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RIESZ'S THEOREM FOR ORTHOGONAL MATRIX POLYNOMIALS

Pedro Lopez-Rodriguez

Universidad de Sevilla

Abstract. We describe the image through the Stieltjes transform of the set of solutions
V of a matrix moment problem. We extend Riesz's theorem to the matrix setting, proving

that those matrices of measures of V for which the matrix polynomials are dense in the
corresponding L2 space are precisely those whose Stieltjes transform is an extremal point (in
the sense of convexity) of the image set.

1. Introduction.

For a positive Borel measure º on R with ¯nite moments of any order sn =
R
R t

ndº(t)

we denote by V the set of positive Borel measures ¹ on R satisfying
R
R t

nd¹(t) = sn, n ¸ 0,
that is, the set of solutions to the Hamburger moment problem de¯ned by º. By Vn we
denote the set of positive Borel measures on R such that

R
R t

kd¹(t) = sk, 0 · k · n, that
is, the set of solutions to the truncated moment problem de¯ned by º.
We say that the measure º is determinate if there is no other positive measure having the

same moments as those of º, that is, if V = fºg, otherwise we say that º is indeterminate.
This alternative is related to the index of de¯ciency of the operator de¯ned on `2 by the
in¯nite Jacobi matrix

J =

0BB@
b0 a1
a1 b1 a2

a2 b2 a3
. . .

. . .
. . .

1CCA ;
where the coe±cients ai (6= 0) and bi are the coe±cients which appear in the three term
recurrence relation satis¯ed by the orthogonal polynomials (pn)n associated to º,

tpn(t) = an+1pn+1(t) + bnpn(t) + anpn¡1(t); n ¸ 0:

The index of de¯ciency of J is 0 if the moment problem is determinate and 1 if the moment
problem is indeterminate.
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In 1922 Nevanlinna proved that for a ¯xed non real ¸ the image through the Stieltjes
transform of all the measures of V in the point ¸

I(V )(¸) =

½Z
R

d¹(t)

t¡ ¸ : ¹ 2 V
¾

is either a point if the moment problem is determinate or a circle if the moment problem
is indeterminate, and the occurrence of these two cases does not depend on the non real
¸ chosen (see [N] or [A]). The measures ¹ for which I(¹)(¸) lies in the circumference of
this circle I(V )(¸) are called N -extremal (Nevanlinna-extremal).
In 1923 M. Riesz proved that in order that the set P of polynomials in L2(¹) be dense,

it is necessary and su±cient that the measure ¹ be N -extremal at every non real point ¸,
and for this it is su±cient that it should be N -extremal in at least one such point (see [Ri]
or [A]).
The purpose of this paper is to generalize these two results for a completely indetermi-

nate matrix moment problem.
Given º = (ºi;j)1·i;j·N a positive de¯nite matrix of measures (for any Borel set A the

numerical matrix º(A) is positive semide¯nite) with ¯nite matrix moments

Sk =

Z
R
tkdº(t)

of any order k ¸ 0, we denote by V the set of positive de¯nite matrices of measures having
the same matrix moments as those of º, and by Vn the set of positive matrices of measures
whose moments up to degree n are the same as those of º.
We say that the positive de¯nite matrix of measures º is determinate if no other positive

de¯nite matrix of measures has the same moments as those of º, that is, the positive de¯nite
matrix of measures º is uniquely determined by the moments

R
R t

ndº(t), n ¸ 0.
By (Pn)

1
n=0 we denote the sequence of orthonormal matrix polynomials with respect to

º, Pn of degree n and with non-singular leading coe±cient.
These polynomials (Pn)n satisfy a three term recurrence relation of the form

(1.1) tPn(t) = An+1Pn+1(t) +BnPn(t) +A
¤
nPn¡1(t); n ¸ 0;

(An and Bn being N £ N matrices such that det(An) 6= 0 and B¤n = Bn), with initial
condition P¡1(t) = µ (here and in the rest of this paper, we write µ for the null matrix,
the dimension of which can be determined from the context. For instance, here µ is the
N £ N null matrix). It is well-known that this recurrence relation is equivalent to the
orthogonality with respect to a positive de¯nite matrix of measures: this is the matrix
version of Favard's Theorem (see [AN], [D1] and [DL1]).
We denote by Qn(t) the corresponding sequence of polynomials of the second kind,

Qn(t) =

Z
R

Pn(t)¡ Pn(x)
t¡ x dº(x); n ¸ 0;

which also satisfy the recurrence relation (1.1), with initial conditions Q0(t) = µ and
Q1(t) = A

¡1
1 .
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In the matrix case the determinacy or indeterminacy of the matrix moment problem is
also related to the index of de¯ciency of the operator J de¯ned by the in¯nite N -Jacobi
matrix

J =

0BB@
B0 A1
A¤1 B1 A2

A¤2 B2 A3
. . .

. . .
. . .

1CCA
on the space `2, where An and Bn are the coe±cients which appear in the three term
recurrence relation (1.1). In this case the index of de¯ciency can be any natural number
from 0 to N , 0 in the determinate case and N in the completely indeterminate case. In
the latter case the two series

1X
k=0

Q¤k(¸)Pk(´) and
1X
k=0

P ¤k (¸)Pk(´)

converge uniformly in the variables ¸ and ´ on every bounded set of the complex plane
(see [K]).
In [B] it is proved that the rank of the limit matrix R(¸) = lim

n!1Rn(¸) exists and is
the same for every non real ¸, where

(1.2) Rn(¸) =

Ã
nX
k=0

P ¤k (¸)Pk(¸)

!¡1
:

This result is also mentioned by Krein in [K], who refers to [Na] for a proof. In this paper

we assume the rank of this matrix is N and consequently the matrix
1X
k=0

P ¤k (¸)Pk(¸) is

invertible, for every non real ¸, and equal to R(¸)¡1.
As in the scalar case, for a ¯xed non real ¸, we denote by I(V )(¸) the image through

the Stieltjes transform of all the matrices of measures of V in the point ¸

I(V )(¸) =

½Z
R

d¹(t)

t¡ ¸ : ¹ 2 V
¾
:

Firstly, for a ¯xed non real ¸, we describe the set I(V )(¸). This is the set of N £ N
complex matrices ! satisfying the matrix inequality

(1.3) [! + C(¸)]R(¸)¡1[! + C(¸)]¤ · j¸¡ ¸j¡2R(¸);

where C(¸) = B(¸; ¸)D(¸; ¸)¡1 (see the Preliminaries for the de¯nitions of B(¸; ¸) and
D(¸; ¸). A · B means that B ¡A is positive semide¯nite.
The extremal points (in the sense of convexity) of the set I(V )(¸) are the matrices ! for

which equality is attained in (1.3). If ¹ is a matrix of measures in V for which I(¹)(¸) is
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a extremal point of I(V )(¸), we call this matrix of measures N -extremal, as in the scalar
case.
Finally, we generalize Riesz's theorem to the matrix setting by proving that the matrices

of measures of V for which the set P of matrix polynomials is dense in the corresponding
space L2(¹) are precisely the N -extremal matrices of measures, and that theN -extremality
of a matrix of measures does not depend on the non real ¸ chosen.
For the case N = 1 one recovers the very well known classical formulas exposed in [A,

Ch. 1].

2. Preliminaries.

In what follows, if P (¸) is a matrix polynomial, we denote by P ¤(¸) the polynomial
obtained from P (¸) by replacing each of its matrix coe±cients by its hermitian conjugate,
so that P (¸)¤ = P ¤(¸). For a matrix polynomial of two variables P (¸; ´) the de¯nition is
the same, so that we have P (¸; ´)¤ = P ¤(¸; ´). If F (¸) is a holomorphic matrix function
we de¯ne F ¤(¸) = F (¸)¤.
The set of positive de¯nite matrices of measures is endowed with the vague and weak

topologies. If º a positive de¯nite matrix of measures, the set V of matrices of measures
having the same moments as º is a compact and convex set for these topologies which
coincide on V (see [DL2]).

For ¹ a positive de¯nite matrix of measures, the space L2(¹) is de¯ned as the set of
N £N matrix functions f : R! MN£N (C) such that ¿(f(t)M(t)f(t)¤) 2 L1(¿¹), where
M(t) is the Radon-Nikodym derivative of ¹ with respect to its trace (¿¹) (for a matrix

A = (ai;j)1·i;j·N , we denote ¿A for its trace, i. e. ¿A =
PN

i=1 ai;i):

M = (mi;j)
N
i;j=1 =

µ
d¹i;j
d¿¹

¶
1·i;j·N

:

The space L2(¹) is endowed with the norm

kfk2;¹ = k¿(f(t)M(t)f(t)¤) 12 k2;¿¹ =
µZ

R
¿(f(t)M(t)f(t)¤)d¿¹(t)

¶ 1
2

and is a Hilbert space. The duality works as for the scalar case (see [R] or [DL2] for more
details. For the de¯nition of the Lp spaces associated to ¹, 1 · p <1, see [DL2]).
We stress that since we only impose the matrices of measures in V2n to have ¯nite

moments up to degree 2n, for ¹ 2 V2n we can guarantee only that the polynomials up to
degree n belong to the corresponding space L2(¹). In any case, the polynomials (Pk)k=0;:::;n
are orthonormal with respect to any measure in V2n.
We include here the matrix version of some classical formulas for orthonormal scalar

polynomials. The proofs are easily veri¯ed using the three term recurrence relation (1.1).

(2.1)

An(u; v) = (v¡u)
n¡1X
k=0

Q¤k(u)Qk(v) = Q
¤
n¡1(u)AnQn(v)¡Q¤n(u)A¤nQn¡1(v); for u; v 2 C;
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(2.2)

Bn(u; v) = ¡I+(v¡u)
n¡1X
k=0

Q¤k(u)Pk(v) = Q
¤
n¡1(u)AnPn(v)¡Q¤n(u)A¤nPn¡1(v); for u; v 2 C;

(this is Green's formula),
(2.3)

Cn(u; v) = I+(v¡u)
n¡1X
k=0

P ¤k (u)Qk(v) = P
¤
n¡1(u)AnQn(v)¡P ¤n(u)A¤nQn¡1(v); for u; v 2 C;

(2.4)

Dn(u; v) = (v ¡ u)
n¡1X
k=0

P ¤k (u)Pk(v) = P
¤
n¡1(u)AnPn(v)¡ P ¤n(u)A¤nPn¡1(v); for u; v 2 C;

(this a Christo®el-Darboux formula). We will also use the Liouville-Ostrogradsky formula

(2.5) Qn(¸)P
¤
n¡1(¸)¡ Pn(¸)Q¤n¡1(¸) = A¡1n ; for ¸ 2 C;

and the relations

(2.6) Pn(¸)Q
¤
n(¸) = Qn(¸)P

¤
n(¸); for ¸ 2 C;

(2.7) An(u; v)D¤n(u; v)¡ Bn(u; v)C¤n(u; v) = I; for u; v 2 C;

and ¯nally

(2.8) Cn(u; v)D¤n(u; v) = Dn(u; v)C¤n(u; v); for u; v 2 C:

We will also use that

(2.9) Cn(¸; ¸) = ¡Bn(¸; ¸)¤; for ¸ 2 C;

and that

(2.10) Dn(¸; ¸) = (¸¡ ¸)Rn¡1(¸)¡1 and D¤n(¸; ¸) = (¸¡ ¸)Rn¡1(¸)¡1; for ¸ 2 C:

By A(u; v), B(u; v), C(u; v) and D(u; v) we denote the limit matrix functions de¯ned from
An(u; v), Bn(u; v), Cn(u; v) and Dn(u; v) when n tends to in¯nity.

3. The main theorems.

For any non real ¸, we de¯ne the set Bn(¸) to be the set of N £N complex matrices !
such that
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(3.1) [! + Cn(¸)]Rn¡1(¸)¡1[! + Cn(¸)]¤ · j¸¡ ¸j¡2Rn¡1(¸);

where Cn(¸) = Bn(¸; ¸)Dn(¸; ¸)¡1.
The calculations in Lemma 1 (see below) show that Bn(¸) is also the set of N £ N

complex matrices ! satisfying the matrix inequality

(3.2)

n¡1X
k=0

(Q¤k(¸) + !P
¤
k (¸))(Qk(¸) + Pk(¸)!

¤) · ! ¡ !¤
¸¡ ¸ :

We put B1(¸) for the intersection of all the sets Bn(¸). B1(¸) is clearly the set of
N £N complex matrices ! such that

(3.3) [! + C(¸)]R(¸)¡1[! + C(¸)]¤ · j¸¡ ¸j¡2R(¸);

where C(¸) = B(¸; ¸)D(¸; ¸)¡1.
Similarly, B1(¸) is also the set of N £N complex matrices ! such that

(3.4)

1X
k=0

(Q¤k(¸) + !P
¤
k (¸))(Qk(¸) + Pk(¸)!

¤) · ! ¡ !¤
¸¡ ¸ :

Looking at (3.1) and (3.3) it is immediate that upon a linear matrix transformation,
any of the sets Bn(¸) or B1(¸) is in a one to one correspondence with the set of N £N
complex matrices T satisfying TT ¤ · I, which is a convex set whose extremal points are
the matrices verifying TT ¤ = I, that is, the unitary matrices (this is a well-known result
in operator theory which can be proved for example with the aid of the singular value
decomposition of matrices). This implies that these sets Bn(¸) and B1(¸) are convex sets
whose extremal points (ExtBn(¸) and ExtB1(¸)) are those for which equality is attained
in (3.1) and (3.2) or (3.3) and (3.4) respectively.
By using formulas (2.1), (2.2), (2.3) and (2.4) in (3.2) it is straightforward to see that

an equivalent condition for ! to be an extremal point of Bn(¸) is that the matrix

(3.5) (!P ¤n(¸) +Q
¤
n(¸))A

¤
n(Pn¡1(¸)!

¤ +Qn¡1(¸))

is hermitian.
It is clear that for all n ¸ 1 we have B1(¸) µ Bn+1(¸) µ Bn(¸). It is also clear that

! belongs to the set of interior points of Bn(¸) or B1(¸) (IntBn(¸) and IntB1(¸)) if a
strict inequality is attained in (3.1) and (3.2) or (3.3) and (3.4) respectively.
We have the following results:

Theorem 1. Let V denote the set of solutions to a completely indeterminate matrix
moment problem de¯ned by a natrix of measures º and let ¸ 2 C n R. Then we have

B1(¸) = I(V )(¸):
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The key to prove this theorem will be the inclusions

(3.6) IntBn(¸) µ I(V2n¡2)(¸) µ Bn(¸):
The proofs of these inclusions present more di±culties than in the scalar case. We will
prove then later in Lemmas 1 to 7. Indeed, in the scalar case the set I(V2n¡2)(¸) is given
by

I(V2n¡2)(¸) = Bn(¸) n
½
¡ qn¡1(¸)
pn¡1(¸)

¾
:

The point ¡qn¡1(¸)=pn¡1(¸) lies on the border of the circle Bn(¸). When a moves along
the real axis, the quotient

¡ qn(¸)¡ aqn¡1(¸)
pn(¸)¡ apn¡1(¸)

describes all the points of the circumference of the closed disk Bn(¸) except for the limit
point ¡qn¡1(¸)=pn¡1(¸). The well known quadrature formula (see [A, p. 20]) gives that
every point de¯ned by the former quotient for a 2 R belongs to I(V2n¡2)(¸). It is easy
to see that ¡qn¡1(¸)=pn¡1(¸) =2 I(V2n¡2)(¸), but this is of no importance because taking
into account that I(V2n¡2)(¸) is a convex set and the simple geometry of the circles Bn(¸)
it is immediate to deduce that IntBn(¸) µ I(V2n¡2)(¸). This inclusion is not at all so
immediate in the matrix case. We prove it in Lemmas 2 to 7 by means of new ideas.

Proof of Theorem 1
Suppose ¯rst that ! 2 B1(¸). B1(¸) is contained inBn(¸) for all n and thus we can put

! = !n, for all n, being !n in Bn(¸). Since the interior set IntBn(¸) is dense in Bn(¸), we
can ¯nd ´n in IntBn(¸) such that limn!1 k!n ¡ ´nk = 0. Since IntBn(¸) µ I(V2n¡2)(¸),
there exists a matrix of measures ¾n in V2n¡2 such that ´n = I(¾n)(¸), for all n. Since the
set f¹ ¸ µ : ¿¹(R) · cg is vaguely compact, where c is a positive constant (see Lemma
3.8 in [DL2]) and ¾n(R) = S0 for n ¸ 0, there exists ¾ a vague accumulation point of
a subsequence (¾np) of (¾n). Like in the proof of Lemma 3.10 of [DL2] we have ¾ 2 V .
We have ¾n(R) = ¾(R) for n ¸ 1, so by virtue of Theorem 3.1 of [DL2], (¾n) converges
weakly to ¾. In particular

I(¾)(¸) = lim
p!1 I(¾np)(¸) = lim

p!1 ´np = lim
p!1!np = !

and we have proved that B1(¸) µ I(V )(¸).
Since I(V2n¡2)(¸) µ Bn(¸), for every n, the reverse inclusion is clear.

¥
Theorem 2. (Riesz's theorem for orthogonal matrix polynomials) Let ¹ be a positive
de¯nite matrix of measures corresponding to a completely indeterminate matrix moment
problem. Then the following conditions are equivalent:

(1) There exists ¸0 2 C n R such that I(¹)(¸0) is an extremal point (in the sense of
convexity) of the set B1(¸0).

(2) For any ¸ 2 C n R, I(¹)(¸) is an extremal point (in the sense of convexity) of the
set B1(¸)

(3) P is dense in L2(¹), equivalently (Pn(t))1n=0 is an orthonormal basis for the Hilbert
space L2(¹).
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Proof of Theorem 2
(3)) (2) The polynomials are dense in L2(¹) if for any function f in the space L2(¹)

we have equality in Bessel's inequality, which is equivalent to

(3.7)
1X
k=0

(f; Pk)(f; Pk)
¤ =

Z
R
f(t)M(t)f¤(t)d¿¹(t):

In particular, for f¸(t) =
I

t¡ ¸ 2 L
2(¹) we have

(f¸; Pk) =

Z
R

I

t¡ ¸d¹(t)P
¤
k (t)

=

Z
R
d¹(t)

P ¤k (t)¡ P ¤k (¸)
(t¡ ¸) +

Z
R

d¹(t)

t¡ ¸P
¤
k (¸)

= Q¤k(¸) + I(¹)(¸)P
¤
k (¸);

being I(¹)(¸) =

Z
R

d¹(t)

t¡ ¸ the Stieltjes transform of ¹ in the point ¸, and

Z
R
f(t)d¹(t)f¤(t) =

Z
R

d¹(t)

jt¡ ¸j2 =
I(¹)(¸)¡ I(¹)(¸)¤

¸¡ ¸ =
ImI(¹)(¸)

Im¸
;

so equality in (3.7) is

1X
k=0

(Q¤k(¸) + !(¸)P
¤
k (¸))(Qk(¸) + Pk(¸)!

¤(¸)) =
ImI(¹)(¸)

Im¸
;

that is I(¹)(¸) 2 ExtB1(¸).
(2)) (1) is obvious.

(1) ) (3) We suppose (1) holds and we claim fn¸0 =
I

(t¡ ¸0)n 2 P, for n ¸ 1. The

assertion for n = 1 is the assumption. We now prove that fn+1¸0
2 P under the assumption

fn¸0 2 P, so that the claim is established by induction. For given ² > 0, there exists a
matrix polynomial P 2 P such that kfn¸0 ¡ Pk2 · ²jIm¸0j. Dividing P by (x ¡ ¸0)I we
get P (x) = (x¡ ¸0)Q(x) +A, with Q another polynomial of degree n¡ 1 and A a N £N
complex matrix. We have

kfn+1¸0
¡Af¸0 ¡Qk22 =

= ¿

Z
R

µ
I

(t¡ ¸0)n+1 ¡
A

t¡ ¸0 ¡Q(t)
¶
M(t)

µ
I

(t¡ ¸0)n+1 ¡
A

t¡ ¸0 ¡Q(t)
¶¤
d¿¹(t)

= ¿

Z
R

1

jt¡ ¸0j2
µ

I

(t¡ ¸0)n ¡A¡Q(t)(t¡ ¸0)
¶
M(t)

µ
I

(t¡ ¸0)n ¡A¡Q(t)(t¡ ¸0)
¶¤
d¿¹(t)
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· 1

jIm¸0j2 k
I

(t¡ ¸0)n ¡ P (t)k
2
2 · ²2;

and since
A

t¡ ¸0 belongs to the closure of P we deduce that
I

(t¡ ¸0)n+1 also does.
Now, if f 2 L2(¹) is orthogonal to P and we consider the Stieltjes transform

I(f¹)(z) =

Z
R

f(t)

t¡ z d¹(t); z 2 C n R

using that fn¸0 ; f
n
¸0
2 P for n ¸ 1, we see that

I(f¹)(n)(z) = µ; for z = ¸0; ¸0; and n ¸ 0;

but then we have an analytic function I(f¹) in a domain D such that I(f¹)(n)(z0) = µ
for n ¸ 0 and a certain z0 2 D. So I(f¹) is equal to µ in D. We conclude that I(f¹)
is identically zero in each of the two half planes C n R, and then f = µ, ¹ a.e., hence the
polynomials are dense in L2(¹).

¥
We also have the following Theorem:

Theorem 3. If ¹ 2 V2n¡2 is such that I(¹)(¸) 2 ExtBn(¸), then Pn¡1 = L2(¹)
Proof of Theorem 3

The hypothesis means that equality is attained in (3.2), that is, the function f¸(t) =
I

t¡ ¸
can be approximated by matrix polynomials up to degree n ¡ 1. Now the proof ¯nishes
exactly in the same way as the proof of Theorem 2.

¥

4. Proofs of the inclusions.

In this last section we study in detail the set Bn(¸) and other related sets, with the
purpose of proving the inclusions (3.6). We remark that these inclusions are valid without
supposing the matrix moment problem to be completely indeterminate. We ¯rst prove the
second inclusion of (3.6)

Lemma 1.
I(V2n¡2)(¸) µ Bn(¸)

Proof
Let's suppose ¹ is a measure in V2n¡2. We know that the ¯rst n orthonormal matrix

polynomials P0; : : : ; Pn¡1 form an orthonormal system in the space L2(¹). After the above
calculations, from Bessel's inequality for the function f¸(t) =

I

t¡ ¸ , we deduce that

n¡1X
k=0

(Q¤k(¸) + I(¹)(¸)P
¤
k (¸))(Qk(¸) + Pk(¸)I(¹)(¸)

¤) · ImI(¹)(¸)

Im¸
:
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Multiplying and using formulas (2.1), (2.2), (2.3), (2.4) and (2.9) we get

(4.1) I(¹)(¸)

µ
iDn(¸; ¸)
2Im¸

¶
I(¹)(¸)¤ + I(¹)(¸)

µ
iBn(¸; ¸)
2Im¸

¶¤
+

µ
iBn(¸; ¸)
2Im¸

¶
I(¹)(¸)¤ +

µ
iAn(¸; ¸)
2Im¸

¶
· µ:

Taking into account that
iDn(¸; ¸)
2Im¸

= Rn¡1(¸)¡1;

(4.1) can be written as

(4.2) [I(¹)(¸) + Cn(¸)]Rn¡1(¸)¡1[I(¹)(¸) + Cn(¸)]¤

+

µ
iAn(¸; ¸)
2Im¸

¶
¡
µ
iBn(¸; ¸)
2Im¸

¶µ
iDn(¸; ¸)
2Im¸

¶¡1µ
iBn(¸; ¸)
2Im¸

¶¤
· µ;

where we recall that Cn(¸) = Bn(¸; ¸)Dn(¸; ¸)¡1.
Now, using (2.7), (2.8), (2.9) and (2.10) we getµ

iAn(¸; ¸)
2Im¸

¶
¡
µ
iBn(¸; ¸)
2Im¸

¶µ
iDn(¸; ¸)
2Im¸

¶¡1µ
iBn(¸; ¸)
2Im¸

¶¤
= j¸¡ ¸j¡2Rn¡1(¸):

Thus, (4.2) becomes

(4.3) [I(¹)(¸) + Cn(¸)]Rn¡1(¸)¡1[I(¹)(¸) + Cn(¸)]¤ · j¸¡ ¸j¡2Rn¡1(¸):

and we have proved that
I(V2n¡2)(¸) µ Bn(¸):

¥
As we indicated above, the proof of this Lemma shows also that Bn(¸) is described

through (3.2). By a simple limit process we also have that B1(¸) is described through
(3.4)
To prove the inclusion IntBn(¸) µ I(V2n¡2)(¸) we introduce the set of points ¡n(¸)

de¯ned by

¡n(¸) = f¡(Pn(¸)¡APn¡1(¸))¡1(Qn(¸)¡AQn¡1(¸)) : AnA = A¤A¤ng:

We will use that
(4.4)
(Pn(¸)¡APn¡1(¸))¡1(Qn(¸)¡AQn¡1(¸)) = (Q¤n(¸)¡Q¤n¡1(¸)A¤)(P ¤n(¸)¡P ¤n¡1(¸)A¤)¡1

for any complex ¸. This formula can be proved like step 1 of Theorem 3.1 of [D2].
The three following Lemmas show the relation between ¡n(¸), I(V2n¡2)(¸) and Bn(¸).
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Lemma 2.

co(¡n(¸)) µ I(V2n¡2)(¸);
where co(¡n(¸)) stands for the convex hull of ¡n(¸).

Proof

By virtue of Theorem 3.2 in [D2], for any N £N complex matrix A for which AnA =
A¤A¤n, it is possible to make the simple fraction decomposition

(Pn(¸)¡APn¡1(¸))¡1(Qn(¸)¡AQn¡1(¸)) =
mX
i=1

Gi
¸¡ xi ;

with the numerical matrices Gi being positive semide¯nite, and if we de¯ne the matrix of
measures

¹A =
mX
i=1

Gi±xi ;

then ¹A is a solution of the truncated matrix moment problem up to degree 2n¡ 2, and

I(¹)(¸) =

Z
R

d¹(t)

t¡ ¸ = ¡(Pn(¸)¡APn¡1(¸))
¡1(Qn(¸)¡AQn¡1(¸)):

We have thus proved that ¡n(¸) µ I(V2n¡2)(¸). Since I(V2n¡2)(¸) is a convex set, we
have

co(¡n(¸)) µ I(V2n¡2)(¸):
¥

Lemma 3.

¡n(¸) µ ExtBn(¸)
Proof

Observe that for I(¹A)(¸) in ¡n(¸) we have

I(¹A)(¸)(P
¤
n(¸)¡ P ¤n¡1(¸)A¤) = ¡(Q¤n(¸)¡Q¤n¡1(¸)A¤):

Multiplying by An and taking into account that AnA is hermitian we deduce that

(I(¹A)(¸)P
¤
n(¸) +Q

¤
n(¸))A

¤
n(Pn¡1(¸)I(¹A)(¸)

¤ +Qn¡1(¸))

is a hermitian matrix. This is precisely formula (3.5) for I(¹A)(¸), which means that
I(¹A)(¸) is an extremal point of Bn(¸), that is we have proved that ¡n(¸) µ ExtBn(¸).

¥
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Lemma 4.
I(V2n¡2)(¸) \ ExtBn(¸) = ¡n(¸):

Proof
In theorem 1 of [DL3] the authors characterize the matrices of measures ¹ of V2n¡2 for

which the polynomials up to degree n¡ 1 are dense in L2(¹): ¹ is an extremal matrix of
measures (in the sense of convexity) in Vn¡1. Furthermore, this is the case if and only if ¹
is a discrete matrix of measures whose support (the support of a positive de¯nite matrix

of measures ¹ = (¹i;j)1·i;j·N is the support of its trace measure ¿¹ =
PN

i=1 ¹i;i) is the
set of zeros of (Pn(¸)¡APn¡1(¸)) (the zeros of a matrix polynomial P (t) are the zeros of
the determinant of P (t)), where the matrix A makes AnA hermitian:
For a matrix of measures ¹ in V2n¡2 (n ¸ 1) the following statements are equivalent:
(1) ¹ is an extremal matrix of measures of the set Vn¡1.
(2) The matrix polynomials of degree less than or equal to n¡1 are dense in the space

L2(¹).
(3) There exists an N £ N matrix A such that AnA = A¤A¤n and for which ¹ =Pq

i=1Gi±xi , where xi, i = 1; : : : ; q, are the di®erent zeros of the polynomial
det(Pn(¸)¡APn¡1(¸)) and Gi are the matrices which appear in the simple fraction
decomposition

(Pn(¸)¡APn¡1(¸))¡1(Qn(¸)¡AQn¡1(¸)) =
qX
i=1

Gi
¸¡ xi :

The numbers xi are real and the matrices Gi are positive semide¯nite, i = 1; : : : ; q.

As a consequence of this and Theorem 3 the statement holds.
¥

The following Lemma shows which points of ExtBn(¸) do not lie in ¡n(¸).

Lemma 5. If ! 2 ExtBn(¸), the following two conditions are equivalent:
(1) ! 2 ¡n(¸)
(2) det(Q¤n¡1(¸) + !P

¤
n¡1(¸))6= 0.

Proof
(1))(2) ! 2 ¡n(¸) means that there exists a N£N matrix A with AnA hermitian such

that
! = ¡(Pn(¸)¡APn¡1(¸))¡1(Qn(¸)¡AQn¡1(¸))

which gives

(4.5) (Pn(¸)¡APn¡1(¸))! = ¡(Qn(¸)¡AQn¡1(¸)):

If det(Q¤n¡1(¸)+!P ¤n¡1(¸)) = 0, there exists a non zero vector v in CN verifying !P ¤n¡1(¸)v =
¡Q¤n¡1(¸)v. Multiplying (4.5) by P ¤n¡1(¸)v to the right and using that !P ¤n¡1(¸)v =
¡Q¤n¡1(¸)v we ¯nd

(Qn(¸)P
¤
n¡1(¸)¡ Pn(¸)Q¤n¡1(¸))v = A(¡Pn¡1(¸)Q¤n¡1(¸) +Qn¡1(¸)P ¤n¡1(¸))v:
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By using formulas (2.5) and (2.6) we ¯nally get A¡1n v = µ, which is absurd because An is
invertible and v6= µ.
(1))(2) If ! 2 ExtBn(¸), then the matrix

(!P ¤n(¸) +Q
¤
n(¸))A

¤
n(Pn¡1(¸)!

¤ +Qn¡1(¸))

is hermitian (3.5). Since (!P ¤n¡1(¸) +Q
¤
n¡1(¸)) is invertible, this is equivalent to

(!P ¤n¡1(¸) +Q
¤
n¡1(¸))

¡1(!P ¤n(¸) +Q
¤
n(¸))A

¤
n

being hermitian. We put this matrix equal to AnA = A
¤A¤n and ¯nd

A¤ = (!P ¤n¡1(¸) +Q
¤
n¡1(¸))

¡1(!P ¤n(¸) +Q
¤
n(¸)):

With this matrix A we have

! = ¡(Pn(¸)¡APn¡1(¸))¡1(Qn(¸)¡AQn¡1(¸))

and thus ! 2 ¡n(¸).
¥

In the following two Lemmas we show the topological relation between ¡n(¸) and Bn(¸).

Lemma 6. The set ¡n(¸) is dense in ExtBn(¸).

Proof
For ! 2 ExtBn(¸) we are going to de¯ne A(p) for p ¸ 1 such that AnA(p) is hermitian

and

!A(p)(¸) = ¡(Pn(¸)¡A(p)Pn¡1(¸))¡1(Qn(¸)¡A(p)Qn¡1(¸))
veri¯es limp!1 !A(p)(¸) = !.
We suppose ! is an extremal point of Bn(¸) such that det(!P

¤
n¡1(¸) + Q

¤
n¡1(¸)) = 0

(otherwise ! 2 ¡n(¸) as we have proved in Lemma 5). We consider the kernel and image
sets of the linear operator de¯ned on CN by the N £N matrix (!P ¤n¡1(¸) +Q

¤
n¡1(¸)):

Im(!P ¤n¡1(¸) +Q
¤
n¡1(¸)) = fv(!P ¤n¡1(¸) +Q¤n¡1(¸)); v 2 CNg;

Ker(!P ¤n¡1(¸) +Q
¤
n¡1(¸)) = fv 2 CN : v(!P ¤n¡1(¸) +Q

¤
n¡1(¸)) = µg:

We choose an orthonormal basis fu1; : : : ; umg of Im(!P ¤n¡1(¸) +Q¤n¡1(¸)) and vectors
fv1; : : : ; vmg in CN such that ui = vi(!P ¤n¡1(¸)+Q¤n¡1(¸)), for 1 · i · m. We also choose
fvm+1; : : : ; vNg a basis of Ker(!P ¤n¡1(¸)+Q¤n¡1(¸)) so that the set fv1; : : : ; vNg is a basis
of CN .
Since ! is an extremal point of Bn(¸), by (3.5) the matrix

T = (!P ¤n(¸) +Q
¤
n(¸))A

¤
n(Pn¡1(¸)!

¤ +Qn¡1(¸))
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is hermitian. We de¯ne a linear operator H on Im(!P ¤n¡1(¸) +Q
¤
n¡1(¸)) by putting

(4.7) uiH = vi(!P
¤
n(¸) +Q

¤
n(¸))A

¤
n; 1 · i · m

and extending it by linearity. With this de¯nition, for any vector u in Im(!P ¤n¡1(¸) +
Q¤n¡1(¸)) we have that uHu

¤ is a real number. Indeed, we can express u =
Pm

i=1 ®iui,
being ®i complex numbers, and we have

uHu¤ =

Ã
mX
i=1

®ivi(!P
¤
n(¸) +Q

¤
n(¸))A

¤
n

!0@ mX
j=1

®j(Pn¡1(¸)!¤ +Qn¡1(¸))v¤j

1A

=
mX
i=1

j®ij2viTv¤i +
X
i<j

(®i®jviTv
¤
j + ®j®ivjTv

¤
i )

which is a real number because T is a hermitian matrix.
We now consider the linear subspace of CN orthogonal to Im(!P ¤n¡1(¸) +Q

¤
n¡1(¸)):

Im(!P ¤n¡1(¸) +Q
¤
n¡1(¸))

? = fv 2 CN : uiv
¤ = 0; 1 · i · mg;

and a basis of it formed by the orthonormal vectors fum+1; : : : uNg. CN is the direct sum
of Im(!P ¤n¡1(¸) +Q¤n¡1(¸)) and Im(!P ¤n¡1(¸) +Q¤n¡1(¸))?.
The matrix Hu representing the operator H : Im(!P ¤n¡1(¸) + Q

¤
n¡1(¸)) ! CN with

respect to the basis fu1; : : : ; umg in Im(!P ¤n¡1(¸) +Q¤n¡1(¸)) and fu1; : : : ; uNg in CN is

Hu =

0@ u1H
...

umH

1AC¤;
where C is the N £N matrix whose rows are the vectors u¤1; : : : ; u

¤
N in this order. If we

consider the matrix Hu formed by them£m matrix Hu;1 and them£(N¡m) matrix Hu;2
so that Hu = (Hu;1;Hu;2), the condition uHu

¤ 2 R for any u 2 Im(!P ¤n¡1(¸)+Q¤n¡1(¸))
means that the matrix Hu;1 is hermitian.
Now, for any real number p ¸ 1 we extend H to Hp on CN by de¯ning Hp on

Im(!P ¤n¡1(¸) + Q
¤
n¡1(¸))

? so that the matrix Mp representing Hp with respect to the
basis fu1; : : : ; uNg on both sides is

Mp =

µ
Hu;1 Hu;2
H¤
u;2 pI(N¡m)£(N¡m)

¶
;

(Hp = C¤MpC). Hp is clearly hermitian. We now de¯ne A(p) = A¡1n Hp. The matrix
AnA(p) = Hp is hermitian and consequently

!A(p)(¸) = ¡(Pn(¸)¡A(p)Pn¡1(¸))¡1(Qn(¸)¡A(p)Qn¡1(¸))
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belongs to ¡n(¸). We ¯nish by proving that

lim
p!1!A(p) = !:

Firstly, since for 1 · i · m we have de¯ned

vi(!P
¤
n(¸) +Q

¤
n(¸))A

¤
n = vi(!P

¤
n¡1(¸) +Q

¤
n¡1(¸))H

and Hp is an extension of H to CN , for 1 · i · m we have

vi(!P
¤
n(¸) +Q

¤
n(¸))A

¤
n = vi(!P

¤
n¡1(¸) +Q

¤
n¡1(¸))Hp:

Operating on this formula we ¯nd

vi! = ¡vi(Q¤n(¸)¡Q¤n¡1(¸)HpA¤n¡1)(P ¤n(¸)¡ P ¤n¡1(¸)HpA¤n¡1)¡1; 1 · i · m
and by using (4.4) we obtain

vi! = ¡vi(Pn(¸)¡A¡1n HpPn¡1(¸))¡1(Qn(¸)¡A¡1n HpQn¡1(¸)); 1 · i · m;
that is, for 1 · i · m we have vi! = vi!A(p) and so

(4.8) lim
p!1 vi!A(p) = vi!; for 1 · i · m:

We ¯nish by proving (4.8) for m+1 · i · N . For m+ 1 · i · N we have vi(!P
¤
n¡1(¸) +

Q¤n¡1(¸)) = µ, which gives vi! = ¡viQ¤n¡1(¸)P ¤n¡1(¸)¡1.
By using (2.5) and (2.6) we get

(Pn(¸)¡A(p)Pn¡1(¸))¡1(Qn(¸)¡A(p)Qn¡1(¸))¡Q¤n¡1(¸)P ¤n¡1(¸)¡1
= (Pn(¸)¡A(p)Pn¡1(¸))¡1¢
¢ £(Qn(¸)¡A(p)Qn¡1(¸))P ¤n¡1(¸)¡ (Pn(¸)¡A(p)Pn¡1(¸))Q¤n¡1(¸)¤P ¤n¡1(¸)¡1
= (Pn(¸)¡A¡1n HpPn¡1(¸))¡1A¡1n P ¤n¡1(¸)

¡1

= Pn¡1(¸)¡1[AnPn(¸)Pn¡1(¸)¡1 ¡Hp]¡1P ¤n¡1(¸)¡1:
Thus it remains to be proved that for m+ 1 · i · N we have

(4.9) lim
p!1 viPn¡1(¸)

¡1[AnPn(¸)Pn¡1(¸)¡1 ¡Hp]¡1P ¤n¡1(¸)¡1 = µ:

For m + 1 · i · N we have vi! = ¡viQ¤n¡1(¸)P ¤n¡1(¸)¡1, and using (4.4) we get vi! =
¡viPn¡1(¸)¡1Qn¡1(¸). Using (2.5), for m+ 1 · i · N we get

viPn¡1(¸)¡1 =viPn¡1(¸)¡1A¤n
¡1A¤n

=viPn¡1(¸)¡1[¡Qn¡1(¸)P ¤n(¸) + Pn¡1(¸)Q¤n(¸)]A¤n
=vi[¡Pn¡1(¸)¡1Qn¡1(¸)P ¤n(¸) +Q¤n(¸)]A¤n
=vi[!P

¤
n(¸) +Q

¤
n(¸)]A

¤
n:
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Since vi belongs to Ker(!P
¤
n¡1(¸)+Q

¤
n¡1(¸)), and using that T is hermitian, we have that

for any m+ 1 · i · N and for any 1 · j · m,
vi(!P

¤
n(¸) +Q

¤
n(¸))A

¤
nu

¤
j = vi(!P

¤
n(¸) +Q

¤
n(¸))A

¤
n(Pn¡1(¸)!

¤ +Qn¡1(¸)v¤j
= vi(!P

¤
n¡1(¸) +Q

¤
n¡1(¸))An(Pn(¸)!

¤ +Qn(¸))v¤j = µ:

This means that vi(!P
¤
n(¸) +Q

¤
n(¸))A

¤
n belongs to Im(!P

¤
n¡1(¸) +Q

¤
n¡1(¸))

?, and con-
sequently (4.9) holds if we prove that for any vector u in Im(!P ¤n¡1(¸) + Q

¤
n¡1(¸))

? we
have

lim
p!1u(AnPn(¸)Pn¡1(¸)

¡1 ¡Hp)¡1P ¤n¡1(¸)¡1 = µ:

Since P ¤n¡1(¸) is an invertible matrix and fum+1; : : : ; uNg is a basis of Im(!P ¤n¡1(¸) +
Q¤n¡1(¸))? it is enough to prove that for m+ 1 · i · N we have

lim
p!1ui[AnPn(¸)Pn¡1(¸)

¡1 ¡Hp]¡1 = µ:

Observe that

ui[AnPn(¸)Pn¡1(¸)¡1 ¡Hp]¡1
=ui[AnPn(¸)Pn¡1(¸)¡1 ¡ C¤MpC]

¡1

=uiC
¤[CAnPn(¸)Pn¡1(¸)¡1C¤ ¡Mp]

¡1C

=ei[CAnPn(¸)Pn¡1(¸)¡1C¤ ¡Mp]
¡1C;

where ei = (0; : : : ; 1; : : : ; 0), being the 1 in the position i.
The matrix CAnPn(¸)Pn¡1(¸)¡1C¤ ¡Mp is of the form0BBBBBBBB@

®1;1 : : : ®1;m ®1;m+1 : : : ®1;N
...

. . .
...

...
. . .

...
®m;1 : : : ®m;m ®m;m+1 : : : ®m;N
®m+1;1 : : : ®m+1;m ®m+1;m+1 ¡ p : : : ®m+1;N
...

. . .
...

...
. . .

...
®N;1 : : : ®N;m ®N;m+1 : : : ®N;N ¡ p

1CCCCCCCCA
:

The determinant of this matrix is a polynomial in the variable p of degree N ¡m, whereas
the principal minors Ai;j for i or j bigger than m are polynomials in the variable p of
degree N ¡m ¡ 1. For this reason, any entry Ei;j of [CAnPn(¸)Pn¡1(¸)¡1C¤ ¡Mp]

¡1

with i or j bigger than m tends to 0 when p tends to in¯nity, and consequently

lim
p!1 ei[CAnPn(¸)Pn¡1(¸)

¡1C¤ ¡Mp]
¡1 = µ; for m+ 1 · i · N

which proves the result.
¥

We ¯nish by proving that the convex hull of the set ¡n(¸) contains the set IntBn(¸) of
interior points of Bn(¸).
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Lemma 7.

IntBn(¸) µ co(¡n(¸))
Proof
Since ¡n(¸) is dense in ExtBn(¸), that is we have ¡n(¸) = ExtBn(¸), we deduce that

co ¡n(¸) = co¡n(¸) = co(ExtBn(¸)) = Bn(¸)

the last equality by virtue of Krein-Millman's theorem. Now, applying well-known argu-
ments of convexity we have that

Int(co(¡n(¸)) = co¡n(¸) = Bn(¸):

As we have previously mentioned, there exists an invertible linear operator L de¯ned on the
N £N complex matrices transforming Bn(¸) bijectively onto the set B = fT : TT ¤ · Ig.
It is immediate that the image set L(¡n(¸)) is dense in ExtB = fT : TT ¤ = Ig, and that
Int(co(L(¡n(¸))) = B. To prove that IntBn(¸) µ co(¡n(¸)) it is enough to prove that
IntB µ co(L(¡n(¸))).
For this, if there exists x 2 IntBnInt(co(L(¡n(¸))), we can separate x and Int(co(L(¡n(¸)))

with a linear operator ¤ such that ¤(x) = 1 and ¤(z) · 1 for any z in Int(co(L(¡n(¸))).
Since Int(co(L(¡n(¸))) = B we have that ¤(z) · 1 for any z in B and thus k¤k · 1, but
this is in contradiction with ¤(x) = 1 because x in an interior point of B.

¥
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