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High-rise buildings with a considerable number of elevators represent a major logistic problem 
concerning saving space and time due to economic reasons. For this reason, complex Elevator Group 
Control Systems are developed in order to manage the elevators properly. Furthermore, the subject 
of energy is acquiring more and more industrial relevance every day as far as sustainable 
development is concerned.  
In this paper, the first entirely dynamic Fuzzy Logic Elevator Group Control System to dispatch 
landing calls so as to minimize energy consumption, especially during interfloor traffic, is proposed. 
The fuzzy logic design described here constitutes not only an innovative solution that outperforms 
usual dispatchers but also an easy, cheap, feasible and reliable solution, which is possible to be 
implemented in real industry controllers. 

Keywords: Elevator, Energy Optimization, Fuzzy Logic, Sustainable Development, Vertical 
Transportation. 

1991 Mathematics Subject Classification: 22E46, 53C35, 57S20 

1.   Introduction 

An Elevator Group Control System (EGCS) [1] manages multiple elevators in a building 
in order to efficiently transport passengers. Performance of EGCS is measured through 
different criteria parameters like average waiting time, percentage of waits longer than 60 
seconds and power consumption. 



 

 

Usually, an EGCS assumes the following statements during its performance: (1) each 
landing call is answered by only one elevator, (2) maximum number of passengers being 
transported in the cabin is bound by its capacity, (3) elevators can stop at a floor only if 
there is a landing call or a car call on that floor, (4) car calls are sequentially served in 
accordance with the elevator trip direction, (5) an elevator carrying passengers cannot 
change its trip direction. Therefore, most common controllers designed to manage groups 
of about two or three elevators in not very high buildings implement dispatch rules based 
on an IF-ELSE logical command set. In this sense, the computer-aided design suite Lift 
Simulation and Design (LSD), implemented at the elevator systems: the algorithm named 
THV collects most of the above mentioned common rules in duplex or triplex systems 
and assigns the landing call to the nearest elevator in the correct trip direction. Other 
modern examples of different rules of logic have been proposed in [2] or [3] where a 
general set of rules is defined and particular norms prevail over them for specific 
moments. 

However, a snapshot elevator dispatching problem has been shown to be NP-Hard. In 
fact, in a building with n number of elevators where k floors need elevators, the number 
of solutions to be considered is n

k. Therefore, the complexity of the problem becomes 
huge in modern skyscrapers and other high-rise buildings in general. In this sense, once a 
certain grade of optimization is reached, it is impossible to satisfy all criteria at the same 
time. The EGCS is, therefore, designed to satisfy each one to a certain level depending on 
the tenant’s preferences. However, each criterion optimization is also limited not only to 
inverse correlations of other criteria but also to physical constraints regarding the inherent 
to the system effects and elements such as acceleration/deceleration [4] or doors [5]. 

In this paper, a novel fuzzy logic elevator group control system that minimizes power 
consumption is proposed and, as far as the authors are aware, it constitutes the first 
complete dynamic fuzzy logic elevator group control system. The following section 
presents a literature review for the elevator group control system. The third section 
describes consumption in an elevator hoisting system and details some energy aspects. 
The fourth section describes the global idea of the dynamic algorithm that allocates 
landing calls minimizing the energy employed, while in section five the assignment 
criteria is clearly stated and extensively described. The fuzzy procedures are well detailed 
in the following section six and some aspects concerning the dispatch problem are 
described in section seven together with a practical methodology developed to integrate 
the energy algorithm with a time optimizer algorithm. Finally, section eight presents the 
simulation results and in section nine the main conclusions are highlighted. 

2.   Elevator group control system literature review 

An EGCS mainly consists of hall call buttons situated on every floor, car call buttons 
inside each cabin and a group controller. In common systems there is a considerable 
amount of uncertainty, as usually neither the quantity of passengers behind a landing call 
nor the exact destination until they press the car button inside the cabin is known [6]. 
Apart from complexity and data shortage, the system also has to deal with unknown 



 

 

possible future calls. As a result partial mathematical approaches are very complicated 
([7], [8] and [9]). Therefore, modern heuristics usually has to be employed in order to 
solve the problem (sometimes helped by technological measures [10] that contribute to 
reduce uncertainty): Algorithms based on Prioritized A* Search (pruning a solution tree) 
[11] or the employment of Linear Programming [12] have shown certain accurate 
performance. Usually, artificial intelligence like genetic algorithms [13] - [17], immune 
algorithms [18], particle swarm [19] - [20] or viral systems [21] show acceptable results, 
but the time employed in obtaining a solution or convergence problems do not make them 
efficient enough solutions. Other techniques like neural networks [22] need too much 
training time to work properly, as well as they are sometimes difficult to implement and 
do not show desirable results at all when adapting to fast unforeseen variations. 
Methodologies like ant colony optimization (ACO) show fast convergence but are 
tedious to implement and they are usually integrated with other methodologies in an 
attempt to merge advantages: in [23] they combined neural network and fuzzy logic 
(Fuzzy Neural Network) with Ant Colony Optimization and in [24], they joined the 
principles of genetic algorithm and neural network in a Genetic Network Programming 
with ACO transition considerations, but their respective deficiencies are not overcome at 
all by this combination. The more complex design became a serious obstacle for the 
actual implementation of the system. On the other hand, fuzzy reasoning logic has been 
designed to represent very complex models difficult to depict ([25] - [31]) and combines 
both fast performance and cheap implementation. The fuzzy EGCS depicted in [32] 
constitutes a typical example, where, as is usual, the fuzzy design does not benefit from 
complete dynamic dispatching. 

All these artificial techniques bring about problems concerning the tuning of the 
parameters. Usually the parameters are just specially optimized for each concrete design. 
However, on some occasions the designs are developed in a self-tuning way like [33] or 
[34] where a way to integrate both advantages of the most widely employed techniques 
(“the nearest car algorithm” and “the earliest car algorithm”) is offered, and takes into 
account different factors such as velocity profiles, number of stops and time to arrival. 
This, therefore, accurately estimates the most suitable car to reduce overall waiting time.  

Another vertical transport research line is aimed at providing reliable simulation 
software for the design problem [35]. 

Currently, with the rise in importance of sustainable development, the problem of 
energy consumption is becoming one of the most important features in technology [36] 
along together with other environmental issues like pollution [37] or CO2 levels [38]. The 
total percentage of electricity wasted by the group of elevators in a building goes from 
2% to 8% [39]. However, although the total amount of power is considerable, it is not an 
issue which has often been researched. Apart from some early studies, few serious 
proposals have been developed: [32] proposes a fuzzy model but the energy performance 
is not based on actual resistors capable of recuperating part of the energy employed, [40] 
designs a combination that integrated a bi-objective genetic algorithm and the control of 
its performance due to a PI controller, but the design has to know information about its 



 

 

possible performance in advance (expected waiting time).In this paper, we implemented a 
fuzzy logic controller to deal with the energy consumption minimization in EGCS 
showing how the use of such techniques can be added to other successfully implemented 
industrial problems (for other industrial examples of fuzzy techniques implementation see 
for example the works described in [41-45]). 

3.   Energy consumption in an elevator hoisting system 

Nowadays with the fall into disuse of the hydraulic elevator, all the modern elevator 
systems placed in buildings can be represented as a counterweight plus cabin and ropes 
system. From this situation a mathematical model with its implications can be inferred. 

3.1.   Mathematical energy model consumption for an elevator hoisting system 

Normally, the design is made to be in equilibrium every time the deck load is equal to 
half of the maximum load allowed, as shown in fig. 1.When a cabin moves towards a 
height h2 from a height h1, its potential energy changes, and as a result so does the whole 
potential energy of the system: 
 

∆E = mg (h2-h1)= mg∆h       (3.1) 
 

Where m represents the static balance of the system and the mass of ropes could be 
disregarded in relation to those others elements: 

 
m = mDeck + mLoad - mCounterweight=mLoad - (½)mMaximum Load   (3.2) 

 
 

 
 
 
 
 
 
 
 
 

 
 

 
 
 
 

 
 
 
   
Fig 1.  Balanced elevator system. 
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From those descriptions it can be concluded that elevator systems do not use energy 

during every movement. In fact, when an elevator moves downwards with less load than 
half the maximum allowed or upwards with more load than half the maximum allowed, 
the hoisting system wastes energy. But vice versa, every time the deck moves downwards 
with more load than half the maximum allowed or upwards with less load than half the 
maximum allowed, the hoisting system gains energy. Current brakes use resistors that can 
recuperate the energy gained, however due to reasons of mechanical friction not all the 
energy can be restored. In this scenario, energy system consumption depends strongly on 
efficient dispatching. 

3.2.   Deductions from the energy model consumption for an elevator hoisting 

system 

From the previously explained model, the following deductions can be obtained 
concerning certain energy aspects. 

3.2.1.   Avoiding unnecessary stops 

When dispatching for average waiting time optimization, it is typical to sometimes 
employ a policy to avoid unnecessary stops, such as in the cases when it could be 
predicted that there is no space available for all the passengers making the landing call so 
another stop will have to be made in the future to collect the passengers left. The elevator 
would thus make two stops in the end instead of just one making the overall performance 
worse, especially during highest traffic demands. However, strictly from a purely energy 
point of view, two stops instead of one could be profitable. It just depends on the 
snapshot situation. 

3.2.2.   Sectoring techniques 

Also when dispatching to optimize time, it is common in periods such as interfloor traffic 
to distribute the elevators among some defined zones of the building made up of 
consecutive floors. The aim here is to minimize the space a cabin has to move to respond 
to a landing call and therefore reducing waiting time. 
On the other hand, when dispatching to optimize energy, such a division has no sense at 
all because it could limit the amount of energy that can be recuperated, as longer distance 
to the landing call when the elevator is generating power would be better from an energy 
efficiency point of view. 

3.2.3.   Unpredictable future 

Without hall call allocation panels situated on every floor, it is impossible to know the 
destination of each passenger before entering the cabin, nor know exactly the number of 
passengers that will alight or board on both car and landing calls. However, as far as 
energy is concerned, it is of vital importance to estimate the future mass carried by the 
cabins to estimate approximately the possible energy to be gained or lost and thus 
allocate the cabins to the landing calls accordingly. 

If every cabin has a simple scale in its floor, it is possible to estimate the average 
number of people behind a future landing call based on recent history. If a time interval 



 

 
∆t (minutes) is defined, the average number of future passengers attempting to board the 
cabin could be estimated every time the cabin stops at a floor. The alighting and boarding 
moment of passengers could be detected through the sign of the parameter ∆m, as 
passengers alighting nearly always step outside the cabin before passengers boarding step 
in: 
 
∆m= mActual- mPrevious          (3.3) 
 

The following fig. 2 is provided as an example. 
 

 
∆m< 0 � Passengers alighting  
 

 
 
 
 
 
 
 

 
 

∆m> 0 � Passengers boarding  
 

 
 
 
 
 
 
 
 

 
Fig 2.  Estimation of the number of passenger boarding. 

 
If the average passenger weight is considered to be 75Kg, the number of passengers 

behind a landing call (LCall) is obtained from the difference between the minimum load 
reached while unloading and the total mass inside the deck once the doors are closed: 

( ) 75
final minimum

Num of Passengers Behind a LCall m m Kg     = −  (3.4) 

It is also possible to employ better detection technologies such as special cameras, 
laser beams or a good mass transducer that can detect each passenger from the moment 
he steps inside the cabin. However, sometimes the increase in cost that is involved does 
not improve the performance enough to justify their installation. It usually depends on the 
features of the building and the tenant. 

From the number of passengers behind each LCall made during a predefined time 
interval ∆t, it is possible to obtain the average number of people behind a “future” LCall 
for a specific moment (a “future” LCall is taken to mean every LCall that already exists 
for a specific moment that has not been answered yet): 
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Where NumLCall in ∆t is the number of landing calls that happen during a predefined 

time interval ∆t. 
Moreover, it is also possible to estimate the average number of people carried in the 

cabin during consecutive trips answering the number of car calls produced, landing calls 
assigned and the total weight inside the cabin. The predicted number of passengers 
alighting for a specific deck could be easily obtained every time: 
 

[ ] 75 .LoadNum of Passengers Alighting M Kg Num Car CallsΕ    = ⋅    (3.6) 

 
The following fig. 3 is provided as an example: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
                                 Ascending Landing Call Car Call 
 
                                 Descending Landing Call                  
 
Fig 3.  Estimation of number of passenger alighting. 
 

The elevator is moving upwards and is assigned to the two ascending landing calls and 
must answer the two car calls. If we take the estimated number of people behind a 
landing call to be four for the calculation detailed above, the estimated number of 
passengers alighting on every car call would therefore be: 

 
[ ] ( )4 75 75 2 2Num of Passengers Alighting x kg kg Car CallsΕ    =   =�  (3.7) 

 
Therefore, the estimated number of passenger in the cabin throughout the trips for this 

specific snapshot problem is calculated as follows:  
Trip 1 (from floor 1 to 2): 4 passenger already aboard. 
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Trip 2 (from floor 2 to 4): 4 passenger already aboard + 4 passengers estimated boarding 
– 2 passengers estimated alighting = 6 passengers on board. 

Trip 3 (from floor 4 to 5): 6 passenger already aboard – 2 passengers estimated alighting 
= 4 passengers on board. 

Trip 4 (from floor 5 on): 4 passenger already aboard + 4 passengers estimated boarding = 
8 passengers on board. 

 
Every time a new landing call appears or the elevator stops again at a new floor, each 

calculation must be redone. Employing these techniques, the EGCS is able to estimate the 
total amount of passengers throughout the trip and the consequent energy implications. 

3.2.4.   Energy Considerations about traffic pattern 

Classical theory [6] describes four traffic patterns for a typical day in a workers’ building 
according to whether the main flow is significantly ascending, significantly descending, 
both or none of them. See our work in [46] for a fuzzy logic controller predicting traffic 
patterns. 

As mentioned in the introduction, some intelligent dispatchers make their decisions 
based on different criteria: average passenger waiting time and the most advanced, 
energy or percentage of long waits. 

Destination or starting floors are usually known in downpeak or uppeak periods 
respectively, and this also occurs in the lunchpeak period, (which constitutes a mixture of 
both) reducing the dispatching options. Besides, there is a considerable amount of 
passengers in these periods so waiting time is critical. As a consequence, it is usually 
during the interfloor pattern when dispatching options are higher and traffic lighter (so 
the waiting time problem does not have the same importance as in other periods), when 
the EGCS is able to dispatch landing calls taking the energy problem into account more 
than other factors. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 4.  Traffics patterns occurring through the day in a typical workers’ building. 



 

 

3.2.5.   Adjoining landing calls 

Proximity between landing calls should be a decisive factor to take into account when 
dispatching. Adjacent landing calls must be assigned to the same or different cabins 
according to the energy state of the elevator. For example, a cabin that is moving 
downwards with a total load inferior to half its maximum load should answer a number of 
landing calls in a row to increment its inside weight to reduce energy wastage or even to 
start generating energy as it is shown in Fig. 5. 

On the other hand, for example, cabins moving upwards with a total load inferior to 
half its maximum load, should answer the least number of landing calls possible as every 
passenger will reduce the gain in energy as it is shown in Fig. 6. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig.  5. Trivial Example: An Elevator should answer the most number of adjoining calls as possible. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6.  Trivial Example: Elevators should answer the least number of adjoining calls. 

 



 

 
Real situations involve artificial intelligence methodologies to deduce an optimal 

dispatching solution. 

3.2.6.   Promote loading passengers depending on cabin direction 

As an alternative to the adjoining landing calls consideration, EGCS could prompt or not 
loading passengers into the same cabin for the same reason as stated previously. 
However, in an attempt to not make this multi-criteria design redundant, promoting 
loading passengers was not considered in favor of answering adjoining landing calls, as 
the latter makes a simple complete dynamical dispatching in a fuzzy logic system 
possible. 

4.   Dynamical dispatching feature of the proposed fuzzy logic EGCS  

The algorithm is based on the statement that dynamic dispatching produces better results 
than a static one. So every time the system detects a change (cabin load or a new landing 
call appears), the whole set of landing calls are re-allocated. This allows the system to 
optimize the allocations. However, common fuzzy logic methods are not able to process 
the information in a parallel form or to calculate solutions in the way other methodologies 
do, such as genetic or tabu algorithms. Therefore, it is necessary to establish an optimal 
sequential order to evaluate the landing calls properly according to certain criteria. Few 
fuzzy logic elevator group controllers have been proposed (as [46] refers) in the past 
years, but the following Fuzzy Logic Elevator Group Control System constitutes the first 
one, which is completely based on dynamic dispatching. This has never been seen in the 
elevator industry before. 

5.   Principles of the fuzzy logic algorithm for energy optimization 

The fuzzy logic-based algorithm for energy consumption optimization proposed here can 
be characterized by the flow-chart diagram shown in fig. 7. It works as follows: in a 
facility with n number of elevators and p number of active landing calls, the algorithm 
evaluates n×p fuzzy procedures, each one representing the possibility for a cabin i to 
respond to a landing call j. In view of the above, landing calls are allocated in an 
optimized order to the best desired elevator among all the possibilities according to the 
final estimated figure SE[i][j] obtained for each i-j pair. 

This final figure SE[i][j] is evaluated in agreement with a set of weights [v1, v2, v3] and 
three fuzzy-inferred evaluation criteria defined for each i-j pair: possible absolute energy 
(EABS[i][j]), possible relative energy (EREL[i][j]) and possible adjacent energy (EADJ[i][j]):  

 
[ ][ ] [ ][ ] [ ][ ] [ ][ ]E ABS REL ADJS i j E i j E i j E i j= + +  (5.1) 

 
Each of the different evaluations contributes to examine a partial and non-related 

aspect of the energy problem. 
At the beginning there are no landing calls assigned to any cabin at all as allocation is 

dynamic, so all parameter values are zero. The whole set of n×p procedures that represent 
the fitness of each i-j dispatch option has to be calculated only once in its entirety (for the 



 

 

first I-J assignment). The following times, only the related figures that have changed as a 
consequence of the previous I-J assignment need to be recalculated to reflect the new 
state (cabin I assigned to LCall J). There is no need to recalculate the rest of the figures as 
their values have not changed since the first calculation (this feature gives the controller a 
very fast performance). The only parameters that need to be updated are: 

 
• The values of EABS[i][j] for the specific wining cabin i and the whole set of active 

landing calls.  
• The values of all EREL[i][j] figures for all the i cabins and the p active landing 

calls. 
• The values of EADJ[i][j] for the cabin i and the entire set of landing calls j. 

6.   Dispatch option evaluation 

The three assignment criteria shown in the flow-chart diagram in fig. 7 in the fifth section 
constitute the main body of the dispatch option evaluation concerning saving power. 
Their calculation for each dispatch option i-j let us obtain the final energy fitness figure 
SE[i][j] for each i-j pair and therefore, to establish an optimal sequential order for 
assigning the set of active landing calls, as well as the optimal cabin for each one of the 
landing calls. 

All three criteria represent fuzzy inference processes that are calculated according to 
some input parameters. In this section each set of inputs is listed and a theoretical 
definition is also given for each criterion (the next section is fully-detailed with 
descriptions about the fuzzy procedures). The aim is to put forward and justify the nature 
of the developed energy evaluation. 

6.1.   Absolute energy evaluation  

The absolute energy evaluation (EABS[i][j]) estimates the total amount of power wasted by 
cabin i if it attended landing call j. The definition of the absolute energy evaluation 
depends on: 
 
• The possible flight made by the cabin. 
• The unbalanced weight compared to the equilibrium-balanced state. 
• The current direction of the cabin (which at the same time depends on the car calls 

and landing calls already assigned to the cabin). 
 
Absolute evaluation acts as a measurement of the objective energy employed in the 
action without considering the snapshot problem conditions. 

6.2.    Adjacent energy evaluation 

The adjacent energy evaluation (EADJ[i][j]) estimates if a landing call j should be 
allocated to a cabin i according to the landing calls already assigned to cabin i. The 
definition of the adjacent energy evaluation depends on: 



 

 

• The proximity of the landing call j considered with the nearest landing call already 
assigned to cabin i. 

• The unbalanced weight with respect to the equilibrium balanced state. 
• The current direction of the cabin (which at the same time depends on the car calls 

and landing calls already assigned to the cabin). 
 
Adjacent estimation contributes to whether a group of nearby landing calls should be 

assigned to the same cabin with regards to saving energy as described in the previous 
section 3.2. This evaluation combined with the relative evaluation acts as a measurement 
of the overall snapshot problem situation. 

 



 

 

 
 
Fig 7.  Flow-chart showing main steps for a complete dispatch of a set of p active landing calls in a building. 
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6.3.   Relative energy evaluation  

Relative energy evaluation (EREL[i][j]) makes a quality comparison between the total 
amount of power wasted by the cabin i if it answered the landing call j (EABS[i][j]) and the 
energy wasted by the rest of n-1 deck possibilities for answering the specific landing call 
j. The definition of the relative energy evaluation depends on: 
 
• ∆E[i][j]: It measures in number of average deviations the difference between the 

absolute energy of the i-j pair decision and the average of the whole set of n elevator 
possibilities to answer the specific landing call j: 

 
[ ][ ] [ ][ ] [ ]ABS ABS ABSE i j E i j E j S∆ = −  (6.1) 

Where: 

[ ] [ ][ ]
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S[j] is the standard deviation and EABS[j] the average energy consumption for all 
possible assignations for a fixed landing call j. 
 

• The quality of the best alternative to cabin i to answer the specific landing call j 
(Q[i][j]): 

 
[ ][ ] [ ][ ] [ ][ ] [ ][ ]ABS ABS ABSQ i j E i j E l j E k j′ ′′= −  (6.4) 

 
Where E

´
ABS[l][j] is the best alternative to EABS[i][j] for a fixed landing call j and 

E
´’

ABS[k][j] the best option among all the possibilities (including EABS[i][j]) for a specific 
landing call j. 

Relative evaluation acts as a measurement of the environmental situation. This lets the 
dispatcher sets out decisions on the suitability of n possibilities for answering a specific 
landing call j and by extension, lets the dispatcher set out decisions on the quality of the 
n×p possibilities in general.  

In fact, relative evaluation affects the order in which landing calls are answered. The 
∆E[i][j] measurement can detect whether an option is profitable enough in the sense that 
it exceeds the average cabin marks or not. And jointly with Q[i][j],the dispatcher can find 
out if the i option constitutes a critical dispatching decision for the specific landing call j. 
This allows the dispatcher to resolve difficult situations satisfactorily. For example, when 
there is not optimal cabin to assign to a landing call j, in the sense that all choices would 
waste a considerable amount of power but one cabin would employ less significant 
energy than the others (or even produce a gain in energy). Therefore, this critical cabin 
option could be assigned to the landing call j before being allocated to another landing 
call which does not have this vital cabin choice and which would also make the cabin not 
ready to answer landing call j. 

In Fig. 8, elevator 3 and 1 are especially well situated to answer the ascending landing 
call at floor 6. Elevator number 3 is located at the same distance as elevator number 1 but 



 

 
moving upwards partially loaded (still carrying less load than half the maximum allowed 
so acting as a generator) to floor 5. While elevator number 1 is empty so it would, 
therefore, produce a slightly higher amount of power in the case of responding to the 
landing call at floor 6. However, there is not critical difference in magnitude of the 
energy recovered. However among all the elevators, elevator number 1 is by far the best 
option to respond to the landing call located at floor number 2 because while wasting 
some energy doing it, it is located only one floor above it while the others are further 
(elevator number 3 has to arrive to floor 5 first before it could answer it due to direction 
constrictions). 
Without ∆E[i][j] and the quality of the best alternative criteria (Q[i][j]),elevator 1 could 
be assigned firstly to the landing call at floor 6 because it produces a slight gain 
compared to elevator 3 (and elevator1 also wastes energy answering floor 2 and therefore 
it is behind it in the serving order) so there would not be any optimal cabin to answer 
floor 2 in the sense that all of them would use a considerable amount of power (elevator 1 
would be higher than floor number 6 and elevators 3 and 4 would be at floor 5 before 
they could attend it). However, ∆E[i][j] and Q[i][j] criteria allow the dispatcher to detect 
such a situation as it considers cabin 1 option for attending landing call at floor number 2 
as a vital one and is, therefore, given preference in the allocation order. With preference 
in the serving order, the landing call at floor 2 would firstly be assigned to elevator 
number 1 and, after estimating the number of passenger that would board the cabin based 
on recent history, the landing call at floor 5 would be assigned to elevator number 1 or 3 
depending on the gain in energy. 

In the same way, through ∆E[i][j] and Q[i][j], some other complicated situations could 
also be detected and, therefore, solved correctly. For example, when there are not one but 
two (or more) critical decisions, in the sense that their marks for answering a specific 
landing call j strongly exceed the others, assigning the first one to another landing call j 
does not involve losing the energy bonus opportunity since the other cabin with a similar 
mark remains unassigned. However, once the latter cabin is the only one that remains as a 
crucial choice, it cannot be assigned to another landing call if that makes it impossible for 
it to respond to landing call j. 

Fig. 9 shows an example similar to the previous one. In this case, the three cabins 1, 3 
and 4 are well situated to answer the landing call at floor 6 with similar energy results. 
Cabins 1 and 4 are also well-placed to answer the landing call at floor 2. They both 
constitute critical decisions if standing alone but Q[i][j] criteria let the dispatcher detect 
the situation. It is therefore possible to allocate one of the two cabins to floor 6 while the 
other remains as a critical decision (in case there are more landing calls). 

In short, relative criteria evaluation allows the dispatcher to detect the situations when 
an optimal decision for attending a specific landing call j does not produce the best 
overall performance. 

Note that in the above examples the decisions about criticality of every option seem to 
appear as an abrupt dichotomy, but this has been done for reasons of simplicity and 
comprehensibility, while in the real model the criticality of a decision is defined 
implicitly along a continuous range through ∆E[i][j] and the Q[i][j] criteria as detailed 
before. 

 



 

 

  
Fig. 8.  Dispatching example with a crucial cabin 
option. 

Fig. 9.  Dispatching example with 2 crucial cabin 
options 

 

7.   Computation of fuzzy parameters 

Each one of the triple energetic evaluations represents a typical fuzzy procedure 
(fuzzification, inference and defuzzification). 

The fact that it does not require previous knowledge about its performance, as occurs 
in other designs ([38]), constitutes one of the main characteristics of the proposed design: 
membership functions are solely based on building and elevator features. 

It has to be noted that energy consumption functions are provided by the manufacturer, 
which link the power used by a cabin with the flight and quantity of passenger carried 
along the trip. 

7.1.   Input data 

Input data is only made up of basic information: 
• Mass load of each cabin (Kg) measured by scales installed in the cabin floor. 
• Current direction of each cabin (upward, downwards or stationary). 
• Position of every cabin and landing floor (meters above reference). 
• Registry of the car calls.  

7.2.   Linguistic variables 

As shown in previous Fig. 7, only some and not all the linguistic variables form part of a 
determined criteria calculation. Although some of them also contribute to more than one 
calculation. The design handles the following linguistic variables: 
• Possible flight 
• Unbalanced 
• ∆E[i][j] 
• Q[i][j] 
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• Proximity 

7.3.   Fuzzification 

Fuzzification of linguistic variables is carried out via Mamdani’s method [47] according 
to the membership functions depicted in Fig. 10. 
 

  
 

Fig. 10. Membership functions defined for linguistic inputs. 

7.4.   Fuzzy inference 

Each energy evaluation is worked out from fuzzy variables according to a set of logical 
rules. Each rule, that is represented in the following tables follows a general structure as 
it is shown in the next example: 
 

IF Actual Direction is Up THEN�R1: PFVS&&UE= Good 
 
IF NOT�R1: PFVS&&  UE  =  Bad 
 
Where the logic product AND (&&) represents the minimum between factors. 
The following Table 1 shows the logical rules representing the deduction on the quality 

of absolute energy for a specific i-j pair (EABS[i][j]). 
 
 

 

 
 
 
 
 
 
           L= Máx. Load Allowed 
 
 

 
 
 
 
         H= Building height - 1 floor height. 

 
 
 
 
 
 
         N= Number of floors - 1 

N/2 N 
 
0 

           Membership Func. for Unbalanced 

                  Membership Func. for Proximity  

H/2 H 
 
0 

L/2 L 
 
0 

         Membership Func. for Possible Flight 

 
1 

 
1 

 
1 

 

         Membership Func. for ∆E[i][j] 
 
 
 
 
 
      
         S= Number of average deviation 
 

          Membership Func. for Q[i][j] 

 
 
 
 
 

          %  = Percentage difference respect to the best alternative 

 2S 1S 0 -1S -2S 

25% 0 -25% -50% 50% 

 
1 

 
1 



 

 
Table 1.  Logic Rules for absolute energy criteria. 

 PFVS PFS PFA PFL PFVL 

 
UE 

 
R1 

↑G 
 

B↓ 

 
R6 

↑G 
 

B↓ 

 
R11 

↑VG 
 

VB↓ 

 
R16 

↑VG 
 

VB↓ 

 
R21 

↑VG 
 

VB↓ 

 
UNE 

 
R2 
 

↑A 
 

A↓ 

 
R7 

↑G 
 

B↓ 

 
R12 

↑G 
 

B↓ 

 
R17 

↑VG 
 

VB↓ 

 
R22 

↑VG 
 

VB↓ 

 
UEQ 

 
R3 
 

↑G 
 

G↓ 

 
R8 

↑G 
 

G↓ 

 
R13 

↑A 
 

A↓ 

 
R18 

↑A 
 

A↓ 

 
R23 

↑B 
 

B↓ 

 
UNF 

 
R4 
 

↑A 
 

 A↓ 

 
R9 

↑B 
 

G↓ 

 
R14 

↑B 
 

G↓ 

 
R19 

↑VB 

 

VG↓ 

 
R24 

↑VB 
 

    VG↓ 

 
UF 

 
R5 
 

↑B 
 

G↓ 

 
R10 

↑B 
 

G↓ 

 
R15 

↑VB 

 

VG↓ 

 
R20 

↑VB 
 

VG↓ 

 
R25 

↑VB 
 

VG↓ 

 
PF: Possible Flight                    
U: Unbalanced 

 
VG: Very Good 
G: Good   
A: Average    
B: Bad    
VB: Very Bad       
  

VL: Very Large     
L: Large  
A: Average    
S: Short  
VS: Very Short    

 

 
 

E: Empty   
NE: Near Empty  
EQ: Equilibrium  
NF: Near Full   
F:Full  
  
 

 
Next Table 2 shows the logical rules representing the deduction on the quality of 

relative energy for a specific i-j pair (EREL[i][j]). And following Table 3 shows the logical 
rules representing the deduction on the quality of adjoining energy for a specific i-j pair 
(EADJ [i][j]). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

Table 2.  Logic Rules for relative energy criteria. 

 ∆EVB ∆EB ∆EA ∆EG ∆EVG 

 

QVB 

 

R1 

 

B 

 

R6 

 

A 

 

R11 

 

G 

 

R16 

 

VG 

 

R21 

 

VG 

 

QB 

 

R2 

 

 

B 

 

R7 

 

A 

 

R12 

 

G 

 

R17 

 

VG 

 

R22 

 

VG 

 

QA 

 

R3 

 

 

VB 

 

R8 

 

B 

 

R13 

 

A 

 

R18 

 

G 

 

R23 

 

VG 

 

QG 

 

R4 

 

 

VB 

 

 

R9 

 

B 

 

R14 

 

A 

 

R19 

 

G 

 

R24 

 

VG 

 

QVG 

 

R5 

 

 

VB 

 

R10 

 

B 

 

R15 

 

A 

 

R20 

 

G 

 

R25 

 

VG 

 
Q: Quality of the 
best alternative 

 
  

∆E: Energy 
Deviation from 
Energy average 
 

VG: Very Good 
G: Good   
A: Average    
B: Bad    
VB: Very Bad 

Table 3.  Logic Rules for adjoining energy criteria. 
 PVS PS PA PL PVL 

 

UE 

 

R1 

↑G 

 

B↓ 

 

R6 

↑G 

 

B↓ 

 

R11 

↑VG 

 

VB↓ 

 

R16 

↑VG 

 

VB↓ 

 

R21 

↑VG 

 

VB↓ 

 

UNE 

 

R2 

 

↑A 

 

A↓ 

 

R7 

↑G 

 

B↓ 

 

R12 

↑G 

 

B↓ 

 

R17 

↑VG 

 

VB↓ 

 

R22 

↑VG 

 

VB↓ 

 

UEQ 

 

R3 

 

↑G 

 

G↓ 

 

R8 

↑G 

 

G↓ 

 

R13 

↑A 

 

A↓ 

 

R18 

↑A 

 

A↓ 

 

R23 

↑B 

 

B↓ 

 

UNF 

 

R4 

 

↑A 

 

A↓ 

 

R9 

↑B 

 

G↓ 

 

R14 

↑B 

 

G↓ 

 

R19 

↑VB 

 

VG↓ 

 

R24 

↑VB 

 

VG↓ 

 

UF 

 

R5 

 

↑B 

 

G↓ 

 

R10 

↑B 

 

G↓ 

 

R15 

↑VB 

 

VG↓ 

 

R20 

↑VB 

 

VG↓ 

 

R25 

↑VB 

 

VG↓ 



 

 

7.5.   Defuzzification 

 
The defuzzification is carried out through a typical center of gravity method to obtain a 
unique decision value between zero and one. 

Once the value of each rule is computed, the strength of each component is obtained 
calculating the root sum squared of all the rules associated to the component. For 
example, if the direction of the cabin is upwards, the strength of each component for the 
evaluation of the absolute energy (please see table 1) would be obtained as follows: 
 

( )

( )

( )

( )

( )

2 2 2 2 2

2 2 2 2 2

2 2 2 2

2 2 2 2 2

2 2 2 2 2

11 16 17 21 22

1 3 6 7 8

2 4 13 18

5 9 10 14 23

15 19 20 24 25

R R R R R

R R R R R

R R R R

R R R R R

R R R R R

= + + + +

= + + + +

= + + +

= + + + +

= + + + +

VG Strengh 

G Strengh

A Strengh 

B Strengh 

VB Strengh 

 

 
Once each component strength is calculated (f(xi)) and taking into account each 

respective center (c(xi)), the final output (SABS[i][j]) for each option [i][j] is obtained as 
follows: 

( )

( )
[ ][ ] _

i i

i

ABS

i

i

f x x

S i j Output RSSCentroid

f x

= =
∑

∑

 

 
Where the values of c(xi) are: 
 

- -1 for the center of VG. 
- -0.5 for the center of G. 
- 0 for the center of A. 
- 0.5 for the center of B. 
- 1 for the center of VB. 

8.   Experimental results 

Elevator systems are designed mainly according to classical theory [6] in the sense that a 
system that can handle the logistic transport during uppeak is also able to transport 
passengers efficiently during the rest of the periods. Above all, this gives a large extra 
handling capacity during interfloor interval, as shown in the previous section, which 
allows the dispatcher to focus exclusively on the problem of energy. In this aspect, the 
fuzzy based elevator group control designed is able to dispatch the landing calls 
efficiently. 



 

 
The most common dispatch algorithm actually implemented by most companies is the 

“nearest call algorithm” (which is self-descriptive: it dispatches the landing call to the 
nearest elevator following the collective principle) because of its reliability and short 
processing time. In this sense, it has been proposed as a benchmark for testing the 
proposed algorithm. 

Simulation has been carried out through ELEVATE software. The example building 
has 19 floors and has been designed to accomplish the vertical transportation 
requirements ([6]) so it possesses 7 elevators for a total population of 1520 workers 
equally distributed throughout the facility. Therefore, while different demands for 
interfloor traffic occurred (Percentage Of Population requiring service, POP), the 
following average results were obtained (Fig. from 11 to 14 and Table 4): 

Fig. 11 represents the Average Wasted Power (AWP) per second depending on 
passenger demand (Percentage Of Population, POP) for both dispatching algorithms so 
that the total amount of energy saved by the proposed dispatching method can be 
observed. 
 

 
         Nearest Call Algorithm  
 
         Fuzzy Logic Energy Controller Proposed  

 

Fig. 11.  Function relating the Average Wasted Power (AWP) per second and the Percentage Of Population 

demanding service (POP). 

 
Fig. 12 complements Fig. 11 and relates the Average Wasted Power (AWP) per trip 

made by an elevator and the Percentage Of Population demanding service (POP). 
Although the total number of trips made by the elevators in a time interval depends on the 
dispatching algorithm, in practice this number is very similar. Therefore, the consumption 
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per trip can be compared to provide a very approximate idea of the total amount of 
energy wasted or gained by each algorithm. 

By looking at the energy saving for each trip and that the total amount of trips 
performed by each elevator every five minutes goes from approximately 30 to 120 during 
interfloor (depending on demand), a specific idea on the vast amount of energy that can 
be saved without deteriorating the time service can be calculated. 
 
 

 
 

 Nearest Call Alg.            Fuzzy logic Energy Cont. 
Proposed 

 

Fig. 12. Function relating the Average Wasted Power (AWP) per trip and the Percentage Of Population 
demanding service (POP). 

 
The results summarized in Table 2 are conclusive: for low demand, the total amount of 

energy wasted in the movement of the elevator can be extensively decreased and even 
produce a gain in energy for the system with a slight disadvantage to Average Waiting 
Time (AWT) (Fig. 13) and practically keeping the Average Transit Time (ATT) constant 
(Fig.14). 
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Table 4.  Simulation result showing the absolute and relative power gain by employing the proposed EFLGCS 

POP NC Alg. EFLEGCS  Difference %Improve 
1% 0.26 -0.90 1.16 - 446% 
2% 0.10 -0.75 0.85 - 850% 
3% 1.23 0.07 1.16 - 94% 
4% 1.89 0.96 0.93 - 49% 
5% 1.93 1.13 0.80 - 41% 
6% 1.97 1.61 0.36 - 18% 

 
EFLEGCS: Energy Fuzzy Logic-
based Elevator Group Control 
System. 
 
NC Alg.: Nearest Call Algorithm. 

POP: Percentage of Population. 
 

 
As traffic demand raises so do the marginal costs, reducing the advantages of 

decreasing average time in favor of energy consumption. When the demand is 
considerably high, around 6% POP, (interfloor traffic rarely exceeds the 4% POP level), 
the disadvantages of increasing waiting time surpass the advantages of reducing 
consumption, producing waiting times that become unacceptable and involving an energy 
gain which is not worthwhile enough. 

 
 
Fig. 13. Function relating the Average Waiting Time (AWT) and the Percentage Of Population demanding 
service (POP). 
 

In this sense, it should be considered to combine the proposed energy dispatcher with 
one related with waiting time minimization for allocating demands higher than 6% POP. 
From next Fig. 14 it can be observed that whereas it exist a difference in the performance 
for higher demands while considering waiting times, there is no significant results for the 
average transit time marks.  
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   Fig. 15 points out the variation in the energy consumption depending on the size of the 
time interval (∆t). It can be seen that different time intervals (from time intervals long 
enough to consider a significant number of LCalls) produce only slightly different AWPs. 
This is probably due, apart from the random nature of the simulations, to the fact that 
employing a larger interval, and as a consequent taking the distant past more into 
account, does not provide the elevator group controller with better information because, 
during interfloor traffic, demand is quite random. A little more dispersion between the 
AWPs values is obtained for higher demands. In fact, as demand raises the dispersion of 
the incoming probability also gets higher, and passengers often arrive in bunches. 
 

 
                    Nearest Call Algorithm  
 
                    Fuzzy Logic Energy Controller Proposed  

 
Fig. 14. Function relating the Average Transit Time (ATT) and the Percentage Of Population demanding 
service (POP). 
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Fig. 15. Function relating the Average Wasted Power with the Time Interval and the Percentage Of Population 
demanding service (POP). 

9.   Conclusions 

In this paper a novel Fuzzy Logic Elevator Group Controller for energy consumption 
optimization that employs complete dynamic dispatching for the first time in the elevator 
industry has been presented: the dispatcher reallocates all the landing calls still not 
attended every time a change is detected. 

Dispatching is carried out according to three criteria: an absolute energy evaluation, a 
relative energy evaluation and an adjoining of landing calls evaluation. The evaluation of 
each parameter is made by a fuzzy process (employing triangular memberships 
functions), this allows us to obtain an optimal “reasoned” solution in practically an 
instant at the same time that complicated designs and computational-expensive 
algorithms are avoided. 

The self-sufficiency for working during light and medium traffic periods such as during 
interfloor has been proven conclusively and the energy profit has been numerically 
estimated through a simulation on different demands during interfloor traffic and by a 
comparison against the most employed dispatcher in the industry. The results show a 
desirable performance, widely surpassing the other dispatcher on the problem of energy 
while maintaining a more than acceptable mark as far as waiting time is concerned. 

Natural future research lines for the developed and tested design appear to be a 
controller that allows connecting an energy dispatcher with a time dispatcher, as well as 
providing a smooth transition between energy dispatching and time dispatching. 

It is also deduced from the proposed model that some figures, like the ones in the 
membership functions, may need some calibration for achieving the best possible 
performance (which is a common feature in AI designs). This observation leads to a 
second future line of research which could be the development of some kind of self-
calibration system, based for example in an artificial intelligence design like neural 
networks that can “learn” through as time pass by. 
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