Exponential growth of rank jumps for A-hypergeometric systems.

María-Cruz Fernández-Fernández *
Departamento de Álgebra
Universidad de Sevilla

January 24, 2012

Abstract

The dimension of the space of holomorphic solutions at nonsingular points (also called the holonomic rank) of a A-hypergeometric system $M_{A}(\beta)$ is known to be bounded above by $2^{2 d} \operatorname{vol}(A) S S T 00$, where d is the rank of the matrix A and $\operatorname{vol}(A)$ is its normalized volume. This bound was thought to be very vast because it is exponential on d. Indeed, all the examples we have found in the literature verify that $\operatorname{rank}\left(M_{A}(\beta)\right)<2 \operatorname{vol}(A)$. We construct here, in a very elementary way, some families of matrices $A_{(d)} \in \mathbb{Z}^{d \times n}$ and parameter vectors $\beta_{(d)} \in \mathbb{C}^{d}, d \geq 2$, such that $\operatorname{rank}\left(M_{A_{(d)}}\left(\beta_{(d)}\right)\right) \geq a^{d} \operatorname{vol}\left(A_{(d)}\right)$ for certain $a>1$.

1 Introduction

Let $A=\left(a_{i j}\right)=\left(a_{1} a_{2} \cdots a_{n}\right)$ be a full rank matrix with columns $a_{j} \in \mathbb{Z}^{d}$ and $d \leq n$. Following Gel'fand, Graev, Kapranov and Zelevinsky (see GGZ87 and [GZK89]) we can define the A-hypergeometric system with parameter $\beta \in \mathbb{C}^{d}$ as the left ideal $H_{A}(\beta)$ of the Weyl algebra $D=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]\left\langle\partial_{1}, \ldots, \partial_{n}\right\rangle$ generated by the following set of differential operators:

$$
\begin{equation*}
\square_{u}:=\left(\prod_{i: u_{i}>0} \partial_{i}^{u_{i}}\right)-\left(\prod_{i: u_{i}<0} \partial_{i}^{-u_{i}}\right) \quad \text { for all } u \in \mathbb{Z}^{n} \text { such that } A u=0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{i}-\beta_{i}:=\sum_{j=1}^{n} a_{i j} x_{j} \partial_{j}-\beta_{i} \quad \text { for } i=1, \ldots, d \tag{2}
\end{equation*}
$$

[^0]The operators given in (11) generate the so-called toric ideal $I_{A} \subseteq \mathbb{C}\left[\partial_{1}, \ldots, \partial_{n}\right]$ associated with A and the d operators given in (2) are called the Euler operators associated with the pair (A, β). The hypergeometric D-module associated with the pair (A, β) is the quotient $M_{A}(\beta)=D / D H_{A}(\beta)$. It is a holonomic D-module for any pair (A, β) as above (see [GZK89], Ado94]). In particular, the space of holomorphic solutions of $M_{A}(\beta)$ at a nonsingular point has finite dimension. This dimension or, equivalently, the holonomic rank of $M_{A}(\beta)$ equals the normalized volume $\operatorname{vol}_{\mathbb{Z} A}(A)$ of the matrix A (see (3)) when either I_{A} is Cohen-Macaulay or β is generic (see [GZK89], Ado94, [SST00]).

The first example of a pair (A, β) for which $\operatorname{rank}\left(M_{A}(\beta)\right)>\operatorname{vol}_{\mathbb{Z} A}(A)$ was described in ST98 (see Example 2.5). A complete description of the case $d=2$ appears in CDD99, revealing that in this case the rank of $M_{A}(\beta)$ can be only $\operatorname{vol}_{\mathbb{Z} A}(A)$ (the generic value) or $\operatorname{vol}_{\mathbb{Z} A}(A)+1$ (the exceptional value).

In general it is known that $\operatorname{rank}\left(M_{A}(\beta)\right) \geq \operatorname{vol}_{\mathbb{Z} A}(A)$ for all β [SST00, MMW05]. In fact, it is proved in MMW05 that the map $\beta \in \mathbb{C}^{d} \mapsto \operatorname{rank}\left(M_{A}(\beta)\right)$ is upper semi-continuous in the Zarisky topology and they also provide an explicit description of the exceptional set

$$
\varepsilon(A)=\left\{\beta \in \mathbb{C}^{d}: \operatorname{rank}\left(M_{A}(\beta)\right)>\operatorname{vol}_{\mathbb{Z} A}(A)\right\}
$$

that turns out to be an affine subspace arrangement with codimension at least 2 . Previous descriptions of the exceptional set in particular cases appear in CDD99, Mat01, Sai02, Mat03.

If for a fixed matrix A we have that $j_{A}(\beta)=\operatorname{rank}\left(M_{A}(\beta)\right)-\operatorname{vol}_{\mathbb{Z} A}(A)>0$ then it said that the A-hypergeometric system has a rank jump of $j_{A}(\beta)$ at β or that β is a rank jumping parameter for A.

The paper MW07 provides the first family of hypergeometric systems with rank jump greater than 2. Indeed, they construct a family of pairs $\left(A_{(d)}, \beta_{(d)}\right)$ with $A_{(d)} \in \mathbb{Z}^{d \times 2 d}$ and $\beta_{(d)} \in \mathbb{C}^{d}$ such that $j_{A_{(d)}}\left(\beta_{(d)}\right)=d-1$. However, for this family $\operatorname{vol}_{\mathbb{Z} A_{(d)}}\left(A_{(d)}\right)=d+2$ and thus

$$
\frac{\operatorname{rank}\left(M_{A_{(d)}}\left(\beta_{(d)}\right)\right)}{\operatorname{vol}_{\mathbb{Z} A_{(d)}}\left(A_{(d)}\right)}=2-\frac{3}{d+2}<2
$$

More recently, in Ber11 a general combinatorial formula is provided for the rank jump $j_{A}(\beta)$ of the A-hypergeometric system at a given β. However, the formula is very complicated and, in fact, all the examples included in Ber11] verify that $\operatorname{rank}\left(M_{A}(\beta)\right)<2 \operatorname{vol}_{\mathbb{Z} A}(A)$ as well. Previous computations of $j_{A}(\beta)$ in particular cases appear for example in CDD99, Sai02, Oku06.

In the case when the toric ideal is standard homogeneous, the following upper bound for the holonomic rank of a hypergeometric system is proved in [SST00]:

$$
\operatorname{rank}\left(M_{A}(\beta)\right) \leq 2^{2 d} \operatorname{vol}_{\mathbb{Z} A}(A)
$$

However, it is mentioned in [SST00, p. 159] that this upper bound is most likely far from optimal and that it would be desirable to know whether the ratio $\operatorname{rank}\left(M_{A}(\beta)\right) / \operatorname{vol}_{\mathbb{Z} A}(A)$ can be bounded above by some polynomial function in d. Here we provide a very elementary construction of some families of hypergeometric systems for which the ratio $\operatorname{rank}\left(M_{A}(\beta)\right) / \operatorname{vol}_{\mathbb{Z} A}(A)$ is exponential on d, giving a negative answer to this last question.

Moreover, for one of the families constructed the dimension of Laurent polynomial solutions is lower than the rank jump (see Remark [2.8). This is in contrast with the general observation in the examples found in the literature (see for example [MW07]).

I am grateful to Christine Berkesch for many helpful conversations about her paper [Ber11].

2 Construction of the examples.

Recall that the normalized volume of a full rank matrix $A \in \mathbb{Z}^{d \times n}$ is given by

$$
\begin{equation*}
\operatorname{vol}_{\mathbb{Z} A}(A)=d!\frac{\operatorname{vol}_{\mathbb{R}^{d}}\left(\Delta_{A}\right)}{\left[\mathbb{Z}^{d}: \mathbb{Z} A\right]} \tag{3}
\end{equation*}
$$

where $\left[\mathbb{Z}^{d}: \mathbb{Z} A\right]$ is the index of the subgroup $\mathbb{Z} A:=\sum_{i=1}^{n} \mathbb{Z} a_{i} \subseteq \mathbb{Z}^{d}, \Delta_{A}$ is the convex hull of the columns of A and the origin in \mathbb{R}^{d} and $\operatorname{vol}_{\mathbb{R}^{d}}\left(\Delta_{A}\right)$ denotes the Euclidean volume of the polytope Δ_{A}.

Let us also recall that the direct sum of two matrices $A_{1} \in \mathbb{Z}^{d_{1} \times n_{1}}, A_{2} \in \mathbb{Z}^{d_{2} \times n_{2}}$ is the following $\left(d_{1}+d_{2}\right) \times\left(n_{1}+n_{2}\right)$ matrix:

$$
A_{1} \oplus A_{2}=\left(\begin{array}{cc}
A_{1} & 0_{d_{1} \times n_{2}} \\
0_{d_{2} \times n_{1}} & A_{2}
\end{array}\right)
$$

where $0_{d \times n}$ denotes the $d \times n$ zero matrix.
The following two lemmas are easy to prove.
Lemma 2.1. If A is the direct sum of two matrices $A_{1} \in \mathbb{Z}^{d_{1} \times n_{1}}, A_{2} \in \mathbb{Z}^{d_{2} \times n_{2}}$ then $\operatorname{vol}_{\mathbb{Z} A}(A)=\operatorname{vol}_{\mathbb{Z} A_{1}}\left(A_{1}\right) \cdot \operatorname{vol}_{\mathbb{Z} A_{2}}\left(A_{2}\right)$.

Lemma 2.2. Let $A_{i} \in \mathbb{Z}^{d_{i} \times n_{i}}$ be full rank matrices, $d_{i} \leq n_{i}$, and $\beta_{(i)} \in \mathbb{C}^{d_{i}}$ for $i=1,2$. If $A=A_{1} \oplus A_{2}$ and $\beta=\left(\beta_{(1)}, \beta_{(2)}\right)$ then we have that $H_{A}(\beta)=$ $D H_{A_{1}}\left(\beta_{(1)}\right)+D H_{A_{2}}\left(\beta_{(2)}\right)$ where $H_{A_{1}}\left(\beta_{(1)}\right)$ is a left ideal of the Weyl Algebra $D_{A_{1}}=$ $\mathbb{C}\left[x_{1}, \ldots, x_{n_{1}}\right]\left\langle\partial_{1}, \ldots, \partial_{n_{1}}\right\rangle$ and $H_{A_{2}}\left(\beta_{(2)}\right)$ is a left ideal of the Weyl Algebra $D_{A_{2}}=$ $\mathbb{C}\left[x_{n_{1}+1}, \ldots, x_{n_{1}+n_{2}}\right]\left\langle\partial_{n_{1}+1}, \ldots, \partial_{n_{1}+n_{2}}\right\rangle$ (equivalently, $M_{A}(\beta)$ is the exterior tensor product of $M_{A_{1}}\left(\beta_{(1)}\right)$ and $\left.M_{A_{2}}\left(\beta_{(2)}\right)\right)$.

The following corollary follows from Lemma 2.2 by general properties of the exterior tensor product of holonomic D-modules.

Corollary 2.3. Under the assumptions of Lemma 2.2 we have:
i) $\operatorname{rank}\left(M_{A}(\beta)\right)=\operatorname{rank}\left(M_{A_{1}}\left(\beta_{(1)}\right)\right) \cdot \operatorname{rank}\left(M_{A_{2}}\left(\beta_{(2)}\right)\right)$.
ii) If Ω_{i} is a basis for the space of (holomorphic) solutions of the hypergeometric system $M_{A_{i}}\left(\beta_{(i)}\right)$ at a point $p_{i} \in \mathbb{C}^{n_{i}}$, then the set

$$
\Omega=\left\{f_{1}\left(x_{1}, \ldots, x_{n_{1}}\right) \cdot f_{2}\left(x_{n_{1}+1}, \ldots, x_{n_{1}+n_{2}}\right): f_{i} \in \Omega_{i}, i=1,2\right\}
$$

is a basis for the space of (holomorphic) solutions of $M_{A}(\beta)$ at $p=\left(p_{1}, p_{2}\right) \in$ $\mathbb{C}^{n_{1}+n_{2}}$.

In view of Corollary 2.3, we can already give a first type of families of hypergeometric systems for which the rank jump grows exponentially with d.

Theorem 2.4. Let $A \in \mathbb{Z}^{d \times n}$ and $\beta \in \mathbb{C}^{d}$ be such that $M_{A}(\beta)$ has a rank jump, i. e. $\operatorname{rank}\left(M_{A}(\beta)\right) / \operatorname{vol}_{\mathbb{Z} A}(A)=q>1$. Consider for $d_{r}=r d$ with $r \geq 1$ the matrix $A_{r} \in \mathbb{Z}^{d_{r} \times n_{r}}\left(n_{r}=r n\right)$, defined as the direct sum of r copies of A, and the parameter vector $\beta_{r}=(\beta, \ldots, \beta) \in \mathbb{C}^{d_{r}}$, defined by r copies of β as well. We have that the family given by $\left(A_{r}, \beta_{r}\right)$ satisfies $\operatorname{rank}\left(M_{A_{r}}\left(\beta_{r}\right)\right) / \operatorname{vol}_{\mathbb{Z} A_{r}}\left(A_{r}\right) \geq a^{d_{r}}$ where $a=\sqrt[d]{q}>1$.

In the sequel, we will first consider an example of a family similar to the ones given by Theorem 2.4 and then, we will modify this example in order to exhibit for all $d \geq 2$ a family of A-hypergeometric systems with exponential growth of rank jumps on $d=\operatorname{rank}(A)$ which are not exterior tensor products of smaller hypergeometric systems.

Example 2.5. For $d=2$ we will consider the first example of a hypergeometric system with rank jump described in [ST98]. Consider the pair $\left(A_{(2)}, \beta_{(2)}\right)$ where

$$
A_{(2)}=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \tag{4}\\
0 & 1 & 3 & 4
\end{array}\right) \text { and } \beta_{(2)}=\binom{1}{2}
$$

The toric ideal associated with $A_{(2)}$ is

$$
I_{A_{(2)}}=\left(\partial_{1} \partial_{4}-\partial_{2} \partial_{3}, \partial_{1}^{2} \partial_{3}-\partial_{2}^{3}, \partial_{2} \partial_{4}^{2}-\partial_{3}^{3}, \partial_{1} \partial_{3}^{2}-\partial_{2}^{2} \partial_{4}\right)
$$

and the Euler operators are $E_{1}-\beta_{(2), 1}=x_{1} \partial_{1}+x_{2} \partial_{2}+x_{3} \partial_{3}+x_{4} \partial_{4}-1$ and $E_{2}-\beta_{(2), 2}=x_{2} \partial_{2}+3 x_{3} \partial_{3}+4 x_{4} \partial_{4}-2$.

For this example $\operatorname{rank}\left(M_{A_{(2)}}(\beta)\right)=\operatorname{vol}_{\mathbb{Z} A_{(2)}}\left(A_{(2)}\right)=4$ for all $\beta \in \mathbb{C}^{2} \backslash\left\{\beta_{(2)}\right\}$ but $\operatorname{rank}\left(M_{A_{(2)}}\left(\beta_{(2)}\right)\right)=5$. A basis of the space of solutions of $M_{A_{(2)}}\left(\beta_{(2)}\right)$ can also be found in [ST98]. Let us point out that this basis consists of the two Laurent polynomials $p_{1}=x_{2}^{2} / x_{1}, p_{2}=x_{3}^{2} / x_{4}$ and other 3 functions that are not Laurent polynomials.

Example 2.6. For $d=3$, we will consider the hypergeometric system of the family $\left\{M_{A_{(d)}}\left(\beta_{(d)}\right)\right\}_{d \geq 2}$ described in MW07. It is the one associated with the pair

$$
A_{(3)}=\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \tag{5}\\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 3 & 4 & 0 & 1
\end{array}\right) \quad \text { and } \beta_{(3)}=\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right)
$$

The volume of $A_{(3)}$ is $d+2=5$ while the rank of $M_{A_{(3)}}(\beta(3))$ is $2 d+1=7$.
Example 2.7. For any $d \geq 4$, let $r, s \in \mathbb{N}$ be such that $2 r+3 s=d$. We will choose s as high as possible in order to fix uniques $r, s \in \mathbb{N}$ for each d (in particular $0 \leq r \leq 4$).

We define $A_{(d)} \in \mathbb{Z}^{d \times 2 d}$ to be the direct sum of r copies of the matrix $A_{(2)}$ and s copies of the matrix $A_{(3)}$. By Lemma 2.1 and examples 2.5 and 2.6 we have that $\operatorname{vol}_{\mathbb{Z} A_{(d)}}\left(A_{(d)}\right)=4^{r} 5^{s}$.

On the other hand, let $\beta_{(d)} \in \mathbb{C}^{d}$ be the complex vector with coordinates $\beta_{(d), 2 i-1}=1$ and $\beta_{(d), 2 i}=2$ for $1 \leq i \leq r$ and $\beta_{(d), 2 r+3 j-2}=1, \beta_{(d), 2 r+3 j-1}=$ $0, \beta_{(d), 2 r+3 j}=2$ for $1 \leq j \leq s$ (i. e., $\beta_{(d)}$ has a copy of $\beta_{(2)}$ for each copy of $A_{(2)}$ and a copy of $\beta_{(3)}$ for each copy of $A_{(3)}$). With this definition of $\left(A_{(d)}, \beta_{(d)}\right)$ and using Corollary 2.3 and examples 2.5 and 2.6 we have that $\operatorname{rank}\left(M_{A_{(d)}}\left(\beta_{(d)}\right)\right)=5^{r} 7^{s}$. Thus $\operatorname{rank}\left(M_{A_{(d)}}(\beta(d))\right) / \operatorname{vol}_{\mathbb{Z} A_{(d)}}\left(A_{(d)}\right)=(5 / 4)^{r}(7 / 5)^{s} \geq(\sqrt{5} / 2)^{d}$.

Remark 2.8. Example 2.7 also shows that the rank jump $j_{A}(\beta)$ can be greater than the number of Laurent polynomial solutions of $M_{A}(\beta)$. Indeed, since the space of Laurent polynomial solutions of $M_{A_{(2)}}\left(\beta_{(2)}\right)$ has dimension 2 (see [ST98]) and the space of Laurent polynomial solutions of $M_{A_{(3)}}\left(\beta_{(3)}\right)$ has dimension 4 (see MW07) then, by Corollary 2.3, the space of of Laurent polynomial solutions of $M_{A_{(d)}}(\beta(d))$ has dimension $2^{r} 4^{s}<j_{A_{(d)}}\left(\beta_{(d)}\right)=5^{r} 7^{s}-4^{r} 5^{s}$ for $r, s \geq 1$.

We are going to modify Example 2.7 in order to get hypergeometric systems that are not exterior tensor products of smaller hypergeometric systems.

Consider the following matrices and parameters:

$$
\begin{gather*}
\hat{A}_{(2)}=\left(\begin{array}{ccccc}
1 & 2 & 2 & 2 & 2 \\
0 & 0 & 1 & 3 & 4
\end{array}\right) \text { and } \hat{\beta}_{(2)}=\binom{3}{2} . \tag{6}\\
\hat{A}_{(3)}=\left(\begin{array}{ccccccc}
1 & 2 & 2 & 2 & 2 & 2 & 2 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 3 & 4 & 0 & 1
\end{array}\right) \text { and parameter } \hat{\beta}_{(3)}=\left(\begin{array}{l}
3 \\
0 \\
2
\end{array}\right) \tag{7}
\end{gather*}
$$

Notice that $\hat{A}_{(2)}$ and $\hat{A}_{(2)}$ are obtained from $A_{(2)}$ and $A_{(3)}$ respectively by multiplying the first row by 2 (this doesn't change the hypergeometric system) and then by adding a first column with its first coordinate equal to 1 and the other coordinates equal to zero. After these modifications we get that $\operatorname{vol}_{\mathbb{Z} \hat{A}_{(2)}}\left(\hat{A}_{(2)}\right)=$ $2 \cdot 4=8$ and that $\left.\operatorname{vol}_{\mathbb{Z}}^{\left(\hat{A}_{(3)}\right.}\right)\left(\hat{A}_{(3)}\right)=2 \cdot 5=10$. However, since $\hat{\beta}_{(i)}$ is a hole in $\mathbb{N} \hat{A}_{(i)}$
(meaning that $\hat{\beta}_{(i)} \notin \mathbb{N} \hat{A}_{(i)}$ but $\left.\hat{\beta}_{(i)}+\left(\mathbb{N} \hat{A}_{(i)} \backslash\{0\}\right) \subseteq \mathbb{N} \hat{A}_{(i)}\right)$ we have by Remark 4.14 in Oku06 that $\operatorname{rank}\left(M_{\hat{A}_{(i)}}\left(\hat{\beta}_{(i)}\right)\right)=\operatorname{vol}_{\mathbb{Z} \hat{A}_{(i)}}\left(\hat{A}_{(i)}\right)+(i-1), i=2,3$.

The following Lemma follows from the results in Ber11.
Lemma 2.9. Let $A \in \mathbb{Z}^{d \times n}$ and $B \in \mathbb{Z}^{d \times m}$ be two matrices verifying that $\mathbb{N} A=$ $\mathbb{N} B$ and $\Delta_{A}=\Delta_{B}$ then $\operatorname{rank}\left(M_{A}(\beta)\right)=\operatorname{rank}\left(M_{B}(\beta)\right)$ for all $\beta \in \mathbb{C}^{d}$.

For $d=2 r+3 s \geq 2, r, s \in \mathbb{N}$ (with s as high as possible), let $\hat{\beta}_{(d)} \in \mathbb{C}^{d}$ be the complex vector that is given by r copies of $\hat{\beta}_{(2)}$ and s copies of $\hat{\beta}_{(3)}$. The new matrix $\hat{A}_{(d)} \in \mathbb{Z}^{d \times(6 r+8 s-1)}$ is constructed as follows.

Let $a_{1}, a_{2}, \ldots, a_{5 r+7 s} \in \mathbb{Z}^{d}$ be the columns of the matrix $A_{r, s}=\hat{A}_{(2)} \oplus \underbrace{r}_{\cdots}$ $\oplus \hat{A}_{(2)} \oplus \hat{A}_{(3)} \underbrace{s} \oplus \hat{A}_{(3)} \in \mathbb{Z}^{d \times(5 r+7 s)}$.

We will construct a matrix $\hat{A}_{(d)}$ by adding $r+s-1$ column vectors to the matrix $A_{r, s}$. This vectors will belong to both $\Delta_{A_{r, s}}$ and $\mathbb{N} A_{r, s}$. These conditions guarantee that $\operatorname{vol}_{\mathbb{Z} \hat{A}_{(d)}}\left(\hat{A}_{(d)}\right)=\operatorname{vol}_{\mathbb{Z} A_{r, s}}\left(A_{r, s}\right)=8^{r} 10^{s}$ and by Lemma 2.9, we will also have that $\operatorname{rank}\left(M_{\hat{A}_{(d)}}(\beta)\right)=\operatorname{rank}\left(M_{A_{r, s}}(\beta)\right)$ for all $\beta \in \mathbb{C}^{d}$. In particular, for $\beta=\hat{\beta}_{(d)}$, we have $\operatorname{rank}\left(M_{\hat{A}_{(d)}}\left(\hat{\beta}_{(d)}\right)\right)=9^{r} 12^{s}$.

If $r \geq 2$ then for $1 \leq i \leq r-1$ we define:

$$
a_{5 r+7 s+i}=a_{1}+a_{5 i+1}=\frac{1}{2} a_{2}+\frac{1}{2} a_{5 i+2} \in \mathbb{N} A_{r, s} \cap \Delta_{A_{r, s}} .
$$

Notice that $\left(a_{5 r+7 s+i}\right)_{j}$ equals 1 for $j=1,2 i+1$ and 0 otherwise.
If $r, s \geq 1$ then for $1 \leq i \leq s$ we define

$$
a_{5 r+7 s+r-1+i}=a_{1}+a_{5 r+7 i+1}=\frac{1}{2} a_{2}+\frac{1}{2} a_{5 r+7 i+2} \in \mathbb{N} A_{r, s} \cap \Delta_{A_{r, s}} .
$$

If $r=0$ and $s \geq 1$ then for $1 \leq i \leq s-1$ we define

$$
a_{7 s+i}=a_{1}+a_{7 i+1}=\frac{1}{2} a_{2}+\frac{1}{2} a_{7 i+2} \in \mathbb{N} A_{r, s} \cap \Delta_{A_{r, s}} .
$$

Let us define $\hat{A}_{d}=\left(\begin{array}{llll}a_{1} & a_{2} & \ldots & a_{6 r+8 s-1}\end{array}\right)$ and recall that $\hat{\beta}_{(d)} \in \mathbb{C}^{d}$ is given by r copies of $\hat{\beta}_{(2)}$ and s copies of $\hat{\beta}_{(3)}$. The hypergeometric system $M_{\hat{A}_{(d)}}\left(\hat{\beta}_{(d)}\right)$ is not an exterior tensor product of smaller hypergeometric systems and we have proved the following.

Theorem 2.10. With the notations above we have

$$
\frac{\operatorname{rank}\left(M_{\hat{A}_{(d)}}\left(\hat{\beta}_{(d)}\right)\right)}{\operatorname{vol}_{\mathbb{Z} \hat{A}_{(d)}}\left(\hat{A}_{(d)}\right)}=(9 / 8)^{r}(12 / 10)^{s} \geq(\sqrt{9 / 8})^{d}
$$

Remark 2.11. Notice that the toric ideal associated with $\hat{A}_{(d)}$ is not homogeneous. However, by Theorem 7.3 in [Ber10], if we consider the associated homogeneous matrix $\hat{A}_{(d)}^{h}$ (that is obtained by adding to the matrix $\hat{A}_{(d)}$ a first column of zeroes and after that a first row of ones) and the parameter $\hat{\beta}_{(d)}^{h}=\left(\beta_{0}, \hat{\beta}_{(d)}\right)$ with $\beta_{0} \in \mathbb{C}$ then the rank of $M_{\hat{A}_{(d)}^{h}}\left(\hat{\beta}_{(d)}\right)$ equals the rank of $M_{\hat{A}_{(d)}}\left(\hat{\beta}_{(d)}\right)$ if $\beta_{0} \in \mathbb{C}$ is generic. This implies that for particular β_{0} (for example $\beta_{0}=0$) the rank of $M_{\hat{A}_{(d)}^{h}}\left(\hat{\beta}_{(d)}^{h}\right)$ will be greater than or equal to the rank of $M_{\hat{A}_{(d)}}\left(\hat{\beta}_{(d)}\right)$ by the upper semi-continuity of the rank [MMW05]. Moreover, $\operatorname{vol}_{\hat{A}_{(d)}^{h}}\left(\hat{A}_{(d)}^{h}\right)=\operatorname{vol}_{\hat{A}_{(d)}}\left(\hat{A}_{(d)}\right)$.

References

[Ado94] A. Adolphson, A-hypergeometric functions and rings generated by monomials. Duke Mathematical Journal 73 (1994), n 2, p. 269-290.
[Ber11] Ch. Berkesch, The rank of a hypergeometric system, Compos. Math. 147 (2011), 1, 284-318.
[Ber10] Ch. Berkesch, Euler Koszul methods in Algebra and Geometry, PhD. thesis, Purdue University (2010).
[CDD99] E. Cattani, C. D'Andrea, A. Dickenstein, The \mathcal{A}-hypergeometric system associated with a monomial curve, Duke Math. J. 99 (1999) 179-207.
[GGZ87] I. M. Gel'fand, M. I. Graev, A. V. Zelevinsky, Holonomic systems of equations and series of hypergeometric type. Dokl. Akad. Nauk SSSR 295 (1987), no. 1, 14-19.
[GZK89] I.M. Gel'fand, A.V. Zelevinsky, M.M. Kapranov, Hypergeometric functions and toral manifolds. Funktional Anal., 23 (1989), 2, 12-26.
[Mat01] L. F. Matusevich, Rank jumps in codimension 2 A-hypergeometric systems, Effective methods in rings of differential operators, J. Symbolic Comput. 32 (2001) 619-641.
[Mat03] L. F. Matusevich, Exceptional parameters for generic A-hypergeometric systems, Int. Math. Res. Not. 22 (2003) 1225-1248.
[MMW05] L. F. Matusevich, E. Miller, U. Walther, Homological methods for hypergeometric families. J. Amer. Math. Soc. 18 (2005), 4, p.919-941.
[MW07] L. F. Matusevich, U. Walther, Arbitrary rank jumps for Ahypergeometric systems through Laurent polynomials, J. London Math. Soc. (2) 75 (2007) 213-224.
[Oku06] G. Okuyama, A-hypergeometric ranks for toric threefolds. Int. Math. Res. Not. (2006), Art. ID 70814, 38 pp.
[Sai02] M. Saito, Logarithm-free A-hypergeometric functions. Duke Mathematical Journal 115, 1 (2002).
[SST00] M. Saito, B. Sturmfels, N. Takayama, Gröbner Deformations of Hypergeometric Differential Equations. Algorithms and Computation in Mathematics 6. Springer (2000).
[ST98] B. Sturmfels, N. Takayama, Gröbner bases and hypergeometric functions, Gröbner bases and applications (Linz, 1998). London Mathematical Society Lecture Note Series 251 (Cambridge University Press, Cambridge, 1998) 246-258.

[^0]: *Partially supported by MTM2010-19336 and FEDER, and Junta de Andalucía under grants FQM-5849, FQM333. E.mail address: mcferfer@us.es

