is the supremum of all σ such that

Re ζ(σ + it) < 0 for some t ∈ R and Re ζ(σ0 + it) > 0 for all t ∈ R.
In [4] and [5] we encounter the question of the supremum σ(1) of

Re (s) for the solutions of ζ(s) = 1. In Sections 3 and 4 we will solve
this problem and also answer the same question for the solutions of
ζ(s) = a for any given a > 0.

In Section 5 we give a more direct proof of Theorem 11.5(C) of
Titchmarsh.

Our method is constructive so that it allowed us to find explicit
roots of ζ(s) = 1 with σ near the extremal value σ(1) ( by means of
the Lenstra–Lenstra–Lovász lattice basis reduction algorithm ), and
analogously solutions of ζ ′(s) = 0 with Re (s) near E. We also found a
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relation between the two problems: Near every almost-extremal solu-
tion for ζ(s) = 1 there is one for ζ ′(ρ) = 0 with ρ− s ≈ E − σ(1) ( see
Section 6 for a more precise formulation ).

In Section 7 we will discuss some similar aspects of general Dirichlet
functions L(s, χ).

There are two types of curves Im ζ(σ + it) = 0. One kind (the I1

curves) is crossing the halfplane σ > 0 more or less horizontally whereas
the other kind (the I2 curves) has the form of a loop. These loops do
not stick out arbitrarily far to the right. In Section 9 we determine
exactly the limit of the I2 curves Im ζ(σ + it) = 0. This problem was
also mentioned in [3].

The somewhat surprising fact is that this limit of the I2 curves is
equal to the limit E of the zeros of ζ ′(s) considered in Theorem 11.5
(C) of Titchmarsh.

2. The key lemmas.

We will use the following

Lemma 2.1. There exists a sequence of real numbers (tk) such that

lim
k→∞

ζ(s+ itk) =
2s − 1

2s + 1
ζ(s)

uniformly on compact sets of the half plane σ > 1.

Proof. Since the numbers log pn are linearly independent over Q, there
are ( by Kronecker’s theorem [1, Theorem 7.9, p. 150] ) for each positive
integer N and any η > 0 a real number t and integers g1, . . . , gN such
that

| − t log 2− π + 2πg1| < η, | − t log pj + 2πgj| < η, 2 ≤ j ≤ N

where pn denotes the n-th prime number.
Taking η small enough we may obtain in this way a real t such that

|2−it + 1| < ε, |p−itj − 1| < ε, 2 ≤ j ≤ N.

Repeating this construction we obtain a sequence of real numbers (tk)
such that

lim
k→∞

2−itk = −1, lim
k→∞

p−itk = 1 for any odd prime p.

Now we prove that any such sequence satisfies the Lemma. For any
natural number n let ν(n) be the exponent of 2 in the prime factoriza-
tion of n. Let n = 2ν(n)qa11 · · · qarr be the prime factorization of n. Then
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we will have n−itk → (−1)ν(n), and as we will show

lim
k→∞

ζ(s+ itk) =
∞∑
n=1

(−1)ν(n)

ns
uniformly for σ ≥ a > 1.

Given a > 1 and ε > 0 we first determine N such that
∞∑

n=N+1

1

na
< ε.

For 1 ≤ n ≤ N we then have n−itk → (−1)ν(n), so that there exists a
K such that

|n−itk − (−1)ν(n)| < ε

N
, 1 ≤ n ≤ N, k ≥ K.

For Re (s) = σ ≥ a and k > K we will then have∣∣∣ζ(s+ itk)−
∞∑
n=1

(−1)ν(n)

ns

∣∣∣ ≤ ∣∣∣ ∞∑
n=1

n−itk − (−1)ν(n)

ns

∣∣∣ ≤
≤

N∑
n=1

|n−itk − (−1)ν(n)|n−a + 2
∞∑

n=N+1

n−a ≤ 3ε.

Finally we check whether

∞∑
n=1

(−1)ν(n)

ns
=
( ∞∑
j=0

(−1)j

2js

)( ∞∑
k=0

1

(2k + 1)s

)
=

=
(

1 +
1

2s

)−1∏
p≥3

(
1− 1

ps

)−1

=
1− 1

2s

1 + 1
2s

ζ(s) =
2s − 1

2s + 1
ζ(s).

�

Lemma 2.2. There exists a sequence of real numbers (tk) such that

lim
k→∞

ζ(s+ itk) =
ζ(2s)

ζ(s)

uniformly on compact sets of the half plane σ > 1.

Proof. The proof is similar to that of the previous Lemma. Applying
Kronecker’s theorem we get a sequence of real numbers (tk) such that

lim
k→∞

p−itk = −1 for all primes p.

Similarly as in the proof of Lemma 2.1 we obtain

lim
k→∞

ζ(s+ itk) =
∞∑
n=1

(−1)Ω(n)

ns
uniformly for σ ≥ σ0 > 1



4 JUAN ARIAS DE REYNA AND JAN VAN DE LUNE

where Ω(n) is the total number of prime factors of n counting multiplic-

ities. It is well known that this series is equal to ζ(2s)
ζ(s)

(see Titchmarsh

[8, formula (1.2.11)]). �

To apply these lemmas we will use a theorem of Hurwitz (see [7,
Theorem 3.45, p. 119] or [2, Theorem 4.10d and Corollary 4.10e, p. 282–
283]). We will use it in the following form:

Theorem 2.3 ((Hurwitz)). Assume that a sequence (fn) of holomor-
phic functions on a region Ω converges uniformly on compact sets of Ω
to the function f which has an isolated zero a ∈ Ω. Then for n ≥ n0

the functions fn have a zero an ∈ Ω such that limn an = a.

3. The bound for ζ(s) = a (> 0) with a 6= 1.

For a positive real number a let σ(a) denote the supremum of all real
σ such that ζ(σ + it) = a for some t ∈ R.

Theorem 3.1. Let a be > 0 but 6= 1. If a > 1 then σ(a) is the unique
solution of ζ(σ) = a with σ > 1. If 0 < a < 1 then σ(a) is the unique

solution of ζ(2σ)
ζ(σ)

= a with σ > 1.

Proof. It will be convenient to define σa as the ( unique ) solution of
the equations considered in the theorem.

The case a > 1. It is easily seen that in this case we have σ(a) = σa.
In the case 0 < a < 1 we consider a solution to ζ(s) = a. Then

a = |ζ(s)| =
∏
p

1∣∣∣1− 1
ps

∣∣∣ ≥
∏
p

1

1 + 1
pσ

=
ζ(2σ)

ζ(σ)
, (σ > 1).

It is clear from the last equality that ζ(2σ)
ζ(σ)

is strictly increasing ( for

σ > 1 ) from 0 to 1. Hence, there exists a unique solution σa to the

equation a = ζ(2σ)
ζ(σ)

. The inequality a ≥ ζ(2σ)
ζ(σ)

is then equivalent to

σ ≤ σa. Taking the supremum of σ for all solutions of ζ(s) = a we
obtain σ(a) ≤ σa.

To prove the converse we apply Lemma 2.2: There exists a sequence
of real numbers (tk) such that ζ(s + itk) − a converges uniformly on

compact sets of σ > 1 to the function ζ(2s)
ζ(s)
− a. The limit function has

a zero at s = σa. So, by Hurwitz’s theorem σa is a limit point of zeros
bk (k ≥ k0) of ζ(s+ itk)− a.

Therefore ζ(bk + itk)− a = 0 and limk bk = σa. For sk := bk + itk we
have ζ(sk) = a and

lim
k

Re (sk) = lim
k

Re (bk) = Re (lim
k
bk) = σa.
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It follows that

σ(a) = sup{σ : ζ(s) = a} ≥ lim
k

Re (sk) = σa.

Therefore σ(a) = σa, proving our theorem.
�

4. The bound for ζ(s) = 1.

Theorem 4.1. The supremum σ(1) of all real σ such that ζ(σ+it) = 1
for some value of t ∈ R, is equal to the unique solution σ > 1 of the
equation

(1) ζ(σ) =
2σ + 1

2σ − 1
.

Numerically we have

σ(1) = 1.94010 16837 43625 28601 74693 90525 54887 82302 47607 . . .

Proof. Assume that ζ(s) = 1 with Re (s) = σ > 1. Then by the Euler
product formula

1− 1

2s
=
∏
p≥3

(
1− 1

ps

)−1

=
∞∑
k=1

1

(2k − 1)s

or

−1 =
∞∑
k=2

( 2

2k − 1

)s
.

Therefore

1 =
∣∣∣ ∞∑
k=2

( 2

2k − 1

)s∣∣∣ ≤ ∞∑
k=2

( 2

2k − 1

)σ
.

Since the right hand side is decreasing in σ, it follows that there is a
unique solution σ1 of the equation

(2) 1 =
∞∑
k=2

( 2

2k − 1

)σ
= (2σ − 1)ζ(σ)− 2σ

and that σ ≤ σ1. Now observe that (2) is equivalent to (1). Therefore,
ζ(s) = 1 implies σ ≤ σ1 which is by definition the solution of equation
(1). Taking the sup over all solutions of ζ(s) = 1 we get σ(1) ≤ σ1.

For the converse inequality we apply Lemma 2.1 to get a sequence
of real numbers (tk) such that

lim
k
{ζ(s+ itk)− 1} =

2s − 1

2s + 1
ζ(s)− 1

uniformly on compact sets of σ > 1. By definition σ1 is a zero of the
limit function 2s−1

2s+1
ζ(s) − 1, so that there exists a natural number n0
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and a sequence of complex numbers (zk) such that ζ(zk + itk)− 1 = 0
and limk zk = σ1. For sk := zk + itk we then have ζ(sk) = 1 and
limk σk = σ1 ( with σk := Re (sk) ).

It follows that σ(1) = supζ(s)=1 Re s ≥ σ1, proving the theorem. �

5. The bound for ζ ′(s) = 0. A new proof of Titchmarsh’s
Theorem 11.5(C).

Theorem 11.5(C) in Titchmarsh [8] says that there exists a constant
E between 2 and 3, such that ζ ′(s) 6= 0 for σ > E, while ζ ′(s) has
an infinity of zeros in every strip between σ = 1 and σ = E. In this
section we give a more direct proof of this theorem and determine the
precise value of E.

Theorem 5.1. Let E be the unique solution of the equation

(3)
2σ+1

4σ − 1
log 2 = −ζ

′(σ)

ζ(σ)
, (σ > 1).

Then ζ ′(s) 6= 0 for σ > E, while ζ ′(s) has a sequence of zeros (sk) with
limk Re (sk) = E.

The value of this constant is

E = 2.81301 40202 52898 36752 72554 01216 68696 38461 40560 . . .

Proof. Assuming that ζ ′(s) = 0 ( for σ > 1 ) we have

ζ ′(s)

ζ(s)
=

d

ds
log ζ(s) =

d

ds

∑
p

− log
(

1− 1

ps

)
= −

∑
p

log p

ps − 1

so that we may write the equation ζ ′(s) = 0 as∑
p

log p

ps − 1
= 0

or

− log 2

2s − 1
=
∑
p≥3

log p

ps − 1
.

So, we must necessarily have

log 2

2σ + 1
≤
∣∣∣− log 2

2s − 1

∣∣∣ =
∣∣∣∑
p≥3

log p

ps − 1

∣∣∣ ≤∑
p≥3

log p

pσ − 1

and we may write this inequality as

log 2 ≤
∑
p≥3

(2σ + 1)
( 1

pσ
+

1

p2σ
+

1

p3σ
+ · · ·

)
log p.
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Since the right hand side is strictly decreasing in σ this is equivalent
to σ ≤ E := the unique solution of the equation

log 2

2σ + 1
+

log 2

2σ − 1
=
∑
p≥2

log p

pσ − 1

which is equivalent to (3).
This proves that there is no zero of ζ ′(s) with σ > E.
Now we must find a sequence of complex numbers (sk) with ζ ′(sk) = 0

and limk Re (sk) = E.
By Lemma 2.1 ζ ′(s + itk) converges uniformly on compact sets of

σ > 1 to the function

d

ds

2s − 1

2s + 1
ζ(s) =

( 2s+1

4s − 1
log 2 +

ζ ′(s)

ζ(s)

)
· 2s − 1

2s + 1
ζ(s).

This function has a zero at s = E (see equation (3)), so that by Hur-
witz’s theorem, there exist for k ≥ k0 numbers zk such that zk → E
and ζ ′(zk + itk) = 0. Taking sk = zk + itk we will have ζ ′(sk) = 0 and

lim
k

Re (sk) = lim
k

Re (zk + itk) = lim
k

Re (zk) = E

as we wanted to show.
With Mathematica we found that the solution to equation (3) is

approximately the number given in the theorem. �

6. The connection between ζ(s) = 1 and ζ ′(s) = 0.

We have seen that to get points with ζ(s) = 1 and σ near σ(1), and
points ρ with ζ ′(ρ) = 0 and Re ρ near E, we have applied in both cases
Lemma 2.1. The limit function f(s) := 2s−1

2s+1
ζ(s) satisfies f(σ(1)) = 1

and f ′(E) = 0. Hence, from the approximate function ζ(s + itk) we
may obtain simultaneously points s and ρ with ζ(s) = 1 and ζ ′(ρ) = 0
and more or less to the same height tk.

We will say that a sequence of complex numbers (sn) is almost ex-
tremal for ζ(s) = 1 if ζ(sn) = 1 and limn Re (sn) = σ(1). Analogously
(ρn) is said to be almost extremal for ζ ′(s) = 0 if ζ ′(ρn) = 0 and
limn Re (ρn) = E.

First we prove that an almost extremal sequence is related to the
situation of Lemma 2.1.

Theorem 6.1. (a) If (sn) is an almost extremal sequence for ζ(s) = 1,
then tn := Im (sn) satisfies

(4) lim
n→∞

2−itn = −1, lim
n→∞

p−itn = 1 for every odd prime p.
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(b) If (ρn) is an almost extremal sequence for ζ ′(s) = 0, then tn :=
Im (ρn) also satisfies (4).

Proof. (a) Let sn = σn + itn. Since limn σn = σ(1) > 1 we may assume
that σn > 1 for all n.

As in the proof of Theorem 4.1 the equation ζ(sn) = 1 may be
written as

−1 =
∞∑
k=2

( 2

2k − 1

)σn+itn
.

Since limn σn = σ(1), we see that σn converges to the unique solution
to the equation

1 =
∞∑
k=2

( 2

2k − 1

)σ
.

Therefore
∞∑
k=2

( 2

2k − 1

)σn+itn
= −

∞∑
k=2

( 2

2k − 1

)σ(1)

so that, for all n ∈ N we have

(5)
∞∑
k=2

( 2

2k − 1

)σ(1)(
1 +

( 2

2k − 1

)σn−σ(1)+itn)
= 0.

We now prove that for each k ≥ 2 we must have

(6) lim
n

( 2

2k − 1

)itn
= −1.

We proceed by contradiction and assume that (6) is not true for

some k0. Since the absolute value of
(

2
2k−1

)itn
is 1, there must exist a

subsequence nj such that

lim
j

( 2

2k0 − 1

)itnj
= ak0 6= −1, |ak0| = 1.

By a diagonal argument we may assume that for this subsequence we
also have the limits

lim
j

( 2

2k − 1

)itnj
= ak, |ak| = 1, k 6= k0.

Now consider the equation (5) for n = nj and take the limit for j →∞.
Interchanging limit and sum we then obtain

∞∑
k=2

( 2

2k − 1

)σ(1)

(1 + ak) = 0.

Now take real parts in this equation. Since Re (1 +ak) ≥ 0 but Re (1 +
ak0) > 0 we get a contradiction, proving (6).
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Hence, for any k we have (6). Now if p is an odd prime we have
p = 2k + 1 and p2 = 2m+ 1 so that

lim
n

(2

p

)itn
= −1, lim

n

( 2

p2

)itn
= −1.

Hence

lim
n
pitn =

(2

p

)itn
·
( 2

p2

)−itn
= 1

so that

lim
n

2itn = lim
n

(2

p

)itn
pitn = −1.

(b) Assume now that (ρn) is an almost extremal sequence for ζ ′(s) =
0. Let ρn = σn + itn. Since limn σn = E > 1 we may assume that
σn > 1 for all n.

As in the proof of Theorem 5.1 we will have

log 2

2σn + 1
≤
∣∣∣− log 2

2ρn − 1

∣∣∣ =
∣∣∣∑
p≥3

log p

pρn − 1

∣∣∣ ≤∑
p≥3

log p

pσn − 1
.

Since limn σn = E and E satisfies equation (3) we have

lim
n→∞

log 2

2σn + 1
= lim

n→∞

∑
p≥3

log p

pσn − 1

so that

(7) lim
n→∞

∣∣∣− log 2

2ρn − 1

∣∣∣ =
log 2

2E + 1
=
∑
p≥3

log p

pE − 1
= lim

n→∞

∣∣∣∑
p≥3

log p

pρn − 1

∣∣∣.
The first equality in (7) implies that limn |1 − 2σn+itn| = 1 + 2E. Let
a be a limit point of the sequence (2itn). We may choose a sequence
(nk) such that limk 2itnk = a. Then limk |1 − 2σnk+itnk | = |1 − 2Ea| =
1 + 2E. Since |a| = 1 this is possible only if a = −1. Therefore, (2itn),
beeing a bounded sequence with a unique limit point, is convergent
and limn 2itn = −1.

For each odd prime p the sequence (pitn) has 1 as unique limit point.
Indeed, if not, then there is an odd prime q and a sequence (nk) with

lim
k
qitnk = aq 6= 1.

By a diagonal argument we may assume that the limits limk p
itnk = ap

exist for each prime p. We will always have |ap| = 1. Taking limits in
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the last equality of (7) (for the subsequence (nk)) we obtain∑
p≥3

log p

pE − 1
=
∣∣∣∑
p≥3

log p

pEap − 1

∣∣∣.
We have |pEap−1| ≥ pE−1, but the above equality is only possible if we
have for all p the equality |pEap−1| = pE−1, which is in contradiction
with our assumption aq 6= 1. �

Now we can prove the connection between the two problems:

Theorem 6.2. Let (sn) be an almost extremal sequence for ζ(s) = 1.
Then there exists an almost extremal sequence (ρn) for ζ ′(s) = 0 such
that

lim
n

(ρn − sn) = E − σ(1).

Analogously if (ρn) is an almost extremal sequence for ζ ′(s) = 0, there
exists an almost extremal sequence (sn) for ζ(s) = 1 satisfying the same
condition.

Proof. Let sn = σn + itn. By Theorem 6.1 we then have (4). In the
proof of Lemma 2.1 we have seen that (4) implies

lim
n
ζ(s+ itn) =

2s − 1

2s + 1
ζ(s) uniformly on compact sets of σ > 1.

It follows that ζ ′(s + itn) also converges uniformly on compact sets of
σ > 1 to the derivative of f(s) := 2s−1

2s+1
ζ(s). In the proof of Theorem

5.1 we have seen that f ′(E) = 0. Hence, by Hurwitz’s theorem for
n ≥ n0 the function ζ ′(s+ itn) has a zero s = bn such that lim bn = E.
Writing ρn := bn + itn we have ζ ′(ρn) = 0 and

lim
n

Re (ρn) = lim
n

Re (bn + itn) = lim
n

Re (bn) = Re (lim
n
bn) = E.

Hence (ρn) is almost extremal for ζ ′(s) = 0 and

lim
n

(ρn − sn) = lim
n

(bn − σn) = E − σ(1).

The proof for the other case is similar. �

7. Some bounds for Dirichlet L-functions.

Our previous analysis may also be applied to general Dirichlet L-
functions. We will give two typical examples.

For the modulus 4 the non-trivial Dirichlet character is given by
χ(2n+ 1) = (−1)n, χ(2n) = 0, so that

L(s, χ) =
∏
p

(
1− χ(p)

ps

)−1

=
(

1 +
1

3s

)−1(
1− 1

5s

)−1(
1 +

1

7s

)−1

· · ·
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So, the equation L(s, χ) = 1 is equivalent to(
1 +

1

3s

)
=
(

1− 1

5s

)−1(
1 +

1

7s

)−1(
1 +

1

11s

)−1(
1− 1

13s

)−1

· · ·

Now ( similarly as in earlier sections ) we let the factor
(
1 + 1

3s

)
“point

strictly westward” and all other factors “strictly eastward” (Kronecker’s
theorem applies here just as well). As in Section 4 this leads to the
equation(

1 +
1

3σ

)
=
(

1− 1

5σ

)−1(
1− 1

7σ

)−1(
1− 1

11σ

)−1(
1− 1

13σ

)−1

· · ·

or
1 + 1

3σ(
1− 1

2σ

) (
1− 1

3σ

) = ζ(σ).

(This kind of trick also works in the general case. )
Using Mathematica we found that in this case the supremum of all

σ such that L(σ + it, χ) = 1 for some real t equals

1.88779 09267 08118 92719 63215 42035 11666 82234 70126 . . .

For n = 7 we find ( for every charachter χ mod 7 ) that L(s, χ) = 1
leads to the equation

1 + 1
2σ(

1− 1
2σ

) (
1− 1

7σ

) = ζ(σ)

and the bound

1.83843 45030 97314 94016 69429 96760 82067 80491 61315 . . .

For L(s, χ) = a with 0 < a < 1 we let all factors
(

1− χ(p)
ps

)−1

point

“strictly westward”. This leads to the equation∏
p

(
1 +
|χ(p)|
ps

)−1

= a

and the missing factors are easily supplied. For the modulus 4 and
a = 1

2
this leads to the equation(

1 +
1

2σ

)ζ(2σ)

ζ(σ)
=

1

2

and the bound

1.33538 71957 45311 13312 01066 99878 57500 83328 78290 . . .

We leave the straightforward general formulation to the reader.
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8. Application of the Lenstra–Lenstra–Lovász lattice
basis reduction algorithm.

For various problems the existence of almost extremal sequences
(σk + itk) depends heavily on the existence of the limits limk p

itk =: ap.
Given a sequence of real numbers (θj), Kronecker’s theorem guarantees
the existence of a sequence of real numbers (tk) such that

lim
k
pitkj = eiθj , (j ∈ N).

We want to find t ∈ R such that σ + it is almost extremal for an
adequate σ. To this end, given n we must find t ∈ R such that for
certain mj ∈ Z

|t log pj − θj − 2mpπ| < ε, 1 ≤ j ≤ n

for some small ε.
We will use the LLL algorithm similarly as Odlyzko and te Riele [6]

in their disproof of the Mertens conjecture.
Given a basis for a lattice L contained in ZN , the LLL algorithm

yields a reduced basis for L, usually consisting of short vectors.
So, we fix n, some weights (wj)

n
j=1 (in practice we used wj = 1.1540−j)

and two natural numbers ν and r, and construct a lattice L in Zn+2 by
means of n + 2 vectors v1, v2, . . . , vn, v and v′ in Zn+2 ( the method
uses lattices in ZN ):

v1 = ( b2πw1 · 2νc, 0, 0, . . . 0, 0, 0)

v2 = ( 0, b2πw2 · 2νc, 0, . . . 0, 0, 0)

vn = ( 0, 0, 0, . . . b2πwn · 2νc, 0, 0)

v = ( bw12
ν−rλ1c, bw22

ν−rλ2c, bw32
ν−rλ3c, . . . bwn2ν−rλnc, 0, 1)

v′ = ( −bw1θ12
νc, −bw2θ22

νc, −bw3θ32
νc, . . . −bwnθn2νc, 2νn4, 0)

where we have put λj = log pj.
Applying the LLL algorithm to these vectors we get a reduced basis

v∗1, v∗2, . . . v∗n+2 such that at least one of these vectors will have a non-
null (n + 1)-coordinate. But given that 2νn4 is very large compared
with all other entries of the original basis, in a reduced basis ( with
short vectors ) we do not expect more than one large vector. Assuming
that it is v∗1, its (n + 1) coordinate will be ±2νn4, and without loss of
generality we may assume that it is 2νn4. Let x be the last coordinate
of v∗1. Then this vector will have coordinate j equal to ( since it is a
linear combination of the initial vectors )

xbwj2ν−r log pjc+mjb2πwj2νc − bwjθj2νc
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for some integers mj. Since it is a reduced basis, we expect this coor-
dinate to be small. Hence also the number

xwj2
ν−r log pj +mj2πwj2

ν − wjθj2ν = 2νwj

( x
2r

log pj − θj + 2πmj

)

will be small and t = x
2r

will have the property we are looking for:
t log pj − θj + 2πmj will be small for 1 ≤ j ≤ n.

Figure 1 illustrate the results obtained. This figure ( and others
similar to it ) is at the origin of our results in Section 6. We were
searching for near extremal values for the problem ζ(s) = 1, and the
figure clearly shows that we also obtain a near extremal value for the
problem ζ ′(s) = 0.

The figure represents the rectangle (−2, 4) × (h − 3, h + 3) where
h = 156326000. The solid curves are those points where ζ(s) takes real
values. On the dotted curves ζ(s) is purely imaginary. For reference
we have drawn the lines σ = 0 and σ = 1 limiting the critical strip.

The value h = 156326000 was given by the LLL algorithm as a can-
didate for a near extreme value of ζ(s) = 1. This is the point labelled
a. In fact Re a = 1.907825 . . . is near the limit σ(1) = 1.94010 . . . We
see also the connected extreme value for ζ ′(s) = 0. This is the point ρ
whose real part is also near the corresponding limit value E. The role
of the point b will be explained in the next Section.

9. Bound for the real loops.

Since ζ(s) is real for all real s, there is no interest in the question of
the supremum of all σ such that ζ(σ+ it) ∈ R for some t ∈ R. We now
focus on the supremum of the real loops.

Since u(s) := Im ζ(s) is a harmonic function the points where u(s) =
0 are arranged in a set of analytic curves. These curves are of two main
types. Some of them traverse the entire plane from σ = −∞ to σ = +∞
( in [3] they are called I1 curves ). In figure 9 we have plotted one of
these curves. All the other solid curves in this figure are I2 curves, they
form a loop starting at σ = −∞ and ending again at σ = −∞. Each
such I2 curve has a turning point, a point on the curve with σ maximal.
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a ρ
b

Γ
ζ(a) = 1

ζ ′(ρ) = 0

a ≈ 1.907825 + i 156 326 000.759453

ρ ≈ 2.799358 + i 156 326 000.764634

b ≈ 2.773621 + i 156 326 000.902239

curves where ζ(s) is real

curves where ζ(s) is imaginary

Figure 1. Curves Re ζ(s) = 0 and Im ζ(s) = 0 near t = 156326000.

In the case of the curve Γ in figure 9 this is the point labelled b. It
is easy to see that at these points, since the curve u(σ + it) = 0 has a
vertical tangent, we must have uσ(σ+it) = 0. By the Cauchy-Riemann
equations this is equivalent to Re ζ ′(σ + it) = 0.

Hence we define a turning point as a point b = σ + it such that

Im ζ(b) = 0 and Re ζ ′(b) = 0.

The first equation says that b is on a real curve (i. e. a curve where the
function ζ(s) is real), whereas the second equation means that at the
point b the tangent to such a curve is vertical.

The question of the supremum T of all σ of turning points of the I2

loops of ζ(s) was mentioned in [3]. Here we solve this problem.

Theorem 9.1. Let E = 2.813014 . . . be the constant of Theorem 5.1.
Then each turning point b = σ + it for ζ(s) satisfies σ ≤ E, and there
is a sequence of turning points (bk) for ζ(s) with limk Re (bk) = E.
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We will use the following theorem

Theorem 9.2. Let A be the unique solution of the equation∑
p

arcsin(p−σ) =
π

2
, (σ > 1).

Then A is the supremum of the σ ∈ R such that there is a t ∈ R with
Re ζ(σ + it) < 0. For σ = A we have Re ζ(σ + it) > 0 for all t ∈ R.

The value of the constant A is

A = 1.19234 73371 86193 20289 75044 27425 59788 34011 19230 . . .

The proof can be found in [3]. The constant A has been computed
with high precision by R. P. Brent and J. van de Lune.

We break the proof of Theorem 9.1 in several lemmas.

Lemma 9.3. The point σ + it with σ > A is a turning point for the
function ζ(s) if and only if

(8)
∑
p

∞∑
k=1

1

k

sin(kt log p)

pkσ
= 0 and

∑
p

∞∑
k=1

cos(kt log p)

pkσ
log p = 0.

Proof. By Theorem 9.2 for σ > A = 1.192347 . . . we have Re ζ(s) > 0.
In the sequel log z will be the main branch of the logarithm for | arg z| <
π, so that log ζ(s) is well defined and analytic for σ > A.

In view of log z = log |z| + i arg z it should be clear that, for σ > A
the two functions ζ(s) and log ζ(s) are real at the same points, so that
also the turning points of the loops Im ζ(s) = 0 and Im log ζ(s) = 0
are the same.

For s real and > 1 both functions ζ(s) and log ζ(s) are real so that
we may write

(9) log ζ(s) =
∑
p

log
(

1− 1

ps

)−1

=
∑
p

∞∑
k=1

1

k

1

pks
, (σ > 1)

and this equality is true for σ > A by analytic continuation.

Since the turning points for some function f(s) are defined as the
solutions of the system of equations Im f(s) = 0, Re f ′(s) = 0, the
turning points of log ζ(s) with σ > A are just those points satisfying
equations (8). �
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Now we introduce some notations. We may write equations (8) in
the form

(10)

−
∞∑
k=1

1

k

sin(kt log 2)

2kσ
=
∑
p≥3

∞∑
k=1

1

k

sin(kt log p)

pkσ

−
∞∑
k=1

cos(kt log 2)

2kσ
log 2 =

∑
p≥3

∞∑
k=1

cos(kt log p)

pkσ
log p.

For σ > 0 and t ∈ R we now define

(11) f(σ, t) :=
∞∑
k=1

1

k

sin(kt log 2)

2kσ

and

(12) g(σ, t) :=
∂

∂t
f(σ, t) =

∞∑
k=1

cos(kt log 2)

2kσ
log 2.

Note that f and g are periodic functions of t with period 2π/ log 2.
So, a turning point σ + it must satisfy

− f(σ, t) =
∑
p≥3

∞∑
k=1

1

k

sin(kt log p)

pkσ
and

− g(σ, t) =
∑
p≥3

∞∑
k=1

cos(kt log p)

pkσ
log p.

We now consider the function

U(σ, t) := 22σf(σ, t)2 +
( 2σ

log 2

)2

g(σ, t)2

the choice of the coefficients 22σ and (2σ/ log 2)2 being motivated by
( use (11) and (12) )

lim
σ→+∞

U(σ, t) =

lim
σ→+∞

{
22σ
( ∞∑
k=1

1

k

sin(kt log 2)

2kσ

)2

+
( 2σ

log 2

)2( ∞∑
k=1

cos(kt log 2)

2kσ
log 2

)2}
= sin2(t log 2) + cos2(t log 2) = 1.

Lemma 9.4. Let a and b be arbitrary real numbers. Then there exist
real numbers x and y such that

ax+ by = (a2 + b2)1/2 and x2 + y2 = 1.
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Proof. If a2 + b2 = 0 then a = b = 0 and we need only take x and y
such that x2 + y2 = 1.

If a2 + b2 6= 0 then we can take x = a√
a2+b2

and y = b√
a2+b2

. �

Lemma 9.5. If σ + it is a turning point of ζ(s) with σ > A, then

U(σ, t) <
( 2σ

log 2

)2(∑
p≥3

∞∑
k=1

log p

pks

)2

.

Proof. We apply Lemma 9.4 to

a = −2σf(σ, t) and b = − 2σ

log 2
g(σ, t)

to get{
22σf(σ, t)2 +

( 2σ

log 2

)2

g(σ, t)2
}1/2

= −2σxf(σ, t)− 2σ

log 2
yg(σ, t)

which, by (10), may be written as

U(σ, t)1/2 = 2σ
∑
p≥3

∞∑
k=1

x

k

sin(kt log p)

pkσ
+

+
2σ

log 2

∑
p≥3

∞∑
k=1

y cos(kt log p)

pkσ
log p =

= 2σ
∑
p≥3

∞∑
k=1

(x
k

sin(kt log p)

pkσ
+
y log p

log 2

cos(kt log p)

pkσ

)
.

Applying the Cauchy-Schwarz inequality to the right hand side we
obtain the condition

(13) U(σ, t)1/2 ≤

≤ 2σ
∑
p≥3

∞∑
k=1

(x2

k2
+
y2 log2 p

log2 2

)1/2(sin2(kt log p) + cos2(kt log p)

p2kσ

)1/2

.

Now observe that in (13) 1
k2
< log2 p

log2 2
so that

x2

k2
+
y2 log2 p

log2 2
<

(x2 + y2) log2 p

log2 2
≤ log2 p

log2 2
.

Using this we thus obtain the condition

U(σ, t)1/2 < 2σ
∑
p≥3

∞∑
k=1

log p

log 2

1

pkσ



18 JUAN ARIAS DE REYNA AND JAN VAN DE LUNE

or

U(σ, t) <
( 2σ

log 2

)2(∑
p≥3

∞∑
k=1

log p

pkσ

)2

as we wanted to show. �

For σ > 1 we define

(14) H(σ) :=
( 2σ

log 2

)2(∑
p≥3

∞∑
k=1

log p

pkσ

)2

.

Lemma 9.6. For each t ∈ R there exists a largest solution u(t) to the
equation in σ

(15) U(σ, t) = H(σ)

and
U(σ, t) > H(σ), (σ > u(t)).

Proof. By (14) it is easily seen that H(σ) is continuous and strictly
decreasing for σ > 1 from +∞ to 0. In particular

lim
σ→∞

H(σ) = 0.

Since U(σ, t) is continuous for σ > 0 and t ∈ R, and

lim
σ→+∞

U(σ, t) = 1

we see that for every t the infimum u(t) of the a such that U(σ, t) >
H(σ) for σ > a exists and is larger than 1.

From this it is clear that u(t) must be a solution of equation (15) in
σ. �

Lemma 9.7. We have the closed formulas

f(σ, t) = arctan
sin(t log 2)

2σ − cos(t log 2)
,

g(σ, t) = − (1− 2σ cos(t log 2)) log 2

1 + 4σ − 21+σ cos(t log 2)
.

Proof. The first follows from the identity f(σ, t) = Im (log(1 − 2−s)),
and the second by differentiation. �

Lemma 9.8. We have u(π/ log 2) = E.

Proof. We have∑
p≥3

∞∑
k=1

log p

pkσ
=
∑
p

∞∑
k=1

log p

pkσ
−
∞∑
k=1

log 2

2kσ
= −ζ

′(σ)

ζ(σ)
− log 2

2σ − 1
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so that

H(σ) =
( 2σ

log 2

)2(ζ ′(σ)

ζ(σ)
+

log 2

2σ − 1

)2

.

By its definition u(t) is the largest solution of the equation U(σ, t) =
H(σ).

For t = π/ log 2 we have

f(σ, t) =
∞∑
k=1

1

k

sin(kt log 2)

2kσ
=
∞∑
k=1

1

k

sin(kπ)

2kσ
= 0

and

g(σ, t) =
∞∑
k=1

cos(kt log 2)

2kσ
log 2 =

∞∑
k=1

cos(kπ)

2kσ
log 2 =

=
∞∑
k=1

(−1)k

2kσ
log 2 = − log 2

2σ + 1

so that u(π/2) satisfies the equation( 2σ

log 2

)2( log 2

2σ + 1

)2

=
( 2σ

log 2

)2(ζ ′(σ)

ζ(σ)
+

log 2

2σ − 1

)2

.

Since ζ′(σ)
ζ(σ)

+ log 2
2σ−1

< 0 this is equivalent to

log 2

2σ + 1
= −ζ

′(σ)

ζ(σ)
− log 2

2σ − 1

or
2σ+1

4σ − 1
log 2 = −ζ

′(σ)

ζ(σ)
.

But E is the unique solution of this equation for σ > 1 ( see Theorem
5.1 ).

Hence u(π/ log 2) = E. �

Lemma 9.9. For all σ > 1 and all t ∈ R we have

(16) U(σ, t) ≥ U(σ, π/ log 2).

Proof. We have computed U(σ, π/ log 2) in the proof of Lemma 9.8.
Substituting this value and the definition of U(σ, t), (16) may be writ-
ten

22σf(σ, t)2 +
( 2σ

log 2

)2

g(σ, t)2 ≥
( 2σ

log 2

)2( log 2

2σ + 1

)2

.
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In view of Lemma 9.7 we thus need to prove

(17) arctan2
( sin(t log 2)

2σ − cos(t log 2)

)
+
( (1− 2σ cos(t log 2))

1 + 4σ − 21+σ cos(t log 2)

)2

≥

≥
( 1

2σ + 1

)2

.

We change notations putting t log 2 = ϕ and 2σ = x−1, so that we
have to prove for 0 < x < 1 and 0 < ϕ < 2π
(18)

u(x, ϕ) := arctan2
( x sinϕ

1− x cosϕ

)
+
( x(x− cosϕ)

1 + x2 − 2x cosϕ

)2

≥
( x

1 + x

)2

.

The right hand side is the value for ϕ = π of the left hand side.
So, we want to prove that u(x, ϕ) has an absolute minimum at ϕ = π.

It is easy to show that u(x, π − θ) = u(x, π + θ). So, we only have to
prove inequality (18) for 0 < ϕ < π. We will split the proof in two
cases.

(1) Proof of (18) for π
2
< ϕ < π.

If we differentiate u(x, ϕ) with respect to ϕ and simplify we arrive
at

(19) uϕ(x, ϕ) =
2x(x− cosϕ)

(1 + x2 − 2x cosϕ)3

{
− arctan

( x sinϕ

1− x cosϕ

)
×

× (1 + x2 − 2x cosϕ)2 + x(1− x2) sinϕ
}
.

We will show that uϕ(x, ϕ) < 0 for π
2
< ϕ < π, so that (18) will follow.

In this interval cosϕ < 0 and sinϕ > 0. The first factor in the
right hand side of (19) is positive, and we will show that the second is
negative. That is we will show that

(20) x(1− x2) sinϕ ≤ arctan
( x sinϕ

1− x cosϕ

)
(1 + x2 − 2x cosϕ)2.

Let

(21) α = arctan
( x sinϕ

1− x cosϕ

)
, tanα =

x sinϕ

1− x cosϕ
,

1

cos2 α
= 1 +

( x sinϕ

1− x cosϕ

)2

=
1 + x2 − 2x cosϕ

(1− x cosϕ)2
,

cos2 α =
(1− x cosϕ)2

1 + x2 − 2x cosϕ
,
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(22)

sin2 α = 1− (1− x cosϕ)2

1 + x2 − 2x cosϕ
=

x2 − x2 cos2 ϕ

1 + x2 − 2x cosϕ
=

x2 sin2 ϕ

1 + x2 − 2x cosϕ

so that

sinα =
x sinϕ√

1 + x2 − 2x cosϕ

(with the sign + since certainly α ∈ (0, π/2), since tanα > 0).
Now we have

1− x2 < 1 < (1 + x2 − 2x cosϕ)3/2

so that

x(1− x2) sinϕ ≤ x sinϕ(1 + x2 − 2x cosϕ)3/2

and

x(1− x2) sinϕ ≤ sinα(1 + x2 − 2x cosϕ)2 ≤ α(1 + x2 − 2x cosϕ)2

which is equivalent to (20).

(2) Proof of (18) for 0 < ϕ < π
2
.

Defining α as in (21), sin2 α is still given by (22). Although in this
case we do not know the sign of sinα, inequality (18) will still follow
from

(23)
x2 sin2 ϕ

1 + x2 − 2x cosϕ
+
( x(x− cosϕ)

1 + x2 − 2x cosϕ

)2

≥
( x

1 + x

)2

since sin2 α < α2.
To prove (23) we consider two cases.

(2a) Proof of (23) when 1 + x2 − 2x cosϕ > 1.
Then (1 + x2 − 2x cosϕ)2 > 1 + x2 − 2x cosϕ, so that

sin2 ϕ

1 + x2 − 2x cosϕ
+

(x− cosϕ)2

(1 + x2 − 2x cosϕ)2
≥

≥ sin2 ϕ

(1 + x2 − 2x cosϕ)2
+

(x− cosϕ)2

(1 + x2 − 2x cosϕ)2
=

=
1 + x2 − 2x cosϕ

(1 + x2 − 2x cosϕ)2
=

1

1 + x2 − 2x cosϕ
.

Recall that 0 < ϕ < π
2
. Then−2x cosϕ < 2x, so that 1+x2−2x cosϕ <

1 + x2 + 2x = (1 + x)2, and we obtain

sin2 ϕ

1 + x2 − 2x cosϕ
+

(x− cosϕ)2

(1 + x2 − 2x cosϕ)2
>

1

(1 + x)2
.
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(2b) Proof of (23) when 1 + x2− 2x cosϕ ≤ 1. In this case (1 + x2−
2x cosϕ)2 ≤ 1 + x2 − 2x cosϕ so that

sin2 ϕ

1 + x2 − 2x cosϕ
+

(x− cosϕ)2

(1 + x2 − 2x cosϕ)2
≥

≥ sin2 ϕ

(1 + x2 − 2x cosϕ)
+

(x− cosϕ)2

(1 + x2 − 2x cosϕ)
=

=
1 + x2 − 2x cosϕ

1 + x2 − 2x cosϕ
= 1 >

1

(1 + x)2
.

�

Lemma 9.10. For each t ∈ R we have u(t) ≤ u(π/ log 2).

Proof. By Lemma 9.6

U(σ, π/ log 2) > H(σ) for σ > u(π/ log 2)

and by Lemma 9.9

U(σ, t) ≥ U(σ, π/ log 2).

It follows that

U(σ, t) > H(σ), (σ > u(π/ log 2)).

By definition U(σ, t) > H(σ) is not true for σ = u(t), and it follows
that u(t) ≤ u(π/ log 2). �

Proof of the first half of Theorem 9.1. Let σ+ it be a turning point for
ζ(s). It is clear that σ ≤ A = 1.192 . . . implies σ < E = 2.813 . . . . For
σ > A, by Lemma 9.5 we will have

U(σ, t) < H(σ)

so that Lemma 9.6 implies that

σ < u(t).

By Lemma 9.10

u(t) ≤ u(π/ log 2)

and by Lemma 9.8

u(π/ log 2) = E.

It follows that σ < E.
Therefore, the supremum T of the real parts of the turning points

is less than or equal to E. We have even proved a little more: On the
line σ = E there is no turning point. �
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We will now show that there is a sequence (bn) of turning points for
ζ(s) such that limn Re (bn) = E. This will end the proof of Theorem
9.1.

By Lemma 2.1 there exists a sequence of real numbers (tk) such that
ζ(s+ itk) converges to f(s) := 2s−1

2s+1
ζ(s). Since

f(E) = 0.9 . . . , f ′(E) = 0, f ′′(E) = 0.07 . . . , f ′′′(E) = −0.17 . . .

E is a turning point for f(s).
We are going to show that the functions ζ(s+itk) must have a turning

point very near to E.

We prove a slightly more general result. We break the proof in several
lemmas.

Given a holomorphic function f defined on a disc with center at 0
and radius R we define the associated (continuous) function

h(r, ϕ) = Im f(reiϕ) + iRe f ′(reiϕ)

so that reiϕ will be a turning point for f(z) if and only if h(r, ϕ) = 0.

For each 0 < r < R let γr be the curve ϕ : [0, 2π) 7→ h(r, ϕ).

Proposition 9.11. Let f(z) = a0 +a2z
2 +a3z

3 + · · · be a holomorphic
function on ∆(0, R) the disc with center 0 and radius R. Assume that
a0 > 0, a2 > 0 and a3 < 0. Then there exists an r0 > 0 such that for
0 < r < r0, the curve γr does not pass through z = 0 and the index
( the winding number ) of the curve γr with respect to 0 is ω(γr, 0) = 1.

To prove Proposition 9.11 we will use some lemmas.

Lemma 9.12. Let f be as in Proposition 9.11 and define

u(r, ϕ) := Im f(reiϕ), v(r, ϕ) := Re f ′(reiϕ).

Then there exists r0 such that for 0 < r < r0, (r → 0)

u(r, ϕ) = a2r
2 sin 2ϕ+ a3r

3 sin 3ϕ+ O(r4)

v(r, ϕ) = 2a2r cosϕ+ 3a3r
2 cos 2ϕ+ O(r3)

uϕ(r, ϕ) = 2a2r
2 cos 2ϕ+ 3a3r

3 cos 3ϕ+ O(r4)

vϕ(r, ϕ) = −2a2r sinϕ− 6a3r
2 sin 2ϕ+ O(r3)

where the implicit constants do not depend on ϕ.

Proof. Let f(z) =
∑∞

n=0 anz
n be the power series of f at 0, and take

r0 less than the radius of convergence. Then

f(z) = a0 + a2z
2 + a3z

3 +
∞∑
n=4

anz
n
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so that

u(r, ϕ) = a2r
2 sin 2ϕ+ a3r

3 sin 3ϕ+
∞∑
n=4

rnIm (ane
inϕ)

and

uϕ(r, ϕ) = 2a2r
2 cos 2ϕ+ 3a3r

3 cos 3ϕ+
∞∑
n=4

rnIm (inane
inϕ)

and for 0 < r < r0 we will have∣∣∣ ∞∑
n=4

rnIm (ane
inϕ)
∣∣∣ ≤ r4

∞∑
n=4

|an|rn−4
0 ,

∣∣∣ ∞∑
n=4

rnIm (inane
inϕ)
∣∣∣ ≤ r4

∞∑
n=4

n|an|rn−4
0 .

The last two sums converge and this proves our lemma for u and uϕ.
For v and vϕ the proof is similar. �

We divide the interval [−π
8
, 15π

8
] of length 2π in 8 intervals

I1 = [−π/8, π/8], I2 = [π/8, 3π/8], I3 = [3π/8, 5π/8],

I4 = [5π/8, 7π/8], I5 = [7π/8, 9π/8], I6 = [9π/8, 11π/8],

I7 = [11π/8, 13π/8], I8 = [13π/8, 15π/8].

Lemma 9.13. There exists an r0 > 0 such that for 0 < r < r0 the
function u has exactly four zeros on [−π/8, 15π/8], denoted by α1 ∈ I1,
α3 ∈ I3, α5 ∈ I5 and α7 ∈ I7, so that u is positive on (α1, α3), negative
on (α3, α5), positive on (α5, α7) and negative on (α7, α1 + 2π)

Proof. By Lemma 9.12 for r → 0

u(r, ϕ) = a2r
2(sin 2ϕ+ O(r)), uϕ(r, ϕ) = 2a2r

2(cos 2ϕ+ O(r)).

On I2 and I6 sin 2ϕ > 2−1/2, whereas sin 2ϕ < −2−1/2 on I4 and I8.
Then, if we take r0 small enough, u(r, ϕ) > 0 on I2 and I6, and u(r, ϕ) <
0 on I4 and I8 (we only need to take the O(r) terms less than 2−1/2).

By continuity of u(r, ϕ) this implies that for each 0 < r < r0 the
function u(r, ϕ) has at least one zero on each of the intervals I1, I3,
I5 and I7. But cos 2ϕ > 2−1/2 on I1 and I5, and cos 2ϕ < −2−1/2 on
I3 and I7, so that choosing r0 small enough the sign of uϕ(r, ϕ) will
be negative on I3 and I7 and positive on I1 and I5. Therefore on each
of these intervals the function u(r, ϕ) is monotonic and has only one
zero. �

There is an analogous result for v(r, ϕ).
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Lemma 9.14. There exists an r0 > 0 such that for 0 < r < r0 the
function v(r, ϕ) has exactly two zeros for ϕ ∈ [−π/8, 15π/8], denoted
by β3 ∈ I3 and β7 ∈ I7, so that v(r, ϕ) is negative on (β3, β7), and
positive on (β7, β3 + 2π).

Proof. Observing that v(r, ϕ) = 2a2r(cosϕ+O(r)), the proof is similar
to that of Lemma 9.13. �

Lemma 9.15. There exists an r0 > 0 such that for 0 < r < r0 the
zeros of u(r, ϕ) and v(r, ϕ) satisfy the relation

α3 < β3, β7 < α7.

Proof. Putting a = −a3/a2 > 0 we have for 0 < r < r0 (r0 small
enough to make the previous lemmas valid)

u(r, ϕ) = a2r
2(sin 2ϕ− ar sin 3ϕ+ O(r2)

v(r, ϕ) = 2a2r(cosϕ− 3a

2
r cos 2ϕ+ O(r2)

with O-constants independent of ϕ.
The two zeros α3 and β3 are on I3 an interval with center at π

2
. At

the point π
2

+ ar we have

u(r, π/2 + ar)

a2r2
= ar cos(3ar)− sin(2ar) + O(r2)

v(r, π/2 + ar)

2a2r
=

3ar

2
cos(2ar)− sin(ar) + O(r2).

Expanding in Taylor series we get

u(r, π/2 + ar)

a2r2
= −ar + O(r2)

v(r, π/2 + ar)

2a2r
=
ar

2
+ O(r2).

Choosing r0 small enough we obtain u(r, π/2+ar) < 0 < v(r, π/2+ar)
for 0 < r < r0. Since both u(r, ϕ) and v(r, ϕ) are decreasing on this
interval, the zero of u(r, ϕ) must come before π

2
+ ar and the zero of

v(r, ϕ) must come after π
2

+ ar. That is

α3 <
π

2
+ ar < β3.
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The center of I7 is 3π
2

. We compute the functions at 3π
2
− ar. In the

same way as before we find

u(r, 3π/2− ar)
a2r2

= −ar cos(3ar) + sin(2ar) + O(r2) = ar + O(r2)

v(r, 3π/2− ar)
2a2r

=
3ar

2
cos(2ar)− sin(ar) + O(r2) =

ar

2
+ O(r2).

On the interval I7 the function u(r, ϕ) is decreasing whereas v(r, ϕ)
is increasing, so that the above computation implies that for r0 small
enough, we will have that the zero of u(r, ϕ) will come after 3π

2
− ar,

and that the zero of v(r, ϕ) will come before this value. That is

β7 <
3π

2
− ar < α7.

�

Proof of Proposition 9.11. Taking r0 small enough all previous lemmas
will apply. We have seen that the zeros of u(r, ϕ) and v(r, ϕ) satisfy

α1 < α3 < β3 < α5 < β7 < α7 < α1 + 2π

so that in particular these functions do not vanish simultaneously.
Therefore, the curve γr with equation

ϕ 7→ h(r, ϕ) = u(r, ϕ) + iv(rϕ)

does not pass through z = 0.
Since we know the sign of u and v on the intervals limited by the

above zeros, we easily compute the index ω(γr, 0) = 1. �

Theorem 9.16. Let f be a holomorphic function in the conditions of
Proposition 9.11. Let (fn) be a sequence of holomorphic functions on
the disc where f is defined and converging uniformly to f on compact
sets of this disc. Then there exist n0 and a sequence (bn) of complex
numbers such that for n ≥ n0, bn is a turning point of fn and limn bn =
0.

Proof. Let r0 be small enough to make all previous lemmas applica-
ble to f . Put un(r, ϕ) := Im fn(reiϕ) and vn(r, ϕ) = Re f ′n(reiϕ). The
uniform convergence implies that for each 0 < r < r0, limn un(r, ϕ) =
u(r, ϕ) and limn vn(r, ϕ) = v(r, ϕ) uniformly in ϕ. Finally put
hn(r, ϕ) := un(r, ϕ) + ivn(r, ϕ).

Let (rn) be a decreasing sequence of real numbers with 0 < rn < r0

and limn rn = 0.
In Proposition 9.11 h(rn, ϕ) does not vanish. Since it is continuous

there exists a δn > 0 such that |h(rn, ϕ)| > δn for all ϕ. By the uniform
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convergence there exists Nn such that |h(rn, ϕ) − hm(rn, ϕ)| < δn for
each m ≥ Nn and all ϕ.

Let γn be the curve ϕ 7→ h(rn, ϕ). We have seen in Proposition 9.11

that ω(γn, 0) = 1. Let γ
(m)
n be the curve ϕ 7→ hm(rn, ϕ). Since

|h(rn, ϕ)− hm(rn, ϕ)| < δn < |h(rn, ϕ)|, (m ≥ Nn)

we find that ω(γ
(m)
n , 0) = ω(γn, 0) = 1.

Since ω(γ
(m)
n , 0) = 1 there is no homotopy of the curve to a point in

Cr {0}. The equation of this curve is

ϕ 7→ hm(rn, ϕ).

The curves ϕ 7→ hm(r, ϕ) for 0 ≤ r ≤ rn will be a homotopy of γ
(m)
n to

the point hm(0, ϕ) if this function does not vanish for (r, ϕ) ∈ [0, r0]×
[0, 2π]. It follows that there is a point with hm(r, ϕ) = 0. This makes
bn,m := reiϕ a turning point of fm with |bn,m| ≤ rn

For each n we have found Nn such that for m ≥ Nn there exists a
turning point bn,m of fm with |bn,m| < rn. It is clear that we may take
N1 < N2 < N3 < · · · .

Now define for Nk ≤ m < Nk+1 the point bm := bk,m. This is a
sequence defined for m ≥ N1.

The sequence (bm) satisfies our theorem. Indeed, by construction
bm is a turning point for fm and for each m there is a k with |bm| =
|bk,m| < rk where Nk ≤ m < Nk+1. Hence for m > Nk we will have
|bm| < rj ≤ rk, so that lim bm = 0. �

Now we can prove the last part of Theorem 9.1: There is a sequence
(bn) of turning points for ζ(s) with limn→∞Re (bn) = E.

Proof of the second half of Theorem 9.1. Let g(s) := 2s−1
2s+1

ζ(s), and de-
fine f(s) = g(s + E). We then have f(0) = 0.933 . . . , f ′(0) = 0,
f ′′(0) = 0.070 . . . , f ′′′(0) = −0.178 . . . .

By Lemma 2.1 there exists a sequence (tn) of real numbers with

lim
n→∞

ζ(s+ itn) = g(s) = f(s− E)

uniformly on compact sets of σ > 1.
It follows that the functions ζ(s+E+itn) converge to f(s) uniformly

on the disc with center 0 and radius E − 1.
By Theorem 9.11 there exists a sequence (cn) such that cn is a turning

point of ζ(s+ E + itn) and limn cn = 0.
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Put bn = cn + E + itn. It is clear that bn is a turning point of ζ(s)
and

lim
n→∞

Re (bn) = lim
n→∞

Re (cn + E + itn) = lim
n→∞

Re (cn + E) =

= E + lim
n→∞

Re (cn) = E + Re ( lim
n→∞

cn) = E.

�
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