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Abstract. In this paper we use cohomology of Lie algebras to study the variety of laws
associated with filiform Lie algebras of a given dimension. As the main result, we describe
a constructive way to find a small set of polynomials which define this variety. It allows
to improve previous results related with the cardinal of this set. We have also computed
explicitly these polynomials in the case of dimensions 11 and 12.
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INTRODUCTION

Filiform Lie algebras were introduced by M. Vergne in the late 60’s of the past
century [1]. However, before that, Blackburn studied the analogous class of finite
p-groups and used the term mazimal class to call them, which is also now used for
Lie algebras [2]. In fact, both the terms filiform and mazimal class are synony-
mous.

Vergne showed that, within the variety of nilpotent Lie multiplications on a fixed
vector space, non-filiforms can be relegated to small-dimensional components; thus,
from an intuitive point of view, it is possible to consider that quite a lot of nilpotent
Lie algebras are filiform, in spite of this last subset not being dense in the space
of nilpotent Lie algebras. Apart from that, complex filiform Lie algebras are the
most structured subset of nilpotent Lie algebras, with respect to an adapted basis.
In this sense, we can study and classify them easier than the set of nilpotent Lie
algebras.
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So, in earlier papers, some of us have deeply studied these algebras and obtained
quite a lot of results about them. Indeed, we already got the classification of those
having dimensions 10, 11 and 12 (see [3], for instance). Moreover, we think that this
study can be also considered a small step forward in the problem of the classification
of these algebras, although it is not the principal objective of this work.

It is already known that the usual cohomology space of degree 2 of the model
filiform Lie algebra with values in its adjoint module is closely related with the
study of filiform Lie algebras. For each dimension, it is possible to associate this
space with an affine algebraic variety. Polynomials defining this variety are preserved
when the dimension increases, although the number of them certainly increases. In
fact, all polynomials defining these varieties are homogeneous of degree two and
when increasing the degree by one, the only polynomials which are added are linear
in the new variables. This suggests that each component of the variety of filiform
Lie algebras of dimension n + 1 may be a bundle over the corresponding component
of the variety of dimension n with affine fibres (see [4], [5]).

So, apart from describing the variety, another aim of this paper is to significantly
reduce the number of these polynomials, for each dimension. In the paper we also
describe an algorithm which allows to determine in a computational way the variety
of these algebras. It is suitable for being used in the case of bigger dimensions.

Indeed, this algorithm can be useful for studying the irreducible component of
filiform Lie algebras of dimension greater than or equal to 12, which is actually an
open problem. Moreover, some techniques related with Grébner basis allow us to
conjecture that the number of polynomials given by the algorithm could be minimal.

The algorithm can be easily implemented in any symbolic computational package.
Concretely, we have used MAPLE in our study.

1. COHOMOLOGY OF LIE ALGEBRAS

Let G be a Lie algebra over an arbitrary field K and let V be a G-module. We
will denote the p-co-chain space of G having values in V by CP(G, V), with p > 0. It
is the space of p-linear alternating mappings of G into V for p > 1 and the space of
the constant functions from G into V for p = 0.

We now consider the coboundary operator d, defined as usual starting from the
representation of G associated with V' according to

d: CP(G,V) — CP(G, V)

as
dp(z) =zp for ¢ € C%G,V), z€G if p=0
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and

p+1
dp(zy,. . xpi1) = 3 (=1 (@ep) (@1, &ay o Tpra)
s=1
+ Z (=) o([ws, Te], 1,y - ooy gy e vy Bty ey Tpy1)
1<s<t<p+1

ifp>1for e CP(G,V)and z1,...,2p+1 € G where the symbol means that the
letter is omitted.

We will denote by ZP(G, V) and BP(G, V) the p-cocycles and p-coboundaries of G,
respectively, with values in V.

Finally, H?(G,V) = Z?(G,V)/BP(G, V) will denote the cohomology space of G of
degree p with values in V.

If G is a filtered Lie algebra, G = |J S; and V a filtered G-module, V = | V;, we
i€z iz
can consider the filtration C7(G,V) = |J FxC7(G,V) in the co-chains space where
kez

F.CI(G, V) ={ceCi(G,V): c(@iy, . i;) € Vit qij+ks T € St}

Then, as usual, we can provide the coboundary, cocycle and cohomology spaces,
respectively, by the corresponding filtrations

721G, V)= ] F2(6,V), B(G,V)= ] F:B(G.,V),

kez kez
HI(G,V) =] FsH'(G,V), with F,H(G,V)=F,2/F.B.
kez

By taking into consideration the gradation associated with any of these filtrations,
we have

Cﬁ(gvvq ::éia(jf(gavqa ‘Zj(gavq:: 6{9Zﬁ(gavqa

i€z i€z
lgj(g7V7 :ZGEB‘Bg(ga‘/)a }{j(gavq = efafff(g,¥/)
i€z i€z
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2. COHOMOLOGY OF FILIFORM LIE ALGEBRAS

Let us recall that in a complex Lie algebra G, one can consider the lower central
series (G)1 =G, (G)2 =1[G,G],...,(9)k = [(G)k—-1,G], ... It is said that G is filiform
if dim(G)x =n —k for k > 2, with n = dimG. Note that filiform Lie algebras are a
subset of nilpotent Lie algebras.

If we denote by L, the model filiform Lie algebra of dimension n and basis
{e1,...,en}, then its bracket products are defined by [e1, e;] = e;41 for 2 <i < n—1.
For a general overview of this kind of algebras the reader can consult [1].

In this section we will describe cohomology spaces of the complex model Lie alge-
bra L, having values in its adjoint module.

The algebra L,, is filtered by considering the lower central series L, = |J (Ln)s,
i>1
where (L,)1 = L, and for ¢ > 2 we have (L,); = {(€it1,.--,€n). So, we
can consider the following descending filtration in the 2-cocycles space of L,:
FoZ(LnyLn) = {p € Z2(LoLn): 9((Ln)is (L)) € (La)isjer}. We have
Z*(Ln, L) = U FxZ*(Ln, Ly).

k>—1
It is proved in [6] that the cohomology class of 2-cocycles ¢y, s for 2 < k, 2k < s < n

defined by

(2.1) benlenen) = L TR
. s\€iy € =
g i 0 if ik,

Yrsler,e;) =0 for 2<i<n

constitutes a basis of FoH?(L,,, L,). The definition of these cocycles will be written
out in Section 4 after equation (4.1) in this paper.

3. INTEGRABILITY IN THE COHOMOLOGY SPACE OF FILIFORM LIE ALGEBRAS

Let us denote by i the law of a Lie algebra G. It is known that elements of Z2(G, G)
can be considered as infinitesimal deformations of p. Then we will say that ¢ €
7Z%(G,G) is linearity prolongable or integrable if the law defined by [a, bl = u(a,b) +
¥(a,b) for a,b € G satisfies the Jacobi identity. The Lie algebra obtained starting
from this law will be denoted by Gy.

It is immediate that 1 € Z2(G, G) will be integrable if and only if

(w © w)(av b, C) = 1/J(¢(ba c), a) + ¢(¢(Cv a)7 b) + 1/J(¢(a’ b), C) =0
for all a,b,c € G.
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The study of the cohomology space of the model filiform Lie algebra will supply us
a lot of information on filiform Lie algebras. According to Vergne (see [1]), every com-
plex filiform Lie algebra is isomorphic to a Lie algebra (Ly)y for ¢ € FoH?(Ly, Ly,).

By considering the previous notation, the following result is valid, as we can see
in [7].

Proposition 3.1. The cocycle v = " ay s¢k.s € FoH?*(Ly, Ly), where ay, s # 0
for a pair (k, s) such that s = 2k < n, is not integrable.

So, if ¢ € FyH?(L,,, Ly,) is integrable and defines a filiform Lie algebra, then either
Y € W) + F1H?(Ly, Ly) if n is even, for m = in, or ¢ € F1H*(L,,L,) if n is
odd.

Proposition 3.2. The dimension of Fy H?*(Ly, Ly,) is (n? — 6n +9) if n is odd,
or (n? — 6n + 8) if n is even.

Proof. We know a basis of the space FoH?(L,, L,) constituted by the coho-
mology classes of V. s, see (2.1). As FyH?(L,,, L,) C FoH?*(Ly, L), it is sufficient to
check that Fy H?(L,, Ly) is generated by the cohomology classes of 9y s with 2 < k,
2k +1 < s < n, because the linear independence of them is immediate, starting from
the definition of ¢y, 5. O

From now on, we will denote by w the dimension of FyH?(L,, L,). Let us con-
sider the associated gradation: FyH?*(L,,L,) = @ H?(Ln,L,). Then, if ¢ €
i>1

FyH?*(Ly, L,), we can denote ¢ = ¥, + ¥y41 + ... + 1, where ¢; € H?(L,, Ly,),
U #0,r > 1.
The cocycle ¥, will be named the sill cocycle. It is easy to prove

Theorem 3.3. If ) is integrable, then its sill cocycle is also integrable.

The algebra (L), is named the sill algebra of the Lie algebra (Ly,)y.
So, a first step to determine if ¢) € FyH?(L,, L,) is integrable will be to obtain
those 1; € H?(Ly, Ly) for i > 1 which are integrable.
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4. STRUCTURE OF FILIFORM LIE ALGEBRAS

In this section we will study the elements of HZ(L,,, L) with i > 0, due to their
important role in the structure of filiform Lie algebras.

By considering the natural gradation defined on L, if ¢; € H?(Ly, Ly,,) with i > 0,
we can write

P = Z ag,sVi,s With s =2k +17 < n.

k>2

For every pair (k,s) with 2 < k, 2k < s < n, since ¥ s € Z%(Lp, Ly,), when the
coboundary operator d is applied, we obtain

doys(e1,ei,e5) =0,

that is

(4.1) Vr,s(ei, e5) = ler, Yr,s(eisej—1)] — Vi s(€iy1,€j-1)

for2<i<j<n.
Starting from the definition of ¢ s (2.1) and using (4.1), we have

If k<4, then ¢y (es,e5) =0, Vj>i.
If k=14, then ¢y (e e5) = (ade1)~FL(ey), Vj>i.

(i—k—1 L
If k>, then ¢y s(e;,e;) = (—1)F" (J o )(adel)lﬂ_%_les,
-1
Vj>i, i+j—2k—1>0 and

1/}k,s(ei;ej) =0, V] > 1, Z+]*2k* 1<0.
So, we conclude that

_ifj—k—-1 i op_
(4.2 bus(eney) = (0 (T T ey,
for2<i<k<j<n k—i<j—k—1, and ¢y (e;,e;) = 0 otherwise, provided
that 2 <i < j < n.
By virtue of Proposition 3.1, for n even and i = 0, we can assume to = a1, ,¥1,
because in the other case 1y would not be integrable and thus it would not be of

interest for our study. So,

{%(eia@j) =
Yolei, e5)

I
o o

otherwise.
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Fixing i > 1, ¢; € H2?(Ly,Ly) for any 2 < g < ["2_’] and denoting by t; the

coeflicients ay ok+i we have

wi(eqa eq+1> = Z tkwk,S(eq; eq+1> = tqwq,2q+i(eq; eq+1) = lqe2q+i-
s=2k-+1

According to (4.1), for 2 < ¢ < [";Z] we also obtain

(23]
Q/Ji(eqa €q+2) = Z tz¢z,2z+i(€q, eq+2)
l=q

= tyler, ¥g,2q+i(eq, eqr1)] = tg€2qr14i-

Finally, by using (4.2) for 2 < ¢ < [" ], g+2<p<n+1-q—i, we have

—1
2

(7] (2=

_ —1-1
Yilegep) = Y trarilegep) = » (—1) %l<pl_q )emﬂ.l,

l=q l=q
Example 1. For n =11 and i = 1, let us consider
5 5
Y = Z Ak 2k+1Vk 2k+1 = Z LWk, 2k+1-
k=2 k=2

Then G} (ta, 3, ta,t5) = (L11)y, has the following structure:

= ep4+1 for 2 < k < 10,
to — 4ts + 3t4)eqo,
tg — 2t3)€g,

2€6,
t3 —ta)ey,

3€7,

4€10,

[e1, ex] [

le2, es] = ( [

le2, e6] = ( [

ez, e4] =1 [

[e3, es] = (t3 — 3ta +t5)e1, [e3, e7
les, e6] = ( [
les,eq] =1t [

les, e6] =1t [

[ | =tse1r.
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5. VARIETY OF GRADED FILIFORM LIE ALGEBRAS

As the space Fo H?(L,, L,) is generated by the cohomology class of 2-cocycles ¥y,
for 2 < k, 2k < s < n, the constants ajs allow us to define an element ¢ €

FoH?*(L,, Ly,) as follows:
’l/) = Zak,sd}k,s-

Starting from Propositions 3.1 and 3.2 we can denote by M™ the affine algebraic vari-

ety in the complex (w+1)-dimensional affine space C**!, defined by the polynomials

in Clag,s] obtained from considering 1 o 9(eq, ep,e,) =0forall2 < g <p <r < n.
The decomposition FyH?(Ly, L,) = @ H?(Ly, Ly) allows us to conclude that

i>
UJ M C M™, where M is the affine allg/eobraic variety defined by the polynomials
i>
z)/botained by considering 1; o ¥;(eq,ep,e,) = 0, for all 2 < ¢ < p < r < n when
t; € H2(Ly, Ly,).

For ¢ = 0, Proposition 3.1 involves M{ = {(a%mn, 0,...,0)}. For ¢ > 1, the space
HZ2(L,, Ly) is generated by the cohomology classes of 1y s with s = 2k + i, k > 2,
s < n. So, to obtain M it is sufficient to determine the constants a, 2x+; such that

(%54 [254]
Vi = E Ok 2kt+iVk,2k+i = g LWk, 2k
=2 =2

is integrable. That is, ¥; 0 ¥;(eq, €p,er) = 0 for 2 < p < ¢ < r < n. But taking into
consideration the structure of 1; € Hf (Lp, L) considered in the previous section,
we have

Wi o1y (eqv €p, 67«) = P;:Z,T€p+q+r+2i72

a.p,r
q+p+r+2i—2 < n, because it is identically zero in the other case.

So, the variety M is defined by {P"!  =0: q+p+r+2i—2 < n}. Considering

q,p,T

ak,s = 0 for s # 2k + 14, we have M* C M™.

where P%! is a homogeneous polynomial of degree 2 in Clts, ... s t{nziy], provided

Remark 1. If we denote by Qfm with 4 > 1 the coefficient of the field eq4pti—1
in 1;(eq, €p), that is, if

(2=
_ I—q, (P— -1 Y
Vi(eq, ep) = E (=1 tl( 1 €ptqti—1 = Qg peptqgti—1,
l=q q
then we have
i _ i i , i . + Qi i ,
q,p,T q,p¥pt+gt+i—1,r q,r ¥ q+r+i—1,p ,r ¥ ptr+i—1,q-
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Example 2. By continuing with the notation from the previous example, the
polynomials defining the variety Mi! are

P3
P3
Pyy g = =313 + Btgty + tats + 24ty — 6t + tats — 2tals,
Pyy 5 = —Atsty + 6t] — tyts + 2tats — tats,

P2

Proposition 5.1. Under the conditionst > 1,2 < ¢ < p < n, p+q+i—1 < n—1,
we have

i _ i i
a.p q+17p+Qq7p+1'

Proof. It isimmediate by using the basic properties of combinatorial numbers.
O

Proposition 5.2.

ii _ pisi _ piyi _ piyi
Pq,pm _quw—l Pq,p-i-l,r—l Pq+17p7r—1

forir>21,2<qg<p<r,p+q+r+2i—2<n.

Proof. It follows from the last result and from Remark 1. Indeed, if we denote
Pipr = Papr—1 + Piprio—1 + Pifrprm1 = (a) + (0) + (¢), where
(@) = Q4 pQp+g—1+ir = Qup@pra—1+ir—1 + Qopt1Qpgtir—1 T Qui1,p@prg—isr—1

ey

- q7p( ;+q—1+i,r - Q;-l-q—l-&-iw—l) + (Qfm-kl + sz-l-l,p)Q;-i-q-i-i,T—l

duvetop+qgq+i<n—r+2—i<n—landp+q—2+2i=n—r<n-—1, wecan
use the previous proposition and thus we have

_ i o iy _
(a) - q,pr+q+i7r—1 + Qq,p p+qt+ir—1 — 0.
In a similar way it is easy to obtain

i

(b) = Wy, Z]JrrJrifl,p + Q;,r71Q2+r72+i,p - Q;,r71Q2+r72+i,p+1
_QZ+1,T71QZ‘]+T+Z-71,Z)
= Qyr-1(Qusr—21ip = Quir—2+ip+1) + (= Qg — Qui1,r—1)Qgirri—1,p

= ( ;L],r—l - Z,r - Q;—‘,—l,r—l)Q;-‘,—r—l-‘ri,p =0
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and

(c) = pr@piryic1,q = Qpr1@pir—2viq + @pr1r1@pir_1+4ig
+ Qpr—1Qptr—2+ig11

= ( ;),7‘ + Q;)-i-l,r—l - Q;,T—I)Q;H-r—l-‘ri,q = 07

which completes the proof. (|

Example 3. By continuing with Example 2, we have

Remark 2. By considering again the structure of cocycles in the spaces
HZ(L,,L,) for i > 1, it is easy to check that if Qfm denotes the coefficient of
eptqti—1 in V;i(eq,ep) for v; € H2(Ly—1, Ly,—1) we have wa =Q),forall2<qg<p
with p+¢+i—1 < n—1, where (), , represents the corresponding coefficient for
¥ € H2(Ly, Ly,) such that ¢;|Ly—1 X Lp_1 = ¥;.

So, by denoting by Ffifu,r the associated polynomial with v;, we have verified that

Pi  =Ph for2<q<p<r<n, Withpiq+r+2if2<n71.
As a consequence of this note, if we define MZ’*1 = MZ-”f1 when n —i is odd (that

is [25%] = [2=1=%]) and ]\/4\1-”71 = M}~ x C when n — i is even, we have

o~

M C M
So, an inductive method on the dimension n can be used to obtain the variety M,
once the variety M Z-”fl is known. In fact, we have

Proposition 5.3. Given a fixed i > 1, we have M]' = ]\/4\1-”_1 NN for alln € N,
where N]' is the algebraic variety defined by

(P p+q4r+2i—2=n}

q,p,T

Finally, we are going to see that the number of polynomials required to define N
can be notably reduced by using Proposition 5.2. As a consequence of it, any
polynomial P}/ = defining N;* is a linear combination of polynomials Pqi:;p
q+2p+1+2i—2=n, and of polynomials of Minfl. To see it, we prove

41 with
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Theorem 5.4. The subvariety M]* C ]\/4\1-”_1 is defined by
o Pplopnmzios g s, for 0 <3k < n=2i=T jfn is odd.

o Pii RPN s for 0 < 3k < 2=2=10 i 5 even.
3+2k,"+7k,%7k 2 ’
Proof. From Proposition 5.2 we have

i pii _ pii
(5‘1) Pq,p,r - Pq7p+17r71 Pq+1,pm*1

for2<g<p<r,p+qg+r+2i—2=n, since P;:;Z,r—l 1\41-"_1 = 0. Now, by

recurrence on ¢, p,  in (5.1), we obtain that any Jacobi polynomial defining N in
M]"" is a linear combination of Pyl oy With ¢ +2p 4+ 1420 —2=n. O

6. VARIETY OF FILIFORM LIE ALGEBRAS

Let us consider ¢ = > akstks = 1 + ... + ¢y € FoH?*(Lp, L), where ¢; =
> akok+ik 2k+i- We will study in this section the variety M™, with n arbitrary,

k
defined starting from

poh=hroi+ Y. Piowi+ Y. Piovy+...,

i+j=21+1 i+j=2142

that is, (¢ o 9)(eq,ep,e,) =0for 2< g<p<r<n.

If we denote by P;ji,r the polynomial obtained from (t; o 9;)(eq, €p, €r), we have

11 i\
(6.1)  (Yo)(eq:epser) = Py rqtptria—2 + Z Py reqtptri2i+1-2
itj=21+1

o+ Z Pl en
i+j=n+2—-p—q-r
where Py = Q4 pQptqri—1,r — QarQrigtj—1p T @b @piryj—1,q for any i,j > 0.
In this expression, for ¢ > 1, ), , follows the habitual notation from Remark 1, while
for ¢+ =0,

0 (1) ifp=n+1-—gq,
0 otherwise

following the structure of 1y from Section 4.
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Proposition 6.1. Q. , =Q',,,+Q. . forq+p+i—-1<n—1,i>0.

Proof. For ¢ < 1, the result follows from Proposition 5.1. When i = 0,

if p+q < n, then Q) ), = QV,,, = Q) ., = 0, whereas if ¢ + p = n, then
Tn—g— Tho
gp=0= (=121 4+ (=1)z"" 1= Qf,, , + Qf ,y1- U

As a consequence, we have the following results. The proof of each of them is

similar to the one made in Proposition 5.2.
Proposition 6.2. Giveni,j > 1,ifq+p+r+i+j—2<n withq <p <r, then

i _ piJ _ pbJ _ phJ
Pq,p,r - Pq,pmfl Pq,erl,rfl Pq+17pﬂ”*1'

Proposition 6.3. Ifq+p+r+v—2=mn with q <p <r, then

0,v _ _ pOw _ pOw
Pq,pm - Pq,p-i-l,r—l Pq+1,p,r—1‘

Proposition 6.4. Ifn is even and Alnn =% 0, then | = 0 with vy = a%n,nw%n,n
in expression (6.1). In this case, holds 1, o g = 0 Vv > 0. Moreover, for ¢ <p <,
ifr#n+2—q—p—w, then

1/10 o wv(eqa €p, er) =0.

Proof. Under the hypothesis, by taking into consideration the structure of vy,
we have, for any 2 < ¢ < p <, that ¢, o Yg(eq, €p, €r) = Ay (ex, ep) for a certain A
which is a multiple of Alnn and a certain k > 2. As v > 0, we have ¥, (eg, e,) = 0,
since k+n—1>n.

Moreover, if r #n +2 — q—p — v, then

Yo © Yu(eq, €p, er) = Yo(Yu(eq, ep), er) + o (Yu(er, eq), €p) + Yo (v (ep, €r), €q)
= Qz,pz/’O(eq-i-p-?—v—laer) + Q;},qu(eT-Fq-i-v—la ep)
+ Qp rYo(eptrtv—1,€q)
=@y, 0+Q., - 0+Qp,-0=0.

Remark 3. Denoting Ly, . = > PuJ forv>2,q<p<r, we have the
i+j=v
following results:
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e Either for n odd or for n even with ay,, , =0, we have [ > 1 in (6.1) and thus

we can write

n+2—q—p—r

(¢ o )(eq; eps er) = Z Ly preptatr—2+v-

v=21
e Ifnisevenanday,, # 0, thenl=0in (6.1) and Proposition 6.4, for ¢ < p < r,
implies

n+2—q—p—r

0,n+2—
(Yo 7/’)(611’ €p, €r) = Z LZ,p,T€P+q+7‘—2+U + Pq,£+ TP e,
v=2

So, under this notation, the following result follows as an immediate consequence
of Proposition 6.2.

Theorem 6.5. For2<g<p<r<n,q+p+r-+v—2<n, we have
LZIJ p,r LZIJ p,r—1 L;,erl,rfl - L;}Jrl,p,rfl'

Example 4. Let us consider the algebra (Lu)w, where

Y= ¢1 +1/J2+1/13+¢4+1/J5+¢6+1/J7
= Z tﬂ/)z 2i+1 + Z hz"/)z 2i+2 + Z fﬂ/}z 2i+3 + Z gz"/)z 2i+4

=2 =2 =2 =2
3
+ ) kithigits + datbz,10 + batbo 1,
i—2

defined by

| =eiy1 for 2 <i< 10,
[e2, €9] = (t2 — Bt3 + 6ty — t5)e11,

| = (t2 — 4t + 3ts)e1o + (ha — 4hs + 3hy)ers,

| = (t2 — 3tz + ta)eg + (ha — 3hs + ha)ero

+ (f2 = 3fs + fa)enr,
[ea, e6] = (ta — 2t3)es + (ha — 2h3)eg + (f2 — 2f3)e10
+ (92 — 2g3)eu,

le2, e5] = (t2 —t3)er + (ha — ha)es + (f2 — f3)eg + (92 — g3)ewo
+ (k2 — k3)err,
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€2, e4] = taeg + haer + faes + gaeg + kae1o + dae11,

€2, €3] = taes + haeg + fae7 + gaes + kaeg + daeio + baenn,
es,es] = (t3 — 3ta + t5)enn,

7] = (t3 — 2t4)e1o + (h3 — 2h4)en,

e3, e6) = (t3 —ta)eg + (hs — ha)ero + (f3 — fa)en,

= tses + hzeg + fzeio + gsenn,

t

(

t

t

t

D
w
s

4] = tzer + hzes + fseg + gzeio + kserr,

@
w
@

T T e e s e e e e E S
Y
8

B AL A . Pl

eq,e7] = (ta — ts)enn,
e4, 6] = taeio + haeqn,
eq, e5] = tgeg + haeio + faern,

5€11-

Computing (¢ o ¢)(e2,€3,e4) = (¥ o P)(e2,es,e5) = (¢ 0 P)(ez, e4,e5) = (Y o
¥)(e2,e3,e6) = 0, and continuing with the usual notation, we conclude that the
algebraic variety M'! C C'° is defined by the polynomials

L3 56 = —313 + Btaly + tats + 2tuts — 615 + tats — 2tats,

L3 45 = —Atsts + 6t5 — tats + 2tats — tsts,

L3 55 = tats + 2taty — 313,

L3 5 5 = 3haty — Ttshs + tshy + 3hsty + 2tahy,

L3 5 4 = taty + 2toty — 3t3,

L3 5 4 = 2tahy + 3hsts — Ttshs + tshy + 3hoty,

L3 54 = 3hshy — 4h3 — 8tsfs + tsfa + 6 fo3ts — fats + 2t fa,
+ 3hohy + 4 foty — 2fots.

2 _ 72 2 2 72 3. _ 13
We observe that L536 = L5355 — L5 45, L3355 = L34, L35 = L55,4. So, we
11 ; 2 2 3 4
can say that M*" is also defined by L3 , 5, L5 34, L5 34 and L3 3 4.

Example 5. Let us consider the algebra (L12)y, where

Y=o+ Y1+ Y2+ Y3+ Ys + Y5 + s + Y7 + Ys
5 5 4 4
= 296,12 + Z tii,2i4+1 + Z hii 2i42 + Z fii 2i43 + Z 9iti,2i44

=2 1=2 =2 =2

3 3
+ Z kit 2its + Z dii 2i+6 + batho 11 + a2 12,

=2 =2
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defined by

le1, €] = €1 for 2<i <11,

[62,611 €12,

| =
I =
[e2,e10] = ( o — 6t3 + 10ty — 4t5)eqo,
]
]

(ta — Bt3 + 6ty — t5)e1r + (ho — bhg 4+ 6hy — hs)elo,
= (t2 — 4t3 + 3t4)e1p + (ho — 4hs + 3hy)enn
+ (fo — 4fs + 3f1)e12,
[ea, e7] = (ta — 3t3 + ta)eg + (ha — 3hs + hq)ero
+ (f2 = 3f3 + fa)enn + (92 — 393 + ga)eiz,
[e2, e6] = (t2 — 2t3)es + (ha — 2h3)eg + (f2 — 2f3)e10
+ (92 — 2g3)e11 + (ko — 2ks3)eqa,
le2, €5] = (t2 — ta)er + (ha — ha)es + (f2 — fs)eo + (92 — g3)ero
+ (k2 — k3)err + (d2 — d3)eiz,
= taeg + haer + faes + gaeg + kaeio + dae11 + baeia,
= toes + hoes + fae7 + gaes + kaeg + dae1o + baern + laeaz,

[625 €9

le2, es

]
]
]
| = (t3 — 4t4 + 3t5)eqa,
| = (t3 — 3ts + t5)e1r + (hg — 3hg + hs)eia,
| = (t3 — 2ta)ero + (hs — 2ha)ers + (f3 — 2f1)ein,
| = (t3 —ta)eg + (hs — ha)ero + (f3 — fa)e1r + (g3 — ga)erz,
| = tses + hseg + fseio + gsenr + kseiz,
es, ea] = tser + hses + fseg + gsero + ksenr + dsers,
| = zez,
| = (ta — 2t5)ea2,
| = (ts — ts)e1r + (ha — t5)e12,
| = tser0 + haerr + faeia,
| = taeg + haeio + faenn + gaerz,
]
]
]
]

1295



(]
(¥ o1p)(e2,e3,e6) = (Y o )(es,eq,e5) = ( ¥)(e2,ea,e6) = (¢ o Y)(ea, €5,€6) =
(Y orp)(ea,es,er) = (P or))(ez,eq,er) = (¢ ) €2, e3,eg) = 0, we obtain
Pyyg = —2taz — t52 + 3t3z,
P204 7 = 2tz +t5z — 3t32,
P203 7 = h4z — 2h3z,
L3 5.7 = —4tots + Otgty + Stats + 2taty + Stats — 3t3 — 16t3,
Pyl g = —2tyz — 52 + 3tsz,
P207’42’6 = —hyz — 2h3z,
L3, ¢ = —4tgty + 1015 — 4tyts + 2tots — Atsts,
P20§),6 = —2faz + faz + f3z,
— 32 + Btgty + tats + 2ats — 612 + tats — 2ots,
L35 = —Ttshs + 2tahy + 3tahs + 6tsha + tshs + Ttahs — 16t4hs
1 tyhs + 2hats + Atshy — 2tahs — 3hots,
Py = hyz + 2hsz,
L3, 5 = —4t3 + 3tyts + 3tats,
P20,’43,5 =2faz — faz — f32,
L3 45 = —4tsty + 613 — tats + 2tats — t3ts,
Lg,4,5 = —5tghy — t3hs — 4tzhy + 16t4hy — t4hs — 2tshg — 4tshy + 2t2hs + 3hats,
L3 55 = tsts + 2taty — 3t3,
L3 5.5 = 3hats — Ttshs + tsha + 3haty + 2taha,
L3 35 =3hghy — 4h3 — 83 fs + ts fs + 6fsta — fsts + 2tafs + 3hoha,
+ 4 foty — 2 fots,
P20§’4 = —2koz — k3z,
L3 5.4 = tsts + 2taty — 3t3,
L3 5 4 = 2tahy + 3haty — Ttshs + tshy + 3haty,
L334 = 3haha — 4h3 — 8ty fs + t3 fo + 6 fats — fats + 202 f1 + Bhoha,
+ 4 foty — 2 fots,
LS,3,4 = —9hsf3 + 3hsfs — Y393 + t394 + 6 fsha — f3hs + 10gsts,
—4gsts + 2tags + 3hafs + 4f2ha — 2 fahs + Sgats — Stsga.

Computing now ( © 1/})(62763564) (d) )(62563765) = (1/} © ¢)(€2,€4,€5) =
)

. . . . 0,5
The algebraic variety M'? C C?' is defined by the polynomials Lg,374 + P54,
4 3 0,3 2 0,2 3 0,3 2 2 0,2 2 0,2

L35, Lo a5+ Ponss L3astPsis Loset a6 Lose LaastPoie Lasrt P50
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PYy, Pyiq, Pyy g, with polynomials defining MY, that is L3 5, L3 5 4, L3 5 4 and

L3, 5
: : : . T4 _ 74 . pOl
In this case we obtain the following relations among them: L3 3 5 = L3 3 4 P274,7 =
0,1 |, p0,1 _ 0,1 | 73 03 _ 713 3 0,3 . 12 0,2 __
P56 Pysg = P2 w7 Loge+ P2 56 =Loss —Loas— Poiss Loge+Pyug =

0,2
L3545 — L3545 — Py 45a L3 37+P 37 =L336— L3546~ Pyus
So, we have deduced the following result, whose proof is a consequence of Re-
mark 2.

Proposition 6.6. Ifg+p+r+v— —1,v>2,then LY =LY where

q,p,T q,p,r?

EZ p.r 18 the polynomial obtained by cons1der1ng the cocycle ¢ € FoH?*(Ly_1,Ln_1)

W1th1/)|L 1XLn 1—’(/)
Note that this proposition is easily checkable in the previous two examples.
It is easy to see that the following result follows from Proposition 3 2: dim Fy H?
(Lp, L) — dim Fy H?*(Ly,,_1, L, 1) is either 2"4— if n is even, or 2222 if n is odd
Let us now denote M"~1 = M1 x C*7~, if n is odd or M"~! M” 1

if n is even. The following result is then vahd7 as a consequence of the previous

proposition.

Corollary 6.7. The following implications hold:
e Ifn is odd, then M™ C M" ! an—s ,_, =0.
7

e Ifn is even, then M”|a%n7n =0C ML,

If N™ denotes the algebraic affine variety in C¥*! defined, respectively, by polyno-
mials LZPTJquO;jT andP t if niseven,orby Ly, ifnisodd, for2<g<p<r,
g+p+r+v—2=n,v>22,2<l<m<t<n,l+m+t=n+1, then the following

theorem holds:

Theorem 6.8. M" = M1 N N™ for all n € N.

In the same way as we did in the previous section, the number of polynomials
required to define N™ can be also notably reduced. It can be made by using Theo-
rem 6.5 if n is odd, or the same theorem and Proposition 6.3 when n is even. So, we
have

Theorem 6.9. The subvariety M" C M"=1 is defined in the following way:
e if n is odd, by polynomials Ly 1, o, ,,41 for any 2 <v <n—7, L;,_” <
< n—1l1—wv
Px R
e ifn is even, by polynomials LfL_H —v-2ppptl +Pn’+1 v—2pppi1 POr2<v<n="7,

"+1U<p ”—“’andP Zor141 With n<l<"_2

Proof. It is sufficient to use the recurrence method on ¢, p,r from Theorem 6.5
and Proposition 6.3. |
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Example 6. By applying this result to the previous examples, we can say that the
variety M2 is given by the polynomials defining M (or M11), that is L‘211374, L§73’4,
L%, L3, 5, and those defining N'2: L34, + Py5 4, L3 5+ Pyns, L3ss + Pois,

25,6

To compute all the above polynomials defining the variety M™, any symbolic
computation package can be used. Indeed, we have designed an algorithm which
allows to obtain them. We will consider n > 9 due to the fact that for less values,
no polynomial relation appears when describing the variety. A brief description of
the algorithm follows.

Algorithm.

Input: The integer n > 9.
Output: The variety M" of laws of complex filiform Lie algebras of dimension n.

Method:

Step 1: Define polynomials Q ,, fori >1,2<q¢<p<n,3<p+q+i—1<n.
0

If n is even, also define @ ,,,

for2<g¢g<n,p=n+1—gq.

Step 2: For each m with 9 < m < n, use previous step to compute Pqi:zj;,p 41> Where

i, 2 L2<itj<m=T, "=l <p < Pl g =mA L—i— - 2p.

Step 3: For each m with 9 <m < n, compute Ly, = Z ‘ P o
4,521, i+j=v

Step 4: If n is even, for 3§ <1 < anz compute Pr?f2l,l,l+1 and for 2 < v <n—71,

%1—0 <p< n—;—v’ qg=n+1—v—2p compute Pg}:},erl' If n is odd, this

stage is not needed.

Step 5: If n is odd, the variety M" is defined by polynomials Ly , .. Other-

. . v 0,v 0,1
wise, by polynomials Ly q_,_oppni1 + Pplii—v—oppptis Pn,gu,lﬂ and

v
Ly i1—v—2pppr1 Where 9 <m <n— 1.

To conclude the paper it is convenient to note that this reduction in the number of
polynomials has been explicitly checked by us in the following cases: in dimension 12
we reduce from 17 polynomials to 8; in dimension 13, from 25 to 11; in dimension 14,
from 48 to 18; in dimension 15, from 64 to 23; and so on, in dimension 18, from 203
to 55. This proves that the algorithm significantly reduces the number of polynomials
defining the variety.
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