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1. Introduction

The knowledge of naturally graded Lie algebras of a particular Lie algebras
class gives a valuable information about the structure of the rest of algebras
of that class. In 1970, Vergne [9] obtained the classification in finite arbitrary
dimension, n, for the case of filiform (nilindex n − 1). In [8, 7] Goze and
Khakimdjanov gave the geometric description of the characteristically nilpo-
tent filiform Lie algebras using the naturally graded filiform Lie algebras. In
[6] Gómez and Jiménez-Merchán, obtained the classification in finite arbitrary
dimension for the case 2-filiform (nilindex n− 2). There are two subcases for
the nilindex n − 3: 3-filiform Lie algebras and the Lie algebras with charac-
teristic sequence (n− 3, 2, 1). In [4, 5], Cabezas, Gómez and Pastor gave the
classification of naturally graded p-filiform Lie algebras.

Consistently, for nilindex n−3, only rest to study the case of characteristic
sequence (n − 3, 2, 1). In this work we offer the classification in arbitrary
finite dimension of the family of naturally graded Lie algebras g with the
above characteristic sequence such that the dimension of the derived ideal is
minimum, that is, with dim[g, g] = n− 3.

The two first acceptable dimensions are 5 and 6, but the general situation
occurs only for n ≥ 7.

y This paper has been partially supported by the PAICYT, of Junta de Andalućıa (Spain),
and by the Ministerio de Ciencia y Tecnoloǵıa (Spain), ref. BFM 2000-1047
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2. Preliminaries

The descending central sequence of a Lie algebra g is defined by (Ci(g)),
i ∈ N ∪ {0}, where C0(g) = g and Ci(g) = [g, Ci−1(g)].

A Lie algebra g is called nilpotent if there exists k ∈ N such that Ck(g) =
{0}. The smallest integer verifying this equation is called the nilindex of g.

A Lie algebra g, with dim(g) = n, is called filiform (or 1-filiform ) if it
verifies dim(Ci(g)) = n− i−1 for 1 ≤ i ≤ n−1. These algebras have maximal
nilindex n− 1. The Lie algebras with a nilindex n− 2 are called quasifiliform
(or 2-filiform ) and those whose nilindex is 1 are called abelian.

Let g be a nilpotent Lie algebra of dimension n.
For all X ∈ g − [g, g], c(X) = (c1(X), c2(X), . . . , 1) is the sequence, in

decreasing order, of the dimensions of the characteristic subspaces of the nil-
potent operator ad(X), where the adjoint operator of an element X ∈ g,
ad(X), is defined by

ad(X) : g → g

Y 7→ [X, Y ] .

The finite sequence c(g) = sup{c(X) : X ∈ g − [g, g]} is called the char-
acteristic sequence or Goze invariant of the nilpotent Lie algebra g. The
filiform, quasifiliform and abelian Lie algebras of dimension n have as their
Goze invariant (n − 1, 1), (n − 2, 1, 1) and (1, 1, . . . , 1), respectively. The Lie
algebras with characteristic sequence (n− p, 1, . . . , 1) are known as p-filiform
Lie algebras [3]. We know the classification of p-filiform for the integer values
of p between n−5 and n−2 ([2, 1]). Remark that, for nilindex n−3, there are
two families with Goze invariant (n− 3, 1, 1, 1) and (n− 3, 2, 1) respectively.

Note that a complex Lie algebra g is naturally filtered by the descending
central sequence. This result leads to associate any Lie algebra g with a graded
Lie algebra, gr g with equal nilindex:

gr g =
⊕

i∈Z
gi , gi = Ci−1(g)/Ci(g) .

By nilpotency, the above graduation is finite, that is gr g = g1⊕g2⊕· · ·⊕gk

with [gi, gj ] ⊂ gi+j , for i+j ≤ k. A Lie algebra g is said to be naturally graded
if gr g is isomorphic to g, what will be denoted henceforth by gr g=g.

Let {X0, X1, . . . , Xn−3, Y1, Y2} be an adapted basis of g. We study the case
where the dimension of the derived ideal is minimum, consistently dim[g, g] =
n − 3. Thus, Y1 is not in [g, g] and, consequently, Y1 ∈ g1. In general, if we
denote as r to the position of the vector Y1 into the subspaces of the natural
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graduation, we observe that the value of r is r = 1. We remark that the
position of Y2 is previously determined because we have that [X0, Y1] = Y2

and that implies Y2 ∈ gr+1 with 1 ≤ r ≤ n− 4. Then, in this case Y2 ∈ g2.
From now, Jacobi identity for the vectors X,Y, Z will be denoted as

Jac(X, Y, Z) and the laws of the algebras, g, of dimension n such that dim[g, g]
is minimum will be denoted as µn.

3. Structure theorem

In this section, we will obtain a first approximation to the structure of
naturally graded Lie algebras with Goze invariant (n− 3, 2, 1).

Let g be a naturally graded Lie algebra of Goze’s invariant (n−3, 2, 1) and
let {X0, X1, . . . , Xn−3, Y1, Y2} be an adapted basis of g, that is:

[X0, Xi] = Xi+1 (1 ≤ i ≤ n− 4) ,

[X0, Xn−3] = 0 ,

[X0, Y1] = Y2 ,

[X0, Y2] = 0 ,

where X0 ∈ g− [g, g]. That implies

C1(g) ⊃ 〈X2, X3, . . . , Xn−3, Y2〉 ,
Ci (g) ⊃ 〈Xi+1, Xi+2, . . . , Xn−3〉 (2 ≤ i ≤ n− 4) .

Lemma 3.1. Let g be a Lie algebra of dimension n and Goze’s invariant
(n−3, 2, 1) and let {X0, X1, . . . , Xn−3, Y1, Y2} be an adapted basis of g. Then,

X1 /∈ C1(g) , Xn−3 ∈ Z(g) , Y1 /∈ Cn−4(g) , Y2 /∈ Cn−3(g) .

Proof. Obviously, Xn−3 ∈ Z(g), Y1 /∈ Cn−4(g) and Y2 /∈ Cn−3(g) because,
otherwise, g could not be of characteristic sequence (n − 3, 2, 1). It is easy
to prove that X1 /∈ [g, g] supposing that X1 ∈ [Y1, Y2], or X1 ∈ [Xi, Yj ],
1 ≤ i ≤ n − 4, 1 ≤ j ≤ 2, or X1 ∈ [Xi, Xj ], 1 ≤ i < j ≤ n − 3 − i, and
obtaining contradiction.

Remark 3.2. We identify each vector with its class, and we call µ(n, r) the
family of laws of Lie algebras with Goze invariant (n− 3, 2, 1) where n is the
dimension and r is the position of Y1 in the subsets of the natural gradation.
We remark that the position of Y2 is previously determined because we have
that [X0, Y1] = Y2 and that implies Y2 ∈ gr+1 with 1 ≤ r ≤ n− 4.
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Remark 3.3. It is easy to see that g1 ⊃ 〈X0, X1〉 and gi ⊃ 〈Xi〉, 2 ≤ i ≤
n− 3.

Now, we obtain the general structure of laws of naturally graded Lie al-
gebras of characteristic sequence (n− 3, 2, 1) in arbitrary dimension. At first,
we prove that if Y1 ∈ gr, then r is odd.

Lemma 3.4. If r is even, the case µ(n, r) is not admissible in any dimen-
sion.

Proof. Let g be a naturally graded Lie algebra of Goze invariant (n −
3, 2, 1), let {X0, X1, . . . , Xn−3, Y1, Y2} be an adapted basis of g, and let Y1 ∈ gr

be with r even. It is easy to prove that Y1 /∈ [g, g] so Y1 ∈ g1 and this is
impossible because r is even.

Theorem 3.5. (Structure theorem) Any complex naturally graded
Lie algebra g of dimension n ≥ 5, with Goze invariant (n−3, 2, 1) is isomorphic
to one whose law can be expressed in an adapted basis {X0, X1, . . . , Xn−3,
Y1, Y2} by:

• If r = 1




[X0, Xi] = Xi+1 (1 ≤ i ≤ n− 4) ,

[X0, Y1] = Y2 ,

[Xi, Xj ] = aijXi+j (1 ≤ i < j ≤ n− 3− i) .

• If 3 ≤ r ≤ n−5
2 , r odd





[X0, Xi] = Xi+1 (1 ≤ i ≤ n− 4) ,

[X0, Y1] = Y2 ,

[Xi, Xj ] = aijXi+j (i + j /∈ {r, r + 1} , 1 ≤ i < j ≤ n− 3− i) ,

[Xi, Xr−i] = ai,r−iXr + (−1)i−1Y1 (1 ≤ i ≤ r−1
2 ) ,

[Xi, Xr+1−i] = ai,r+1−iXr+1 + (−1)i−1 (r+1−2i)
2 Y2 (1 ≤ i ≤ r−1

2 ) ,

[Xi, Y1] = εXr+i (1 ≤ i ≤ n− 3− r) ,

with ε ∈ {0, 1}.
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• If n−4
2 ≤ r ≤ n− 4, r odd





[X0, Xi] = Xi+1 (1 ≤ i ≤ n− 4) ,

[X0, Y1] = Y2 ,

[Xi, Xj ] = aijXi+j (i + j /∈ {r, r + 1} , 1 ≤ i < j ≤ n− 3− i) ,

[Xi, Xr−i] = ai,r−iXr + (−1)i−1Y1 (1 ≤ i ≤ r−1
2 ) ,

[Xi, Xr+1−i] = ai,r+1−iXr+1

+(−1)i−1 (r+1−2i)
2 Y2 (1 ≤ i ≤ r−1

2 ) ,

[Xi, Y1] = (c1 − (i− 1)c2)Xr+i (1 ≤ i ≤ n− 3− r ≤ n−2
2 ) ,

[Xi, Y2] = c2Xr+1+i (1 ≤ i ≤ n− 4− r ≤ n−4
2 ) ,

[Y1, Y2] = hXn−3 (h = 0 if r 6= n−4
2 ) ,

with c1, c2 ∈ C.

Proof. If g is in the condition of theorem, then a first general expression
of g is given by:





[X0, Xi] = Xi+1 (1 ≤ i ≤ n− 4) ,

[X0, Y1] = Y2 ,

[Xi, Xj ] = aijXi+j (i + j /∈ {r, r + 1} , 1 ≤ i < j ≤ n− 3− i) ,

[Xi, Xr−i] = ai,r−iXr + bi1Y1 (1 ≤ i ≤ r−1
2 ) ,

[Xi, Xr+1−i] = ai,r+1−iXr+1 + bi2Y2 (1 ≤ i ≤ r−1
2 ) ,

[X1, Y1] = c11Xr+1 + dY2 ,

[Xi, Y1] = ci1Xr+i (2 ≤ i ≤ n− 3− r) ,

[Xi, Y2] = ci2Xr+1+i (1 ≤ i ≤ n− 4− r) ,

[Y1, Y2] = hX2r+1 (si r ≤ n−4
2 ) .

Some elementary changes of basis jointly with Jacobi identity implies that:

• If 1 ≤ r ≤ n−5
2 the coefficients can be expressed by

ci,1 = c1 (1 ≤ i ≤ n− 3− r) and ci,2 = 0 (1 ≤ i ≤ n− 4− r) .

• If n−4
2 ≤ r ≤ n− 4 the coefficients can be expressed by

ci,1 = c1− (i− 1)c2 (1 ≤ i ≤ n− 3− r) and ci,2 = c2 (1 ≤ i ≤ n− 4− r) .

By using Jacobi identity it is posible to obtain that

bi,2 = (−1)(i−1) r + 1− 2i

2
b1, 1 ≤ i ≤ r − 1

2
.



6 l.m. camacho, j.r. gómez, a.j. gonzález

Furthermore, b1 6= 0 (in other case Y1 /∈ C1(g) and then Y1 /∈ gr =< Xr, Y1 >
with r ≥ 3). Next, an easy change of basis allows to suppose b1 = 1. Then,

• If 3 ≤ r ≤ n−5
2 . As b1 6= 0, if c1 6= 0 an easy change of basis allows to

suppose c1 = 1, and consistently c1 ∈ {0, 1}.
• If r = 1, the case must be studied separately.

4. Dimensions n = 5 and n = 6.

Even if our main aim is to study the case of dimension n finite arbitrary,
the low dimensional cases are special and we will study them previously. The
lowest cases are for dimensions n = 5 and n = 6 and they have a special
treatment.

Theorem 4.1. Any complex naturally graded Lie algebra of dimension 5
with Goze invariant (2, 2, 1) is isomorphic to one whose law can be expressed
in an adapted basis {X0, X1, X2, Y1, Y2} by:

µ5 :

{
[X0, X1] = X2 ,

[X0, Y1] = Y2 .

Proof. The proof is trivial.

Theorem 4.2. Any complex naturally graded Lie algebra of dimension 6
with Goze invariant (3, 2, 1) is isomorphic to one whose law can be expressed
in an adapted basis {X0, X1, X2, X3, Y1, Y2} by:

µ1
6 :

{
[X0, Xi] = Xi+1 (1 ≤ i ≤ 2) ,

[X0, Y1] = Y2 ,
µ2

6 :





[X0, Xi] = Xi+1 (1 ≤ i ≤ 2) ,

[X0, Y1] = Y2 ,

[X1, X2] = X3 .

Proof. In dimension six the graduation is

〈X0, X1, Y1〉 ⊕ 〈X2, Y2〉 ⊕ 〈X3〉 ,
and by Theorem 3.5 the laws of these algebras are the following:





[X0, X1] = X2 ,

[X0, X2] = X3 ,

[X0, Y1] = Y2 ,

[X1, X2] = a12X3 .
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By using a generic change of basis we prove that nullity of coefficient a12 is
an invariant.

• If a12 6= 0, it is easy to obtain the algebra of law µ2
6.

• If a12 = 0, we obtain the algebra of law µ1
6.

5. Dimension n ≥ 7.

Now, we present the classification of the naturally graded Lie algebras with
Goze invariant (n− 3, 2, 1), dimension n ≥ 7 and dim[g, g] minimum, that is,
equal to n − 3. The first expression of this family is given by the following
lemma:

Lemma 5.1. Let g be a naturally graded Lie algebra with Goze invariant
(n − 3, 2, 1), dim(g) = n ≥ 7 and dim[g, g] = n − 3. Then, there exists
a characteristic vector X0 and an adapted basis {X0, X1, . . . , Xn−3, Y1, Y2},
which lead us to express the laws of g by:

µa
n :





[X0, Xi] = Xi+1 (1 ≤ i ≤ n− 4) ,

[X0, Y1] = Y2 ,

[X1, Xi] = aXi+1 (2 ≤ i ≤ n− 4) ,

if n is odd, or

µa,b
n :





[X0, Xi] = Xi+1 (1 ≤ i ≤ n− 4) ,

[X0, Y1] = Y2 ,

[X1, Xi] = aXi+1 (2 ≤ i ≤ n− 5) ,

[X1, Xn−4] = (a + b)Xn−3 ,

[Xi, Xn−3−i] = (−1)i+1bXn−3 (2 ≤ i ≤ n−4
2 ) ,

if n is even.

Proof. By using Teorema 3.5 it follows that, in this case (r = 1), there
exists a characteristic vector X0 and an adapted basis, {X0, X1, . . . , Xn−3,
Y1, Y2}, such that the laws of the algebra are given by

µn :





[X0, Xi] = Xi+1 (1 ≤ i ≤ n− 4) ,

[X0, Y1] = Y2 ,

[X1, Xi] = aijXi+j (2 ≤ i < j ≤ n− 3− i) .
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Now, we use an inductive procedure on n.

Dimension n = 7 : In dimension seven the graduation is

〈X0, X1, Y1〉 ⊕ 〈X2, Y2〉 ⊕ 〈X3〉 ⊕ 〈X4〉 ,
and by using the Jacobi identity in the family µ7 we obtain µa

7.

Dimension n = 8 : Analogously, by using the Jacobi identity it is easy
to obtain that µ8 is µa,b

8 .

The inductive procedure is realized in function of the parity of the dimen-
sion. That is the reason why we study the cases of dimension n even and n
odd separately.

Dimension n > 7, n odd : If we suppose that the result is true for n = k
even, we will prove it for n = k + 1 odd. If k is even, we suppose that it is
possible to express µk by

µa,b
k :





[X0, Xi] = Xi+1 (1 ≤ i ≤ k − 4) ,

[X0, Y1] = Y2 ,

[X1, Xi] = aXi+1 (2 ≤ i ≤ k − 5) ,

[X1, Xn−4] = (a + b)Xn−3 ,

[Xi, Xn−3−i] = (−1)i+1bXn−3 (2 ≤ i ≤ k−4
2 ) .

Now, for n = k + 1, we add the brackets

[X0, Xk−3] = α0Xk−2 ,

[Xi, Xk−2−i] = αiXk−2 (1 ≤ i ≤ k−4
2 ) ,

[Xk−3, Y1] = β1Xk−2 ,

[Xk−4, Y2] = β2Xk−2 .

By using Jacobi identity we prove the result.

Dimension n > 8, n even : We suppose that the result is true for n = k
odd and we will prove it for n = k + 1 even. If k is odd, we suppose that it is
possible to express µk by

µa
k :





[X0, Xi] = Xi+1 (1 ≤ i ≤ k − 4) ,

[X0, Y1] = Y2 ,

[X1, Xi] = aXi+1 (2 ≤ i ≤ k − 4) .

For n = k + 1 it is necessary to add the same brackets as in the odd case and
analogously we obtain the result.
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6. Classification theorem

Finally, we give the theorem of classification for naturally graded Lie al-
gebras with Goze invariant (n− 3, 2, 1), r = 1 and n ≥ 7.

Theorem 6.1. Any complex naturally graded Lie algebra of dimension
n, n ≥ 7, with Goze invariant (n− 3, 2, 1) and laws µ(n) is isomorphic to one
whose law can be expressed in suitable adapted basis by

µ1
(n−3,2,1)

(n ≥ 5)
:

{
[X0, Xi] = Xi+1 (1 ≤ i ≤ n− 4) ,

[X0, Y1] = Y2 ;

µ2
(n−3,2,1)

(n even, n ≥ 6)
:





[X0, Xi] = Xi+1 (1 ≤ i ≤ n− 4) ,

[X0, Y1] = Y2 ,

[Xi, Xn−3−i] = (−1)i+1Xn−3 (1 ≤ i ≤ n−4
2 ) ;

µ3
(n−3,2,1)

(n ≥ 7)
:





[X0, Xi] = Xi+1 (1 ≤ i ≤ n− 4) ,

[X0, Y1] = Y2 ,

[X1, Xi] = Xi+1 (2 ≤ i ≤ n− 4) ;

µ4
(n−3,2,1)

(n even, n ≥ 8)
:





[X0, Xi] = Xi+1 (1 ≤ i ≤ n− 4) ,

[X0, Y1] = Y2 ,

[X1, Xi] = Xi+1 (2 ≤ i ≤ n− 5) ,

[Xi, Xn−3−i] = (−1)iXn−3 (2 ≤ i ≤ n−4
2 ) ;

µ5
(n−3,2,1)

(n even, n ≥ 8)
:





[X0, Xi] = Xi+1 (1 ≤ i ≤ n− 4) ,

[X0, Y1] = Y2 ,

[X1, Xi] = Xi+1 (2 ≤ i ≤ n− 5) ,

[X1, Xn−4] = 2Xn−3 ,

[Xi, Xn−3−i] = (−1)i+1Xn−3 (2 ≤ i ≤ n−4
2 ) .

Proof. By using the above lemma we will obtain the result. In function of
the dimension of the algebra it is necessary to consider two different cases.

Let g be a naturally graded Lie algebra of dimension n odd, n ≥ 7, with
Goze invariant (n−3, 2, 1) and laws µn. Then, the natural graduation is given
by

〈X0, X1, Y1〉 ⊕ 〈X2, Y2〉 ⊕ 〈X3〉 ⊕ · · · ⊕ 〈Xn−3〉 .
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• Case 1: n even, n ≥ 8. If n is even the laws of the algebra can be
expressed by

µa,b
n :





[X0, Xi] = Xi+1 (1 ≤ i ≤ n− 4) ,

[X0, Y1] = Y2 ,

[X1, Xi] = aXi+1 (2 ≤ i ≤ n− 5) ,

[X1, Xn−4] = (a + b)Xn−3 ,

[Xi, Xn−3−i] = (−1)i+1bXn−3, (2 ≤ i ≤ n−4
2 ) .

The general change of basis implies three generators, X0, X1 and Y1:

X ′
0 =

n−3∑

i=0

PiXi + Pn−2Y1 + Pn−1Y2 ,

X ′
1 =

n−3∑

i=0

QiXi + Qn−2Y1 + Qn−1Y2 ,

Y ′
1 =

n−3∑

i=0

RiXi + Rn−2Y1 + Rn−1Y2 .

By using the condition of the family we obtain that
{

Q0 = 0 ,
Ri = 0 (0 ≤ i ≤ n− 5) .

Finally, the admisible changes of basis are

X ′
0 = P0X0 + P1X1 + P2X2 + · · ·+ Pn−4Xn−4 + Pn−3Xn−3

+ Pn−2Y1 + Pn−1Y2 ,

X ′
1 = Q1X1 + Q2X2 + · · ·+ Qn−4Xn−4 + Qn−3Xn−3 + Qn−2Y1 + Qn−1Y2 ,

X ′
2 = P0Q1X2 + (P0Q2 + a(P1Q2 − P2Q1))X3 + · · ·+ (P0Qn−5

+ a(P1Qn−5 − Pn−5Q1))Xn−4 + (P0Qn−4 + a(P1Qn−4 − Pn−4Q1))

+

n−4
2∑

i=1

(−1)i+1(PiQn−3−i − Pn−3−iQi)bXn−3 + (P0Qn−2 − Pn−2Q0)Y2 ,

X ′
3 = P0(P0 + aP1)Q1X3 + (P0 + aP1)(P0Q2 + a(P1Q2 − P2Q1))X4 + . . .

+ (P0 + aP1)((P0Qn−6 + a(P1Qn−6 − Pn−6Q1))Xn−4

+ (P0 + aP1)(. . . )Xn−3 ,

...
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X ′
n−4 = P0(P0 + aP1)n−6Q1Xn−4

+ ((P0 + aP1)n−7(P0 + (a + b)P1)((P0Q2 + a(P1Q2−−P2Q1))Xn−3 ,

X ′
n−3 = P0(P0 + aP1)n−6Q1(P0 + (a + b)P1)Xn−3 ,

Y ′
1 = Rn−4Xn−4 + Rn−3Xn−3 + Rn−2Y1 + Rn−1Y2 ,

Y ′
2 = (P0 + (a + b)P1)Rn−4Xn−3 + P0Rn−2Y2 ,

with the following restrictions

P0 6= 0 , Q1 6= 0 , Rn−2 6= 0 , P0 + aP1 6= 0 , P0 + (a + b)P1 6= 0 .

The nullity of a and b are invariant, because

a′ =
Q1a

P0 + aP1
and b′ =

P0Q1b

(P0 + aP1)(P0 + (a + b)P1)
.

Furthermore, we obtain that the nullity of a + b is invariant, because

a′ + b′ =
Q1(a + b)

P0 + (a + b)P1
.

We consider the following cases:

- Case 2.1: a = b = 0. Trivially, we obtain µ1
(n−3,2,1).

- Case 2.2: a 6= 0 and b = 0. By choosing P0, Q1 and P1, we obtain µ2
(n−3,2,1).

- Case 2.3: a = 0 and b 6= 0. As in the above case, we obtain µ3
(n−3,2,1).

- Case 2.4: a 6= 0, b 6= 0 and a+ b = 0. By choosing P0, Q1 and P1, we obtain
µ4

(n−3,2,1).

- Case 2.5: a 6= 0, b 6= 0 and a + b 6= 0. It is possible to choose P0, Q1 and P1

for to obtain the algebra µ5
(n−3,2,1).

Furthermore, the above results prove that the algebras µ1
(n−3,2,1), µ2

(n−3,2,1),
µ3

(n−3,2,1), µ4
(n−3,2,1) y µ5

(n−3,2,1) are pairwise no isomorphic for n even.

• Case 2: n odd, n ≥ 7. As follows from the above lemma we obtain that
an algebra of this kind is isomorphic to one whose law can be expressed by




[X0, Xi] = Xi+1 (1 ≤ i ≤ n− 4) ,

[X0, Y1] = Y2 ,

[X1, Xi] = aXi+1 (2 ≤ i < j ≤ n− 3− i) .

Since, the odd case is equal to even case considering b = 0. An analogous
treatment of Case 1 proves that the nullity of a is an invariant and from here,
the result is obtained.
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