About a family of Naturally Graded no p-filiform Lie algebras [†]

L.M. CAMACHO, J.R. GÓMEZ, A.J. GONZÁLEZ

Departamento de Matemática Aplicada I, Universidad de Sevilla Avda. Reina Mercedes s/n, 41012 Sevilla, Spain e-mail: lcamacho@us.es, jrgomez@us.es, agonzalez@us.es

(Presented by Santos González)

AMS Subject Class. (2000): 17B45, 17B70

Received December 20, 2004

1. INTRODUCTION

The knowledge of naturally graded Lie algebras of a particular Lie algebras class gives a valuable information about the structure of the rest of algebras of that class. In 1970, Vergne [9] obtained the classification in finite arbitrary dimension, n, for the case of filiform (nilindex n - 1). In [8, 7] Goze and Khakimdjanov gave the geometric description of the characteristically nilpotent filiform Lie algebras using the naturally graded filiform Lie algebras. In [6] Gómez and Jiménez-Merchán, obtained the classification in finite arbitrary dimension for the case 2-filiform (nilindex n - 2). There are two subcases for the nilindex n - 3: 3-filiform Lie algebras and the Lie algebras with characteristic sequence (n - 3, 2, 1). In [4, 5], Cabezas, Gómez and Pastor gave the classification of naturally graded p-filiform Lie algebras.

Consistently, for nilindex n-3, only rest to study the case of characteristic sequence (n-3,2,1). In this work we offer the classification in arbitrary finite dimension of the family of naturally graded Lie algebras \mathfrak{g} with the above characteristic sequence such that the dimension of the derived ideal is minimum, that is, with dim $[\mathfrak{g},\mathfrak{g}] = n-3$.

The two first acceptable dimensions are 5 and 6, but the general situation occurs only for $n \ge 7$.

[†] This paper has been partially supported by the PAICYT, of Junta de Andalucía (Spain), and by the Ministerio de Ciencia y Tecnología (Spain), ref. BFM 2000-1047

2. Preliminaries

The descending central sequence of a Lie algebra \mathfrak{g} is defined by $(\mathcal{C}^{i}(\mathfrak{g}))$, $i \in \mathbb{N} \cup \{0\}$, where $\mathcal{C}^{0}(\mathfrak{g}) = \mathfrak{g}$ and $\mathcal{C}^{i}(\mathfrak{g}) = [\mathfrak{g}, \mathcal{C}^{i-1}(\mathfrak{g})]$.

A Lie algebra \mathfrak{g} is called *nilpotent* if there exists $k \in \mathbb{N}$ such that $\mathcal{C}^k(\mathfrak{g}) = \{0\}$. The smallest integer verifying this equation is called the *nilindex* of \mathfrak{g} .

A Lie algebra \mathfrak{g} , with dim(\mathfrak{g}) = n, is called filiform (or 1-filiform) if it verifies dim($\mathcal{C}^i(\mathfrak{g})$) = n - i - 1 for $1 \leq i \leq n - 1$. These algebras have maximal nilindex n - 1. The Lie algebras with a nilindex n - 2 are called quasifiliform (or 2-filiform) and those whose nilindex is 1 are called *abelian*.

Let \mathfrak{g} be a nilpotent Lie algebra of dimension n.

For all $X \in \mathfrak{g} - [\mathfrak{g}, \mathfrak{g}]$, $c(X) = (c_1(X), c_2(X), \ldots, 1)$ is the sequence, in decreasing order, of the dimensions of the characteristic subspaces of the *nil*-potent operator $\operatorname{ad}(X)$, where the adjoint operator of an element $X \in \mathfrak{g}$, $\operatorname{ad}(X)$, is defined by

$$\operatorname{ad}(X): \mathfrak{g} \to \mathfrak{g} \\ Y \mapsto [X, Y].$$

The finite sequence $c(\mathfrak{g}) = \sup\{c(X) : X \in \mathfrak{g} - [\mathfrak{g}, \mathfrak{g}]\}$ is called the *characteristic sequence* or *Goze invariant* of the nilpotent Lie algebra \mathfrak{g} . The filiform, quasifiliform and abelian Lie algebras of dimension n have as their Goze invariant (n-1,1), (n-2,1,1) and $(1,1,\ldots,1)$, respectively. The Lie algebras with characteristic sequence $(n-p,1,\ldots,1)$ are known as *p*-filiform Lie algebras [3]. We know the classification of *p*-filiform for the integer values of p between n-5 and n-2 ([2, 1]). Remark that, for nilindex n-3, there are two families with Goze invariant (n-3,1,1,1) and (n-3,2,1) respectively.

Note that a complex Lie algebra \mathfrak{g} is naturally filtered by the descending central sequence. This result leads to associate any Lie algebra \mathfrak{g} with a graded Lie algebra, gr \mathfrak{g} with equal nilindex:

$$\operatorname{gr} \mathfrak{g} = \bigoplus_{i \in \mathbb{Z}} \mathfrak{g}_i, \qquad \qquad \mathfrak{g}_i = \mathcal{C}^{i-1}(\mathfrak{g}) / \mathcal{C}^i(\mathfrak{g}).$$

By nilpotency, the above graduation is finite, that is gr $\mathfrak{g} = \mathfrak{g}_1 \oplus \mathfrak{g}_2 \oplus \cdots \oplus \mathfrak{g}_k$ with $[\mathfrak{g}_i, \mathfrak{g}_j] \subset \mathfrak{g}_{i+j}$, for $i+j \leq k$. A Lie algebra \mathfrak{g} is said to be naturally graded if gr \mathfrak{g} is isomorphic to \mathfrak{g} , what will be denoted henceforth by gr $\mathfrak{g}=\mathfrak{g}$.

Let $\{X_0, X_1, \ldots, X_{n-3}, Y_1, Y_2\}$ be an adapted basis of \mathfrak{g} . We study the case where the dimension of the derived ideal is minimum, consistently dim $[\mathfrak{g}, \mathfrak{g}] = n-3$. Thus, Y_1 is not in $[\mathfrak{g}, \mathfrak{g}]$ and, consequently, $Y_1 \in \mathfrak{g}_1$. In general, if we denote as r to the position of the vector Y_1 into the subspaces of the natural graduation, we observe that the value of r is r = 1. We remark that the position of Y_2 is previously determined because we have that $[X_0, Y_1] = Y_2$ and that implies $Y_2 \in \mathfrak{g}_{r+1}$ with $1 \leq r \leq n-4$. Then, in this case $Y_2 \in \mathfrak{g}_2$.

From now, Jacobi identity for the vectors X, Y, Z will be denoted as Jac(X, Y, Z) and the laws of the algebras, \mathfrak{g} , of dimension n such that dim $[\mathfrak{g}, \mathfrak{g}]$ is minimum will be denoted as μ_n .

3. Structure theorem

In this section, we will obtain a first approximation to the structure of naturally graded Lie algebras with Goze invariant (n - 3, 2, 1).

Let \mathfrak{g} be a naturally graded Lie algebra of Goze's invariant (n-3, 2, 1) and let $\{X_0, X_1, \ldots, X_{n-3}, Y_1, Y_2\}$ be an adapted basis of \mathfrak{g} , that is:

$$\begin{split} & [X_0, X_i] = X_{i+1} \quad (1 \le i \le n-4) \,, \\ & [X_0, X_{n-3}] = 0 \,, \\ & [X_0, Y_1] = Y_2 \,, \\ & [X_0, Y_2] = 0 \,, \end{split}$$

where $X_0 \in \mathfrak{g} - [\mathfrak{g}, \mathfrak{g}]$. That implies

 $\begin{array}{l} \mathcal{C}^{1}(\mathfrak{g}) \supset \langle X_{2}, X_{3}, \dots, X_{n-3}, Y_{2} \rangle , \\ \mathcal{C}^{i}(\mathfrak{g}) \supset \langle X_{i+1}, X_{i+2}, \dots, X_{n-3} \rangle \quad (2 \leq i \leq n-4) \,. \end{array}$

LEMMA 3.1. Let \mathfrak{g} be a Lie algebra of dimension n and Goze's invariant (n-3,2,1) and let $\{X_0, X_1, \ldots, X_{n-3}, Y_1, Y_2\}$ be an adapted basis of \mathfrak{g} . Then,

$$X_1 \notin \mathcal{C}^1(\mathfrak{g}), \qquad X_{n-3} \in \mathcal{Z}(\mathfrak{g}), \qquad Y_1 \notin \mathcal{C}^{n-4}(\mathfrak{g}), \qquad Y_2 \notin \mathcal{C}^{n-3}(\mathfrak{g}).$$

Proof. Obviously, $X_{n-3} \in \mathcal{Z}(\mathfrak{g})$, $Y_1 \notin \mathcal{C}^{n-4}(\mathfrak{g})$ and $Y_2 \notin \mathcal{C}^{n-3}(\mathfrak{g})$ because, otherwise, \mathfrak{g} could not be of characteristic sequence (n-3,2,1). It is easy to prove that $X_1 \notin [\mathfrak{g},\mathfrak{g}]$ supposing that $X_1 \in [Y_1,Y_2]$, or $X_1 \in [X_i,Y_j]$, $1 \leq i \leq n-4, 1 \leq j \leq 2$, or $X_1 \in [X_i,X_j]$, $1 \leq i < j \leq n-3-i$, and obtaining contradiction.

Remark 3.2. We identify each vector with its class, and we call $\mu(n, r)$ the family of laws of Lie algebras with Goze invariant (n - 3, 2, 1) where n is the dimension and r is the position of Y_1 in the subsets of the natural gradation. We remark that the position of Y_2 is previously determined because we have that $[X_0, Y_1] = Y_2$ and that implies $Y_2 \in \mathfrak{g}_{r+1}$ with $1 \leq r \leq n-4$.

Remark 3.3. It is easy to see that $\mathfrak{g}_1 \supset \langle X_0, X_1 \rangle$ and $\mathfrak{g}_i \supset \langle X_i \rangle$, $2 \leq i \leq n-3$.

Now, we obtain the general structure of laws of naturally graded Lie algebras of characteristic sequence (n-3, 2, 1) in arbitrary dimension. At first, we prove that if $Y_1 \in \mathfrak{g}_r$, then r is odd.

LEMMA 3.4. If r is even, the case $\mu(n,r)$ is not admissible in any dimension.

Proof. Let \mathfrak{g} be a naturally graded Lie algebra of Goze invariant (n - 3, 2, 1), let $\{X_0, X_1, \ldots, X_{n-3}, Y_1, Y_2\}$ be an adapted basis of \mathfrak{g} , and let $Y_1 \in \mathfrak{g}_r$ be with r even. It is easy to prove that $Y_1 \notin [\mathfrak{g}, \mathfrak{g}]$ so $Y_1 \in \mathfrak{g}_1$ and this is impossible because r is even.

THEOREM 3.5. (STRUCTURE THEOREM) Any complex naturally graded Lie algebra \mathfrak{g} of dimension $n \geq 5$, with Goze invariant (n-3, 2, 1) is isomorphic to one whose law can be expressed in an adapted basis $\{X_0, X_1, \ldots, X_{n-3}, Y_1, Y_2\}$ by:

• If
$$r = 1$$

$$\begin{cases} [X_0, X_i] = X_{i+1} & (1 \le i \le n-4), \\ [X_0, Y_1] = Y_2, \\ [X_i, X_j] = a_{ij} X_{i+j} & (1 \le i < j \le n-3-i) \end{cases}$$

• If
$$3 \le r \le \frac{n-5}{2}$$
, r odd

$$\begin{cases} [X_0, X_i] = X_{i+1} & (1 \le i \le n-4), \\ [X_0, Y_1] = Y_2, \\ [X_i, X_j] = a_{ij}X_{i+j} & (i+j \notin \{r, r+1\}, \ 1 \le i < j \le n-3-i), \\ [X_i, X_{r-i}] = a_{i,r-i}X_r + (-1)^{i-1}Y_1 & (1 \le i \le \frac{r-1}{2}), \\ [X_i, X_{r+1-i}] = a_{i,r+1-i}X_{r+1} + (-1)^{i-1}\frac{(r+1-2i)}{2}Y_2 & (1 \le i \le \frac{r-1}{2}), \\ [X_i, Y_1] = \varepsilon X_{r+i} & (1 \le i \le n-3-r), \end{cases}$$

with $\varepsilon \in \{0,1\}$.

$$\begin{array}{ll} \bullet \ If \ \frac{n-4}{2} \leq r \leq n-4, \ r \ odd \\ & \left\{ \begin{array}{ll} [X_0, X_i] = X_{i+1} & (1 \leq i \leq n-4) \,, \\ [X_0, Y_1] = Y_2 \,, \\ [X_i, X_j] = a_{ij} X_{i+j} & (i+j \notin \{r,r+1\} \,, \ 1 \leq i < j \leq n-3-i) \,, \\ [X_i, X_{r-i}] = a_{i,r-i} X_r + (-1)^{i-1} Y_1 & (1 \leq i \leq \frac{r-1}{2}) \,, \\ [X_i, X_{r+1-i}] = a_{i,r+1-i} X_{r+1} & \\ & + (-1)^{i-1} \frac{(r+1-2i)}{2} Y_2 & (1 \leq i \leq \frac{r-1}{2}) \,, \\ [X_i, Y_1] = (c_1 - (i-1)c_2) X_{r+i} & (1 \leq i \leq n-3-r \leq \frac{n-2}{2}) \,, \\ [X_i, Y_2] = c_2 X_{r+1+i} & (1 \leq i \leq n-4-r \leq \frac{n-4}{2}) \,, \\ [Y_1, Y_2] = h X_{n-3} & (h=0 \ if \ r \neq \frac{n-4}{2}) \,, \end{array} \right.$$

with $c_1, c_2 \in \mathbb{C}$.

Proof. If \mathfrak{g} is in the condition of theorem, then a first general expression of \mathfrak{g} is given by:

$$\begin{cases} [X_0, X_i] = X_{i+1} & (1 \le i \le n-4), \\ [X_0, Y_1] = Y_2, \\ [X_i, X_j] = a_{ij}X_{i+j} & (i+j \notin \{r, r+1\}, \ 1 \le i < j \le n-3-i), \\ [X_i, X_{r-i}] = a_{i,r-i}X_r + b_{i1}Y_1 & (1 \le i \le \frac{r-1}{2}), \\ [X_i, X_{r+1-i}] = a_{i,r+1-i}X_{r+1} + b_{i2}Y_2 & (1 \le i \le \frac{r-1}{2}), \\ [X_1, Y_1] = c_{11}X_{r+1} + dY_2, \\ [X_i, Y_1] = c_{i1}X_{r+i} & (2 \le i \le n-3-r), \\ [X_i, Y_2] = c_{i2}X_{r+1+i} & (1 \le i \le n-4-r), \\ [Y_1, Y_2] = hX_{2r+1} & (\text{si } r \le \frac{n-4}{2}). \end{cases}$$

Some elementary changes of basis jointly with Jacobi identity implies that:

 \bullet If $1 \leq r \leq \frac{n-5}{2}$ the coefficients can be expressed by

$$c_{i,1} = c_1$$
 $(1 \le i \le n - 3 - r)$ and $c_{i,2} = 0$ $(1 \le i \le n - 4 - r)$.

• If $\frac{n-4}{2} \le r \le n-4$ the coefficients can be expressed by

$$c_{i,1} = c_1 - (i-1)c_2$$
 $(1 \le i \le n-3-r)$ and $c_{i,2} = c_2$ $(1 \le i \le n-4-r)$

By using Jacobi identity it is possible to obtain that

$$b_{i,2} = (-1)^{(i-1)} \frac{r+1-2i}{2} b_1, \qquad 1 \le i \le \frac{r-1}{2}.$$

Furthermore, $b_1 \neq 0$ (in other case $Y_1 \notin \mathcal{C}^1(\mathfrak{g})$ and then $Y_1 \notin \mathfrak{g}_r = \langle X_r, Y_1 \rangle$ with $r \geq 3$). Next, an easy change of basis allows to suppose $b_1 = 1$. Then,

• If $3 \le r \le \frac{n-5}{2}$. As $b_1 \ne 0$, if $c_1 \ne 0$ an easy change of basis allows to suppose $c_1 = 1$, and consistently $c_1 \in \{0, 1\}$.

• If r = 1, the case must be studied separately.

4. Dimensions n = 5 and n = 6.

Even if our main aim is to study the case of dimension n finite arbitrary, the low dimensional cases are special and we will study them previously. The lowest cases are for dimensions n = 5 and n = 6 and they have a special treatment.

THEOREM 4.1. Any complex naturally graded Lie algebra of dimension 5 with Goze invariant (2, 2, 1) is isomorphic to one whose law can be expressed in an adapted basis $\{X_0, X_1, X_2, Y_1, Y_2\}$ by:

$$\mu_5: \begin{cases} [X_0, X_1] = X_2, \\ [X_0, Y_1] = Y_2. \end{cases}$$

Proof. The proof is trivial.

THEOREM 4.2. Any complex naturally graded Lie algebra of dimension 6 with Goze invariant (3, 2, 1) is isomorphic to one whose law can be expressed in an adapted basis $\{X_0, X_1, X_2, X_3, Y_1, Y_2\}$ by:

$$\mu_6^1 : \begin{cases} [X_0, X_i] = X_{i+1} & (1 \le i \le 2), \\ [X_0, Y_1] = Y_2, \end{cases} \qquad \mu_6^2 : \begin{cases} [X_0, X_i] = X_{i+1} & (1 \le i \le 2), \\ [X_0, Y_1] = Y_2, \\ [X_1, X_2] = X_3. \end{cases}$$

Proof. In dimension six the graduation is

$$\langle X_0, X_1, Y_1
angle \oplus \langle X_2, Y_2
angle \oplus \langle X_3
angle,$$

and by Theorem 3.5 the laws of these algebras are the following:

$$\begin{cases} [X_0, X_1] = X_2, \\ [X_0, X_2] = X_3, \\ [X_0, Y_1] = Y_2, \\ [X_1, X_2] = a_{12}X_3 \end{cases}$$

By using a generic change of basis we prove that nullity of coefficient a_{12} is an invariant.

- If $a_{12} \neq 0$, it is easy to obtain the algebra of law μ_6^2 .
- If $a_{12} = 0$, we obtain the algebra of law μ_6^1 .

5. DIMENSION
$$n \ge 7$$
.

Now, we present the classification of the naturally graded Lie algebras with Goze invariant (n-3, 2, 1), dimension $n \ge 7$ and dim $[\mathfrak{g}, \mathfrak{g}]$ minimum, that is, equal to n-3. The first expression of this family is given by the following lemma:

LEMMA 5.1. Let \mathfrak{g} be a naturally graded Lie algebra with Goze invariant (n-3,2,1), dim $(\mathfrak{g}) = n \geq 7$ and dim $[\mathfrak{g},\mathfrak{g}] = n-3$. Then, there exists a characteristic vector X_0 and an adapted basis $\{X_0, X_1, \ldots, X_{n-3}, Y_1, Y_2\}$, which lead us to express the laws of \mathfrak{g} by:

$$\mu_n^a : \begin{cases} [X_0, X_i] = X_{i+1} & (1 \le i \le n-4), \\ [X_0, Y_1] = Y_2, \\ [X_1, X_i] = a X_{i+1} & (2 \le i \le n-4), \end{cases}$$

if n is odd, or

$$\mu_n^{a,b}: \begin{cases} [X_0, X_i] = X_{i+1} & (1 \le i \le n-4), \\ [X_0, Y_1] = Y_2, & \\ [X_1, X_i] = aX_{i+1} & (2 \le i \le n-5), \\ [X_1, X_{n-4}] = (a+b)X_{n-3}, & \\ [X_i, X_{n-3-i}] = (-1)^{i+1}bX_{n-3} & (2 \le i \le \frac{n-4}{2}), \end{cases}$$

if n is even.

Proof. By using Teorema 3.5 it follows that, in this case (r = 1), there exists a characteristic vector X_0 and an adapted basis, $\{X_0, X_1, \ldots, X_{n-3}, Y_1, Y_2\}$, such that the laws of the algebra are given by

$$\mu_n : \begin{cases} [X_0, X_i] = X_{i+1} & (1 \le i \le n-4), \\ [X_0, Y_1] = Y_2, \\ [X_1, X_i] = a_{ij} X_{i+j} & (2 \le i < j \le n-3-i). \end{cases}$$

Now, we use an inductive procedure on n.

DIMENSION n = 7: In dimension seven the graduation is

$$\langle X_0, X_1, Y_1 \rangle \oplus \langle X_2, Y_2 \rangle \oplus \langle X_3 \rangle \oplus \langle X_4 \rangle$$
,

and by using the Jacobi identity in the family μ_7 we obtain μ_7^a .

DIMENSION n = 8: Analogously, by using the Jacobi identity it is easy to obtain that μ_8 is $\mu_8^{a,b}$.

The inductive procedure is realized in function of the parity of the dimension. That is the reason why we study the cases of dimension n even and n odd separately.

DIMENSION n > 7, n ODD: If we suppose that the result is true for n = k even, we will prove it for n = k + 1 odd. If k is even, we suppose that it is possible to express μ_k by

$$\mu_k^{a,b} : \begin{cases} [X_0, X_i] = X_{i+1} & (1 \le i \le k-4), \\ [X_0, Y_1] = Y_2, & \\ [X_1, X_i] = aX_{i+1} & (2 \le i \le k-5), \\ [X_1, X_{n-4}] = (a+b)X_{n-3}, & \\ [X_i, X_{n-3-i}] = (-1)^{i+1}bX_{n-3} & (2 \le i \le \frac{k-4}{2}). \end{cases}$$

Now, for n = k + 1, we add the brackets

$$\begin{split} & [X_0, X_{k-3}] = \alpha_0 X_{k-2} , \\ & [X_i, X_{k-2-i}] = \alpha_i X_{k-2} \quad (1 \le i \le \frac{k-4}{2}) , \\ & [X_{k-3}, Y_1] = \beta_1 X_{k-2} , \\ & [X_{k-4}, Y_2] = \beta_2 X_{k-2} . \end{split}$$

By using Jacobi identity we prove the result.

DIMENSION n > 8, n EVEN: We suppose that the result is true for n = k odd and we will prove it for n = k + 1 even. If k is odd, we suppose that it is possible to express μ_k by

$$\mu_k^a : \begin{cases} [X_0, X_i] = X_{i+1} & (1 \le i \le k-4), \\ [X_0, Y_1] = Y_2, \\ [X_1, X_i] = aX_{i+1} & (2 \le i \le k-4). \end{cases}$$

For n = k + 1 it is necessary to add the same brackets as in the odd case and analogously we obtain the result.

6. Classification theorem

Finally, we give the theorem of classification for naturally graded Lie algebras with Goze invariant (n-3,2,1), r=1 and $n \ge 7$.

THEOREM 6.1. Any complex naturally graded Lie algebra of dimension $n, n \ge 7$, with Goze invariant (n - 3, 2, 1) and laws $\mu(n)$ is isomorphic to one whose law can be expressed in suitable adapted basis by

$$\begin{array}{l}
\mu_{(n-3,2,1)}^{1} \\
(n \ge 5)
\end{array} : \begin{cases}
[X_{0}, X_{i}] = X_{i+1} & (1 \le i \le n-4), \\
[X_{0}, Y_{1}] = Y_{2};
\end{array}$$

$$\mu_{(n-3,2,1)}^{2} : \begin{cases} [X_{0}, X_{i}] = X_{i+1} & (1 \le i \le n-4), \\ [X_{0}, Y_{1}] = Y_{2}, \\ [X_{i}, X_{n-3-i}] = (-1)^{i+1} X_{n-3} & (1 \le i \le \frac{n-4}{2}); \end{cases}$$

$$\mu_{(n-3,2,1)}^{3} : \begin{cases} [X_{0}, X_{i}] = X_{i+1} & (1 \le i \le n-4), \\ [X_{0}, Y_{1}] = Y_{2}, \\ [X_{1}, X_{i}] = X_{i+1} & (2 \le i \le n-4); \end{cases}$$

$$\mu_{(n-3,2,1)}^{4} : \begin{cases} [X_{0}, X_{i}] = X_{i+1} & (1 \le i \le n-4), \\ [X_{0}, Y_{1}] = Y_{2}, \\ [X_{1}, X_{i}] = X_{i+1} & (2 \le i \le n-4), \\ [X_{0}, Y_{1}] = Y_{2}, \\ [X_{1}, X_{i}] = X_{i+1} & (2 \le i \le n-5), \\ [X_{i}, X_{n-3-i}] = (-1)^{i} X_{n-3} & (2 \le i \le \frac{n-4}{2}); \end{cases}$$

$$\mu_{(n-3,2,1)}^{5} : \begin{cases} [X_{0}, X_{i}] = X_{i+1} & (1 \le i \le n-4), \\ [X_{0}, Y_{1}] = Y_{2}, \\ [X_{1}, X_{i}] = X_{i+1} & (1 \le i \le n-4), \\ [X_{0}, Y_{1}] = Y_{2}, \\ [X_{1}, X_{n-3-i}] = (-1)^{i} X_{n-3} & (2 \le i \le n-5), \\ [X_{1}, X_{n-4}] = 2X_{n-3}, \\ [X_{i}, X_{n-3-i}] = (-1)^{i+1} X_{n-3} & (2 \le i \le \frac{n-4}{2}). \end{cases}$$

Proof. By using the above lemma we will obtain the result. In function of the dimension of the algebra it is necessary to consider two different cases.

Let \mathfrak{g} be a naturally graded Lie algebra of dimension n odd, $n \geq 7$, with Goze invariant (n-3, 2, 1) and laws μ_n . Then, the natural graduation is given by

$$\langle X_0, X_1, Y_1 \rangle \oplus \langle X_2, Y_2 \rangle \oplus \langle X_3 \rangle \oplus \cdots \oplus \langle X_{n-3} \rangle.$$

• Case 1: n even, $n \ge 8$. If n is even the laws of the algebra can be expressed by

$$\mu_n^{a,b}: \begin{cases} [X_0, X_i] = X_{i+1} & (1 \le i \le n-4), \\ [X_0, Y_1] = Y_2, & \\ [X_1, X_i] = aX_{i+1} & (2 \le i \le n-5), \\ [X_1, X_{n-4}] = (a+b)X_{n-3}, & \\ [X_i, X_{n-3-i}] = (-1)^{i+1}bX_{n-3}, & (2 \le i \le \frac{n-4}{2}). \end{cases}$$

The general change of basis implies three generators, X_0 , X_1 and Y_1 :

$$\begin{aligned} X_0' &= \sum_{\substack{i=0\\n-3}}^{n-3} P_i X_i + P_{n-2} Y_1 + P_{n-1} Y_2 \,, \\ X_1' &= \sum_{\substack{i=0\\n-3}}^{n-3} Q_i X_i + Q_{n-2} Y_1 + Q_{n-1} Y_2 \,, \\ Y_1' &= \sum_{\substack{i=0\\n-3}}^{n-3} R_i X_i + R_{n-2} Y_1 + R_{n-1} Y_2 \,. \end{aligned}$$

By using the condition of the family we obtain that

$$\begin{cases} Q_0 = 0, \\ R_i = 0 & (0 \le i \le n - 5). \end{cases}$$

Finally, the admisible changes of basis are

$$\begin{split} X_0' &= P_0 X_0 + P_1 X_1 + P_2 X_2 + \dots + P_{n-4} X_{n-4} + P_{n-3} X_{n-3} \\ &+ P_{n-2} Y_1 + P_{n-1} Y_2 \,, \\ X_1' &= Q_1 X_1 + Q_2 X_2 + \dots + Q_{n-4} X_{n-4} + Q_{n-3} X_{n-3} + Q_{n-2} Y_1 + Q_{n-1} Y_2 \,, \\ X_2' &= P_0 Q_1 X_2 + (P_0 Q_2 + a (P_1 Q_2 - P_2 Q_1)) X_3 + \dots + (P_0 Q_{n-5} \\ &+ a (P_1 Q_{n-5} - P_{n-5} Q_1)) X_{n-4} + (P_0 Q_{n-4} + a (P_1 Q_{n-4} - P_{n-4} Q_1)) \\ &+ \sum_{i=1}^{\frac{n-4}{2}} (-1)^{i+1} (P_i Q_{n-3-i} - P_{n-3-i} Q_i) b X_{n-3} + (P_0 Q_{n-2} - P_{n-2} Q_0) Y_2 \,, \\ X_3' &= P_0 (P_0 + a P_1) Q_1 X_3 + (P_0 + a P_1) (P_0 Q_2 + a (P_1 Q_2 - P_2 Q_1)) X_4 + \dots \\ &+ (P_0 + a P_1) ((P_0 Q_{n-6} + a (P_1 Q_{n-6} - P_{n-6} Q_1)) X_{n-4} \\ &+ (P_0 + a P_1) (\dots) X_{n-3} \,, \\ \vdots \end{split}$$

$$\begin{aligned} X'_{n-4} &= P_0(P_0 + aP_1)^{n-6}Q_1X_{n-4} \\ &\quad + ((P_0 + aP_1)^{n-7}(P_0 + (a+b)P_1)((P_0Q_2 + a(P_1Q_2 - P_2Q_1))X_{n-3}, \\ X'_{n-3} &= P_0(P_0 + aP_1)^{n-6}Q_1(P_0 + (a+b)P_1)X_{n-3}, \\ Y'_1 &= R_{n-4}X_{n-4} + R_{n-3}X_{n-3} + R_{n-2}Y_1 + R_{n-1}Y_2, \\ Y'_2 &= (P_0 + (a+b)P_1)R_{n-4}X_{n-3} + P_0R_{n-2}Y_2, \end{aligned}$$

with the following restrictions

 $P_0 \neq 0$, $Q_1 \neq 0$, $R_{n-2} \neq 0$, $P_0 + aP_1 \neq 0$, $P_0 + (a+b)P_1 \neq 0$. The nullity of a and b are invariant, because

$$a' = \frac{Q_1 a}{P_0 + a P_1}$$
 and $b' = \frac{P_0 Q_1 b}{(P_0 + a P_1)(P_0 + (a + b)P_1)}$

Furthermore, we obtain that the nullity of a + b is invariant, because

$$a' + b' = \frac{Q_1(a+b)}{P_0 + (a+b)P_1}$$

We consider the following cases:

- Case 2.1: a = b = 0. Trivially, we obtain $\mu^{1}_{(n-3,2,1)}$.
- Case 2.2: $a \neq 0$ and b = 0. By choosing P_0 , Q_1 and P_1 , we obtain $\mu^2_{(n-3,2,1)}$.
- Case 2.3: a = 0 and $b \neq 0$. As in the above case, we obtain $\mu^3_{(n-3,2,1)}$.
- Case 2.4: $a \neq 0, b \neq 0$ and a+b=0. By choosing P_0, Q_1 and P_1 , we obtain $\mu^4_{(n-3,2,1)}$.

- Case 2.5: $a \neq 0, b \neq 0$ and $a + b \neq 0$. It is possible to choose P_0, Q_1 and P_1 for to obtain the algebra $\mu^5_{(n-3,2,1)}$.

Furthermore, the above results prove that the algebras $\mu_{(n-3,2,1)}^1$, $\mu_{(n-3,2,1)}^2$, $\mu_{(n-3,2,1)}^3$, $\mu_{(n-3,2,1)}^4$, $\mu_{(n-3,2,1)}^5$, $\mu_{(n-3,2,1)}$

• Case 2: $n \text{ odd}, n \ge 7$. As follows from the above lemma we obtain that an algebra of this kind is isomorphic to one whose law can be expressed by

$$\begin{cases} [X_0, X_i] = X_{i+1} & (1 \le i \le n-4), \\ [X_0, Y_1] = Y_2, \\ [X_1, X_i] = aX_{i+1} & (2 \le i < j \le n-3-i). \end{cases}$$

Since, the odd case is equal to even case considering b = 0. An analogous treatment of Case 1 proves that the nullity of a is an invariant and from here, the result is obtained.

References

- CABEZAS, J.M., CAMACHO, L.M., GÓMEZ, J.R., NAVARRO, R.M., A class of nilpotent Lie algebras, *Comm. Algebra* 28 (9) (2000), 4489–4499.
- [2] CABEZAS, J.M., GÓMEZ, J.R., (n-4)-filiform Lie algebras, Comm. Algebra 27 (10) (1999), 4803-4819.
- [3] CABEZAS, J.M., GÓMEZ, J.R., JIMÉNEZ-MERCHÁN, A., Family of pfiliform Lie algebras, in "Algebra and Operator Theory", Khakimdjanov, Y., Goze, M., Ayupov, Sh., eds., Kluwer Academic Publishers, Tashkent, 1998, pp. 93-102.
- [4] CABEZAS, J.M., GÓMEZ, J.R., PASTOR, E., Structure theorem for naturally graded 3-filiform Lie algebras, in "I Colloquium on Lie Theory and Applications", University of Vigo, Vigo, 2000.
- [5] CABEZAS, J.M., PASTOR, E., Naturally graded p-filiform Lie algebras in arbitrary finite dimension, J. Lie Theory 15 (2005), 379-391.
- [6] GÓMEZ, J.R., JIMÉNEZ-MERCHÁN, A., Naturally graded quasifiliform Lie algebras, J. Algebra 256 (2002), 211–228.
- [7] GOZE, M., HAKIMJANOV (KHAKIMDJANOV), Y., Sur les algèbres de Lie nilpotentes admettant un tore de dérivations, *Manuscripta Math.* 84 (1994), 115–224.
- [8] GOZE, M., KHAKIMDJANOV, Y., "Nilpotent Lie Algebras", Kluwer Academic Publishers, 1996.
- [9] VERGNE, M., Cohomologie des algèbres de Lie nilpotentes. Application à l'étude de la varieté des algèbres de Lie nilpotentes, Bull. Soc. Math. France, 98 (1970), 81–116.