About a family of Naturally Graded no p-filiform Lie algebras ${ }^{\dagger}$

L.M. Camacho, J.R. Gómez, A.J. González
Departamento de Matemática Aplicada I, Universidad de Sevilla Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
e-mail: lcamacho@us.es, jrgomez@us.es, agonzalez@us.es

(Presented by Santos González)

1. Introduction

The knowledge of naturally graded Lie algebras of a particular Lie algebras class gives a valuable information about the structure of the rest of algebras of that class. In 1970, Vergne [9] obtained the classification in finite arbitrary dimension, n, for the case of filiform (nilindex $n-1$). In [8, 7] Goze and Khakimdjanov gave the geometric description of the characteristically nilpotent filiform Lie algebras using the naturally graded filiform Lie algebras. In [6] Gómez and Jiménez-Merchán, obtained the classification in finite arbitrary dimension for the case 2-filiform (nilindex $n-2$). There are two subcases for the nilindex $n-3$: 3 -filiform Lie algebras and the Lie algebras with characteristic sequence ($n-3,2,1$). In $[4,5]$, Cabezas, Gómez and Pastor gave the classification of naturally graded p-filiform Lie algebras.

Consistently, for nilindex $n-3$, only rest to study the case of characteristic sequence $(n-3,2,1)$. In this work we offer the classification in arbitrary finite dimension of the family of naturally graded Lie algebras \mathfrak{g} with the above characteristic sequence such that the dimension of the derived ideal is minimum, that is, with $\operatorname{dim}[\mathfrak{g}, \mathfrak{g}]=n-3$.

The two first acceptable dimensions are 5 and 6 , but the general situation occurs only for $n \geq 7$.

[^0]
2. Preliminaries

The descending central sequence of a Lie algebra \mathfrak{g} is defined by $\left(\mathcal{C}^{i}(\mathfrak{g})\right)$, $i \in \mathbb{N} \cup\{0\}$, where $\mathcal{C}^{0}(\mathfrak{g})=\mathfrak{g}$ and $\mathcal{C}^{i}(\mathfrak{g})=\left[\mathfrak{g}, \mathcal{C}^{i-1}(\mathfrak{g})\right]$.

A Lie algebra \mathfrak{g} is called nilpotent if there exists $k \in \mathbb{N}$ such that $\mathcal{C}^{k}(\mathfrak{g})=$ $\{0\}$. The smallest integer verifying this equation is called the nilindex of \mathfrak{g}.

A Lie algebra \mathfrak{g}, with $\operatorname{dim}(\mathfrak{g})=n$, is called filiform (or 1-filiform) if it verifies $\operatorname{dim}\left(\mathcal{C}^{i}(\mathfrak{g})\right)=n-i-1$ for $1 \leq i \leq n-1$. These algebras have maximal nilindex $n-1$. The Lie algebras with a nilindex $n-2$ are called quasifiliform (or 2-filiform) and those whose nilindex is 1 are called abelian.

Let \mathfrak{g} be a nilpotent Lie algebra of dimension n.
For all $X \in \mathfrak{g}-[\mathfrak{g}, \mathfrak{g}], c(X)=\left(c_{1}(X), c_{2}(X), \ldots, 1\right)$ is the sequence, in decreasing order, of the dimensions of the characteristic subspaces of the nilpotent operator $\operatorname{ad}(X)$, where the adjoint operator of an element $X \in \mathfrak{g}$, $\operatorname{ad}(X)$, is defined by

$$
\begin{aligned}
\operatorname{ad}(X): \mathfrak{g} & \rightarrow \\
Y & \mapsto[X, Y]
\end{aligned}
$$

The finite sequence $c(\mathfrak{g})=\sup \{c(X): X \in \mathfrak{g}-[\mathfrak{g}, \mathfrak{g}]\}$ is called the characteristic sequence or Goze invariant of the nilpotent Lie algebra \mathfrak{g}. The filiform, quasifiliform and abelian Lie algebras of dimension n have as their Goze invariant $(n-1,1),(n-2,1,1)$ and $(1,1, \ldots, 1)$, respectively. The Lie algebras with characteristic sequence $(n-p, 1, \ldots, 1)$ are known as p-filiform Lie algebras [3]. We know the classification of p-filiform for the integer values of p between $n-5$ and $n-2([2,1])$. Remark that, for nilindex $n-3$, there are two families with Goze invariant $(n-3,1,1,1)$ and $(n-3,2,1)$ respectively.

Note that a complex Lie algebra \mathfrak{g} is naturally filtered by the descending central sequence. This result leads to associate any Lie algebra \mathfrak{g} with a graded Lie algebra, gr \mathfrak{g} with equal nilindex:

$$
\operatorname{gr} \mathfrak{g}=\bigoplus_{i \in \mathbb{Z}} \mathfrak{g}_{i}, \quad \quad \mathfrak{g}_{i}=\mathcal{C}^{i-1}(\mathfrak{g}) / \mathcal{C}^{i}(\mathfrak{g})
$$

By nilpotency, the above graduation is finite, that is $\operatorname{gr} \mathfrak{g}=\mathfrak{g}_{1} \oplus \mathfrak{g}_{2} \oplus \cdots \oplus \mathfrak{g}_{k}$ with $\left[\mathfrak{g}_{i}, \mathfrak{g}_{j}\right] \subset \mathfrak{g}_{i+j}$, for $i+j \leq k$. A Lie algebra \mathfrak{g} is said to be naturally graded if $\operatorname{gr} \mathfrak{g}$ is isomorphic to \mathfrak{g}, what will be denoted henceforth by $\operatorname{gr} \mathfrak{g}=\mathfrak{g}$.

Let $\left\{X_{0}, X_{1}, \ldots, X_{n-3}, Y_{1}, Y_{2}\right\}$ be an adapted basis of \mathfrak{g}. We study the case where the dimension of the derived ideal is minimum, consistently $\operatorname{dim}[\mathfrak{g}, \mathfrak{g}]=$ $n-3$. Thus, Y_{1} is not in $[\mathfrak{g}, \mathfrak{g}]$ and, consequently, $Y_{1} \in \mathfrak{g}_{1}$. In general, if we denote as r to the position of the vector Y_{1} into the subspaces of the natural
graduation, we observe that the value of r is $r=1$. We remark that the position of Y_{2} is previously determined because we have that $\left[X_{0}, Y_{1}\right]=Y_{2}$ and that implies $Y_{2} \in \mathfrak{g}_{r+1}$ with $1 \leq r \leq n-4$. Then, in this case $Y_{2} \in \mathfrak{g}_{2}$.

From now, Jacobi identity for the vectors X, Y, Z will be denoted as $\operatorname{Jac}(X, Y, Z)$ and the laws of the algebras, \mathfrak{g}, of dimension n such that $\operatorname{dim}[\mathfrak{g}, \mathfrak{g}]$ is minimum will be denoted as μ_{n}.

3. Structure theorem

In this section, we will obtain a first approximation to the structure of naturally graded Lie algebras with Goze invariant $(n-3,2,1)$.

Let \mathfrak{g} be a naturally graded Lie algebra of Goze's invariant $(n-3,2,1)$ and let $\left\{X_{0}, X_{1}, \ldots, X_{n-3}, Y_{1}, Y_{2}\right\}$ be an adapted basis of \mathfrak{g}, that is:

$$
\begin{aligned}
& {\left[X_{0}, X_{i}\right]=X_{i+1} \quad(1 \leq i \leq n-4)} \\
& {\left[X_{0}, X_{n-3}\right]=0} \\
& {\left[X_{0}, Y_{1}\right]=Y_{2}} \\
& {\left[X_{0}, Y_{2}\right]=0}
\end{aligned}
$$

where $X_{0} \in \mathfrak{g}-[\mathfrak{g}, \mathfrak{g}]$. That implies

$$
\begin{aligned}
& \mathcal{C}^{1}(\mathfrak{g}) \supset\left\langle X_{2}, X_{3}, \ldots, X_{n-3}, Y_{2}\right\rangle \\
& \mathcal{C}^{i}(\mathfrak{g}) \supset\left\langle X_{i+1}, X_{i+2}, \ldots, X_{n-3}\right\rangle \quad(2 \leq i \leq n-4)
\end{aligned}
$$

Lemma 3.1. Let \mathfrak{g} be a Lie algebra of dimension n and Goze's invariant $(n-3,2,1)$ and let $\left\{X_{0}, X_{1}, \ldots, X_{n-3}, Y_{1}, Y_{2}\right\}$ be an adapted basis of \mathfrak{g}. Then,

$$
X_{1} \notin \mathcal{C}^{1}(\mathfrak{g}), \quad X_{n-3} \in \mathcal{Z}(\mathfrak{g}), \quad Y_{1} \notin \mathcal{C}^{n-4}(\mathfrak{g}), \quad Y_{2} \notin \mathcal{C}^{n-3}(\mathfrak{g})
$$

Proof. Obviously, $X_{n-3} \in \mathcal{Z}(\mathfrak{g}), Y_{1} \notin \mathcal{C}^{n-4}(\mathfrak{g})$ and $Y_{2} \notin \mathcal{C}^{n-3}(\mathfrak{g})$ because, otherwise, \mathfrak{g} could not be of characteristic sequence $(n-3,2,1)$. It is easy to prove that $X_{1} \notin[\mathfrak{g}, \mathfrak{g}]$ supposing that $X_{1} \in\left[Y_{1}, Y_{2}\right]$, or $X_{1} \in\left[X_{i}, Y_{j}\right]$, $1 \leq i \leq n-4,1 \leq j \leq 2$, or $X_{1} \in\left[X_{i}, X_{j}\right], 1 \leq i<j \leq n-3-i$, and obtaining contradiction.

Remark 3.2. We identify each vector with its class, and we call $\mu(n, r)$ the family of laws of Lie algebras with Goze invariant $(n-3,2,1)$ where n is the dimension and r is the position of Y_{1} in the subsets of the natural gradation. We remark that the position of Y_{2} is previously determined because we have that $\left[X_{0}, Y_{1}\right]=Y_{2}$ and that implies $Y_{2} \in \mathfrak{g}_{r+1}$ with $1 \leq r \leq n-4$.

Remark 3.3. It is easy to see that $\mathfrak{g}_{1} \supset\left\langle X_{0}, X_{1}\right\rangle$ and $\mathfrak{g}_{i} \supset\left\langle X_{i}\right\rangle, 2 \leq i \leq$ $n-3$.

Now, we obtain the general structure of laws of naturally graded Lie algebras of characteristic sequence $(n-3,2,1)$ in arbitrary dimension. At first, we prove that if $Y_{1} \in \mathfrak{g}_{r}$, then r is odd.

Lemma 3.4. If r is even, the case $\mu(n, r)$ is not admissible in any dimension.

Proof. Let \mathfrak{g} be a naturally graded Lie algebra of Goze invariant $(n-$ $3,2,1)$, let $\left\{X_{0}, X_{1}, \ldots, X_{n-3}, Y_{1}, Y_{2}\right\}$ be an adapted basis of \mathfrak{g}, and let $Y_{1} \in \mathfrak{g}_{r}$ be with r even. It is easy to prove that $Y_{1} \notin[\mathfrak{g}, \mathfrak{g}]$ so $Y_{1} \in \mathfrak{g}_{1}$ and this is impossible because r is even.

Theorem 3.5. (STRUCTURE THEOREM) Any complex naturally graded Lie algebra \mathfrak{g} of dimension $n \geq 5$, with Goze invariant $(n-3,2,1)$ is isomorphic to one whose law can be expressed in an adapted basis $\left\{X_{0}, X_{1}, \ldots, X_{n-3}\right.$, $\left.Y_{1}, Y_{2}\right\}$ by:

- If $r=1$

$$
\begin{cases}{\left[X_{0}, X_{i}\right]=X_{i+1}} & (1 \leq i \leq n-4) \\ {\left[X_{0}, Y_{1}\right]=Y_{2}} \\ {\left[X_{i}, X_{j}\right]=a_{i j} X_{i+j}} & (1 \leq i<j \leq n-3-i)\end{cases}
$$

- If $3 \leq r \leq \frac{n-5}{2}, r$ odd

$$
\begin{cases}{\left[X_{0}, X_{i}\right]=X_{i+1}} & (1 \leq i \leq n-4) \\ {\left[X_{0}, Y_{1}\right]=Y_{2},} & \\ {\left[X_{i}, X_{j}\right]=a_{i j} X_{i+j} \quad(i+j \notin\{r, r+1\},} & 1 \leq i<j \leq n-3-i) \\ {\left[X_{i}, X_{r-i}\right]=a_{i, r-i} X_{r}+(-1)^{i-1} Y_{1}} & \left(1 \leq i \leq \frac{r-1}{2}\right) \\ {\left[X_{i}, X_{r+1-i}\right]=a_{i, r+1-i} X_{r+1}+(-1)^{i-1} \frac{(r+1-2 i)}{2} Y_{2}} & \left(1 \leq i \leq \frac{r-1}{2}\right) \\ {\left[X_{i}, Y_{1}\right]=\varepsilon X_{r+i}} & (1 \leq i \leq n-3-r)\end{cases}
$$

with $\varepsilon \in\{0,1\}$.

- If $\frac{n-4}{2} \leq r \leq n-4, r$ odd

$$
\begin{cases}{\left[X_{0}, X_{i}\right]=X_{i+1}} & (1 \leq i \leq n-4), \\ {\left[X_{0}, Y_{1}\right]=Y_{2},} & \\ {\left[X_{i}, X_{j}\right]=a_{i j} X_{i+j} \quad(i+j \notin\{r, r+1\},} & 1 \leq i<j \leq n-3-i), \\ {\left[X_{i}, X_{r-i}\right]=a_{i, r-i} X_{r}+(-1)^{i-1} Y_{1}} & \left(1 \leq i \leq \frac{r-1}{2}\right), \\ {\left[X_{i}, X_{r+1-i}\right]=a_{i, r+1-i} X_{r+1}} \\ \quad+(-1)^{i-1} \frac{(r+1-2 i)}{2} Y_{2} & \left(1 \leq i \leq \frac{r-1}{2}\right), \\ {\left[X_{i}, Y_{1}\right]=\left(c_{1}-(i-1) c_{2}\right) X_{r+i}} & \left(1 \leq i \leq n-3-r \leq \frac{n-2}{2}\right), \\ {\left[X_{i}, Y_{2}\right]=c_{2} X_{r+1+i}} & \left(1 \leq i \leq n-4-r \leq \frac{n-4}{2}\right), \\ {\left[Y_{1}, Y_{2}\right]=h X_{n-3}} & \left(h=0 \text { if } r \neq \frac{n-4}{2}\right),\end{cases}
$$

with $c_{1}, c_{2} \in \mathbb{C}$.
Proof. If \mathfrak{g} is in the condition of theorem, then a first general expression of \mathfrak{g} is given by:

$$
\begin{cases}{\left[X_{0}, X_{i}\right]=X_{i+1}} & (1 \leq i \leq n-4), \\ {\left[X_{0}, Y_{1}\right]=Y_{2},} & \\ {\left[X_{i}, X_{j}\right]=a_{i j} X_{i+j} \quad(i+j \notin\{r, r+1\},} & 1 \leq i<j \leq n-3-i), \\ {\left[X_{i}, X_{r-i}\right]=a_{i, r-i} X_{r}+b_{i 1} Y_{1}} & \left(1 \leq i \leq \frac{r-1}{2}\right), \\ {\left[X_{i}, X_{r+1-i}\right]=a_{i, r+1-i} X_{r+1}+b_{i 2} Y_{2}} & \left(1 \leq i \leq \frac{r-1}{2}\right), \\ {\left[X_{1}, Y_{1}\right]=c_{11} X_{r+1}+d Y_{2},} & \\ {\left[X_{i}, Y_{1}\right]=c_{i 1} X_{r+i}} & (2 \leq i \leq n-3-r), \\ {\left[X_{i}, Y_{2}\right]=c_{i 2} X_{r+1+i}} & (1 \leq i \leq n-4-r), \\ {\left[Y_{1}, Y_{2}\right]=h X_{2 r+1}} & \left(\text { si } r \leq \frac{n-4}{2}\right) .\end{cases}
$$

Some elementary changes of basis jointly with Jacobi identity implies that:

- If $1 \leq r \leq \frac{n-5}{2}$ the coefficients can be expressed by $c_{i, 1}=c_{1} \quad(1 \leq i \leq n-3-r) \quad$ and $\quad c_{i, 2}=0 \quad(1 \leq i \leq n-4-r)$.
- If $\frac{n-4}{2} \leq r \leq n-4$ the coefficients can be expressed by
$c_{i, 1}=c_{1}-(i-1) c_{2}(1 \leq i \leq n-3-r) \quad$ and $\quad c_{i, 2}=c_{2} \quad(1 \leq i \leq n-4-r)$.
By using Jacobi identity it is posible to obtain that

$$
b_{i, 2}=(-1)^{(i-1)} \frac{r+1-2 i}{2} b_{1}, \quad 1 \leq i \leq \frac{r-1}{2} .
$$

Furthermore, $b_{1} \neq 0$ (in other case $Y_{1} \notin \mathcal{C}^{1}(\mathfrak{g})$ and then $Y_{1} \notin \mathfrak{g}_{r}=<X_{r}, Y_{1}>$ with $r \geq 3$). Next, an easy change of basis allows to suppose $b_{1}=1$. Then,

- If $3 \leq r \leq \frac{n-5}{2}$. As $b_{1} \neq 0$, if $c_{1} \neq 0$ an easy change of basis allows to suppose $c_{1}=1$, and consistently $c_{1} \in\{0,1\}$.
- If $r=1$, the case must be studied separately.

$$
\text { 4. Dimensions } n=5 \text { and } n=6 \text {. }
$$

Even if our main aim is to study the case of dimension n finite arbitrary, the low dimensional cases are special and we will study them previously. The lowest cases are for dimensions $n=5$ and $n=6$ and they have a special treatment.

Theorem 4.1. Any complex naturally graded Lie algebra of dimension 5 with Goze invariant $(2,2,1)$ is isomorphic to one whose law can be expressed in an adapted basis $\left\{X_{0}, X_{1}, X_{2}, Y_{1}, Y_{2}\right\}$ by:

$$
\mu_{5}:\left\{\begin{array}{l}
{\left[X_{0}, X_{1}\right]=X_{2}} \\
{\left[X_{0}, Y_{1}\right]=Y_{2}}
\end{array}\right.
$$

Proof. The proof is trivial.
Theorem 4.2. Any complex naturally graded Lie algebra of dimension 6 with Goze invariant $(3,2,1)$ is isomorphic to one whose law can be expressed in an adapted basis $\left\{X_{0}, X_{1}, X_{2}, X_{3}, Y_{1}, Y_{2}\right\}$ by:
$\mu_{6}^{1}:\left\{\begin{array}{l}{\left[X_{0}, X_{i}\right]=X_{i+1} \quad(1 \leq i \leq 2),} \\ {\left[X_{0}, Y_{1}\right]=Y_{2},}\end{array} \mu_{6}^{2}:\left\{\begin{array}{l}{\left[X_{0}, X_{i}\right]=X_{i+1} \quad(1 \leq i \leq 2),} \\ {\left[X_{0}, Y_{1}\right]=Y_{2},} \\ {\left[X_{1}, X_{2}\right]=X_{3} .}\end{array}\right.\right.$
Proof. In dimension six the graduation is

$$
\left\langle X_{0}, X_{1}, Y_{1}\right\rangle \oplus\left\langle X_{2}, Y_{2}\right\rangle \oplus\left\langle X_{3}\right\rangle,
$$

and by Theorem 3.5 the laws of these algebras are the following:

$$
\left\{\begin{array}{l}
{\left[X_{0}, X_{1}\right]=X_{2}} \\
{\left[X_{0}, X_{2}\right]=X_{3}} \\
{\left[X_{0}, Y_{1}\right]=Y_{2}} \\
{\left[X_{1}, X_{2}\right]=a_{12} X_{3}}
\end{array}\right.
$$

By using a generic change of basis we prove that nullity of coefficient a_{12} is an invariant.

- If $a_{12} \neq 0$, it is easy to obtain the algebra of law μ_{6}^{2}.
- If $a_{12}=0$, we obtain the algebra of law μ_{6}^{1}.

5. Dimension $n \geq 7$.

Now, we present the classification of the naturally graded Lie algebras with Goze invariant ($n-3,2,1$), dimension $n \geq 7$ and $\operatorname{dim}[\mathfrak{g}, \mathfrak{g}]$ minimum, that is, equal to $n-3$. The first expression of this family is given by the following lemma:

Lemma 5.1. Let \mathfrak{g} be a naturally graded Lie algebra with Goze invariant $(n-3,2,1), \operatorname{dim}(\mathfrak{g})=n \geq 7$ and $\operatorname{dim}[\mathfrak{g}, \mathfrak{g}]=n-3$. Then, there exists a characteristic vector X_{0} and an adapted basis $\left\{X_{0}, X_{1}, \ldots, X_{n-3}, Y_{1}, Y_{2}\right\}$, which lead us to express the laws of \mathfrak{g} by:

$$
\mu_{n}^{a}: \begin{cases}{\left[X_{0}, X_{i}\right]=X_{i+1}} & (1 \leq i \leq n-4) \\ {\left[X_{0}, Y_{1}\right]=Y_{2}} \\ {\left[X_{1}, X_{i}\right]=a X_{i+1}} & (2 \leq i \leq n-4)\end{cases}
$$

if n is odd, or

$$
\mu_{n}^{a, b}: \begin{cases}{\left[X_{0}, X_{i}\right]=X_{i+1}} & (1 \leq i \leq n-4), \\ {\left[X_{0}, Y_{1}\right]=Y_{2},} & (2 \leq i \leq n-5), \\ {\left[X_{1}, X_{i}\right]=a X_{i+1}} & \\ {\left[X_{1}, X_{n-4}\right]=(a+b) X_{n-3},} & \\ {\left[X_{i}, X_{n-3-i}\right]=(-1)^{i+1} b X_{n-3}} & \left(2 \leq i \leq \frac{n-4}{2}\right),\end{cases}
$$

if n is even.
Proof. By using Teorema 3.5 it follows that, in this case $(r=1)$, there exists a characteristic vector X_{0} and an adapted basis, $\left\{X_{0}, X_{1}, \ldots, X_{n-3}\right.$, $\left.Y_{1}, Y_{2}\right\}$, such that the laws of the algebra are given by

$$
\mu_{n}: \begin{cases}{\left[X_{0}, X_{i}\right]=X_{i+1}} & (1 \leq i \leq n-4), \\ {\left[X_{0}, Y_{1}\right]=Y_{2},} & \\ {\left[X_{1}, X_{i}\right]=a_{i j} X_{i+j}} & (2 \leq i<j \leq n-3-i) .\end{cases}
$$

Now, we use an inductive procedure on n.
Dimension $n=7$: In dimension seven the graduation is

$$
\left\langle X_{0}, X_{1}, Y_{1}\right\rangle \oplus\left\langle X_{2}, Y_{2}\right\rangle \oplus\left\langle X_{3}\right\rangle \oplus\left\langle X_{4}\right\rangle,
$$

and by using the Jacobi identity in the family μ_{7} we obtain μ_{7}^{a}.
Dimension $n=8$: Analogously, by using the Jacobi identity it is easy to obtain that μ_{8} is $\mu_{8}^{a, b}$.

The inductive procedure is realized in function of the parity of the dimension. That is the reason why we study the cases of dimension n even and n odd separately.

Dimension $n>7, n$ ODD: If we suppose that the result is true for $n=k$ even, we will prove it for $n=k+1$ odd. If k is even, we suppose that it is possible to express μ_{k} by

$$
\mu_{k}^{a, b}: \begin{cases}{\left[X_{0}, X_{i}\right]=X_{i+1}} & (1 \leq i \leq k-4), \\ {\left[X_{0}, Y_{1}\right]=Y_{2},} & (2 \leq i \leq k-5), \\ {\left[X_{1}, X_{i}\right]=a X_{i+1}} & \\ {\left[X_{1}, X_{n-4}\right]=(a+b) X_{n-3},} & \\ {\left[X_{i}, X_{n-3-i}\right]=(-1)^{i+1} b X_{n-3}} & \left(2 \leq i \leq \frac{k-4}{2}\right) .\end{cases}
$$

Now, for $n=k+1$, we add the brackets

$$
\begin{aligned}
& {\left[X_{0}, X_{k-3}\right]=\alpha_{0} X_{k-2}} \\
& {\left[X_{i}, X_{k-2-i}\right]=\alpha_{i} X_{k-2} \quad\left(1 \leq i \leq \frac{k-4}{2}\right),} \\
& {\left[X_{k-3}, Y_{1}\right]=\beta_{1} X_{k-2},} \\
& {\left[X_{k-4}, Y_{2}\right]=\beta_{2} X_{k-2} .}
\end{aligned}
$$

By using Jacobi identity we prove the result.
Dimension $n>8, n$ even: We suppose that the result is true for $n=k$ odd and we will prove it for $n=k+1$ even. If k is odd, we suppose that it is possible to express μ_{k} by

$$
\mu_{k}^{a}: \begin{cases}{\left[X_{0}, X_{i}\right]=X_{i+1}} & (1 \leq i \leq k-4), \\ {\left[X_{0}, Y_{1}\right]=Y_{2},} & \\ {\left[X_{1}, X_{i}\right]=a X_{i+1} \quad(2 \leq i \leq k-4) .}\end{cases}
$$

For $n=k+1$ it is necessary to add the same brackets as in the odd case and analogously we obtain the result.

6. Classification theorem

Finally, we give the theorem of classification for naturally graded Lie algebras with Goze invariant $(n-3,2,1), r=1$ and $n \geq 7$.

Theorem 6.1. Any complex naturally graded Lie algebra of dimension $n, n \geq 7$, with Goze invariant ($n-3,2,1$) and laws $\mu(n)$ is isomorphic to one whose law can be expressed in suitable adapted basis by

$$
\begin{aligned}
& \begin{array}{r}
\mu_{(n-3,2,1)}^{1} \\
(n \geq 5)
\end{array}:\left\{\begin{array}{l}
{\left[X_{0}, X_{i}\right]=X_{i+1} \quad(1 \leq i \leq n-4),} \\
{\left[X_{0}, Y_{1}\right]=Y_{2} ;}
\end{array}\right. \\
& \underset{(n \text { even, } n \geq 6)}{\mu_{(n-3,2,1)}^{2}}: \begin{cases}{\left[X_{0}, X_{i}\right]=X_{i+1}} & (1 \leq i \leq n-4), \\
{\left[X_{0}, Y_{1}\right]=Y_{2},} & \\
{\left[X_{i}, X_{n-3-i}\right]=(-1)^{i+1} X_{n-3}} & \left(1 \leq i \leq \frac{n-4}{2}\right) ;\end{cases} \\
& \underset{(n \geq 2,1)}{\mu_{(n-3)}^{3}}:\left\{\begin{array}{ll}
{\left[X_{0}, X_{i}\right]=X_{i+1}} & (1 \leq i \leq n-4) \\
{\left[X_{0}, Y_{1}\right]=Y_{2},} \\
{\left[X_{1}, X_{i}\right]=X_{i+1}}
\end{array} \quad(2 \leq i \leq n-4) ;\right. \\
& \underset{(n \text { even, } n \geq 8)}{\mu_{(n-3,2,1)}^{4}}: \begin{cases}{\left[X_{0}, X_{i}\right]=X_{i+1}} & (1 \leq i \leq n-4), \\
{\left[X_{0}, Y_{1}\right]=Y_{2},} & (2 \leq i \leq n-5), \\
{\left[X_{1}, X_{i}\right]=X_{i+1}} & \\
{\left[X_{i}, X_{n-3-i}\right]=(-1)^{i} X_{n-3}} & \left(2 \leq i \leq \frac{n-4}{2}\right) ;\end{cases} \\
& \underset{(n \text { even, } n \geq 8)}{\mu_{(n-3,2,1)}^{5}}: \begin{cases}{\left[X_{0}, X_{i}\right]=X_{i+1}} & (1 \leq i \leq n-4), \\
{\left[X_{0}, Y_{1}\right]=Y_{2},} & (2 \leq i \leq n-5), \\
{\left[X_{1}, X_{i}\right]=X_{i+1}} & {\left[X_{1}, X_{n-4}\right]=2 X_{n-3},} \\
{\left[X_{i}, X_{n-3-i}\right]=(-1)^{i+1} X_{n-3}} & \left(2 \leq i \leq \frac{n-4}{2}\right) .\end{cases}
\end{aligned}
$$

Proof. By using the above lemma we will obtain the result. In function of the dimension of the algebra it is necessary to consider two different cases.

Let \mathfrak{g} be a naturally graded Lie algebra of dimension n odd, $n \geq 7$, with Goze invariant ($n-3,2,1$) and laws μ_{n}. Then, the natural graduation is given by

$$
\left\langle X_{0}, X_{1}, Y_{1}\right\rangle \oplus\left\langle X_{2}, Y_{2}\right\rangle \oplus\left\langle X_{3}\right\rangle \oplus \cdots \oplus\left\langle X_{n-3}\right\rangle .
$$

- Case 1: n even, $n \geq 8$. If n is even the laws of the algebra can be expressed by

$$
\mu_{n}^{a, b}: \begin{cases}{\left[X_{0}, X_{i}\right]=X_{i+1}} & (1 \leq i \leq n-4), \\ {\left[X_{0}, Y_{1}\right]=Y_{2},} & \\ {\left[X_{1}, X_{i}\right]=a X_{i+1}} & (2 \leq i \leq n-5), \\ {\left[X_{1}, X_{n-4}\right]=(a+b) X_{n-3},} & \\ {\left[X_{i}, X_{n-3-i}\right]=(-1)^{i+1} b X_{n-3},} & \left(2 \leq i \leq \frac{n-4}{2}\right) .\end{cases}
$$

The general change of basis implies three generators, X_{0}, X_{1} and Y_{1} :

$$
\begin{aligned}
X_{0}^{\prime} & =\sum_{i=0}^{n-3} P_{i} X_{i}+P_{n-2} Y_{1}+P_{n-1} Y_{2} \\
X_{1}^{\prime} & =\sum_{i=0}^{n-3} Q_{i} X_{i}+Q_{n-2} Y_{1}+Q_{n-1} Y_{2} \\
Y_{1}^{\prime} & =\sum_{i=0}^{n-3} R_{i} X_{i}+R_{n-2} Y_{1}+R_{n-1} Y_{2}
\end{aligned}
$$

By using the condition of the family we obtain that

$$
\left\{\begin{array}{l}
Q_{0}=0, \\
R_{i}=0
\end{array} \quad(0 \leq i \leq n-5) .\right.
$$

Finally, the admisible changes of basis are

$$
\begin{aligned}
X_{0}^{\prime}= & P_{0} X_{0}+P_{1} X_{1}+P_{2} X_{2}+\cdots+P_{n-4} X_{n-4}+P_{n-3} X_{n-3} \\
& +P_{n-2} Y_{1}+P_{n-1} Y_{2}, \\
X_{1}^{\prime}= & Q_{1} X_{1}+Q_{2} X_{2}+\cdots+Q_{n-4} X_{n-4}+Q_{n-3} X_{n-3}+Q_{n-2} Y_{1}+Q_{n-1} Y_{2}, \\
X_{2}^{\prime}= & P_{0} Q_{1} X_{2}+\left(P_{0} Q_{2}+a\left(P_{1} Q_{2}-P_{2} Q_{1}\right)\right) X_{3}+\cdots+\left(P_{0} Q_{n-5}\right. \\
& \left.+a\left(P_{1} Q_{n-5}-P_{n-5} Q_{1}\right)\right) X_{n-4}+\left(P_{0} Q_{n-4}+a\left(P_{1} Q_{n-4}-P_{n-4} Q_{1}\right)\right) \\
& { }^{\frac{n-4}{2}} \\
& +\sum_{i=1}(-1)^{i+1}\left(P_{i} Q_{n-3-i}-P_{n-3-i} Q_{i}\right) b X_{n-3}+\left(P_{0} Q_{n-2}-P_{n-2} Q_{0}\right) Y_{2}, \\
X_{3}^{\prime}= & P_{0}\left(P_{0}+a P_{1}\right) Q_{1} X_{3}+\left(P_{0}+a P_{1}\right)\left(P_{0} Q_{2}+a\left(P_{1} Q_{2}-P_{2} Q_{1}\right)\right) X_{4}+\ldots \\
& +\left(P_{0}+a P_{1}\right)\left(\left(P_{0} Q_{n-6}+a\left(P_{1} Q_{n-6}-P_{n-6} Q_{1}\right)\right) X_{n-4}\right. \\
& +\left(P_{0}+a P_{1}\right)(\ldots) X_{n-3},
\end{aligned}
$$

$$
\begin{aligned}
X_{n-4}^{\prime}= & P_{0}\left(P_{0}+a P_{1}\right)^{n-6} Q_{1} X_{n-4} \\
& +\left((P _ { 0 } + a P _ { 1 }) ^ { n - 7 } (P _ { 0 } + (a + b) P _ { 1 }) \left(\left(P_{0} Q_{2}+a\left(P_{1} Q_{2}--P_{2} Q_{1}\right)\right) X_{n-3},\right.\right. \\
X_{n-3}^{\prime}= & P_{0}\left(P_{0}+a P_{1}\right)^{n-6} Q_{1}\left(P_{0}+(a+b) P_{1}\right) X_{n-3}, \\
Y_{1}^{\prime}= & R_{n-4} X_{n-4}+R_{n-3} X_{n-3}+R_{n-2} Y_{1}+R_{n-1} Y_{2}, \\
Y_{2}^{\prime}= & \left(P_{0}+(a+b) P_{1}\right) R_{n-4} X_{n-3}+P_{0} R_{n-2} Y_{2},
\end{aligned}
$$

with the following restrictions

$$
P_{0} \neq 0, \quad Q_{1} \neq 0, \quad R_{n-2} \neq 0, \quad P_{0}+a P_{1} \neq 0, \quad P_{0}+(a+b) P_{1} \neq 0
$$

The nullity of a and b are invariant, because

$$
a^{\prime}=\frac{Q_{1} a}{P_{0}+a P_{1}} \quad \text { and } \quad b^{\prime}=\frac{P_{0} Q_{1} b}{\left(P_{0}+a P_{1}\right)\left(P_{0}+(a+b) P_{1}\right)} .
$$

Furthermore, we obtain that the nullity of $a+b$ is invariant, because

$$
a^{\prime}+b^{\prime}=\frac{Q_{1}(a+b)}{P_{0}+(a+b) P_{1}}
$$

We consider the following cases:

- Case 2.1: $a=b=0$. Trivially, we obtain $\mu_{(n-3,2,1)}^{1}$.
- Case 2.2: $a \neq 0$ and $b=0$. By choosing P_{0}, Q_{1} and P_{1}, we obtain $\mu_{(n-3,2,1)}^{2}$.
- Case 2.3: $a=0$ and $b \neq 0$. As in the above case, we obtain $\mu_{(n-3,2,1)}^{3}$.
- Case 2.4: $a \neq 0, b \neq 0$ and $a+b=0$. By choosing P_{0}, Q_{1} and P_{1}, we obtain $\mu_{(n-3,2,1)}^{4}$.
- Case 2.5: $a \neq 0, b \neq 0$ and $a+b \neq 0$. It is possible to choose P_{0}, Q_{1} and P_{1} for to obtain the algebra $\mu_{(n-3,2,1)}^{5}$.

Furthermore, the above results prove that the algebras $\mu_{(n-3,2,1)}^{1}, \mu_{(n-3,2,1)}^{2}$, $\mu_{(n-3,2,1)}^{3}, \mu_{(n-3,2,1)}^{4}$ y $\mu_{(n-3,2,1)}^{5}$ are pairwise no isomorphic for n even.

- Case 2: n odd, $n \geq 7$. As follows from the above lemma we obtain that an algebra of this kind is isomorphic to one whose law can be expressed by

$$
\left\{\begin{array}{l}
{\left[X_{0}, X_{i}\right]=X_{i+1} \quad(1 \leq i \leq n-4)} \\
{\left[X_{0}, Y_{1}\right]=Y_{2}} \\
{\left[X_{1}, X_{i}\right]=a X_{i+1} \quad(2 \leq i<j \leq n-3-i)}
\end{array}\right.
$$

Since, the odd case is equal to even case considering $b=0$. An analogous treatment of Case 1 proves that the nullity of a is an invariant and from here, the result is obtained.

References

[1] Cabezas, J.M., Camacho, L.M., Gómez, J.R., Navarro, R.M., A class of nilpotent Lie algebras, Comm. Algebra 28 (9) (2000), 4489-4499.
[2] Cabezas, J.M., Gómez, J.R., ($n-4$)-filiform Lie algebras, Comm. Algebra 27 (10) (1999), 4803-4819.
[3] Cabezas, J.M., Gómez, J.R., Jiménez-Merchán, A., Family of pfiliform Lie algebras, in "Algebra and Operator Theory", Khakimdjanov, Y., Goze, M., Ayupov, Sh., eds., Kluwer Academic Publishers, Tashkent, 1998, pp. 93-102.
[4] Cabezas, J.M., Gómez, J.R., Pastor, E., Structure theorem for naturally graded 3 -filiform Lie algebras, in "I Colloquium on Lie Theory and Applications", University of Vigo, Vigo, 2000.
[5] Cabezas, J.M., Pastor, E., Naturally graded p-filiform Lie algebras in arbitrary finite dimension, J. Lie Theory 15 (2005), 379-391.
[6] Gómez, J.R., Jiménez-Merchán, A., Naturally graded quasifiliform Lie algebras, J. Algebra 256 (2002), 211-228.
[7] Goze, M., Hakimjanov (Khakimdjanov), Y., Sur les algèbres de Lie nilpotentes admettant un tore de dérivations, Manuscripta Math. 84 (1994), 115-224.
[8] Goze, M., Khakimdjanov, Y., "Nilpotent Lie Algebras", Kluwer Academic Publishers, 1996.
[9] Vergne, M., Cohomologie des algèbres de Lie nilpotentes. Application à l'étude de la varieté des algèbres de Lie nilpotentes, Bull. Soc. Math. France, 98 (1970), $81-116$.

[^0]: ${ }^{\dagger}$ This paper has been partially supported by the PAICYT, of Junta de Andalucía (Spain), and by the Ministerio de Ciencia y Tecnología (Spain), ref. BFM 2000-1047

