An specification language for fuzzy systems

F.J. Moreno-Velo, S. Sanchez-Solano, A. Barriga, I. Baturone, D.R. Lépez
Instituto de Microelectrénica de Sevilla (IMSE-CNM)
Avda. Reina Mercedes, s/n Edif. CICA. E-41012 Sevilla SPAIN

e-mail: velo@imse.cnm.es

Abstract

This work presents the main features of XFL3, a language for fuzzy system
specification, which has been defined as the common description languaje
for the tools forming the Xfuzzy 3.0 development environment. Its main
advantages are its capability to admit user-defined membership functions,
parametric operators, and linguistic hedges. A brief summary of the tools
included in Xfuzzy 3.0 and an example illustrating the use of XFL3 are also
included.

1 Introduction

The definition of formal languages for fuzzy system specification is usual for its
several advantages [1][2][3]. However, two objectives may conflict. A generally
high expressive language, able to apply all the fuzzy logic-based formalisms, is
desired, but, at the same time, the final system implementation constraints have
to be considered. In this sense, some languages focus on expressiveness [4][5], while
others are focused on software or hardware implementations [6].

One of our main objectives when we begun to design a fuzzy system envi-
ronment was to develop an open environment that was not constrained by the
implementation details, but offered the user a wide set of tools allowing different
implementations from a general system description. This led us to the definition
of the formal language XFL [7]. The main features of XFL were the separation
of the system structure definition from the definition of the functions assigned to
the fuzzy operators, and the capabilities for defining complex systems. XFL is the
base for several hardware- and software-oriented development tools that constitute
the Xfuzzy 2.0 design environment [8].

As a starting point for the 3.0 version of Xfuzzy, a new language, XFL3, which
extends the advantages of XFL, has been defined. XFL3 allows the user to define
new membership functions and parametric operators, and admits the use of lin-
guistic hedges that permit to describe more complex relationships among variables
[9][10]. In order to incorporate these improvements, some modifications have been
made in the XFL syntax. In addition, the new language XFL3, together with the
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tools based on it, employ Java as programming language. This means the use of an
advantageous object-oriented methodology and the flexibility of executing the new
version of Xfuzzy in any platform with JRE (Java Runtime Environment) installed.

2 The XFL3 language

XFL3 is a fuzzy system specification language that provides the user with a great
flexibility to define the functions associated with the fuzzy operators and linguistic
variables and that allows to express complex rule bases.

An XFL3 specification consists of several objects defining operator sets, variable
types, and rule bases. The definition format of these elements is described in the
following.

2.1 Operator sets

An operator set in XFL3 is an object containing the mathematical functions that
are assigned to each fuzzy operator. Fuzzy operators can be binary (like the T-
norms and S-norms employed to represent linguistic variable connections, implica-
tion, or rule aggregations), unary (like the C-norms or the operators related with
linguistic hedges), or can be associated with defuzzification methods [11].

XFL3 defines the operator sets with the following format (Figure 1):

operatorset identifier {
operator assigned_function(parameter_list);
operator assigned_function(parameter_list);

It is not required to specify all the operators. When one of them is not defined,
its default function is assumed. Table 1 shows the operators (and their default
functions) currently used in XFL3.

Table 1: Operators currently defined in XFL3

| Operator | Type | Default function |
and binary min(a,b)
or binary max(a,b)
implication, imp binary min(a,b)
also binary max(a,b)
not unary (1—a)
very, strongly unary (a)?
moreorless unary (a)'/?
slightly unary 4xax(l—a)
defuzzification, defuz | defuzzification center of area

The assigned functions are defined in external files which we name as packages.
The format to identify a function is “package.function”. The package name (zfl in



An specification language for fuzzy systems 3

Figure 1) can be removed if the package has been imported previously (using the
command “import package;”).

operatorset systemop {
and xfl.min();
or xfl.max();
imp xf1.min();
strongly xfl.pow(3);
moreorless xfl.pow(0.4);

Figure 1: Example of an operator set definition

2.2 Types of linguistic variables

An XFL3 type is an object that describes a type of linguistic variable. This means
to define its universe of discourse, to name the linguistic labels covering that uni-
verse, and to specify the membership function associated to each label. The defi-
nition format of a type is as follows (Figure 2 ):

type identifier [min, max; card] {
label membership_function(parameter_list);
label membership_function(parameter_list);

where min and max are the limits of the universe of discourse and card (car-
dinality) is the number of its discrete elements. If cardinality is not specified, its
default value (currently, 256) is assumed. When limits are not explicitly defined,
the universe of discourse is taken from 0 to 1.

type inputl [0,100] {
short xfl.triangle(0,25,50);
medium xfl.triangle(25,50,75);
tall xfl.triangle(50,75,100);

}

type input2 extends inputl {
very_short xfl.triangle(-10,0,25);
very_tall xfl.triangle(75,100,110);

}

Figure 2: Example of a variable type definition

The format of the linguistic label identifier is similar to the operator identifier,
that is, “package.function” or simply “function” if the package where the user has
defined the membership functions has been already imported.
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XFL3 supports inheritance mechanisms in the type definitions (like its precur-
sor, XFL). To express inheritance, the heading of the definition is as follows (Figure
2):

type identifier extends identifier {

The types so defined inherit automatically the universe of discourse and the
labels of their parents. The labels defined in the body of the type are either added
to the parent labels or overwrite them if they have the same name.

2.3 Rule bases

A rule base in XFL3 is an object containing the rules that define the logic relation-
ships among the linguistic variables. Its definition format is as follows (Figure 3):

rulebase identifier (input_list : output._list) using operatorset {
[factor] if (antecedent) -> consequent_list;
[factor] if (antecedent) -> consequent_list;

The definition format of the input and output variables is “type identifier”,
where type refers to one of the linguistic variable types previously defined. The
operator set selection (systemop in Figure 3 ) is optional, so that when it is not
explicitly defined, the default operators are employed. It is also shown in Figure 3
how confidence weights (with default values of 1) can be applied to the rules.

rulebase basel(inputl x, input2 y : output z) using systemop {
if( x == medium & y == medium) -> z = tall;
[0.8] if( x<=short | y != very_tall ) -> z = short;
if ( +(x>tall) & (y "= medium) ) -> z = tall;

Figure 3: Example of a rule base definition

A rule antecedent describes the relationships among the input variables. XFL3
allows to express complex antecedents by combining basic propositions with con-
nectives or linguistic hedges (Table 2 and Figure 4). On the other side, each rule
consequent describes the assignation of a linguistic variable to an output variable
as “variable = label’ (Figure 3).

2.4 System global behavior

The description of the system global behavior means to define the global input and
output variables of the system as well as the rule base hierarchy. This description
in XFL3 is as follows (Figure 5):
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Figure 4: Illustrating linguistic hedges

Table 2: Kinds of fuzzy propositions

Basic propositions

Description |

variable == label

equal to

variable >= label

equal or greater than (Fig. 4a)

variable <= label

equal or smaller than (Fig. 4b)

variable > label

greater than (Fig. 4c)

variable < label

smaller than (Fig. 4d)

variable != label

not equal to (Fig. 4e)

variable % = label

slightly equal to (Fig. 4f)

variable ~ = label

moreorless equal to (Fig. 4g)

variable += label

strongly equal to (Fig. 4h)

Complex propositions

Description |

proposition & proposition

and operator

proposition — proposition

or operator

Iproposition

not operator

% proposition

slightly operator

~ proposition

moreorless operator

+proposition

strongly operator
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system (input_list : output_list) {
rule_base_identifier(inputs : outputs);
rule_base_identifier(inputs : outputs);

system(inputl x, input2 y : output z) {
rulebasel(x, y : innerl);
rulebase2(x, y : inner2);
rulebase3(innerl, inner2 : =z);
}

Figure 5: Example of a system behavior definition

The definition format of the global input and output variables is the same format
employed in the definition of the rule bases. The inner variables that may appear
establish serial or parallel interconnections among the rule bases. Inner variables
must firstly appear as output variables of a rule base before being employed as
input variables of other rule bases (Figure 5).

3 Function packages

A great advantage of XFL3 is that functions asigned to fuzzy operators can be
defined freely by the user in external files (named as packages), which gives a
huge flexibility to the environment. A function definition include its name (and
possible alias), the parameters that specify its behavior as well as the constraints
on these parameters, the description of its behavior in the different languages to
which it could be compiled (java, ansi_c and cplusplus, for instance), and even the
description of its differential function (if it is employed in gradient-based learning
mechanisms). This information is the basis to generate automatically a Java class
that incorporates all the function capabilities and can be employed by any XFL3
specification.

Four types of functions can be defined in XFL3: binary functions (like T-norms,
S-norms, and implication functions), unary functions (like C-norms and functions
related with linguistic hedges), membership functions, and functions associated
with defuzzification methods. The definition format is as follows:

binary identifier { blocks }
unary identifier { blocks }
mf identifier { blocks }
defuz identifier { blocks }

Common blocks are alias, parameter, requires, java, ansi-c, cplusplus, deriva-
tive and source. The block alias is used to define alternative names to the function
identification. Its format is:
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alias identifier, identifier, .... ;

The block parameter allows the definition of the parameters on which the func-
tion depends. The format is:

parameter identifier, identifier, .... ;

The block requires expresses the constraints in the parameter values by means
of a java boolean expression. Its structure is:

requires { java_expression }

The blocks java, ansi_c and cplusplus define the behavior of the operator by
means of their descriptions in these programming languages. The input variable
is called ‘e’ in unary functions, while in binary functions, the names of the input
variables are ‘a’ and ‘b’. Membership functions use the input variable ‘z’. Defuzzi-
fication methods use the object ‘mf that includes the description of the aggregated
membership function to be defuzzified. The format of these blocks is:

java { function_code }
ansi_c { function_code }
cplusplus { function_code }

The block derivative describes the differential function that is used by some
gradient-descent learning algorithms whose objective is to fit a desired system be-
havior by changing the value of the membership functions parameters. The block
contains a Java expression assigning a value to the variable ‘deriv’. When using
unary functions, ‘deriv’ describes the derivative with respect to the variable ‘a’. In
binary functions, ‘deriw[0]’ and ‘deriv[1]’ contains the derivative with respect to ‘a’
and ‘b, respectively. When considering membership functions, ‘deriv[i]’ must be
assigned to the derivative with respect to the i-th parameter. Currently, deriva-
tives of defuzzification methods cannot be introduced. The structure of the block is:

derivative { function_code }

The block source is used to describe Java code to be directly included in the
body of the Java class generated for the function definition. This block allows the
definition of local functions that can be used in other blocks. Its format is as follows:

source { java_code }

The description of a membership function is a bit more complex than those
of binary or unary functions, since it may include not only the description of the
function behavior, but also another information like its center, its basis and its
behavior under the linguistic hedges ‘greater or equal than’ and ‘smaller or equal
than’. In order to include this information, the blocks java, ansi_c, cplusplus and



8 F.J. Moreno-Velo, S. Sanchez-Solano, A. Barriga, I. Baturone, D.R. Lopez

derivative are divided into the following subblocks: equal, greatereq, smallereq,
center and basis. Only the first one is mandatory. By default, the rest are computed
by sweeping the universe of discourse.

Some defuzzification methods are limited to the use of certain kinds of mem-
bership functions (like triangles or trapezoids). The block definedfor has been
introduced to express this constraints. Its format is:

definedfor identifier, identifier, ... ;

where identifiers refer to the name of the membership functions accepted by
the method.

Figure 6 shows some examples of function definitions. The use of packages
allows the designer to define any desired function. The standard package currently
used in XFL3 (and named zfl) contains the most usual functions, as shown in Table
3.

Table 3: The standard package zfl

| Function type | Possible assigned functions |

Binary min, prod, bounded_prod, drastic_prod, max, sum,
bounded_sum, drastic_sum, dienes_resher, mizu-
moto, lukasiewicz, dubois_prade, zadeh, goguen,
godel, sharp.

Unary not, sugeno, yager, pow, parabola.

Membership functions trapezoid, triangle, isosceles, slope, bell, sigma, rect-
angle, singleton.

Defuzzification methods | CenterOfArea, FirstOfMaxima, LastOfMaxima,
MeanOfMaxima, FuzzyMean, WeightedFuzzyMean,
Quality, GammaQuality, MaxLabel.

4 Example of an XFL3 specification

One of the main features of XFL3 is the inclusion of linguistic hedges and hier-
archical structures on the definition of fuzzy systems. The modular division of
the system description allows the designer to confront the development of complex
systems. In this sense, linguistic hedges can be used to decrease the number of
linguistic labels employed and to express logic rules more compactly [12].

As an example of complex system modelling, we have considered the problem
of parking a car between two other cars (Figure 7). The approximation we have
followed is to directly emulate how we will act as drivers. For us this is a three step
problem: the first one is to approximate the car to the parking place, the second
step is to drive backwards to introduce the car into the place, and the last one is
to straighten and center the car. Since the proper turn of the wheels depends on
the step the car is performing, our expert knowledge is represented by a hierarchi-
cal system. In particular, six rule bases are employed, as shown at the bottom of
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binary min {

java { return (a<b? a : Db); }
ansic { return (a<b? a : Db); }
cplusplus { return (a<b? a : b); }
derivative {

deriv[0] = (a<b? 1: (a==b? 0.5 : 0));
deriv[1] = (a>b? 1: (a==b? 0.5 : 0));
}

}

mf bell {
parameter a, b;
requires { a>=min && a<=max && b>0 }

java {

equal { return Math.
greatereq { if(x>a)
smallereq { if (x<a)

exp( -(a-x)*(a-x)/(b*b) ); }
return 1; return Math.exp( -(a-x)*(a-x)/(b*b) ); }

return 1; return Math.exp(

-(a-x)*(a-x)/(b*b) ); }

center { return a; }
basis { return b; }

defuz CenterOfArea {
alias Center0fGravity, Centroid;
java {
double num=0, denom=0;
for(double x=min; x<=max; x+=step) {
num += x*mf.compute(x);
denom += mf.compute(x);
}
if (denom==0) return (min+max)/2;

return num/denom;

}
}

Figure 6: Examples of function definitions
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Figure 7: Diagram of the parking problem

Figure 8. The rule base planning decides on the kind of movement that the car will
carry out: approching forwards or backwards, and parking backwards or forwards.
The two objectives of the rule base planning is to straighten the car (angle = 0)
and to finish in the center of the parking place (z = 0) ... On the other hand,
the rule bases turnAF, turnAB, turnPB and turnPF decides on the wheel angle for
each kind of movement. Finally, the rule base switch chooses the proper turn as a
function of the car movement.
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operatorset wheel opset { and xfl.prod(); or xfl.max(); }

operatorset dir_opset { and xfl.prod(); or xfl.max(); defuz xfl.MaxLabel(); }
operatorset switch opset { and xfl.prod(); or xfl.max(); defuz xfl.FuzzyMean(); }
type TAngle [-180.0,180.0;361]1 { ... }

type TX [-20.0,20.0] { ... }
type TY [0.0,10.0] { ... }

type TAim [-2.0,2.0] { ... }
type TDir [-10.0,10.0] { ... }
type TWheel [-30.0,30.01 { ... }

rulebase turnAB(TY y, TAngle angle : TWheel wheel) using wheel_opset
rulebase turnPB(TY y, TAngle angle : TWheel wheel) using wheel_ opset
rulebase turnAF(TY y, TAngle angle : TWheel wheel) using wheel_ opset
rulebase turnPF(TY y, TAngle angle : TWheel wheel) using wheel_opset
rulebase switch(TWheel ab, TWheel af, TWheel pb, TWheel pf, TAim aim :
TWheel wheel, TDir dir) using switch_opset { ...

A A A A
o
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rulebase planning(TX x,TY y,TAngle angle,TDir dir: TAim aim) using dir_opset {
if(y > close) -> aim = approach forwards;

if(y == close & x <= left ) -> aim = approach_forwards;
if(y == close & x == right & dir == forward) -> aim = approach_forwards;
if(y == close & x > right & dir == forward & angle > CE)

-> aim = approach_forwards;
if(y == close & x > right & dir == forward & angle <= CE)
-> aim = approach_backwards;

if(y == close & x > right & dir == backward) -> aim = approach_backwards;
if(y == close & x == right & dir == backward) -> aim = park_backwards;
if(y <= inside & x < left) -> aim = park_forwards;

if(y <= inside & x > right) -> aim = park_backwards;

if(y <= inside & x == left & dir == backward) -> aim = park_backwards;
if(y <= inside & x == right & dir == backward) -> aim = park_backwards;
if(y <= inside & x == left & dir == forward) -> aim = park forwards;

if(y <= inside & x == right & dir == forward) -> aim = park_forwards;
if(y <= inside & x %= left & x %= right & angle == CE) -> aim = stop;

system (TX x, TY y, TAngle angle, TDir olddir:
TWheel wheel,TDir newdir) {

planning(x, y, angle, olddir : aim);

turnAB(y, angle : ab); % il

turnAF(y, angle : af); r m p— e
turnPB(y, angle : pb); dughe e
turnPF(y, angle : pf); okl i

switch( ab, af, pb, pf, aim : wheel, newdir); [E——

Figure 8: Summary of the XFL3 specification of a fuzzy control system for the
parking problem
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This example does not attempt to illustrate an optimum way of solving a park-
ing problem but the efficiency of XFL3 for representing expert linguistic knowl-
edge. In this sense, the definitions of the variable types have been reduced by
using the greater and smaller linguistic hedges, and the rule base definitions have
been compacted thanks to the combination of connectives and hedges, as we use
linguistically.

angle(t) = angle(t-1)+newdir*wheel/25
x(t) = x(t-1)+newdir*cos(angle*m/180) /50
y(t) = y(t-1)+newdir*sin(angle*m/180) /50
olddir = newdir

Figure 9: Model of the car behavior in the parking problem

Figure 9 shows the equations that model the car behavior. These equations
have been used in a feedback process to generate a simulated track for the car. The
results of two simulations are shown in Figure 10. In the first one, the car starts
several meters before the parking place, so the system decides to drive forwards
approching the car to the place, then to move backwards introducing the car in the
place and, finally, to drive forwards straightening the car. The second simulation
begins with the car in a more advanced position, so that approching forwards leads
the car several meters away form the parking place. The system, therefore, drives
the car backwards to approach the parking place, then turns the car to introduce it
into the place and, finally, straightens the car. As the car does not reach a centered
position in the straighten forwards step, the planning rule base decides to carry
out a backwardsstep to finish the parking proccess.

Figure 10: Simulation results on the parking problem
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5 Summary of the XFL3-based tools

The core of any application developed with XFL3 is based on the use of Java classes
that contain the whole structure and functionality of the specifications to be worked
with. Using these classes and the Java graphic libraries, several tools have been
built that allow exploiting the XFL3 features through the different development
stages of a fuzzy system design [13].

Currently, a fuzzy system edition tool, named zfedit, is available. It allows
defining the operator sets, variable types, rule bases, and system structure through
a graphical user interface, as shown in Figure 11.

Figure 11: Main window of the system edition tool

Two graphic representation tools, named zf2dplot and zf3dplot, have been also
developed (Figure 12). They allow illustrating the fuzzy system behavior by its
output/input surface in a two or three dimensional space.
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Figure 12: Main window of the graphical representation tool
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A tool for automatically adjusting fuzzy systems described with XFL3 is also
available. This tool, named zfsl, provides the user with several learning algorithms
and allows selecting which system parameters are going to be tuned and which not
(Figure 13). Besides, this tool includes two methods of pre- and post-processing for
eliminating non significant rules and labels and for clustering the output variables,
thus simplifying their associated types.
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Figure 13: Main window of the supervised learning tool

The final step of any design process is the synthesis step which can lead to
a software or hardware system implementation. To ease the software synthesis,
three tools have been developed, zfj, zfc and zfcpp, which generate, respectively,
the system description in Java, C, and C++ languages.

These and other tools under development attempt to cover all the different
stages of a fuzzy system design from its linguistic description to its final imple-
mentation (either software or hardware) and will constitute the 3.0 version of the

Xfuzzy environment.

6 Conclusions

This paper has introduced the XFL3 language, which has been developed after
accumulating experience with the design of the Xfuzzy 2.0 environment. XFL3
eases the description and manipulation of complex fuzzy systems thanks to the use
of quite user-defined membership functions, fuzzy operators (including linguistic
hedges), and rule bases (admitting hierarchical structures). An illustrative example
has been included to show the efficiency of XFL3 to rapidly translate linguistic
knowledge. Based on this language, several tools are being developed to constitute
the new version of Xfuzzy, which could be executed on any platform containing the
Java Runtime Environment.
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