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aDpto. EDAN & IMUS, Univ. de Sevilla. C/ Tarfia, s/n. 41080 Seville, Spain & BCAM–Basque Center for
Applied Mathematics. Alameda de Mazarredo 14, 48009 Bilbao, Spain..
bDpto. EDAN, Univ. de Sevilla. C/ Tarfia, s/n. 41080 Seville, Spain.
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Abstract

We introduce a low-order stabilized discretization of the Primitive Equations of the Ocean, with a
highly reduced computational complexity. We prove stability through a specific inf-sup condition,
and weak convergence to a weak solution. We also perform some numerical test for relevant flows.
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1. Introduction

The Primitive Equations (PE) of the Ocean are a mathematical model for large space and time
scales of the oceanic flow, extensively used for climatic, weather and ecological studies (Cf. [13],
[11], [12]). Existence of weak solutions (u, p) (with H1 × L2 regularity) is proved in [4] and [6],
and existence and uniqueness of strong solutions (with H2 × H1 regularity) is proved in [5] and
[9]. Finite element discretizations are well suited to irregular oceanic bottoms. In this paper we
introduce a stabilized discretization of the PE for first order finite elements. We adapt the Bochev-
Dohrmann-Gunzburger stabilization technique introduced in [1] to a reduced model of PE, that
retains only the (3D) horizontal velocity and the (2D) surface pressure as unknowns. This yields
a solver with highly reduced computational complexity. We introduce the reduced model of PE in
Section 2, and the numerical discretization in Section 3. We prove the stability and convergence
of the discretization based upon a specific inf-sup condition in Section 4. In Section 5 we describe
some numerical tests for relevant flows.

2. Primitive equations of the ocean

Let be ω a bounded domain in Rd−1 (d = 2 o d = 3) that represents a piece of the ocean surface,
and D : ω → R a depth function. We consider the ocean domain Ω = {(x, z) ∈ Rd such that x ∈
ω, −D(x) ≤ z ≤ 0}. For simplicity we assume that ω is polygonal and D is piecewise affine on
some triangulation of ω, so that Ω is a polyhedron with flat surface. We suppose that the boundary
of Ω is split as ∂Ω = Γs ∪ Γb, with Γs = {(x, 0) ∈ Rd; x ∈ ω} representing the ocean surface, and
Γb = ∂Ω − Γs, the ocean bottom and, eventually, sidewalls. We consider the following steady
reduced Primitive Equations model:
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Find a horizontal velocity field u : Ω 7→ Rd−1 and a surface pressure p : ω 7→ R such that
(u, uz) · ∇u− µ∆u +∇Hp+ ϕu⊥ = f , uz(x, z) =

∫ 0

z

∇H · u(x, s) ds in Ω;

∇H ·

(∫ 0

−D(x)

u(x, s) ds

)
= 0 in ω;

u|Γb
= 0, µ∂zu|Γs = τ.

(1)

Here, µ is the viscosity coefficient and ∇H = (∂x, ∂y) denotes the horizontal gradient. The term
ϕu⊥ stands for the Coriolis aceleration, that only appears when d = 3. In this case, if u = (u1, u2),
u⊥ = (−u2, u1). Thus, we define ϕ = 0 for d = 2 and ϕ = 2θ sinφ, with θ the angular rotation rate
of the earth and φ the latitude, for d = 3. The source term f takes into account variable density
effects, due to variations of temperature and salinity and τ is the wind tension at the surface.

This model is an approximation of the Navier-Stokes equations for thin domains (Cf. [10]). In
particular the pressure is assumed to be hydrostatic. The surface pressure p may be interpreted as
the pressure that must be exerced at the flow surface to keep it flat. It is the Lagrange multiplier
associated to the second equation in (1), that represents the mass conservation. Observe that the
3D velocity field (u, uz) is incompressible. Also, that uz = 0 on Γs. This is the rigid lid assumption.

Let us consider the following spaces for the velocities and pressures,

W1,k
b (Ω) = {v ∈W 1,k(Ω)d−1 : v|Γb

= 0}, k ≥ 1, H1
b(Ω) = W1,2

b (Ω),

LrD(ω) = {q : ω 7→ R measurable such that

∫
ω

D(x)|q(x)|r dx <∞}, LrD,0(ω) = LrD(ω)/R.

We define the weak solutions of problem (1) as the solutions of the following variational formulation:

Given f ∈ [H1
b(Ω)]′ and τ ∈ H−1/2(Γs), find (u, p) ∈ H1

b(Ω)× L3/2
D,0(ω) such that

B(u; (u, p), (v, q)) = L(v), ∀ (v, q) ∈W1,3
b (Ω)× L2

D,0(ω), where (2)

B(a; (u, p), (v, q)) =< ~a · ∇u,v > +µ (∇u,∇v)− (p,∇H · v) + (∇H · u, q) + (ϕu⊥,v),

L(v) =< f ,v >Ω + < τ,v >Γs
.

Here ~a = (a, az) for some a ∈ H1
b(Ω) with az defined from a as in (1). The convection term is

defined by duality as < ~a · ∇u,v >= −
∫

Ω
(~a · ∇v) u. This Petrov-Galerkin formulation is needed

when d = 3 (not when d = 2) because the vertical velocity az has only L2 regularity, and then the
convection operator has not H−1 regularity. Problem (2) is studied in [6].

3. Numerical scheme

Consider a family of triangulations {Ch}h>0 of ω̄. For each T ∈ Ch we define the prism PT =
{(x, z) ∈ Rd, such that x ∈ T,−D(x) ≤ z ≤ 0}. Consider a triangulation Th of Ω associated
to Ch by subdividing each prism PT into triangles (when d=2) or tetrahedra (d=3), in such a
way that the projection of any K ∈ Th on Γs (that we identify with ω) is an element of Ch. Let
the finite element spaces Uh = {vh ∈ C0(Ω̄)d−1 : vh|K ∈ P1(K)d−1, ∀K ∈ Th; vh|Γb

= 0 },
Qh = {qh ∈ C0(ω̄) : qh|T ∈ P1(T ), ∀T ∈ Ch}, Ph = Qh/R, Rh = {φ ∈ L2(ω) : φ|T ∈ P0(T ), ∀T ∈
Ch}, where Pm(K) is the space of polynomials on K of degree smaller than or equal to m and
similarly Pl(T ) For all T ∈ Ch we denote bT the barycenter of T and we define the interpolation
operator Πh : C0(ω̄) 7→ Rh such that Πhφ|T = φ(bT ), ∀T ∈ Ch. We discretize problem (2) by: Find
(uh, ph) ∈ Uh × Ph such that

Bh(uh; (uh, ph), (vh, qh)) = L(vh), ∀(vh, qh) ∈ Uh × Ph, (3)
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where Bh(a; (uh, ph), (vh, qh)) = B(a; (uh, ph), (vh, qh)) + sh(ph, qh). Here, the stabilization term
sh, denoting Π∗h = Id−Πh, is defined as

sh(ph, qh) = hσ (DΠ∗hph,Π
∗
hqh)ω with σ = 0 if d = 2 and σ = 1 if d = 3. (4)

The analysis that follows shows that the term sh yields the stability of the discretization of the
pressure, in the natural norms associated to the formulation (2).

4. Stability and convergence analysis

The stability of discretization (3) follows from the following discrete inf-sup condition:

Lemma 1. Assume that the family of triangulations {Th}h>0 is uniformly regular. Then for any
r ∈ (1,+∞) there exists a constant γr > 0 independent of h such that ∀qh ∈ Ph,

γr ‖qh‖Lr
D,0(ω) ≤ sup

vh∈Uh−{0}

(∇H · vh, qh)

|vh|1,s,Ω
+ h

d
r−

d
2 ‖Π∗hqh‖L2

D(ω), where
1

s
+

1

r
= 1. (5)

Proof: Given qh ∈ Ph, we consider its extension q̃h to Ω defined by q̃h(x, z) = qh(x), ∀x ∈ ω,
−D(x) ≤ z ≤ 0. By Amrouche and Girault (Cf. [2]), there exists a constant γ̃r > 0 such
that γ̃r ‖q̃h‖0,r,Ω ≤ sup

~v∈[W 1,s
0 (Ω)]d−{0}

(∇ · ~v, q̃h)/|~v|1,s,Ω. If we denote ~v = (v, vz), observe that

(∂zvz, q̃h) = 0, because ∂z q̃h = 0 and vz = 0 in ∂Ω. As ‖q̃h‖0,r,Ω = ‖qh‖Lr
D,0(ω), it follows

γ̃r ‖qh‖Lr
D,0(ω) ≤ sup

v∈[W 1,s
0 (Ω)]d−1−{0}

(∇H · v, q̃h)/|v|1,s,Ω. So there exists v ∈ [W 1,s
0 (Ω)]d−1 such

that

γ̃r ‖qh‖Lr
D,0(ω) ≤

(∇H · v, q̃h)

|v|1,s,Ω
. (6)

We use an adaptation of Verfürth’s trick (Cf. [15]): There exists v, vh ∈ Uh∩ [H1
0 (Ω)]d−1 such that

|vh|1,s,Ω ≤ c |v|1,s,Ω, ‖v − vh‖0,s,K ≤ c hK |v|1,s,K . (7)

for some constant c independent of h. Using the first inequality in (7),

(∇H · v, q̃h)

|v|1,s,Ω
≤ c (∇H · vh, q̃h)

|vh|1,s,Ω
+

(∇H · (v − vh), q̃h)

|v|1,s,Ω
. (8)

As (∇H ·(v−vh), q̃h) = −(v−vh,∇H q̃h) ≤

 ∑
K∈Th>0

‖v − vh‖s0,s,K h−sK

1/s ∑
K∈Th>0

hrK ‖∇H q̃h‖r0,r,K

1/r

≤ c |v|1,s,Ω h ‖∇H q̃h‖0,r,Ω, using (7). Then from (6) and (8),

γ̃r ‖qh‖Lr
D,0(ω) ≤ c sup

vh∈Uh−{0}

(∇H · vh, qh)

|vh|1,s,Ω
+ c h ‖∇H q̃h‖0,r,Ω. (9)

Consider the finite element space R̃h = {Φ ∈ L2(Ω) : φ|K ∈ P0(K), ∀K ∈ Th}. Define the
interpolation operator Π̃h : C0(Ω̄) 7→ R̃h by Π̃hΦ|K = Φ(bT,K), ∀K ∈ Th, where bT,K is some node
located in K whose projection on Γs is bT . Then,

‖(Id−Π̃h)q̃h‖20,Ω =
∑
T∈Ch

∫
PT

|qh(x)−qh(bT )|2 dx dz =
∑
T∈Ch

∫
T

D(x)|qh(x)−qh(bT )|2 dx = ‖(Id−Πh)qh‖2L2
D

(ω).

Using an inverse inequality between polynomial spaces (Cf. [3]) and the regularity of the grids,
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‖∇H q̃h‖r0,r,Ω =
∑
K∈Th

‖∇H(q̃h − Π̃hq̃h)‖r0,r,K ≤ cI
∑
K∈Th

h
r(−1+ d

r−
d
2 )

K ‖q̃h − Π̃hq̃h‖r0,K

≤ cI hr(−1+ d
r−

d
2 )‖(Id− Π̃h)q̃h‖r0,Ω = cI h

r(−1+ d
r−

d
2 )‖(Id−Πh)qh‖rL2

D(ω)
.

Then, from (9), (5) follows.
We next prove the stability of the discretization (3).

Theorem 1. Assume that the family of grids {Th}h>0 is uniformly regular. Then the discrete
problem (3) admits a solution (uh, ph) ∈ Uh×Ph which is bounded in H1

b(Ω)×LrD,0(ω), satisfying

|uh|1,Ω ≤
C

µ
l; hσ/2‖Π∗hph‖L2

D(ω) ≤
C
√
µ
l; ‖ph‖Lr

D,0(ω) ≤ C (
l

µ2
+

1

µ
+ 1); (10)

where C is a constant independent of h, l = ‖L‖−1,Ω, σ is defined in (4) and r = 2 when d = 2 or
r = 3

2 when d = 3.

Proof: The existence of solutions of problem (3) follows from a standard compactness argument in
finite dimension lying on the linearization of the convection term. The base of this proof is estimate
(10), whose deduction we describe next. Assume that (uh, ph) is a solution of this problem. Set
vh = uh, qh = ph in (3) and denote ~uh = (uh, uhz). Then, as ∇ · ~uh = 0 and uh|Γb

= 0,
B(uh; (uh, ph); (uh, ph)) = µ ‖∇uh‖20,Ω. Thus µ

2 |uh|
2
1,Ω +hσ‖Π∗hph‖2L2

D(ω)
≤ 1

2µ‖L‖
2
−1,Ω. This yields

the two first estimates in (10). To estimate the pressure we use the inf-sup condition (5). Taking
qh = 0 in (3), using Sobolev injections and the two first estimates in (10),

(∇H · vh, ph) = (~uh · ∇uh,vh) + µ(∇uh,∇vh) + (ϕu⊥h ,vh)− L(vh)
≤ C

(
|uh|21,Ω + µ|uh|1,Ω + ‖ϕ‖0,∞,Ω|uh|1,Ω + ‖L‖−1,Ω

)
|vh|1,s,Ω

≤ C
(
l/µ2 + 1 + 1/µ

)
l |vh|1,s,Ω

As the second summand in (5) is estimated in (10), we obtain the pressure estimate in (10).
We finally prove the convergence of the discretization (3).

Theorem 2. Assume that the family of grids {Th}h>0 is uniformly regular. Then the sequence
{(uh, ph)}h>0 of solutions of discrete problem (3) contains a subsequence which is weakly convergent
in H1

b(Ω)× LrD,0(ω) (with r as in Theorem 1) to a solution of the continouos problem (2). If this
solution is the strong solution, then the whole sequence strongly converges to it.

Proof: By Theorem 1 the sequence {(uh, ph)}h>0 is bounded in H1
b(Ω)×LrD,0(ω), that is a reflexive

space. Then, it contains a subsequence, that we still denote in the same way, weakly convergent in
that space to a pair (u, p). Consider a pair of test functions (v, q) ∈ W1,3

b (Ω) × L2
D,0(ω). By the

interpolation theory by finite elements (Cf. [3]) there exists a sequence {(vh, qh)}h>0 in Uh × Ph
which is strongly convergent to a (v, q) in W1,3

b (Ω)× L2(ω) and also in W1,3
b (Ω)× L2

D,0(ω), as

‖qh− q‖L2
D,0(ω) ≤ ‖qh− q‖L2

D(ω) ≤ ‖D‖
1/2
0,∞,ω‖qh− q‖0,ω. Moreover,

∫ 0

−D(x)
vh(x, s) ds strongly con-

verges to
∫ 0

−D(x)
v(x, s) ds in W1,3

b (ω). All these convergence allow to pass to the limit in all terms

of formulation (3), as in [7]. This proves that ĺım
h→0

B(uh; (uh, ph), (vh, qh)) = B(u; (u, p), (v, q)).

To analyze the convergence of stabilization term, let q ∈ D(ω) we may suppose that qh strongly
converges to q in L∞(ω). Then, ‖Π∗hqh‖L2

D(ω) ≤ C. Using (10),

|sh(ph, qh)| = |hσ (Π∗hph,Π
∗
hqh)D,ω| ≤ C hσ/2 ‖Π∗hqh‖L2

D(ω) ≤ C hσ/2.
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Thus, ĺım
h→0

sh(ph, qh) = 0. We deduce that the limit (u, p) is a solution of the continuos problem

(2) but with test functions (v, q) ∈W1,3
b (Ω)×D(ω). As D(ω) is dense in L2

D,0(ω) this holds for all

q ∈ L2
D,0(ω). If the solution is strong, then it is unique by [5], and the whole sequence converges

to it by a standard compactness argument. Furthermore, in this case (u, p) ∈ H2(Ω)d−1 ×H1(ω),
and then (u, p) may be taken as test function in problem (2). Then ĺım

h→0
‖∇uh‖0,2,Ω = ‖∇u‖0,2,Ω

and the convergence is strong. A standard argument using the inf-sup condition also proves that
the pressures ph strongly converge to p in L2

D,0(ω).
We have assumed in our analysis that the grids are uniformly regular for brevity. This is not

an essential hypothesis, that may be dropped if the discrete inf-sup condition (5) is changed into
a more general condition for standard regular grids. This work shall appear in short.

5. Numerical tests

We have solved the 3D steady Primitive Equations (1) as the steady state of the evolution ones,
by a semi-implicit Euler method: Set u0

h = 0. For n ≥ 0, given unh ∈ Uh, find (un+1
h , pn+1

h ) ∈ Uh×Ph
such that ∀(vh, qh) ∈ Uh × Ph

1

∆t
(un+1
h ,vh) +Bh(unh; (un+1

h , pn+1
h ), (vh, qh)) = L(vh) +

1

∆t
(unh,vh).

This problem have been solved using the application FreeFem++ (Cf. [14]).
Test 1: Convergence rate. We have set Ω = (0, 1)3, µ = 0,5 and the source terms f and τ such
that p = exp(x+y)−2,95,u = ((2z(z−1)+z2)x2(x−1)y(y−1), (2z(z−1)+z2)x(x−1)y2(y−1)).
Table 1 shows the estimated convergence orders for the horizontal velocity (in H1(Ω) norm) and

surface pressure (in L
3
2 (ω) norm) using unstructured regular grids. We recover first order for

pressure and a somewhat higher order for velocity that decreases as h tends to zero.

h Horizontal velocity Order Pressure Order
0.141 0.00450 0.02317
0.070 0.00145 1.64 0.00965 1.26
0.047 0.00078 1.52 0.00609 1.13
0.035 0.00051 1.46 0.00447 1.07

Table 1: Estimated convergence orders.

Test 2: Upwelling flow. In this case we have considered a swimming-pool domain ω×(−D(x), 0)
shown in Figure 1, where ω = (0, 10000)× (0, 5000) and

D(x) =


50 if 0 ≤ x ≤ 4000
0,05x− 150 if 4000 ≤ x ≤ 5000
100 if 5000 ≤ x ≤ 10000

Figura 1: Domain and grid for Test 2

We have set the data µH = 102, µz = 10−2 (m2/s), f = 0, τ = αv|v|, with α = 9,27 · 10−7

and v = (7,5, 0) (m/s), and ϕ = 2θ sin 45oN , with θ = 7,3 · 10−5. In our results the velocity at
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the surface points π/4 degrees to the right of the wind, according to the Eckman theory (Figure
2, left). Also the pressure increases in the direction of the wind and to its right, due to Coriolis
force (Figure 2, right). Figure 3, left shows a span-wise recirculation induced by the wind. Finally,
in Figure 3, right we shows the upwelling and downwellings in a cross-wind plane induced by the
interaction between wind and Coriolis forces. All these effects agree with the physics of the flow
and with preceding numerical results (Cf. [8]).

Figura 2: Surface horizontal velocity and pressure.

Figura 3: Velocity of the flow on planes y = 2500 (left) and x = 6000 (right).
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