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Abstract. We study the connections between the Kadec-Klee property for

local convergence in measure H`, the Kadec-Klee property for global con-

vergence in measure Hg and the ∆2-condition for Orlicz function spaces Lϕ

equipped with either the Luxemburg norm ‖ · ‖ϕ or the Orlicz norm ‖ · ‖0ϕ.

Nominally, we prove that for (Lϕ, ‖ · ‖ϕ) the conditions: ϕ satisfies an ap-

propriate ∆2-condition and Lϕ ∈ H`, Lϕ ∈ Hg are equivalent, although

Lϕ ∈ Hg is not equivalent to Eϕ ∈ Hg . In contrast, we also prove that,

in the case of a non-atomic infinite measure space, properties H` and Hg

for (Lϕ, ‖ · ‖0ϕ) do not coincide. More precisely, we prove that if ϕ vanishes

only at zero, then both these properties coincide and they are equivalent

to ϕ ∈ ∆2. However, if ϕ vanishes outside zero, then (Lϕ, ‖ · ‖0ϕ) ∈ Hg

if and only if ϕ ∈ ∆2(∞). Since in the last case (Lϕ, ‖ ‖0ϕ) is not order

continuous, properties H` and Hg differ. Analogous results are also proved

for the subspace Eϕ of Lϕ. It is also worth mentioning that the criteria for

Eϕ ∈ H` as well as for Eϕ ∈ Hg were not previously known. It follows from

the criteria that the appropriate regularity ∆2-condition for ϕ is necessary

for Eϕ ∈ H`, Eϕ
0 ∈ H`, Eϕ ∈ Hg and Eϕ

0 ∈ Hg although these spaces are

order continuous for any ϕ.

1. Introduction

If (E, ‖ · ‖E) is a normed linear space, then E is said to have the Kadec-Klee
property (E ∈ H) if sequential weak convergence on the unit sphere coincides
with norm convergence. It is well known that the classical Lp-spaces, 1 < p < ∞,
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have the Kadec-Klee property (see [23], [24]). Although the space L1(0, 1) fails
to have the Kadec-Klee property, Riesz showed that each sequence {xn} on the
unit sphere of an Lp-space, 1 ≤ p < ∞, convergent almost everywhere to x from
the unit sphere of Lp, is also norm-convergent.

Throughout this paper (Ω, Σ, µ) denotes a σ-finite complete measure space.
Let E be a Banach function lattice over on (Ω, Σ, µ) (see [14]). The positive cone
E+ of E is defined by E+ = {x ∈ E : x ≥ 0}. E is said to have the Kadec-Klee
property for global convergence in measure (E ∈ Hg), if for all {xn} and x in the
unit sphere of E whenever xn → x globally in measure on Ω, then ‖xn − x‖ → 0.
E is said to have the Kadec-Klee property for local convergence in measure (i.e.
convergence in measure on subsets of finite measure) (E ∈ Hl for short), if for all
{xn} and x in the unit sphere of E whenever xn → x locally in measure on Ω,
then ‖xn − x‖ → 0.

These properties were investigated in [4] and [20] for symmetric spaces defined
on any interval [0, α), 0 < α ≤ ∞, and on the interval [0, 1), respectively.

In this paper we study the connections between the Kadec-Klee property for
local convergence in measure, the Kadec-Klee property for global convergence
in measure and the ∆2-condition in Orlicz function spaces and their subspaces
of order continuous elements equipped with either the Luxemburg norm or the
Orlicz norm.

We start by fixing some notations. In the following R, R+ and N will stand for
the sets of real numbers, nonnegative numbers and positive integers, respectively.
By ϕ : R → [0,∞] we denote an Orlicz function, i.e., ϕ is convex, even, left
continuous on the whole of R+, ϕ(0) = 0 and ϕ is not identically equal to zero.
For any Orlicz function ϕ we let

aϕ := sup{u ≥ 0 : ϕ(u) = 0}

and
cϕ := sup{u > 0 : ϕ(u) < ∞}.

We shall say that an Orlicz function ϕ satisfies the ∆2-condition for all u ∈ R
(at infinity) [at zero] if there are positive constants K and u0 with 0 < ϕ(u0) < ∞
such that ϕ(2u) ≤ Kϕ(u) holds for all u ∈ R (for every |u| ≥ u0) [for every
|u| ≤ u0]. Obviously, ϕ satisfies the ∆2-condition for all u ∈ R if and only if it
satisfies the ∆2-condition at zero and at infinity. We denote these conditions by
ϕ ∈ ∆2 (ϕ ∈ ∆2(∞)), [ϕ ∈ ∆2(0)], respectively.

For any Orlicz function ϕ the statement ”ϕ-satisfies the suitable ∆2-condition”,
will mean that:

ϕ satisfies the ∆2-condition for all u if µ is nonatomic and infinite.
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ϕ satisfies the ∆2-condition at infinity if µ is nonatomic and finite.
ϕ satisfies the ∆2-condition at 0 if µ is the counting measure.
In the following, L0(µ) will stand for the space of all (equivalence classes of)

Σ-measurable real functions defined on Ω. For a given Orlicz function ϕ we define
on L0(µ) a convex functional (called a pseudomodular, see [21]) by

Iϕ(x) =
∫

Ω

ϕ(x(t))dµ.

The Orlicz space Lϕ(µ) is defined to be the set of all x ∈ L0(µ) such that Iϕ(λx) <

∞ for some λ > 0 depending on x. We endow Lϕ(µ) with the Luxemburg norm

‖x‖ϕ = inf{λ > 0 : Iϕ(x/λ) ≤ 1}

and with the Orlicz norm

‖x‖0ϕ = sup
{

∫

Ω

|x(t)y(t)|dµ : y ∈ Lϕ∗(µ), Iϕ∗(y) ≤ 1
}

,

where the function ϕ∗ is defined by the formula

ϕ∗(u) = sup{|u|v − ϕ(v) : v ≥ 0}

and called complementary to ϕ in the sense of Young.
It is well known that if ϕ is finitely valued and satisfies the condition

lim
u→∞

ϕ(u)
u

= ∞,

then the following Amemiya formula for the Orlicz norm is true (see [22])

‖x‖0ϕ = inf
{1

k

(

1 +
∫

Ω

ϕ(k x(t))dµ
)

: k > 0
}

.

Moreover, for any x ∈ Lϕ(µ) \ {0} there is a positive number k∗ at which the
infimum is attained, that is

‖x‖0ϕ =
1
k∗

(

1 +
∫

Ω

ϕ(k∗x(t))dµ
)

.

In [11] it is proved that the Amemiya formula for the Orlicz norm is true
for any Orlicz function and in [12] it is proved that Orlicz spaces generated by
Orlicz functions satisfying the ∆2-condition have the Kadec-Klee property for
local convergence in measure.

In the sequel we will need some results concerning Banach lattices with order
continuous norms. Recall that a Banach lattice E is said to be order continuous
(OC for short), if xn ↓ 0 implies ‖xn‖ → 0 (see [17]).
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For the definition of a symmetric space E we refer to [15] (cf. also [1]). Let us
only recall that for x ∈ E, we denote by x∗ the nonincreasing rearrangement of x

(see section 3).
The subspace Eϕ of Lϕ is defined as the space of all order continuous elements

in Lϕ, where an element x ∈ Lϕ is said to be order continuous if ‖xn‖ϕ → 0
whenever 0 ≤ xn ≤ |x| for any n ∈ N and xn → 0 µ-a.e. in Ω. It is well known
that if µ is nonatomic, then Eϕ 6= {0} if and only if ϕ is finitely valued and that
Eϕ = Lϕ if and only if ϕ ∈ ∆2 (see [3], [19], [21] or [22]). It is also known that
in the case of any nonatomic σ-finite measure, x ∈ Eϕ if and only if Iϕ(λx) < ∞
for any λ > 0 (see [5]).

Recall that a Banach lattice (E,≤) is called strictly monotone (E ∈ STM for
short) if for any x, y ∈ E with 0 ≤ y ≤ x and y 6= x we have ‖y‖ < ‖x‖.
E is called upper (respectively lower) locally uniformly monotone (E ∈ ULU

M , respectively E ∈ LLUM) if for any x ∈ E and {xn} ⊂ E, the conditions
0 ≤ x ≤ xn (respectively 0 ≤ xn ≤ x) and ‖xn‖ → ‖x‖ imply ‖xn − x‖ → 0 (see
[2], [4], [10], [16] and [20]).

The following lemma will be useful in what follows. An easy proof may be
found in [14].

Lemma 1.1. Let E be a Banach function lattice over a σ-finite measure space.
If xn → x in E, then there exist y ∈ E+, {xnk

} ⊂ {xn} and εnk
⊂ R+ with

εnk
↓ 0 such that |xnk

− x| ≤ εnk
y.

We will also use the following remarkable result from [4].

Theorem 1.1. If E is a separable symmetric space on the Lebesgue measure
space ([0, α), m), where 0 < α ≤ ∞, then the following are equivalent:

(i) E is strictly monotone and E has the property Hg.
(ii) E is upper locally uniformly monotone.
(iii) For any x ∈ E and {xn} ⊂ E such that 0 ≤ x∗ ≤ x∗n, for n ∈ N, and

‖xn‖ → ‖x‖ we have ‖x∗n − x∗‖ → 0.

2. Luxemburg Norm

We start with the following general result.

Proposition 2.1. If E is not an order continuous Banach function lattice, then
E /∈ H` and E /∈ LLUM .

Proof. If E is not order continuous, it is well known (see [17]) that there exists
a sequence {xn} in E+ with ‖xn‖ = 1 and suppxn∩ suppxm = ∅ (which implies
that xn → 0 µ-a.e.) and a function x ∈ E+ such that xn ≤ x for any n ∈ N.
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Define

y =
∞
∑

n=1

xn and yn = y − xn.

If we can show that yn → y weakly, or equivalently xn → 0 weakly, the
implication ‖yn‖ → ‖y‖ can be deduced because we also have 0 ≤ yn ≤ y.

Let E∗ denote the dual space of E. For any nonnegative f ∈ E∗ and for all
k ∈ N we have

k
∑

n=1

f(xn) = f
(

k
∑

n=1

xn

)

≤ x∗(x),

whence it follows that
∑∞

n=1 f(xn) converges, and so f(xn) → 0 as n →∞. Since
every f ∈ E∗ can be written as a difference of two nonnegative functionals, we
have shown that xn → 0 weakly. Therefore ‖yn‖ → ‖y‖.

We also have that yn → y µ-a.e. . However

‖y − yn‖ = ‖xn‖ = 1

for any n ∈ N, which means that E /∈ H`. The same proof gives E /∈ LLUM . £

Corollary 2.1. Let ϕ be an Orlicz function. If ϕ does not satisfy the suitable
∆2-condition, then Lϕ /∈ H`.

Proof. The proof follows from Proposition 2.1 and the fact that the space Lϕ(µ)
is an order continuous Banach function lattice if and only if ϕ satisfies the suitable
∆2-condition (see [5], [6], [13] and [25]). £

If µ is a finite measure, the Kadec-Klee properties for local and global conver-
gence in measure are equivalent. So, in most of the results in this paper we will
restrict ourselves to studying the case of an infinite measure.

Proposition 2.2. Let (Ω, Σ, µ) be a nonatomic and infinite measure space and
ϕ be an Orlicz function with aϕ > 0 and cϕ = ∞. If Lϕ is endowed with the
Luxemburg norm, then Lϕ /∈ Hg.

Proof. Consider a sequence {An} of measurable sets such that

µ(An) = 2−n.

Let A =
⋃

An and define

x = aϕχΩ\A and xn = aϕχΩ\A + bnχAn ,

where bn > 0 and ϕ(bn)µ(An) = 1. Such a sequence {bn} exists by the assumption
that cϕ = ∞.
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We first note that xn − x = bnχAn . Therefore, xn → x globally in measure.
Now we are going to show that

‖x‖ϕ = ‖xn‖ϕ = 1.

We have
Iϕ(x) ≤ Iϕ(xn) = ϕ(aϕ)µ(Ω \A) + ϕ(bn)µ(An) = 1,

whence (see [22])

(2.1) ‖x‖ϕ ≤ ‖xn‖ϕ = 1.

On the other hand for all λ > 1,

Iϕ(λx) = ϕ(λaϕ)µ(Ω \A) = ∞

because µ(Ω \ A) = ∞. So ‖λx‖ϕ ≥ 1 for all λ > 1, which implies ‖x‖ϕ ≥ 1.
Hence, by using (2.1), we obtain

‖x‖ϕ = ‖xn‖ϕ = 1.

In order to finish the proof, observe that

Iϕ(xn − x) = ϕ(bn)µ(An) = 1,

which implies that ‖xn − x‖ϕ = 1 for all n ∈ N. £

Proposition 2.3. Let ϕ be an Orlicz function with aϕ = 0 and cϕ = ∞ and
Eϕ be endowed with the Luxemburg norm. Assume ϕ does not satisfy the ∆2-
condition at 0. Then Eϕ /∈ Hg whenever (Ω, Σ, µ) is a nonatomic and infinite
measure space.

Proof. Since ϕ /∈ ∆2(0), there exists a sequence {un} of positive real numbers
with un → 0 and

ϕ(2un) > 2nϕ(un)

for all n ∈ N.
Let x ∈ Eϕ, x ≥ 0 and ‖x‖ϕ = 1. We claim that there exists a sequence

{An} in Σ such that µ(An) = ∞ and Iϕ(2xχAn) ≤ 2−n for all n ∈ N. Indeed,
by σ-finiteness of the measure space, there exists a sequence {Cn} in Σ such that
Cn ↑, 0 < µ(Cn) < ∞ for every n ∈ N and

⋃

n Cn = Ω. The Lebesgue dominated
convergence theorem yields Iϕ(2xχΩ\Cn

) → 0 as n →∞.
Since µ(Ω \ Cn) = ∞ for any n ∈ N, the claim is proved for {An} being a

subsequence of the sequence {Ω \ Cn}.
Let Bn ⊂ An be for any n ∈ N such that xχBn ∈ L∞ and ϕ(un)µ(Bn) = 2−n.

Define
xn = x +

un

2
χBn = xχΩ\Bn

+ (x +
un

2
)χBn .
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Then xn ∈ Eϕ for all n ∈ N. Since xn ≥ x ≥ 0, we have ‖xn‖ϕ ≥ ‖x‖ϕ = 1. On
the other hand

Iϕ(xn) = Iϕ(xχΩ\Bn
) + Iϕ

(

2x + un

2
χBn

)

≤ Iϕ(xχΩ\Bn
+

1
2
{Iϕ(2xχBn) + Iϕ(unχBn)}

≤ 1 +
1
2
{2−n + 2−n} = 1 + 2−n,

whence 1 ≤ ‖xn‖ϕ ≤ 1+2−n, i.e. ‖xn‖ϕ → ‖x‖ϕ = 1. Since xn−x = 1
2unχBn and

un → 0, we conclude that xn → x globally in measure. However, Iϕ(4(xn−x)) =
ϕ(2un)µ(Bn) > 2nϕ(un)µ(Bn) = 1, whence ‖xn − x‖ϕ ≥ 1

4 for all n ∈ N. This
yields Eϕ /∈ Hg. £

Proposition 2.4. If (Ω, Σ, µ) is a nonatomic measure space and ϕ is an Orlicz
function with cϕ < ∞, then Lϕ equipped with the Luxemburg norm fails to have
property Hg.

Proof. Choose a sequence {An} of measurable and pairwise disjoint sets such
that µ(An) > 0 for any n ∈ N and

∑∞
n=1 ϕ(bn)µ(An) ≤ 1, where 0 < bn ↑ cϕ as

n →∞. Define

xn =
∑

k 6=n

bkχAk
and x =

∞
∑

k=1

bkχAk
.

Then we have
Iϕ(xn) ≤ Iϕ(x) ≤ 1.

On the other hand for any λ > 1, we have

Iϕ(λx) ≥ Iϕ(λxn) = ∞.

Therefore, ‖x‖ϕ = 1 and ‖xn‖ϕ = 1 for all n ∈ N.
Since µ(An) → 0 as n → ∞, we have that xn → x globally in measure.

However, for any λ > 1, Iϕ(λ(x−xn)) = ∞ for n large enough. This implies that
‖x− xn‖ϕ ≥ 1

λ for n large enough, and consequently Lϕ /∈ Hg. £

Proposition 2.5. Let ϕ be an Orlicz function, (Ω, Σ, µ) be a nonatomic measure
space and Eϕ be endowed with the Luxemburg norm. Assume that ϕ does not
satisfy the ∆2-condition at ∞ and cϕ = ∞. Then Eϕ /∈ Hg.

Proof. If we assume that ϕ /∈ ∆2(∞), then for all c > 0 and n ∈ N there exists
un,c ≥ n such that

ϕ(2un,c) > cϕ(un,c).
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Taking c = 2n+1 gives the existence of un ≥ n such that

ϕ(2un) > 2n+1ϕ(un) for all n ∈ N.

Take any x ∈ Eϕ such that x ≥ 0 and ‖x‖ϕ = 1. In the same way as in the proof
of Proposition 2.3 one can find a sequence {An} ⊂ Σ and a subsequence {vn} of
{un} such that xχAn ∈ L∞, Iϕ(xχAn) < 2−n and ϕ(vn)µ(An) = 2−n. Defining
xn = x + vn

2 χAn , we have

1 = Iϕ(x) ≤ Iϕ(xn) = Iϕ(xχΩ\An
) + Iϕ(

1
2
(xχAn + vnχAn))

≤ 1 +
1
2
{Iϕ(xχAn

) + ϕn(vn)µ(An)} = 1 + 2−n,

whence 1 ≤ ‖x‖ϕ ≤ ‖xn‖ϕ ≤ 1 + 2−n for any n ∈ N. Moreover, from the equality
xn − x = vn

2 χAn and the fact that µ(An) → 0 as n → ∞ it follows that xn → x

globally in measure. However, xn ∈ Eϕ and Iϕ(4(xn − x)) = ϕ(2vn)µ(An) >

2nϕ(vn)µ(An) = 1, whence ‖xn − x‖ϕ ≥ 1
4 for all n ∈ N. This means that

Eϕ /∈ Hg. £

Proposition 2.6. Let (Ω, Σ, µ) be a nonatomic and infinite measure space and
ϕ be an Orlicz function with aϕ > 0 and cϕ = ∞. Then Eϕ /∈ H`.

Proof. Devide Ω into A ∪ B, where µ(A) = µ(B) = ∞ and A ∩ B = ∅. Let
A = ∪∞n=1An, where An are pairwise disjoint and µ(An) ≥ 1 for any n ∈ N. Take
a0 ≥ 2aϕ and B0 ∈ Σ ∩B such that ϕ(a0)µ(B0) = 1. Define

x = a0χB0 and xn = x + aϕχAn .

Then Iϕ(x) = Iϕ(xn) = 1, whence ‖x‖ = ‖xn‖ = 1 for any n ∈ N. Since the
sets An are pairwise disjoint, we have xn → x µ-a.e. . However, Iϕ(2(xn − x)) =
ϕ(2aϕ)µ(An) ≥ ϕ(2aϕ), whence ‖xn − x‖ϕ ≥ (1/2) min(1, ϕ(2aϕ)) > 0. Since
x ∈ Eϕ and xn ∈ Eϕ for each n ∈ N, the proof is finished. £

Proposition 2.7. Let (Ω, Σ, µ) be a nonatomic and infinite measure space and
ϕ be an Orlicz function with aϕ > 0 and ϕ ∈ ∆2(∞). Then Eϕ ∈ Hg.

Proof. Assume that x ∈ S(Eϕ), {xn} ⊂ S(Eϕ) and xn → x globally in measure.
We have Iϕ(x) = Iϕ(xn) = 1 for each n ∈ N. First we will prove that

(2.2) Iϕ(xnχA) → Iϕ(xχA) for any A ∈ Σ.

By the σ-finiteness of µ and the fact that xn → x globally in measure we
know that {xn} contains a subsequence convergent to x µ-a.e. . Assume without
loss of generality that xn → x µ-a.e. . Since ϕ ∈ ∆2(∞) and consequently ϕ is
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continuous, we have ‖ϕ ◦xn‖L1 = Iϕ(xn) = Iϕ(x) = ‖ϕ ◦x‖L1 and ϕ ◦xn → ϕ ◦x

µ-a.e. . Since L1 ∈ H`, we get ‖ϕ ◦ xn − ϕ ◦ x‖L1 → 0. Hence for any A ∈ Σ,
we get ‖ϕ ◦ xnχA − ϕ ◦ xχA‖L1 → 0, whence Iϕ(xnχA) → Iϕ(xχA). Now we are
ready to prove that ‖xn − x‖ϕ → 0. Since E ∈ Hg if and only if E+ ∈ Hg for
any order continuous Banach function lattice (see Proposition 1 in [12], where it
was proved that E ∈ H` if and only if E+ ∈ H` whenever E is order continuous,
and observe that the proof works also for Hg in place of H` ), we may assume in
the remaining part of the proof that xn ≥ 0 and x ≥ 0. We need to show that
Iϕ(λ(xn − x)) → 0 for any λ > 0. Choose any λ > 0 and define for any N

An = {t ∈ Ω : |xn(t)− x(t)| > aϕ/λ}.

We know that µ(An) → 0 as n →∞, so passing to a subsequence if necessary,
we may assume without loss of generality that µ(∪∞n=1An) < ∞.

Let A = ∪∞n=1An and A′ = Ω \ A. Then ϕ(λ|xn(t)− x(t)|) = 0 for any n ∈ N
and t ∈ A′. Consequently, Iϕ(λ(xn − x))χA′) = 0 for any n ∈ N. To finish the
proof we only need to show that Iϕ(λ(xn − x))χA) → 0. Let us prove first that
Iϕ((xn−x)χA) → 0. By the superadditivity of ϕ on R+ and the fact that xn ≥ 0
and x ≥ 0 µ-a.e., we have

(2.3) ϕ ◦ ((xn − x)χA) ≤ |ϕ ◦ (xnχA)− ϕ ◦ (xnχA)| .

By condition (2.2) and the fact that L1 ∈ H`, we have

‖ϕ ◦ (xnχA)− ϕ ◦ (xnχA)‖L1 → 0.

So, inequality (2.3) gives ‖ϕ◦((xn−x)χA)‖L1 = Iϕ(xn−x)χA) → 0. Given λ > 0,
we may assume passing to a subsequence if necessary that ϕ(λ(xn − x)χA) → 0
µ− a.e. . Moreover, by inequality (2.3), Lemma 1.1 and the assumption that ϕ ∈
∆2(∞), it follows that this sequence has an integrable majorant. Consequently,
the Lebesgue dominated convergence theorem yields Iϕ(λ(xn − x)) → 0. This
finishes the proof. £

We remark that the only reason that Proposition 2.7 is not true for Lϕ instead
of Eϕ is that if ϕ does not satisfy suitable ∆2-condition, then for x ∈ Lϕ it can
happen that ‖x‖ϕ = 1 and Iϕ(x) < 1.

The previous results can be summarized in the following theorem.

Theorem 2.1. Let (Ω, Σ, µ) be a nonatomic measure space, ϕ be an arbitrary
Orlicz function, and (Lϕ, ‖ · ‖ϕ) be the Orlicz space endowed with the Luxemburg
norm. The following statements are equivalent:

1. ϕ ∈ ∆2.
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2. Lϕ(µ) ∈ H`.
3. Lϕ(µ) ∈ Hg.

Assuming additionally that cϕ = ∞, we have:

4. Eϕ ∈ H` if and only if Lϕ ∈ H`.
5. Eϕ ∈ Hg if and only if, either

(i) aϕ = 0 and ϕ ∈ ∆2, or
(ii) aϕ > 0 and ϕ ∈ ∆2(∞).

Proof. It is known (see [5] and [12]) that Lϕ ∈ H` if and only if ϕ ∈ ∆2. The
implication 2 ⇒ 3 is obvious. By Corollary 2.1 and Propositions 2.2-2.5 we get the
equivalence 2 ⇐⇒ 3. Statement 4 follows by Propositions 2.3, 2.4 and 2.6 and
by the first part of the theorem. Finally, statement 5 follows from Propositions
2.2, 2.3, 2.5 and 2.7 and the first part of the theorem. £

Remark 2.1. If cϕ = ∞ and aϕ = 0, statement 4 of Theorem 2.1 can also be
deduced in a different way, by observing that under the assumptions, Eϕ is the
STM (see [16]). Consequently, by Theorem 1.1, Eϕ ∈ ULUM and, by Theorem
2, 3 in [10], ϕ ∈ ∆2.

Example 2.1. Consider the Orlicz function ϕ(u) = max(0, |u| − 1) and assume
that (Ω, Σ, µ) is a nonatomic measure space. Then L1 + L∞ = Lϕ and

‖x‖ϕ = inf{max(‖u‖1, ‖v‖∞) : u ∈ L1, v ∈ L∞ andu + v = x}.

If µ is finite, then Lϕ = Eϕ and Lϕ ∈ H` since ϕ ∈ ∆2(∞). If µ is infinite, then
Lϕ /∈ Hg (see Proposition 2.2) but Eϕ ∈ Hg (see Proposition 2.7). Recall that Lϕ

consists of those x ∈ L0 that µ({t ∈ Ω : |x(t)| > λ}) < ∞ for some λ > 0 and Eϕ

consists of those x ∈ L0 that µ({t ∈ Ω : |x(t)| > λ}) < ∞ for any λ > 0 (see [9]).

3. Orlicz Norm

As usual, L1 := L1(µ) and L∞ := L∞(µ) denote the Lebesgue spaces of
µ-integrable functions and µ-essentially bounded functions, respectively. These
spaces are equipped with the standard norms. The spaces L1 ∩L∞ and L1 + L∞

play an important role in the interpolation theory of symmetric spaces (see [1]
and [15]). Usually these spaces are equipped with the following norms:

‖x‖L1∩L∞ = max{‖x‖1, ‖x‖∞}

and
‖x‖L1+L∞ = inf{‖u‖1 + ‖v‖∞ : x = u + v, u ∈ L1, v ∈ L∞}.
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It is well known that for the Orlicz functions ψ(u) = |u| for |u| ≤ 1, ψ(u) = ∞
for |u| > 1 and ϕ(u) = max(0, |u|−1), we have L1∩L∞ = Lψ and L1 +L∞ = Lϕ,

with the equality of norms if Lψ is equipped with the Luxemburg norm and Lϕ is
equipped with the Orlicz norm (see [7], [8] and [9] for details). Note that the func-
tions ψ and ϕ are mutually complementary in the sense of Young and, moreover,
the spaces (L1∩L∞, ‖x‖L1∩L∞), (L1 +L∞, ‖x‖L1+L∞) and (Lψ, ‖.‖ψ), (Lϕ, ‖.‖0ϕ)
form two couples of mutually dual spaces in the sense of Köthe. Hence

‖x‖0ϕ = ‖x‖L1+L∞

holds for all x ∈ Lϕ. In addition, the Amemiya formula for the norm in L1 + L∞

is proved in [9].
For any x ∈ L0(µ) the decreasing rearrangement of x is the function x∗ defined

for any t > 0 by
x∗(t) = inf{λ > 0 : dx(λ) < t},

where dx is the distribution function defined by

dx(λ) = µ({ω ∈ Ω : |x(ω)| > λ}).

For our purpose, it is worthwhile to note (see for example [17]) that

(x + y)∗(s + t) ≤ x∗(s) + y∗(t)

for any s, t > 0 and that for all x ∈ L1 + L∞ we have

‖x‖L1+L∞ =
∫ 1

0

x∗(t)dt.

From Proposition 2.2 we know that (Lϕ, ‖ · ‖ϕ) does not have the Kadec-Klee
property for global convergence in measure if aϕ > 0 and cϕ = ∞. However, this
fact is not true when the Orlicz norm is considered, because by Proposition 1.2
in [4], it follows that L1 + L∞ ∈ Hg. We will present here a simple alternative
proof of this fact.

Assume that {xn} ⊂ L1 + L∞, x ∈ L1 + L∞, xn → x globally in measure and
‖xn‖L1+L∞ = ‖x‖L1+L∞ = 1 for all n ∈ N. Since xn → x globally in measure,
x∗n → x∗ a.e., and thus

x∗nχ(0,1) → x∗χ(0,1) a.e.

(see [15]). Bearing in mind that L1 ∈ H` and ‖x∗nχ(0,1)‖L1 = ‖x∗χ(0,1)‖L1 = 1,
we deduce that

∫ 1

0

|x∗n(s)− x∗(s)|ds → 0.
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By Lemma 1.1 there exists a subsequence (x∗nk
) of (x∗n) and y ≥ 0, y ∈ L1(0, 1)

such that |x∗nk
(t)− x∗(t)| ≤ y(t) a.e. in (0, 1).

By the assumption that xn − x → 0 globally in measure, it follows that (xn −
x)∗ → 0 a.e. . Moreover,

(xnk
− x)∗(t) ≤ x∗nk

(t/2) + x∗(t/2) ≤ 2x∗(t/2) + y(t/2).

Since 2x∗(t/2) + y(t/2) ∈ L1(0, 1), by applying the Lebesgue dominated con-
vergence theorem, we obtain

∫ 1

0

(xnk
− x)∗(t) dt → 0,

which is equivalent to
‖xnk

− x‖L1+L∞ → 0.

Thus, since for each subsequence of {xn − x} we can extract a subsequence
which converges to 0 strongly in L1 + L∞, the proof is finished.

Proposition 3.1. If ϕ is an Orlicz function with cϕ = ∞ not satisfying the ∆2-
condition at ∞ and (Ω, Σ, µ) is a nonatomic measure space, then (Eϕ, ‖·‖0ϕ) /∈ Hg.

Proof. If µ is finite this is obvious, because we have

Hg ⇔ H` ⇒ OC ⇒ ∆2(∞).

So, assume that µ is nonatomic and infinite and that ϕ /∈ ∆2(∞). Then there
exists a sequence {un} of positive real numbers such that un ↑ ∞ and

ϕ(2un) > 2nϕ(un).

Take any nonnegative x ∈ Eϕ with ‖x‖0ϕ = 1. Since ϕ /∈ ∆2(∞), we have
ϕ(t)/t → ∞ as t → ∞, and so, in the Amemiya formula for the Orlicz norm
‖ ·‖0ϕ, the infimum is attained at some k > 0, that is, ‖x‖0ϕ = 1

k (1+Iϕ(kx)). Note
that, since ‖x‖0ϕ = 1, necessarily k ≥ 1.

Further (see the proof of Proposition 2.3) there exists a sequence {An} in Σ
with µ(An) = ∞ for any n ∈ N such that

Iϕ(2kxχAn) ≤ 2−n.

Let for any n ∈ N, Bn ⊂ An be such that

ϕ(un)µ(Bn) = 2−n

and define
xn = x +

un

2k
χBn = xχΩ\Bn

+ (x +
un

2k
)χBn .
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Since xn ≥ x ≥ 0, we have ‖xn‖0ϕ ≥ ‖x‖0ϕ = 1. On the other hand

‖xn‖0ϕ = inf
ρ>0

1
ρ
(1 + Iϕ(ρxn))

≤ 1
k

(1 + Iϕ(kxn))

=
1
k

(1 + Iϕ(kxχΩ\Bn
)) + Iϕ(kxχBn +

un

2
χBn)

≤ 1 +
1
2
(Iϕ(2kxχBn) + Iϕ(unχBn))

≤ 1 +
1
2
(

1
2n

+
1
2n

) → 1.

As a consequence, we obtain ‖xn‖0ϕ → ‖x‖0ϕ and, since µ(Bn) → 0, xn → x

globally in measure.
In order to finish the proof, we show that ‖xn − x‖0ϕ ≥ 1

4k . We have

Iϕ(4k(xn − x)) = Iϕ(2unχBn
) = ϕ(2un)µ(Bn)) > 1

for all n ∈ N. Hence ‖xn−x‖ϕ ≥ 1/4k, and so the proof is finished, by observing
that ‖xn − x‖0ϕ ≥ ‖xn − x‖ϕ, and xn ∈ Eϕ for all n ∈ N. £

Proposition 3.2. Let (Ω, Σ, µ) be a nonatomic measure space and ϕ be an Orlicz
function such that aϕ = 0, cϕ = ∞, and limt→∞ ϕ(t)/t = ∞. Then Eϕ

0 /∈ Hg

whenever ϕ /∈ ∆2.

Proof. First we will show that Eϕ
0 /∈ Hg if ϕ /∈ ∆2(∞) (it does not matter

if µ(Ω) = ∞ or µ(Ω) < ∞ in this case). Take any x ∈ S(Eϕ
0 ) such that

µ(Ω \ suppx) > 0). The assumption ϕ /∈ ∆2(∞) implies that there exists a
sequence {un} of positive numbers such that ϕ(2un) > 2nϕ(un) for each n ∈ N
and un → ∞. Passing to a subsequence of {un} if necessary we may assume
that ϕ(un)µ(Bn) = 2−n for a sequence {Bn} in Σ ∩ (Ω \ suppx). Defining
xn = x + unµ(Bn), we easily see that xn ∈ Eϕ

0 for any n ∈ N, xn → x glob-
ally in measure and 1 ≤ ‖xn‖0ϕ ≤ 1 + 2−n. However

‖xn − x‖0ϕ ≥
1
2
min{1, Iϕ(2(xn − x))} =

1
2
min{1, ϕ(2un)µ(Bn)} > 1/2,

which means that Eϕ
0 /∈ Hg.

Assume now that µ(Ω) = ∞ and ϕ /∈ ∆2(0). Then there is a decreasing
sequence {un} of positive numbers with un → 0 such that ϕ(2un) > 2nϕ(un) for
each n ∈ N. Take any nonnegative x ∈ Eϕ

0 with ‖x‖0ϕ = 1. We know (see the
proof of Proposition 2.3) that there is a sequence {An} ⊂ Σ such that µ(An) = ∞
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and
Iϕ(2kxχAn

) ≤ 2−n

for each n ∈ N, where k ≥ 1 satisfies k−1(1 + Iϕ(kx)) = ‖x‖0ϕ = 1.
Let Bn ⊂ An be such that ϕ(un)µ(Bn) = 2−n. Defining xn = x+unµ(Bn), we

can prove in the same way as in the proof of Proposition 3.1 that 1 ≤ ‖xn‖0ϕ ≤
1 + 2−n for each n ∈ N and xn → x globally in measure, but ‖xn − x‖0ϕ ≥ 1/4k

for all n ∈ N. Consequently, Eϕ
0 /∈ Hg. £

Proposition 3.3. Assume ϕ is an Orlicz function with cϕ < ∞ and (Ω, Σ, µ) is
a nonatomic measure space. Then Lϕ

0 /∈ Hg.

Proof. Let {λk} be a sequence of positive numbers with λk < cvarphi for any n ∈
N and λk ↑ cϕ as k →∞ and {An} ⊂ Σ be a sequence of pairwise disjoint sets of
finite positive measure such that ϕ(λk)µ(An) ≤ 2−k. Define x =

∑∞
k=1 λkcϕχAk

and xn =
∑

k 6=n λkcϕχAk
. Then 0 ≤ xn ≤ x and xn → x a.e. in Ω. Since Lϕ

0 has
the Fatou property, we get ‖xn‖0ϕ → ‖x‖0ϕ. Moreover,

Iϕ(xn − x) = ϕ(λncϕ)µ(An) ≤ 2−n

and
Iϕ(λ(xn − x)) = ϕ(λλncϕµ(An) = ∞

for any λ > 1 and n large enough. Therefore

‖xn − x‖0ϕ ≥ ‖xn − x‖ϕ = 1

for n ∈ N large enough. Since xn → x globally in measure, Lϕ
0 /∈ Hg. £

The results of this section are summarized as follows.

Theorem 3.1. Suppose that (Ω, Σ, µ) is a nonatomic measure space and ϕ is
an Orlicz function with limt→∞ ϕ(t)/t = ∞, aϕ = 0 and cϕ = ∞. Let Lϕ

0 and
Eϕ

0 be the spaces Lϕ and Eϕ equipped with the 0rlicz norm. Then the following
conditions are equivalent:

(1) Lϕ
0 ∈ H`.

(2) Lϕ
0 ∈ Hg.

(3) Eϕ
0 ∈ Hg.

(4) Eϕ
0 ∈ H`.

(5) ϕ ∈ ∆2.

Proof. The implications 1 ⇒ 2 ⇒ 3 are obvious. Let us prove that 3 ⇐⇒ 4.
It is obvious that 4 ⇒ 3. If Eϕ

0 ∈ Hg, then by Propositions 3.1 and 3.2, we get
ϕ ∈ ∆2. Consequently (see [3], [5] and [12]), Lϕ

0 ∈ H` and so Eϕ
0 ∈ H`, too.
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Therefore, the equivalence 3 ⇐⇒ 4 and the implication 5 ⇒ 1 are proved. By
Propositions 2.3 and 2.5, we get 4 ⇒ 5. £

Remark 3.1. The equivalence of conditions 1, 2 and 5 in Theorem 3.1 holds
for Lϕ generated by an Orlicz function ϕ with aϕ = 0 without the assumption
that cϕ = ∞ because, by Proposition 3.3, the condition cϕ = ∞ is necessary for
Lϕ

0 ∈ Hg.

Remark 3.2. If, in addition, we assume that the measure µ is separable and
cϕ = ∞, then the space Eϕ

0 is separable and Eϕ
0 6= {0}. Applying Theorem 1.1,

we can recapture some implications of Theorem 3.1 in a different way. Namely, if
aϕ = 0, then Eϕ

0 ∈ STM . We also know that ϕ ∈ ∆2 is necessary for Eϕ
0 ∈ ULUM

(see [10]).

Theorem 3.2. Assume ϕ is an Orlicz function such that aϕ > 0 and ϕ(t)/t →∞
as t →∞ and (Ω, Σ, µ) is a nonatomic measure space. Then Lϕ

0 ∈ Hg if and only
if ϕ ∈ ∆2(∞). If we assume additionally that cϕ = ∞, then Eϕ

0 ∈ Hg if and only
if ϕ ∈ ∆2(∞).

Proof. The necessity of ϕ ∈ ∆2(∞) for Lϕ
0 ∈ Hg follows by Propositions 3.1 and

3.3 and by Remark 3.4. When cϕ = ∞, the necessity of ϕ ∈ ∆2(∞) for Eϕ
0 ∈ Hg

follows by Propositions 3.1 and 3.2.
We present a proof of sufficiency of the respective conditions for Lϕ

0 ∈ Hg only.
The proof for Eϕ

0 in place of Lϕ
0 is the same. Let x ∈ S(Lϕ

0 ) and {xn} be a
sequence in S(Lϕ

0 ) such that xn → x globally in measure. By the assumption
that limt→∞ ϕ(t)/t = ∞, there are k ≥ 1 and kn ≥ 1 for n ∈ N such that

‖x‖0ϕ =
1
k

(1 + Iϕ(kx)) and ‖xn‖0ϕ =
1
kn

(1 + Iϕ(knxn)).

We need to prove that Iϕ(λ(xn − x)) → 0 for any λ > 0. Choose an arbitrary
λ > 0 and define

An = {t ∈ Ω : |xn(t)− x(t)| ≤ aϕ/λ}.

The assumption that xn → x globally in measure yields µ(A′n) → 0 as n → ∞,
where for any A ∈ Σ, A′ := Ω \ A. So, one can find a subsequence {A′nk

} of
{A′n} such that µ(A′nk

) < 2−k. Defining A =
⋃∞

k=1 A′nk
we have µ(A) ≤ 1. Note

that A′ =
⋂∞

k=1 Ank
and |xnk

(t) − x(t)| ≤ aϕ/λ for all k ∈ N whenever t ∈ A′.
Consequently, Iϕ(λ(xnk

− x)χA′) = 0 for all k ∈ N . In order to prove that
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Iϕ(λ(xnk
− x)) → 0, we need to show that Iϕ(λ(xnk

− x)χA) → 0. Let k and kn

be as above. We first prove that the sequence {kn} is bounded. Define

Cε = {t ∈ Ω : |x(t)| > ε}

for each ε > 0. Clearly, it is possible to choose an ε0 > 0 such that a := µ(Cε0) >

0. Since xn → x globally in measure, there exists m ∈ N such that

µ({t ∈ Cε0 : |xn(t)− x(t)| > ε0/2}) < a/2 for all n ≥ m.

Let Dn = {t ∈ Cε0 : |xn(t)− x(t)| ≤ ε0/2}. Then we have µ(Dn) > a/2 for all
n ≥ m, and so

| |xn(t)| − |x(t)| | ≤ ε0/2

for all t ∈ Dn and n ≥ m. Consequently, whenever n ≥ m, we have

|xn(t)| ≥ ε0/2 for all t ∈ Dn.

Assuming that ` := supn kn = ∞ one can find a subsequence {knj} of {kn} such
that knj →∞ as j →∞. Hence we get,

1 = ‖xnj
‖0ϕ =

1
knj

(1 + Iϕ(knj
xnj

) ≥ 1
knj

Iϕ(knj
xnj

)

≥ 1
knj

ϕ(knj ε/2)µ(Dnj ) →∞,

a contradiction, showing that supn kn < ∞. So, one can find a subsequence of
{kn} convergent to a positive number `. Assume without loss of generality that
kn → ` as n → ∞. Since the measure space is σ-finite and xn → x globally
in measure, we can assume without loss of generality that xn → x µ-a.e. in Ω.
Consequently, ϕ ◦ knxn → ϕ ◦ lx µ-a.e. in Ω. By the Fatou Lemma, we get

Iϕ(`x) ≤ lim inf
n→∞

Iϕ(knxn),

whence

(3.1) 1 = ‖x‖0ϕ ≤
1
`
(1 + Iϕ(`x)) ≤ lim inf

n→∞

1
kn

(1 + Iϕ(knxn)) = 1

for all n ∈ N. This implies the equality Iϕ(`x) = ` − 1. Moreover, Iϕ(knxn) =
kn − 1 → ` − 1 as n → ∞, whence we get by (3.1) that Iϕ(knxn) → Iϕ(`x) or
equivalently, ‖ϕ ◦ knxn‖L1 → ‖ϕ ◦ `x‖L1 . We get ‖ϕ ◦ knxn − ϕ ◦ `x‖L1 → 0 as
n →∞ by L1 ∈ H`. Consequently, ‖(ϕ ◦ knxn −ϕ ◦ `x)χD‖L1 → 0 as n →∞ for
any D ∈ Σ. This yields that

(3.2) Iϕ(knxnχD) → Iϕ(`xχD),
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for any D ∈ Σ as n →∞. Recall that we want to show that Iϕ(λ(xn−x)χA) → 0
as n → ∞. Taking into account that kn → `, ϕ ∈ ∆2(∞) and µ(A) < ∞, we
conclude from (3.2) that Iϕ(xnχA) → Iϕ(xχA). Since xnχA → xχA in measure
and L1 ∈ H`, we get ‖ϕ ◦ xnχA − ϕ ◦ xχA‖L1 → 0 as n → ∞. Consequently, in
view of Lemma 1.1, we may assume by passing to subsequence if necessary that
the sequence {|ϕ ◦ xnχA − ϕ ◦ xχA|} has a majorant z ∈ L1. Since

ϕ ◦ xn − x

2
χA ≤ 1

2
{

ϕ ◦ xnχA + ϕ ◦ xχA

}

≤ 1
2
{

|ϕ ◦ xnχA + ϕ ◦ xχA|+ 2ϕ ◦ xχA

}

≤ 1
2
z + ϕ ◦ x

and z/2 + ϕ ◦ x ∈ L1, the Lebesgue dominated convergence theorem yields
Iϕ(xn − x)χA/2) → 0 as n → ∞. Further µ(A) < ∞, xn → x in measure
and ϕ ∈ ∆2(∞) implies that Iϕ(λ(xn−x)χA) → 0 for any λ > 0. In consequence,
we get ‖xn − x‖0ϕ → 0 as n →∞, which finishes the proof. £
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