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Chapter 1

Introduction and Objectives of the Thesis

1.1 Context and problem statement

Nowadays health care organizations experience an increasing pressure in order to
provide their services at the lowest possible costs as a response to the combination of
restrictive budgets, increasing waiting lists, and the aging of the population. In general,
hospital resources are expensive and scarce, being the operating theatre the most critical
and expensive resource. In most hospitals, the operating theatre is a complex system
composed of operating rooms (ORs) together with their specialized equipment,
preoperative and postoperative facilities and, finally, a diversity of human resources,
including surgeons, anesthetists, nurses, etc. To handle such complexity, decisions
related to operating theatre management are usually decomposed into three hierarchical

decision levels, i.e.: strategic, tactical and operational.

At the strategic level, hospital managers set the volume and the mix of surgeries that
will be performed over a long-term horizon (typically, a year) to keep up acceptable size
of waiting lists while achieving cost targets, thus making long-term decisions related to
the dimensioning of surgical facilities (e.g. build new ORs, adding new recovery beds,
etc.), the hiring of surgical staff (e.g. surgeons, nurses, etc.), the purchase of novel
surgical devices, and the amount of operating theatre resources required by surgical

specialties to perform their surgeries (OR time, number of beds, etc.).

Once decisions at strategic level have been made, the operating theatre resources are
allocated over a medium-term planning horizon (ranging from few weeks to 6 months)
in the tactical level. Since the OR is both a bottleneck and the most expensive facility
for most hospitals, surgical specialties are first assigned to OR days (i.e. a pair of an OR
and a day) over the planning horizon, until the OR time allocated to each surgical
specialty in the strategic level is reached. Then, the above assignment defines aggregate

resource requirements for specialties, such as the demand of nurses, drugs, diagnostic
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procedures, laboratory tests, etc. Finally, the working shifts of human resources and
their workload (e.g. the number of surgeries allocated to each surgeon) are defined over
the medium-term planning horizon in order to achieve the volume of surgeries set by

hospital managers.

Finally, the surgical schedule is determined over a short-term planning horizon (ranging
from few days to few weeks) at the operational level. The operational level is usually
solved into two steps. The first step involves the determination of the date and the OR
for a set of surgeries in the waiting list; while in the second step, a sequence of surgeries
for each OR within each day in the planning horizon is obtained. Note that only a set of
surgeries will be performed during the planning horizon due to capacity constraints
(both facilities and human resources). The decomposition of the operational level into
the two aforementioned steps intends to reduce the complexity of the resulting problem,
although the quality of the so-obtained surgery schedule may be reduced due to the high
interdependence among these two steps, being the integrated approach a popular topic
of research. At the operational level, a feature greatly influencing the performance is the
uncertainty in the surgical activities, as frequently large discrepancies between the
scheduled duration and the real duration of the surgeries appear, together with the

availability of the resources reserved for emergency arrivals.

Despite the importance and the complexity of these hierarchical levels, decisions in
practice are usually made according to the decision makers’ experience without
considering the underlying optimization problems. Furthermore, the lack of usage of
decision models and solution procedures causes the decision makers to consume long
times on performing management tasks (e.g. determine the surgical schedule, react to

unforeseen events, carry out what-if analyses, etc.), instead of healthcare tasks.

The context discussed above stresses the need to provide healthcare decision makers
with advanced operations research techniques (i.e. models and solution procedures) in
order to improve the efficiency of the operating theatre resources and the quality of the

healthcare services at the operational level. This Thesis is aimed at this goal.
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1.2 Research Objectives and Outline of the thesis

This Thesis has been carried out in the framework of several research projects in the
healthcare operations management area (see full list of projects in Section 8.2). The
outcomes of these projects have been validated and implemented in the University
Hospital “Virgen del Rocio” in Seville (Spain). This Hospital is one of the largest
hospitals in Spain, with over 1,400 beds and 50 ORs, currently executing more than
60,000 surgeries per year. Several private companies (such as INGENIA, SIEMENS
and EVERIS), two research groups (such as the Industrial Management Group (TEP-
134) of the School of Engineering of Seville —where the author of this Thesis has been
integrated since 2007-- and the Technological Innovation Group of the University
Hospital “Virgen del Rocio”), and a number of surgical specialties (such as Plastic
Surgery and Major Burns, Urology and Pediatrics) are among the participants in some

of these projects.

Due to the heavy implication of the University Hospital “Virgen del Rocio” in the
aforementioned projects, the research issues tackled in this Thesis have been motivated
by the analysis of the operational decision level in the surgical specialties of this
specific hospital. In this sense, the Thesis is project- (or customer-) driven, although the
problems addressed here are rather general and can be easily extrapolated to other

hospitals.

As mentioned in the previous section, the goal of this Thesis is to provide healthcare
professionals with operations research techniques in order to improve the efficiency of
the operating theatre resources and the quality of the healthcare services at the
operational level. In order to fulfill this general goal, the following research objectives

were established:

i. To carry out a literature review on the operational level of the operating theatre

management problem.

ii. To propose a testbed generator based on the literature review to analyze the operating
theatre problems identified in i). This objective was set after detecting in the
literature review the lack of a suitable experimental testbed for the problems to be

addressed in iii and iv.
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To address the OR planning problem by proposing mathematical decision models
and solution procedures under deterministic and stochastic surgery durations,

emergency arrivals and resources capacity.

To address a deterministic integrated OR planning and scheduling problem, taking
into account the case where there is a surgical team composed by surgeons with
different surgical experience. Although the stochastic version of this integrated
problem is not addressed in this Thesis, a simulation approach has been carried out to
analyze the robustness of the surgical schedules caused by stochastic surgery

durations.

To demonstrate the validity of the decision models and the solution procedures
developed in iii) and iv) for a real-life setting, by developing and deploying a
decision support system (DSS) for OR planning and scheduling in the University
Hospital “Virgen del Rocio”.

This Thesis is organized in four parts:

e Part | is composed of three chapters. In Chapter 1 we have discussed the context,

problem statement and the research objectives of the Thesis. Then, Chapter 2 first
provides a background of the operating theatre management problem and, in the
remaining of the chapter, a literature review presenting the research topics identified
in the University Hospital “Virgen del Rocio” (see iii), iv) and v) is discussed.
Finally, Chapter 3 presents a testbed procedure for experimentally generate scenarios
to analyze the decision problems and the solution procedures to be proposed in iii),

iv) and v).

Part Il covers the research objectives iii) and iv) of the Thesis. Chapter 4 analyzes the
deterministic version of the OR planning problem, presenting a decision model that
incorporates the main constraints identified in Chapter 2, and the objective function
commonly used in all surgical specialties of the University Hospital “Virgen del
Rocio”. A set of solution procedures are proposed to solve the problem, including an
exhaustive computational comparison with existing procedures identified in Chapter
2 by using the testbed procedure described in Chapter 3. Chapter 5 presents the
stochastic OR planning problem in order to study the uncertainty in surgery

durations, in the arrivals of emergency surgeries, and in the surgeons’ capacity to

6
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perform elective surgeries. A stochastic decision model and a Monte Carlo
optimization method based on the Sample Average Approximation (SAA) method
are presented. Finally, Chapter 6 analyzes the integrated OR planning and scheduling
problem considering surgical teams composed by surgeons with different surgical
experience, analyzing how the composition of a surgical team influences the length
of the surgery duration. An iterative constructive method is presented to solve the
problem, studying the robustness of the so-obtained surgical schedules by means of

simulation.

e Part Il presents the validation (both theoretical and practical) of the proposed
solutions procedures to address the OR planning and scheduling problem in the
University Hospital “Virgen del Rocio” (Chapter 7). Besides, the chapter includes
the description of a DSS developed for the University Hospital “Virgen del Rocio”,
where the decision models and solution procedures presented in Part Il are
embedded.

e Part IV summarizes the main results and conclusions of the Thesis, and presents

future research lines (Chapter 8).






Chapter 2

The Operating Room Planning and Scheduling
Problem

2.1 Introduction

As described in Chapter 1, in this chapter we focus on the operational decision level of
the operating theatre management problem. We introduce an overview of the general
operating theatre management problem in Section 2.2, in which strategic, tactical and
operational decision levels are described in detail. Section 2.3 and Section 2.4 present
the OR planning problem under deterministic and stochastic considerations, and the
integrated OR planning and scheduling problem considering surgical teams composed
by surgeons with different surgical experience respectively. Finally, the conclusions

gained from the literature review are discussed in Section 2.5.

2.2 An overview of the operating theatre management
problem

The operating theatre consists of ORs as well as of preoperative and postoperative
facilities such as the preoperative holding unit, the post anesthesia care unit (PACU)
and, finally, the intensive care unit (ICU); as well as human resources (surgeons,
anesthetists, nurses...). The operating theatre is among the most critical and expensive
resource in the hospital (Guerriero and Guido, 2011), representing around 70% of
revenues (Jackson, 2002) and 40% of costs (Macario et al., 1995), being the operating

theatre management problem widely analyzed by the literature.

Decisions related to operating theatre management are usually decomposed into three
hierarchical decision levels (Cardoen et al., 2010): strategic, tactical and operational.
The main settings and assumptions for each decision level are described in several
recent reviews on the topic (Cardoen et al., 2010; Guerriero and Guido, 2011; May et

al., 2011). At the tactical level, decision makers determine the volume and the mix of
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surgeries to keep up acceptable size of waiting lists achieving cost targets (see e.g.
Adan and Vissers, 2002; Blake and Carter, 2002; Testi et al., 2007). Among other
factors, the case mix depends on the disease processes effecting the population in the
catchment area and the capacity of resources of the hospital (Blake and Carter, 2002).
Once the case mix is set, operating theatre resources are allocated to surgical specialties
of the hospital, determining how much amount of resource each specialty obtains (i.e.
the OR time, the number of beds...). Once the strategic level has been decided, the
operating theatre resources are allocated over a planning horizon of several weeks in the
tactical level (Blake et al., 2002; Wachtel and Dexter, 2008). As the OR represents a
bottleneck in most hospitals and, in addition, it is the most budget-consuming facility in
the hospital (Jebali et al., 2006), most papers only consider the OR allocation problem at
the tactical level (see e.g. Testi et al., 2007). The purpose is to define the so-called
master surgical schedule that specifies which surgical specialties (at most two
specialties due to large set-up times and costs, Belién and Demeulemeester, 2007) are
assigned to each OR during a day (in the following OR-day) over the planning horizon.
The master surgical schedule also defines aggregate resource requirements, such as the
demand of nurses, drugs, diagnostic procedures, laboratory tests, etc. (Blake et al.,
2002). However, few approaches have considered beds (Belién and Demeulemeester,
2007) and nurses (Belién and Demeulemeester, 2008) in the construction of the master

surgical schedule in order to reduce staffing costs.

Finally, at the operational level, the surgical schedule is obtained over a week or two
week planning horizon (see e.g. Fei et al., 2009; Lamiri et al., 2009; Marques et al.,
2012; Ozkarahan, 2000). At this level, the number, type and opening hours for each
resource have been already set, as well as the relevant data from the patients in the
waiting list (such as expected surgery duration, patient priority, deadline to be operated,
etc.). Several decisions have to be into account by decision makers before the surgical
schedule is determined. First, the assignment of the surgeon who is the responsible of a
patient during his/her stay in the hospital, that is made at the first consultation in order
to guarantee the continuity of care. This assignment is commonly made by the decision
maker based on the surgeon’s specialty (i.e. types of surgery which could be performed
by the surgeon), his/her skills and workload. After surgeons are assigned to patients in
the waiting list, the OR time assigned by the master surgical schedule to the specialty is

allocated to individual surgeon or surgical groups. The assignment is made according to

10
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surgeon preferences and/or the type of surgeries that they have to perform (i.e. they are
assigned to well-equipped ORs where they can perform the assigned surgeries). One of
the three management strategies proposed by Patterson (1996) can be used. The first one
is the so-called block scheduling strategy, where each surgeon has been assigned to a
number of OR time windows in which he/she will perform his/her surgeries. A surgeon
cannot carry out one surgery outside his/her time windows. The second one is the so-
called open scheduling in which the decision maker allocates ORs to surgeons
according to their requests for planning their surgeries. According to Fei et al. (2009),
the block scheduling policy is a special case of the open scheduling policy being the
latter more flexible than the former (all solutions of the block scheduling policy are
feasible for the open scheduling policy). Finally, the block scheduling strategy can be
modified in order to increase its flexibility, yielding the so-called modified block
scheduling. The flexibility is reached by two ways: some OR time windows are booked

and others are left open, or unused windows are released at some time before surgery.

The operational decision level consists of the offline and the online levels (Hans et al.,
2012). The offline operational level is traditionally solved into two steps (Magerlein and
Martin, 1978): the first step (called advance scheduling), involves the determination of
the OR-day (i.e. the date and the OR), while in the second step (called allocation
scheduling), a sequence of surgeries for each OR within each day in the planning
horizon is obtained. In the following, according to the definition proposed by Cardoen
et al. (2010), the offline operational level is called the OR planning (advance
scheduling) and scheduling (allocation scheduling) problem. Note that the
decomposition of the operational level into the two aforementioned steps intends to
reduce the complexity of the resulting problem (Riise and Burke, 2010). Nevertheless,
the quality of the so-obtained surgery schedule is reduced due to the high
interdependence among these two steps (Cardoen et al., 2009a), being the integrated
approach a popular topic of research (see e.g. Marques et al., 2012; Riise and Burke,
2010; Van Huele and Vanhoucke, 2014; Vijayakumar et al., 2013). The online
operational level involves control mechanisms that deal with monitoring the process and
reacting to unforeseen or unanticipated events (Hans et al., 2012), such as the large
discrepancies between the scheduled duration and the real duration of the surgeries (Min
and Yih, 2010), and/or the availability of the resources reserved for uncertain arrivals
(see e.g. Lamiri et al., 2009).

11
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2.3 The operating room planning problem

The OR planning of surgeries (Cardoen et al., 2010) on the offline operational decision
level (Hans et al., 2012) is a popular topic of research (see the literature reviews by
Cardoen et al., 2010; Guerriero and Guido, 2011; May et al., 2011). In Table 2.1 we
have categorized the literature contributions on OR planning, and have indicated for all
these contributions what surgical resources are taken into account, the management
strategy (open and block), as well as the modeling approach (deterministic and

stochastic), decision types, objective functions, and solution approaches.

The OR planning problem is a heavily constrained problem, with constraints related to

the following aspects:

= Capacity of the resources, since both surgical facilities and surgical personnel are not

fully available during the planning horizon,

= Time periods, as each patient must be intervened within a release date and a
deadline. The release date and the deadline represent the earliest and the latest date
when a patient can be operated in the planning horizon,

= Limits on the number of ORs where surgeons can be assigned to perform surgeries
on a given day, in order to reduce the surgeon idle time and to avoid the overlapping

of consecutive surgeries performed by the same surgeon,

* OR eligibility, as for example to book OR-days for planning a certain type of surgery
or to impose that some surgeries take place only in certain ORs,

= Patient priority, as patients are planned according to a certain priority indicator (for
example, arrival date and urgency of the patient proposed by Ogulata and Erol,
2003), and

= Uncertainty, in order to consider the large discrepancies between the scheduled
duration and the real duration in the use of resources (e.g. OR and ICU), and/or the

availability of the resources reserved for uncertain arrivals.

12
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variables OR-day . & = s = % = w » . . "= = m
Time period Release date . . . . . .
Deadline . . - . . .
Facilities capacity OR L S
. ICU . .
Constraints .
Personnel capacity Surgeon . L . . .
Max. no. ORs Surgeon .
OR eligibility Patient . . . . .
Priority Patient .

Uncertainty

Emergency arrivals
Surgery duration
Length of stay in ICU

Utilization OR Under-utiliz. . . . . s oom . . .
Over-utiliz. . = = o= = = = = = = = = ®= ®= = =
ICU Over-utiliz. .
Costs Patient  Surgery . . . . . .
Objective Leveling Surg. Time .
Function Patient  Day .
Type .
Eligibility Patient OR -
Cancellation  Patient . -
Priority Patient . .
Exact . . s .
Heuristics based on exact methods . . s s - .
Solution Constructive heuristics . . . . .
Approach Improvement heuristics . . . .

Meta-heuristics
Stochastic heuristics
Simulation

Table 2.1. An overview of the OR planning problem
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Regarding the objective function, usual goals considered in the literature include:

= Resource utilization, which includes the minimization of the OR under-utilization,

the minimization of the OR over-utilization, and the ICU over-utilization,

= Costs, such as the minimization of the fixed costs of the patients, i.e. minimizing

costs not related to the number of surgeries that have to be carried out,

= Leveling, in order to balance the distribution of total surgery time among surgeons,
to evenly distribute planned surgeries across the days in the planning horizon, or to

evenly distribute planned surgeries across the days in the planning horizon,

= Eligibility, in order to consider the preferences of the surgeons to perform their

surgeries,

= Cancellations, such as the minimization of the risk of no realization of a surgery in

its planned date, and

= Priority, as the minimization of the patient access time, i.e. the period time between

the surgery is diagnosed and the execution date of the surgery.

Among exact methods proposed for solving OR planning problems in the literature,
several Integer Linear Programming (ILP) models have been presented, but they are
able to provide optimal solutions only for instances sizes substantially smaller than
those found in practice. Besides, given the context of the decision problem, priority
goes to finding good (although possibly not optimal) schedules in reasonable time rather
than optimal schedules procured too late (Roland et al., 2010), due to the high number
of unforeseen events, like emergencies (Roland et al., 2010) or the absence of the
patient in the planned day (Weinbroum et al., 2003), that may lead to re-scheduling the
planned interventions, and as a way for decision makers to quickly perform a what-if
analysis over several possible scenarios. Therefore, several heuristics have been

proposed for solving the OR planning problem in the literature, as are:

= Heuristics based on exact methods, as an extended version of the Hungarian method
proposed by Guinet and Chaabane (2003), and the column-generation approaches
(see e.g. Fei et al., 2009; Fei, Meskens and Chu, 2010; Lamiri et al., 2007; Lamiri,
Xie and Zhang, 2008).
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= Constructive heuristics, as bin packing methods (see e.g. Dexter, Macario and Traub,
1999; Hans et al., 2008), and a dynamic programming approach proposed by Liu et
al. (2011).

» [mprovement heuristics, as local search methods (see e.g. Hans et al., 2008; Lamiri et
al., 2009), in which the solution improvement consists of swapping different patients

between OR-days.

= Meta-heuristics, as a taboo search method (Lamiri et al., 2009), and a simulated

annealing method (Lamiri et al., 2009).

= Stochastic heuristics, as a SAA method, which combines Monte Carlo simulation and
mixed integer programming (see e.g. Lamiri, Xie, Dolgui et al., 2008; Min and Yih,
2010). Several authors propose approximate methods to try reduce the CPU time
required by the integer linear programming, as a column generation approach
(Lamiri, Xie and Zhang, 2008), improvement heuristics and meta-heuristics (Lamiri
et al., 2009).

2.4 The integrated operating room planning and scheduling
problem

In this section, we focus on the integrated OR planning and scheduling problem. The
interest of an integrated approach is currently growing due to the interdependence
among the OR planning and scheduling problems (Augusto et al., 2010; Ghazalbash et
al., 2012; Hashemi Doulabi et al., 2014; M’Hallah and Al-Roomi, 2014; Marques et al.,
2012, 2014; Meskens et al., 2013; Pham and Klinkert, 2008; Riise and Burke, 2010;
Roland et al., 2010; Van Huele and Vanhoucke, 2014; Vijayakumar et al., 2013; Zhao
and Li, 2014). In Table 2.2 we have categorized the contributions on the integrated OR
planning and scheduling problem, and have indicated for all these contributions what
surgical resources are taken into account, the management strategy (open and block), as

well as the decision types, constraints, and objective functions.

Most constraints considered in the integrated OR planning and scheduling problem have
been previously described in the OR planning problem (see Section 2.3). In addition,
material capacity constraints are considered as are the sterilization of medical trays or

the availability of mobile equipment required for performing surgeries. Finally, new

15



Operating Theatre Planning & Scheduling in Real-Life Settings

Chapter 2

~~
<
—
—_ o
<t N
3 )
9 ~ a8 S
g_& Y S= _ 3
Nogg . g8aN g
+ (=) — - O A ~
s o Yo .-‘::>O(—‘5-—o::>‘>“§f|
XN g NN~ BN =
E XN 035 8N
T3S 2SB53% 8 .=
g2 G588 0B -
TBoTB8 g nS=0no3
82 S g2 vecXETSG
h © 2T S5 C B g ST ©
E338R88¥255<c¢g
8S3F725 822888
cgxrEoz222220
Management ~ Open P . s o= o= s
strategy Block .
OR . . .
OR'day - u L} L] [] [ n n
Decision . Surgeon . . .
. Patient geo
variables Start-time L R L R
End-time . .
Sequence order LI .
Time period Release date . . - P

Constraints

Facilities capacity

Personnel capacity

Material capacity

Deadline

OR

ICU

Surgeon
Porters

Nurse
Anesthetist
Medical trays

Equipment .. .
OR eligibility Patient . - . -
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Table 2.2. An overview of the integrated OR planning and scheduling problem
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personnel constraints have been considered by Meskens et al. (2013), as are the surgical
teams’ preferences in the assignment of the OR time windows and their affinities to

work together or not.

Regarding the objective function, OR utilization and priority goals have been previously
described in the OR planning problem (see Section 2.3). Other goals considered in the

literature for the integrated problem are:

= Time, such as the minimization of makespan (i.e. minimizing the completion time of
the last scheduled surgery in the planning horizon) and the minimization of tardiness

(i.e. minimizing the difference between the schedule date and the deadline of a

surgery),

= Throughput, such as the maximization of the number of scheduled surgeries in the

planning horizon,
= Resource utilization, which includes the minimization of the surgeon over-utilization,
= Costs, such as the minimization of the number of opened ORs, and finally
= Affinities, such as the maximization of collaborations according to staff preferences.

As shown in Table 2.2, most papers address the integrated OR planning and scheduling
problem assuming a surgical team composed by a single surgeon, i.e. the responsible
surgeon. However, studies related to general surgery procedures (Zheng et al., 2012) as
well as to laparoscopic procedures (Cassera et al., 2009) show that around 90% of
surgeries are performed by a surgical team composed by more than one surgeon, being
the two-surgeons team (i.e. a responsible surgeon and an assistant surgeon) the most
extended case (see e.g. Cassera et al., 2009; Chitwood Jr. et al., 2001; Giulianotti et al.,
2003; Powers et al., 2008; Zheng et al., 2012). However, to the best of our knowledge,
the integrated problem considering surgical teams composed by more than one surgeon
has been studied only by Ghazalbash et al. (2012).

In surgical teams composed of several surgeons, the literature stresses that surgery
duration depends on the experience of the assistant surgeon (see e.g. Cassera et al.,
2009; Parker et al., 2012; Zheng et al., 2011). On the one hand, Bridges and Diamond
(1999) study the financial impact of teaching surgical residents in the OR, showing that
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the presence of a resident usually causes an increase in the surgery duration, although
there are some situations (e.g. when a resident has a similar experience or skill than the
teaching surgeon in some type of surgeries) in which he/she may cause a decrease of the
surgery duration. On the other hand, a faculty surgeon acting as assistant decreases the
surgery duration (around 30% time reduction in some urology procedures, see Ludwig
et al., 2005). Hence, the literature attests that the assistant surgeon’s experience clearly
influences the surgery duration. However, to the best of our knowledge, this variability
has not been previously addressed. For different decision problems in other research
topics, resource dependent processing times are receiving growing attention (Akturk
and llhan, 2011). In these problems, processing times are considered as a function both
of the amount of resources assigned (see e.g. Demeulemeester et al., 2000; Tseng et al.,
2009) and of the experience of the resources assigned to the task (see e.g. Dodin and
Elimam, 1997; Drexl, 1991; Valls et al., 2009). As a particular case of experience,
Heimerl and Kolisch (2010) consider a learning curve of the resources assigned. In this
case, the processing time of a task decreases if the resource assigned has previously
performed the same task, a phenomenon denoted as learning effect. The reference where
the assumptions of processing times are most related to our problem is (Kara et al.,
2011), as processing times depend on whether the task is performed with or without an
assistant employee. However, these processing times do not depend of the specific

assistant employee assigned to the task.

2.5 Conclusions

In this chapter, an overview of the operating theatre management problem is presented
(see Section 2.2), focusing on the operational decision level. This decision level consists
of the offline and the online levels. The offline operational level is traditionally solved
into two steps (Magerlein and Martin, 1978): the first step (called advance scheduling),
involves the determination of the OR-day (i.e. the date and the OR), while in the second
step (called allocation scheduling), a sequence of surgeries for each OR within each day
in the planning horizon is obtained. The online operational level involves control
mechanisms that deal with monitoring the process and reacting to unforeseen or
unanticipated events (Hans et al., 2012), such as the large discrepancies between the

scheduled duration and the real duration of the surgeries (Min and Yih, 2010), and/or
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the availability of the resources reserved for uncertain arrivals (see e.g. Lamiri et al.,
2009).

The OR planning problem under deterministic and stochastic considerations, and the
integrated OR planning and scheduling problem have been analyzed in Section 2.2 and

2.3 respectively. Summarizing the literature review, we conclude that:

= To the best of our knowledge, there are not benchmarks to analyze and evaluate the
performance of solution approaches against the existing methods in the literature to
solve a given decision problem, being a common practice in other research topics
(see e.g. Taillard, 1993; Vallada et al., 2015). Therefore, in Chapter 3, we propose
the procedure to create testbeds used in this Thesis, including necessary data to solve
any OR planning and scheduling problem. The procedure integrates real-life data and
parameters in the surgical specialties of the University Hospital “Virgen del Rocio”,
as well as data and parameters from the literature (both in real-life applications as in

papers where problems are randomly generated).

» The deterministic OR planning problem has been extensively analyzed in the
literature. The objective of the Thesis (see Chapter 4) is to propose a generic decision
model to solve the deterministic version of the problem in surgical specialties of the
Hospital, including the aspects identified by meetings with heads of surgical
specialties and in the literature review. In addition, we propose several approximate
methods to solve the problem, which have been compared against the adaptions of

the existing methods in the literature, providing a benchmark.

= There are several interesting approaches to solve the stochastic OR planning
problem. However, in our opinion, the following important aspects have been

ignored:

e The block scheduling strategy is the only management strategy used in the
stochastic OR planning problem for managing surgical resources (see Table
2.1). However, as described in Chapter 1, the block scheduling strategy is a
special case of the open scheduling policy (Fei et al., 2009), where the latter
is more flexible than the former (all solutions of the block scheduling strategy
are feasible for the open scheduling strategy). Therefore, the open scheduling

strategy should be analyzed for the stochastic OR planning problem.
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e Responsible surgeons and their availabilities are not included in existing
stochastic decision models. As described in Section 2.1, it is a common
practice that the decision maker assigns a set of surgeries to be performed
during the planning horizon by each surgeon based on surgeon’s skills,
surgeons’ availabilities, etc. For this reason, responsible surgeons and their
availabilities should be included in the problem under consideration, as in
existing decision models for solving the deterministic version of the OR
planning problem (see Fei, Meskens and Chu, 2010; Jebali et al., 2006).

e In these approaches, time period constraints are not considered for patients.
However, in general, every patient in a waiting list must be operated before
his/her maximum time before treatment (expressed in days). It depends on the
patient’s urgency-related group which is defined by National Healthcare
Services based on a set of explicit clinical and social criteria (Valente et al.,
2009).

Therefore, the objective of the Thesis for the stochastic OR planning problem is to
propose a decision model that includes the above important aspects. In addition, we
propose a stochastic mathematical model and a Monte Carlo optimization method
based on the SAA method, which combines an iterative greedy local search method

and Monte Carlo simulation. These aspects will be addressed in Chapter 5.

» The integrated OR planning and scheduling problem has been properly analyzed in
the literature. However, the aforementioned approaches ignore the following

important aspects of the problem:

e Only surgical teams composed by a single surgeon are considered in the
integrated OR planning and scheduling approach. However, 90% of surgeries
are performed by a surgical team composed by more than one surgeon, being
the two-surgeon team the most extended case. Therefore, surgical teams

composed by two surgeons should be analyzed for the integrated approach.

e The influence of the assistant surgeon’s experience in the surgery duration is
not considered in the existing literature. However, studies show how the

duration of a surgery can increase or decrease depending on the experience
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(see e.g. Bridges and Diamond, 1999). Hence, it should be included in the
integrated approach.

e Most references assume surgery durations as a discrete variable, dividing it
into time units: 10, 15 or 30 minutes (see e.g. Augusto et al., 2010;
Ghazalbash et al.,, 2012; Marques et al., 2012). This approach greatly
increases the number of binary decision variables. In addition, surgery
durations do not necessarily have to be multiple of these time units. In order
to avoid these issues, we propose continuous time units (see e.g. Pham and
Klinkert, 2008; Zhao and LI, 2014).

Therefore, the objective of the Thesis for the integrated OR planning and scheduling
problem is to propose an ILP model to optimally solve the problem with surgical teams
composed by one or two surgeons where surgery durations depend on their experience
and skills. Given the high computation requirements of our decision model, we also

propose an iterative constructive method. These aspects will be addressed in Chapter 6.
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Chapter 3

Testbed Design

3.1 Introduction

In the literature review carried out in the previous chapter, it became clear the need of
standard procedures to generate ample testbeds for the problems under consideration in
this Thesis. In this chapter, we provide a testbed generator for building test instances to
generate OR planning and scheduling problems in order to test the efficiency of the
solution procedures for these problems. The generator integrates real-life data and
parameters in the surgical specialties of the University Hospital “Virgen del Rocio”, as
well as data and parameters from the literature (both in real-life applications as in papers
where problems are randomly generated) for generating the data involved on the
decision problems. Section 3.2 discusses the data required to solve an OR planning and
scheduling problem and how they are generated in the literature and in surgical
specialties of the University Hospital “Virgen del Rocio”. We distinguish between
patients’ data (Section 3.2.1) and resources data (Section 3.2.2). Section 3.4 describes
the factors that define the size and the characteristics of an instance, and how they are
determined. Finally, Section 3.5 provides a summarize of factors and parameters used to

solve the problems considered in the Thesis.

3.2 Data generation

In this section, we carry out a literature review of the parameters required for solving
the OR planning and scheduling problems proposed in the Thesis (see Table 3.1), and
how they are generated. In addition, we also consider the parameters and the procedures
identified in the surgical specialties of the University Hospital “Virgen del Rocio”. We

distinguish between patient data (Section 3.2.1) and resource data (Section 3.2.2).
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3.2.1 Patient data

Table 3.2 gives an overview of patient data required to solve the proposed decision
problems, and how they are generated in the literature. The following patient data are

considered in the testbed:

Category Acronym  Description Unit
Setand indices heH Index of time period within the working planning horizon -
iel Index of patient (surgery) in the waiting list -
jeJ Index of ORs -
keK Index of surgeons -
lelL Index of level experience -
Patient ti Surgery duration of surgery i performed by an assistant minute
surgeon belonging to level of experience |
Tl Expected time of surgery duration minute
o Standard deviation of surgery duration minute
mp; Medical priority of surgery i -
MTBT; Maximum Time Before Treatment of surgery i day
dwl; Days on waiting list of surgery i day
rd; Release date of surgery i day
d; Deadline of surgery i day
Wi Clinical priority of surgery i -
Ti Surgeon in charge of surgery i -
Vil 1 if surgery i can be performed by an assistant surgeon -
belonging to surgeon type I; 0 otherwise
Jijh 1 if surgery i can be performed in OR-day (j,h); 0 -
otherwise
Resources Fin Regular capacity of OR jon day h minute/day
Oin Overtime capacity of OR jon day h minute/day
an Regular capacity of surgeon k on day h minute/day
mdsy Maximum number of available days to perform surgeries day

in a weekly planning horizon

Table 3.1. Set and parameters of the operational level

= t;, surgery duration of surgery i (in minutes). We consider that t; follows a 2-
parameter log-normal distribution (see e.g. Guinet and Chaabane, 2003; Lamiri et
al., 2007; Min and Yih, 2010). The expected duration (;) is randomly selected
taking one of the values in the set {60, 120, 180, 240} as in Marcon et al. (2003) or
setting to a constant value (e.g. 120 minutes). The standard deviation (gj) is
determined by using the coefficient of variation (CV) which is defined as the ratio
of o to W. Note that tj includes not only the time needed to perform the surgery, but
also the set-up time, the clean-up time, and the preparation time for the next

surgery.

= t;, surgery duration of a surgery i depends on the assistant surgeon level experience

| (in minutes). With loss of generality, the following levels of experience have been
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Reference . t rd d w T 0 a r 0
Dist. H o
(Dexter, Macario and Traub, 1999) LN 124.2 55.1 - Real - Real Real Real 59+74,76 -
+96

(Fei et al., 2007) P11 [30,150] 80 10 - U [1, 20] - - - - - -
(Fei et al., 2008) U[15,480] 248 134 - U [1, 20] - - - - U[0, 480] U0, 360]
(Fei et al., 2009) P11 [40,150] 90 15 - U [1, 20] - U[1, 8] - 180-720 240-480 0-180
(Fei, Meskens and Chu, 2010) - Real - - Real - Real -
(Guinet and Chaabane, 2003) LN 120 60 LN [2,1] LN [4,1] - NC NC Relax. 480 240
(Hans et al., 2008) Multinomial Real Real - - - - - - 450 -
(Jebali et al., 2006) LN [30,420] 180 60 - - - - - 480-720 480 240
(Lamiri et al., 2007) LN U[60,180] R[0.1p...0.5p] R[-1...|T]] - - - Specialty - 480 -
(Lamiri, Xie and Zhang, 2008) U[30,180] 120 43 R[-1...T[] - - - Specialty - 480 180
(Lamiri, Xie, Dolgui et al., 2008) U[30,180] 120 43 R[-1...T[] - - - - - 480 -
(Lamiri et al., 2009) U[30,180] 120 43 R[-1... T[] - - - - - 480 -
(Liuetal., 2011) P11 [40,150] 90 15 - U [1, 20] - U[1, 8] - 180-720 240-480 0-180
(Marcon et al., 2003) N, LN R[60,70,80,...,180] R[0.1p...0.54] - - - NS - 480 480 -
(Min and Yih, 2010) LN Real Real - - - - Specialty - 480 -
(Ogulata and Erol, 2003) - Real - - - f(dwl, mp) - - - 360 -
(Ozkarahan, 2000) - Real - - - - Real Real NS 480 -
(Pham and Klinkert, 2008) - Real - - - - Real Real 480 480 -
(Augusto et al., 2010) U 130, 210 52, 17 - - - - - - NS -
(Riise and Burke, 2010) - Real Real - - - Real - 420 720 -
(Roland et al., 2010) - 167 93 Real Real - Real Real Real 720 180
(Marques et al., 2012) - Real Real Real Real - - - 480 690 -
(Marques et al., 2014) - Real Real Real Real - - - 480 690 -
(Meskens et al., 2013) - Real - Real Real - Real - Real 480 -
(Vijayakumar et al., 2013) U[30,360] 195 95 - - Real Real - Real 480 -
(Zhao and Li, 2014) LN 60,120,180 10,30,60 - - - - Be[0.5] - 480 240
(Hashemi Doulabi et al., 2014) U[120,240] 180 34 - - - - - - 480 -
(Van Huele and Vanhoucke, 2014) LN Real Real - - - Real Real Real 600 -

Table 3.2. Parameters considered in the design of the testbed
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considered: 0 (for no consider assistant surgeon), 1 (for junior residents), 2 (for
senior residents), and 3 (for faculty surgeons). For surgery i, the value t; (I =1, 2,
3) is assumed to be related to t; (i.e. the length of the surgery when performed only
by the responsible surgeon). Therefore, for each value of I, a variation interval
affecting t; is defined as follows: (1) junior residents’ surgeries are commonly
trained surgeries, whereby the involvement of them always causes an increase of
the surgery duration; (2) however, for senior residents, there are situations in which
the resident has a similar level of experience that the faculty surgeon, causing a
decrease of the surgery duration; (3) finally, the involvement of a faculty surgeon as
assistant surgeon always produces a decrease of the surgery duration. According to
Bridges and Diamond (1999) and Ludwig et al. (2005), the variation intervals for
determining the values of t; from t; for each surgery are: [20%, 50%], [-10%, 20%]
and [-30%, -10%] for level 1, level 2, and level 3, respectively. We assume that the
coefficient of variation is randomly selected within these intervals. An example of

the calculation of t; is shown in Table 3.3.

* y, binary parameter yielding 1 if surgery of patient i can be operated by an assistant
surgeon with a level of experience I, 0 otherwise. We assume that y; follows a
Bernoulli distribution. Note that each surgery must be assigned to at least one level

of experience.

=  MTBT;, maximum time before treatment of patient i (in days). MTBT; depends on
the patient’s Urgency-Related Group which are defined by National Healthcare
Services based on a set of explicit clinical and social criteria (Valente et al., 2009).
In this work, MTBT,; is randomly generated from the set {45, 180, 360} as in the
University Hospital “Virgen del Rocio”.

= dwl;, number of days on the waiting list of surgery i at the beginning of the planning
horizon. dwl; is drawn from a uniform distribution [-|H|, MTBT-1]. Note that -|H| is

selected to consider admissions in the waiting list during the planning horizon.

= rd;, release date for performing the surgery of patient i (in days). rd; represents the
earliest date in which surgery i can be planned in the planning horizon. Note that if
dwl <0, the release date of surgery i (rd;) takes the value —dwl (and dwl = 0), while
if dwl >0, rd is equal to 0.
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Level of Variation Intervals Variation coefficient  Surgery duration, t;
experience, | (Lower bound (%), Upper bound (%)) (%) (minutes)

0 - - 120

1 (20, 50) 35 120-(1+0.35) = 162
2 (-10, 20) 10 120-(1+0.1) =132

3 (-30, -10) -20 120-(1-0.2) = 96

Table 3.3. An example of the calculation of t;

rd;, release date for performing the surgery of patient i (in days). rd; represents the
earliest date in which surgery i can be planned in the planning horizon. Note that if
dwl <0, the release date of surgery i (rd;) takes the value —dwl (and dwl = 0), while
if dwl >0, rd is equal to 0.

di, deadline for performing a surgery i (in days). d; represents the latest date in
which surgery i can be planned in the planning horizon, being determined as the
difference between MTBT; and dwil;.

7j, surgeon in charge of performing the surgery of patient i. According to Bridges
and Diamond (1999), z; must be a faculty surgeon. Therefore, we consider that z; is
randomly selected from the available faculty surgeons (i.e. surgeons belong to level
of experience 3). The procedure used to assign the responsible surgeon is the
following: faculty surgeons are randomly sorted, assigning one surgery to each
faculty surgeon at random. The procedure finishes when all surgeries in the waiting

list have been assigned to any faculty surgeon.

dijh, binary parameter yielding 1 if surgery i can be performed in OR day (j, h), 0
otherwise. dij is used to book OR-days for planning a certain type of surgery or to
impose that some surgeries take place only in certain ORs. This parameter is taken
into account by some authors (see e.g. Jebali et al., 2006; Pham and Klinkert, 2008;
Roland et al., 2010), although the procedure employed in their works is not
described. In this work, we use the data available from surgical specialties in
University Hospital “Virgen del Rocio”, in which there is a kind of surgeries (that
make around 10% of the waiting list) that can be only performed in certain
specialized ORs (that make 30% of the total ORs in the specialty). Therefore, 90%
of the surgeries in the waiting list can be assigned to any OR (multifunctional or

specialized), while 10% have to be performed in specialized ORs.
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= w;, clinical weight of surgery i. w; is calculated as a linear combination of the
normalized values of the medical priority of the patient (mp;) and the number of
days of the patient on the waiting list, i.e. w; = a - mp*, + (1 — a) - dwl*;. mp; is
generated from a discrete uniform distribution [1, 5], being 5 the highest priority. In

order to normalize both measures, mp*;, = mp; /5 and dwl*; = dwl;/MTBT;.

3.2.2 Resource data

According to the literature review carried out in Chapter 2 and to the surgical specialties
analyzed in the University Hospital “Virgen del Rocio”, the main resources required to
solve the OR planning and scheduling problem (since in most hospitals represent a
bottleneck) are surgeons and ORs.

Regarding surgeons data, the following surgeon parameters are considered in the
testbed:

= mdsx, maximum number of available days of surgeon k to perform surgeries in a
weekly planning horizon. According to the literature, surgeons usually perform
surgeries between 3 and 5 days per week (see e.g. Fei et al., 2009). In this work, mdsy
can be drawn from a uniform distribution [3, 5] or setting to a constant value (e.g. 3
or 4 days). If the planning horizon is lesser than a week, then surgeons are assumed
to be fully available.

" an, maximum available surgery time of surgeon k to perform surgeries on day h. We
assume that, for each surgeon, ax, can be randomly and uniformly taken from the set
{240, 360, 480} (see e.g. Fei et al., 2009; Marques et al., 2012; Pham and Klinkert,
2008) or setting to a constant value (e.g. 480 minutes, see Hans et al., 2008; Lamiri et
al., 2009).

It is a common practice at the surgical specialties of the University Hospital “Virgen del
Rocio” constructs a weekly schedule that specifies who surgeons are available for
performing surgeries on each day. In addition, for each surgeon, the surgery time
available for performing surgeries is specified. The reason of constructing a weekly
schedule is that facilitates the integration with other tasks performed by surgeons in the
specialty (as are doing consultations or looking after patients operated). The following

three-step procedure is used to generate this schedule:
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= In the first step, for each day, the number of surgeons equals to the number of ORs is

randomly allocated, avoiding that an OR-day is idle.

= In the second step, a set of days are randomly assigned to each surgeon without

exceeding mdsy.

= Finally, in the third step, if the planning horizon is longer than a week, we consider

the weekly schedule as a cycle schedule for each week in the planning horizon.
Regarding OR data, the following parameters are considered:

* Tjn, regular capacity of OR-day (j, h) (in minutes). We consider a regular capacity of
8 hours for any OR-day (see e.g. Lamiri, Xie, Dolgui et al., 2008; Lamiri, Xie and
Zhang, 2008).

= 0jy, OVertime capacity of OR-day (j, h). We consider an overcapacity of 4 hours for

any OR-day (see e.g. Guinet and Chaabane, 2003).

3.3 Factors and levels

The main factors and the levels taken into account to build a testbed for solving the OR

planning and scheduling problems are (see Table 3.4):

» |H|: number of days in the planning horizon. Depending on the OR planning and
scheduling problem, |H| can vary from a few days to a few weeks (May et al., 2011).
1 and 2-days planning horizons are normally considered for the OR scheduling
problem (see e.g. Cardoen et al., 2009a, 2009b; Jebali et al., 2006), while 1 and 2-
weeks planning horizons are considered for the OR planning problem (see e.g. Fei,
Meskens and El-Darzi, 2010; Min and Yih, 2010; Ogulata and Erol, 2003). Finally, a
working week planning horizon is also considered for the integrated OR planning

and scheduling problem solved in an integrated way (see e.g. Roland et al., 2010).
= |J]: number of ORs.

= f: control factor to generate |I|. Some papers propose to generate surgeries one by
one until the sum of expected surgery durations for the generated surgeries exceeds a

proportion S of the total OR time available in the whole planning horizon (see e.g.
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Reference [H| [J] p a cv
(Dexter, Macario and Traub, 1999) 1 6, 22 1.00 - -

(Fei et al., 2007) 5 NS - - 0.13

(Fei et al., 2008) 5 4 - - 0.54

(Fei et al., 2009) 5 6 - 1.0,1.3 0.17
(Fei, Meskens and Chu, 2010) 5 6 - - -
(Guinet and Chaabane, 2003) 5 1,2,3 - 1 0.5
(Hans et al., 2008) 1,5 16 - - -

(Jebali et al., 2006) 1 3 - 11,17 0.3
(Lamiri et al., 2007) 5 3,6 0.75 - 0.1...0.5
(Lamiri, Xie and Zhang, 2008) 5 3,6,9,12 0.75,1.00 - 0.4
(Lamiri, Xie, Dolgui et al., 2008) 5 2 1.00 - 0.4
(Lamiri et al., 2009) 5 48,12  0.85,1.00 - 0.4
(Liuetal., 2011) 5 6 - 1,1.3 0.2
(Marcon et al., 2003) 1 8 - - 0.1...0.5
(Min and Yih, 2010) 5 10 - - 0.4,0.5,0.8
(Ogulata and Erol, 2003) 5 2 - - -
(Ozkarahan, 2000) 10 7 - - -

(Pham and Klinkert, 2008) 2 2 0.71 - -
(Augusto et al., 2010) 1,2 2,4,6 - - 0.1,04
(Riise and Burke, 2010) 1 5 35,43,...,64,7.2 - -
(Roland et al., 2010) 1,5 7 0.70, 0.80 - 0.6
(Marques et al., 2012) 5 15,6 1.1,1.4,...2.0,2.2 - 0.5...0.8
(Marques et al., 2014) 4,5 6 09,1.1,..,7.2,74 - 0.5...0.8
(Meskens et al., 2013) 1 4 - - -
(Vijayakumar et al., 2013) 2,5 2,5 0.5,0.9 - 0.5
(Zhao and Li, 2014) 1 3,45 0.5,0.6,...,1.3,1.5 - 0.1...0.3
(Hashemi Doulabi et al., 2014) 5 6 0.5,1.0,15 - 0.2
(Van Huele and Vanhoucke, 2014) 5 3 3.7 - -

Table 3.4. Factors and levels for designing a testbed

Dexter, Macario and Traub, 1999; Lamiri et al., 2009). g values, shown in Table 3.4,

Yieltio

have been calculated using the expression § =
YheHXjejTjn

and data provided by

authors.

= q: control factor to generate |K|. In this work, we determine the number of surgeons
available for performing surgeries during a weekly planning horizon. A common
procedure employed in the literature is used to determine the number of surgeons
(Belién and Demeulemeester, 2007). For each level of experience, the total surgeon
time required to perform all assigned surgeries in the waiting list (S)) is first
determined. More specifically, the surgeon time required to perform surgery i when
surgeon type | is involved can be calculated as the quotient between the surgery
duration required by level experience I (t;) and the number of levels that can perform
the surgery (in order to avoid surgeon overcapacity). Therefore, S; is calculated by

the following expression:
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- t
Sl — az (Vll ll)
YieLYil

i€l

Then, the number of surgeons is generated one by one until the total availability
generated exceeds S;. For each surgeon, mdsy and ay, is generated as described in
Section 3.2.2. o values, shown in Table 3.4, have been calculated using the

expression of Sy and data provided by authors.

= CV: the coefficient of variation of surgery duration. CV is defined as the ratio of the
standard deviation (o) to the mean (). By using CV, we are able to analyze the
effects of homogeneous (low values) and heterogeneous (high values) waiting lists
with respect to surgery duration on the OR planning problem. The coefficient of
variation is randomly generated from an interval [0.1...0.5] (see e.g. Lamiri et al.,

2007) or setting to a constant value (e.g. 0.5).

3.4 Conclusions

The contribution of this Chapter is to propose a testbed generator to create instances for
analyzing OR planning and scheduling problems. The procedure is based on the
literature and on surgical specialties of the University Hospital “Virgen del Rocio”. We
distinguish between parameters (i.e. the data involved in the decision models) and
factors (that define the size and the characteristics of an instance). The testbed generator
has been coded in the C programming language, and it has been used to generate the
testbeds employed in the Thesis. Table 3.5 shows the levels of the factors used in every
Chapter to generate the testbed. The size of the problem (in terms of the waiting list
size) and the number of instances generated are presented. The testbed is available at
http://taylor.us.es/componentes/jmmp.

31



Operating Theatre Planning & Scheduling in Real-Life Settings Chapter 3

Factor/Parameter  Deterministic OR Stochastic OR Integrated OR Real Surgical
planning planning planning/scheduling  Specialty OR
(Chapter 4) (Chapter 5) (Chapter 6) planning

(Chapter 7)

[H] 5 5 1,25 5,10,20,40,60

|| 3,9 4,8 3,6,9 4.8

p 1.00,1.25 1.00,1.25 0.75,1.00,1.25 1.00,1.25

a 15,20 15,20 15,20 15,20

cv Ran [0.1...0.5] 0.1,0.5 Ran [0.1...0.5] 0.1

u 1,1l NI M ]

1| 50,61,146,182 80, 102,161,202 10,20,...,222, 294 81,100,...,1925,2400

K| 6.8,...,23,30 8,10,15,20 10,20,30,...,62,75 8,16

" Ran [60,120,180,240] 120 Ran [60,120,180,240] 120

mds 34 Ran [3,4,5] Ran [3,4,5] Ran [3,4,5]

a 480 480 Ran [240,360,480] 480

Instances 320,960 160 1080 120

Table 3.5. Factors and levels for the proposed OR planning and scheduling problems
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Chapter 4

New Heuristics for the Operating Room Planning
Problem

4.1 Introduction

In this chapter, we tackle a OR planning problem in which an intervention date and an
OR are assigned to a set of surgeries on the waiting list, minimizing access time for
patients with diverse clinical priority values. The clinical priority depends on the
surgery priority and the number of days spent on the waiting list. Section 4.2 presents
the problem formulation. We propose a set of 83 heuristics (81 constructive heuristics, a
composite heuristic and a meta-heuristic) based on a new encoding of the solution
(Section 4.3), and we compare these against existing heuristics from the literature for
solving OR planning problems (Section 4.4). The heuristics are adapted to the problem
under consideration (i.e. considering all constraints and the new objective function),
being re-implemented using the information provided by the authors. In total, after a
calibration procedure, we compare 17 heuristics. The computational experiments show
that our proposed meta-heuristic is the best for the problem under consideration.

Finally, conclusions are presented in Section 4.5.

4.2 Problem formulation

In the OR planning problem we consider a set H of planning days (h = 1...|H|) where
there is a set J of parallel ORs (j = 1...|J]) available on each day h in the planning
horizon. The regular capacity of the j-th OR during day h is denoted by rj,. In the
following, a pair (j, h) is denoted as OR-day. Recovery facilities are also assumed to be
always available during the planning horizon. There is a set K of surgeons (k = 1...|K])
and, on each day h, each surgeon k has a maximum available time (sx,) to perform
surgeries. The remaining human and material resources are assumed to be available
whenever needed. In this setting, a set | of elective surgeries (i.e. patients) are in the
waiting list (i=1...]1]).
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Indices and Sets

heH Set of time periods within the planning horizon for perioperative resources

i€l Set of patients (surgeries) on the waiting list

jeJ Set of ORs

keK Set of surgeons

Parameters

Fin Regular capacity of OR j on day h (in minutes)

an Regular capacity of surgeon k on day h (in minutes)

Uy Non-negative integer number of ORs in which surgeon k can perform surgeries within
the same day

Ti Surgeon in charge of patient i

rd; Release date for performing the surgery on patient i

di Deadline for performing the surgery on patient i

Jijhn Binary parameter yielding 1 if surgery of patient i can be performed in OR j on day h;
0 otherwise

t; Expected time of surgery i (in minutes)

Wi Clinical weight of surgery i

Variables

Xijh 1 if patient i is to be operated in OR j on day h; 0 otherwise

Zyin 1 if surgeon k is allocated to OR j on day h; 0 otherwise

Table 4.1. Sets, data and variables used in the ILP decision model

Each surgery i should be performed before a given deadline (d;) according to the
disease’s characteristics and the waiting time in the waiting list. The binary parameter
dij yields 1 if surgery i can be performed in OR j, O otherwise. Many realistic situations
can be modeled with this parameter such as, for example, to book OR-days in order to
plan a certain type of surgery or to forbid the assignment of a surgery to an OR that

does not have the equipment required to perform this specific surgery.

Below, we present the ILP model to solve the OR planning problem of the Plastic
Surgery and Major Burns Specialty. Table 4.1 summarizes sets, data and variables used

in the decision model.

The objective function is

1
Maximize Z A Z Z wiXijn 4.1)

heH i€l jeJ
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And the constraints are:
Z Z Xjn<1 (i€l (4.2)
j€J heH

rd;-1
Z Z Xy =0 (Viel) (4.3a)
j€J h=1
Z Z Xgn=1 (Vi€lld; < [H]) (4.3b)
jeJ heH

hSdi
Z t:Xijn <1in  (Vj €],Yh € H) (4.4)
i€l

Z tiXijh < Akn (Vk €K, Vh € H) (45)
jej i€l

Ti=k
Z Zin <we (Yk €K, Yh € H) (4.6)
J€J
Z tiXijh < T)'th]'h (Vk € K,V] E],Vh, € H) (47a)
1€l
Ti=k
Z tXijn = Zn  (Vk € K,Vj € ],Yh € h) (4.7b)
i€l
7=k
Xijn=0 (Vielvjej vheH|5; =0) (4.8)
Xin€{01} (VielLVvj€e] VheH) (4.9)
Zyjn €{0,1} (Vk € K,Vj €], Yh € H) (4.10)

The objective function (4.1) maximizes the service level of a surgical specialty

prioritizing patients with higher values of w. The service level of a planned surgery is

defined as the quotient between the clinical weight and the planned date. Note that, if a

surgery is not planned within the planning horizon (therefore its planned date is equal to

0), then the value of the service level is unbounded. In order to avoid such unbounded

solutions, we introduce the parameter h in the objective function to capture the planned

date. h represents the planned date for a scheduled surgery (at least one Xij, = 1),

excluding unscheduled surgeries (all Xjj = 0). Constraints (4.2) enforce that each

surgery is scheduled at most once during the planning horizon. The set of constraints

(4.3a) and (4.3b) define the earliest and the latest date where a patient can be scheduled.
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Constraints (4.3a) prohibit that the patient is scheduled before the release date, while
constraints (4.3b) ensure that the surgery of a patient with a deadline within the
planning horizon must take place before his/her latest date. Constraints (4.4) prohibit
that the total amount of OR time assigned to surgeons in an OR-day is higher than its
regular capacity. Constraints (4.5) prohibit that the total amount of time allocated to a
surgeon is higher than his/her capacity in any day. Constraints (4.6) limit the number of
OR-days that can be assigned to a surgeon in a day. The set of constraints (4.7a) and
(4.7b) define whether a surgeon is allocated to an OR-day. Constraints (4.8) ensure that
each surgery is carried out in a suitable OR-day. Finally, constraints (4.9)-(4.10) are

binary constraints for decision variables.

4.3 Heuristics

In view of the NP-hard nature of the procedures employed for solving the ILP model, it
is foreseeable that optimal solutions can only be obtained for relatively small problems
(see the computational experience carried out in Section 4.4.2). Therefore, a novel
encoding is proposed for solving the advance OR scheduling problem. A surgical
schedule is encoded into a permutation vector w and a bin packing (BP) operator, where
7 represents a certain order of the surgeries in the waiting list, and it is determined
considering the prioritization of surgeries with dude dates within the planning horizon.
The BP operator is the algorithm used to allocate surgeries to OR-days, integrating the
constraints (4.2)-(4.8) of the decision model. The following BP operators can be
considered (see e.g. Dexter, Macario, Traub et al., 1999; Dexter, Macario and Traub,
1999):

= Next Fit (NF): the surgery is planned in the last OR-day occupied, if possible.

Otherwise, the surgery is planned into the next available OR-day.
= First Fit (FF): the surgery is planned in the first OR-day where it fits.

= Best Fit (BF): the surgery is planned in the OR-day that has the least amount of

available time and it fits.

= Level Fit (LF): the surgery is planned on the OR-day that has the most amount

available time and it fits.
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The following sections present a set of constructive heuristics, a composite heuristic and

a meta-heuristic for solving the proposed OR planning problem.

4.3.1 Constructive heuristics

In the constructive heuristics, a permutation sequence n composed of an order of the
patients in the waiting list is constructed in two stages which simultaneously take into
account the fulfillment of time period constraints (i.e. constrains 4.1 and 4.2) and the

objective function.

= In stage I, a partial sequence is determined by only sorting patients whose
deadline falls within the planning horizon in increasing order of deadlines, in

order to fulfill time period constraints.

= In stage Il, the remaining patients in the waiting list are added at the end of this
partial vector according to (S;, Sc). Sy is the sorting indicator, which is the
parameter used to sort patients (surgery duration, clinical priority...), while Sc is
the sorting criterion which indicates how surgeries are sorted according to S

(descending, ascending...).

The following two types of constructive heuristics are considered: (1) Single-Tuple (ST)
method in which one permutation sequence is considered applying a sorting tuple (S,
Sc), and (2) Multiple-Tuple (MT) method in which a set of sorting tuples (n*' indicators
and n°¢ criteria) are simultaneously considered, resulting n® - n°¢ permutation

sequences.
Regarding the sorting indicator (S,), the options usually considered are:

= t: surgery duration (see e.g. Dexter, Macario and Traub, 1999; Hans et al.,
2008).

d: deadline (see e.g. Fei et al., 2009).

w: clinical weight (Ogulata and Erol, 2003; Ozkarahan, 2000).

= ran: random sorting. This is equivalent to not sorting the surgeries with

deadlines outside the planning horizon.
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Initial Waiting list P:1 P:2 B3 P4 P:5 P:7
(240, 85) (120, 85) (260, 50) (180, 80) (180, 100) (260, 75)
Applying (S, Sc) = (w, DEC)
T P55 P:1 (555 P:2 P4 P:7
(180, 100) (240, 95) (260, 50) (120, 85)| (180, 80) (260, 75)
NF FF BF LF
DAY 1 P35 P 5 P P:5 P:1 5 P7
(180.100) (240, 95) (180, 100) (240, 95) (180, 100) (240, 95) (180, 100) (260, 75)
DAY 2 P3 P3 p:2
(260, 30) (260, 50) (120, 85)
DAY 3
P4 P:7
DAY 4 (180, 80) (260, 75)

DAY 5

OF Value = 349.4

OF Value = 363.6

OF Value = 369.4

Figure 4.1. An example of a constructive heuristic

OF Value = 351.8

The sorting criteria (Sc) that can be considered (see e.g. Framinan et al., 2003; Marcon

and Dexter, 2006) are the following:

INC: sorts the surgeries according to increasing values of indicator S,.

DEC: sorts the surgeries according to decreasing values of indicator S,.

HILL: sorts the surgeries as a “hill”: i.e. high values of indicator S, in the middle

of the waiting list and low figures in the beginning and in the end.

VALLEY: sorts the surgeries as a “valley”, i.e. low values of indicator S, in the

middle of the waiting list and high figures in the beginning and in the end.

LOHI: sorts the surgeries by choosing one surgery with a low value of indicator

Si and one with a high value alternately.

HILO: sorts the surgeries by choosing one surgery with a high value of indicator

S; and one with a low value alternately.
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Figure 4.1 shows an example of a ST method that applies the sorting tuple (w, DEC).
Note that each box represents a surgery, specifying the surgery duration and the clinical

weight (t;, w;).

4.3.2 Composite heuristics

In the composite heuristic (Cr,),  is constructed based on the well-known heuristic
proposed by Nawaz et al. (1983) and on the idea of re-inserting scheduled jobs (Rad et
al., 2009) for the permutation flowshop scheduling problem. Starting from the best
surgical schedule obtained using a constructive heuristic (see previous section), an
initial permutation sequence (rin) is determined by sorting patients in ascending order
of planned date, being the unplanned patients added at the end of the vector. m is

constructed according to the following two steps (see Figure 4.2):

= Constructive step. For a surgery in position | in zy,;, this step consists of
obtaining the best position p to insert the surgery in the partial sequence
composed by the previous I-1 surgeries, keeping the relative order of the last
ones. Among these partial sequences, sequence z; yielding the best value of the

objective function is selected.

= Bounded local search step. Considering one by one the surgeries placed in the m
positions around position p in z (i.e. the positions from max(1, p - m) to min (I,
p + m)), this step consists of inserting the surgery in all possible positions
keeping the relative order of the I-1 surgeries, selecting the position yielding the
best value of the objective function.

4.3.3 Random extraction-insertion meta-heuristic

The Random Extraction-Insertion algorithm (REI) is an iterated greedy local search
based on the algorithm proposed by Ruiz and Stitzle (2007) for the permutation
flowshop scheduling problem. =y is constructed following the procedure used in C,.
The general procedure for determining z from an incumbent permutation vector (zinc) is

composed by the following two steps (see Figure 4.3):

= Destruction step. It consists of randomly removing n surgeries (mqes) from 7inc,

obtained a permutation vector )., composed by |I| - n surgeries.
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- P:5 P:1 P4 P:2 P:7
”ml L UL (EILE) --ﬂmw 2z -

Iteration | =6

Constructive Step

P:5
75 {180, 100} (240,

Best Plan
(r%“ﬂ ;go 100) OF Value = 363.8
P2 PS5 P4
\ (120. 85)| (180. 100} (180. 80y
E:gn, 100) Egn_mi) OF Value = 363.8
P
(240. 95)

OF Value = 330.4

P:5 P
(180, 100) (240, 95)

fw | poss OF Value = 330.4

P:5 P:1 P4 P2 _
GERULD E0E) - Y ;— OF Value = 336.7
B5 P P4 P2
(180.100) (240, 95) (180, 80) (120. 85)

Bounded local search step (m = 2)
~ el in| 2 [ oo [
m= 1, P5 m= 2, P1

P5 P2 P P4 P P2 PS5

(120.100) |(120.85)|  (240.95) (120.80) 0.9  |(20.89| (130, 100
P4 P2 £ P5 [
(120, 80) (120,85  (240.95) (120, 100) (120, 30)

P2 P P4 P5 P:2 P:5 P4 Pl
(120. 85) (240. 95) (180. 80) (180, 100) (120.85)| (180, 100) (180, 80) (240.95)

OF Value = 336.7

P2 P P:5
(120, 85) (240, 35) (180, 100)

No improvement found No improvement found
T P:2 P:5 P=1 P4 P:7
(120, 85)| (180, 100) (240, 95) (180, 80) (260. 75)
Optimal plan

OF Value = 4138

Figure 4.2. An example of the composite heuristic C, starting form the best solution obtained by the

constructive heuristic, ST(w, DEC, BF)
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P:5

Tini {180, 100)

P2 P:7
120, 85) (260, 75)

Destruction Step (n = 2)
7T P2
(180, 100) (240, 95) (180, 80) (260, 75)
Construction Step
Pg, best position 6
P:5 P:1 P4 B:F
P,, best position 1
P2 P:5 P:1 P4 P:7
(120, 85)| (130, 100) (240, 35) (180, 80) (260, 75)
P, best position 5
B2 P:5 P P:7
(120, 85)| (180, 1000 (240, 55) (180, 20) (260, 75)
T (P2 P5 P P7
(120, 85)| (180, 100) (240, 55) (260, 75)

P:5
(180. 100)

OF Value =413.8

Figure 4.3. An example of the REI meta-heuristic starting form the best solution obtained by the

constructive heuristic ST(w, DEC, BF)
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= Construction step. For a surgery in position k in zges, it consists of determining
the best position to insert the surgery in zy + -1, keeping the relative order of the
|| + k -1 surgeries. The permutation vector 7y + -1 that yields the best value of

the objective function is selected.

The resulting sequence x is considered as the new =, and therefore the best
permutation vector, if the objective function value improves the best value obtained so
far. A simulated annealing-like acceptance criterion with a constant temperature is
implemented to avoid the stagnation in the search procedure. The constant temperature
is set so that moves that deteriorate the solution more than a percentage 0 of the
maximal deterioration are accepted with a probability smaller than ¢ (Lamiri et al.,
2009). The termination criterion of REI is determined based on the size of the problem
(the length of the planning horizon, the number of ORs and the number of surgeries on

the waiting list).

4.4 Computational evaluation

An extensive computational experiments of the ILP decision model, the proposed
heuristics and the adapted ones for solving the proposed advance OR scheduling
problem is presented. Section 3.3.1 presents a Design of Experiments (DOE) approach
carried for the calibration of ST, MT, C, and REI algorithms. Then, in Section 3.3.2,
the effectiveness (in terms of the proportion of feasible solutions and the quality of the
solution) of the proposed heuristics and of the adaptation of the existing heuristics is

evaluated.

4.4.1 Calibration procedure

We have generated a 320-instances calibration testbed using the procedure given in
Chapter 3. We have considered 32 different combinations of factors (see Table 4.2) and,

for each combination, we have generated 10 instances.
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Factor Level

[H]| 5

[J] 3,9

B 1.00,1.25

a 15,20

cv Ran [0.1...0.5]

Y7l Ran [60,120,180,240]
mds 3,4

a 480

u 1, Y|

Table 4.2. Factors and levels considered in the OR planning problem

In order to select the best among each type of algorithm, we have considered two
response variables: feasibility of the constructed solution, and Relative Percentage
Deviation (RPD), according to the expression RPD = (Bestg,; — Heug,;)/Bests,; -
100, where Heus is the solution given by any of the tested constructive heuristics and
Bests is the best solution found so far (either the optimum, or the best (highest) lower
bound for a given generated instance). In our case, Bests, has been obtained for each
instance by solving the related ILP model using the commercial software Gurobi
version 4.5.1 with a CPU time limit of 900 seconds. The experiment was analyzed by
means of a multi-factor Analysis of Variance (ANOVA) technique with a 95%

confidence level.
The procedure employed for the calibration of the different algorithms is the following:

I. We select the level(s) of the most significant factor yielding statistically significant
differences with respect to feasibility, i.e. we select the sorting tuple(s) or BP
algorithm(s) that obtain a higher number of feasible solutions over the instances in
the testbed.

Il. Among the instances for which the selected factors in Stage | yield feasible solutions,
we select the remaining level/s by taking those that obtain the best (statistically
significant) RPD.

Regarding constructive heuristics, ST algorithms are characterized by a permutation
vector ordered by a tuple (S;, Sc) and a BP operator. In the following, we denote an ST
algorithm as ST, sc, sp). Note that 19 sorting tuples are considered for each BP
algorithm: (i) indicators t, d and w are combined for each sorting criterion (18 sorting

tuples) and (ii) the random sorting. Therefore a total of 76 different ST algorithms are
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tested. As a result from the experimental analysis, we can conclude that the ST, pec, Fr)
is the best. Regarding MT algorithms, the factor is the BP algorithm employed in the
construction procedure, so the levels are: MTng, MTgg, MTgr and MTye. Note that we
have considered the 19 different combinations of S, and S¢ for each MT algorithm.
Finally, we will also consider the MTa.. algorithm in which all BP algorithms and all
sorting tuples are applied to the instance, selecting the combination of BP and (S;, Sc)
yielding the best results for the instance. The analysis shows that MT . is statistically

the best algorithm.

Regarding local search method and meta-heuristic, we select MTa. . and FF as the
constructive heuristic (employed to determine the initial waiting list) and the BP
algorithm (employed to evaluate waiting lists) respectively based on the results obtained
for constructive heuristics. As described above, the Cy, algorithm is characterized by the
number of re-inserted surgeries (m). m is used with levels 0, 6, 12 and 18; yielding Cs
the best results in terms of RPD and CPU time. Finally, as described above, REI is
characterized by the number of extracted surgeries (n), the percentage of the maximal
deterioration (#) and the probability of accepts a solution which deteriorates a solution
(). REI is tested with the following levels: n is set to 1, 3 and 5; @ is set to 10% and
20%} and; ¢ is set to 1%, 5%, and 10%. The best setting was n = 3, 8 = 10% and ¢ =
1%.

4.4.2 Computational experience

In this section we generate a testbed according to the procedure described in Chapter 3,
considering the 32 different combinations of factors shown in Table 4.2. For each
combination, we have generated 30 instances, resulting in a total of 960 instances. The
size of the waiting list depends on the tuple (|J|, 5), being 50, 61, 146 and 182 the
average number of surgeries for (3, 1.00), (3, 1.25), (9, 1.00) and (9, 1.25) respectively.
The experiments were carried out on a PC with 2.80 GHz Intel Core i7-930 processor
and 16 GBytes of RAM memory. The 960 instances are solved by the best proposed
heuristics obtained in the calibration (STw, pec, rr), MTaLL, Cs and REI) and the

following adapted approximate heuristics existing in the literature:
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= Constructive heuristics

¢ An adaptation of the primal-dual method which is an extension of the Hungarian
method proposed by Guinet and Chaabane (2003), referred to as HM. The order
of surgeries on the waiting list has an important influence in the performance of
HM. Therefore, we select the best sorting tuple (S;, Sc) using the sorting
procedure employed in the proposed constructive heuristics, being a HM
algorithm denoted by HMs, s¢). The analysis shows that HM, pec) is the best HM
algorithm.

e An adaptation of the method based on dynamic programming proposed by Liu et
al. (2011), referred to as DPH. Note that the column generation heuristics
proposed by Fei et al. are not included in the comparison, since they are

outperformed by DPH proposed by Liu et al. (2011).

e The off-line method of Dexter, Macario and Traub (1999), referred to as OFF. As
ST algorithms, an OFF method is characterized by a sorting tuple (S;, S¢) and a
BP algorithm, being denoted as OFF s, sc, sp). We consider the 19 sorting tuples
and BP algorithms proposed in this paper, being OFF, inc, rry the best method.

* Improvement heuristics

e An adaptation of the pair-wise swapping method of Lamiri et al. (2009), referred
to as PS. Starting from the surgical schedule obtained by the best constructive
heuristic (i.e. MTa..), the solution improvement consists of swapping two
different patients between OR-days. For each iteration patients are considered one
by one, determining and performing the exchange which vyields the largest
improvement and satisfies the constraints. The process stops when the solution
cannot improve any more. We include the pair-wise swapping global method,
referred to as PSG, based on the local optimization method proposed by Lamiri et
al. (2009). For each iteration the largest improvement is selected among all
patients’ largest improvements, stopping when the solution cannot improve

anymore.

e A triplet-wise swapping method, referred to as TS. The main difference between

PS and TS is that the solution improvement consists of swapping a pair of patients
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scheduled in the same OR-day with a patient scheduled in a different OR-day. As

occurred with PS, we include the triplet-wise swapping global method (TSG).

e A hybrid swapping method, referred to as HS. For each iteration PS and TS
methods are considered for determining the largest improvement for each patient
or pair of patients respectively. A hybrid swapping global method (HSG) is also

considered in the comparison.
» Meta-heuristics

e An adaption of the taboo search proposed by Lamiri et al. (2009), referred to as
TABOO. The procedure used to select moves is an iteration of the best
improvement heuristic. A calibration procedure is carried out to determine the
best swapping heuristic, being HS and HSG algorithms the best ones. We select
the HS method due to its lower CPU time required. The taboo list size is set to |H|
and the stopping criterion is based on a computation time limit that depends on the
size of the problem (the length of the planning horizon, the number of ORs and

the number of surgeries on the waiting list).

e An adaptation of the Multi-start method proposed by Lamiri et al. (2009), referred
to as MS. This method tries to avoid the problem of getting stuck in a local
optimum (Lamiri et al., 2009). Let S be the initial solution at a given iteration, and
R the solution provided by HS (the best improvement heuristic) starting from S.
At the next iteration, a new initial solution S’ is determined from R by randomly
modifying the planned time blocks of some patients. Each patient is selected with
probability 1% according to Lamiri et al. (2009). If a patient is selected, a
randomly feasible exchange with another patient is carried out (swapping OR-
days). In order to compare among the other heuristics, the stopping criterion is
modified by defining a computation time limit depending on the size of the

instance.

¢ An adaptation of the simulated annealing method of Lamiri et al. (2009), referred
to as SA. The procedure to build a new solution at any iteration is applied a
random exchange to the solution obtained at the previous iteration. The patient
(pair-wise) or the pair of patients (triplet-wise) is randomly chosen, selecting the

exchange which yields the largest improvement in any case. The cooling factor is

48



New Heuristics for the Operating Room Planning Problem Chapter 4

set to 0.95 and the temperature is reduced after |l| iterations. These values result
after a calibration procedure using the values proposed by Lamiri et al. (2009). As
in MS, the stopping criterion is based on a computation time limit depending on

the size of the instance.

e A simulated annealing method in which the temperature is considered as a
constant parameter, referred to as SAc. The temperature is determined as in REI.
6 and ¢ are set to {10%, 20%} and {1%, 5%, 10%} respectively, yielding 10%
and 1% the best results. As in SA, the stopping criterion is based on a

computation time limit.

The results of the experiments for the advance scheduling (us = [J]) and for the
integrated approach (us = 1) are shown in Figure 4.4. The mean RPD and computation
time values are obtained by averaging these results only for feasible solutions obtained
by the heuristics. The computation time limit for meta-heuristics is fixed to [I| - || - [H| -
n seconds for meta-heuristics. # is a time factor, which is set to 0.0125 and 0.025. The
value leading to the best results for every meta-heuristic is # = 0.025, not being the
difference big enough to consider a double computation time. Therefore, we only
include the results for » = 0.0125. Note that the solutions obtained by the heuristics are
compared to the solution obtained for each instance by solving the related ILP model

using the commercial software Gurobi version 4.5.1.

For each level of factor |J| (the most influential on the performance of the methods),
Table 4.3 shows the minimum, the maximum and the average GAP (i.e. (Bestyouna —
Solution)/Besty una - 100) for the advance scheduling problem and the integrated
approach. In addition, the percentage of optimal solutions and the average CPU time
values are presented. The analysis shows that DPH and MT 4, are statistically the best
constructive heuristics for the advance scheduling problem and the integrated approach
respectively. However, we can conclude that the MTa.. heuristic as the best
constructive heuristic, because of the reduction on the feasible solutions obtained by
DPH (only 79% of feasible solutions) and the larger computation time required.
Regarding improvement heuristics, Cg is statistically the best algorithm for both
planning problems (3.9% and 8.7% respectively), with not much more computation
time required (16.15 and 22.89 seconds respectively). It is important to point out that Cg
outperforms the adaptations of the existing meta-heuristics for the integrated approach.
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Problem [ Min. Max. Average Optimal CPU time
GAP (%) GAP (%) GAP (%) solutions (%) (seconds)
Advance 3 0.00 1.18 0.17 57.0 473
Scheduling 9 0.23 0.72 0.72 0.0 900
Average 0.45 28.5 686.2
Integrated 3 0.00 1.52 0.17 65.7 437
approach 9 1.22 4.87 3.10 0.0 900
Average 1.64 32.9 668.5

Table 4.3. ILP approach performance for solving the off-line decision level

Problem N] Heuristic  Min. Max. Average Solutions  CPU time
RPD (%) RPD (%) RPD (%) RPD<1% (seconds)
(%)
Advance 3 MTaLL 2.59 17.54 9.75 0 0.02
Scheduling Cs 0.20 12.00 3.60 1.7 0.51
REI 0.00 4.65 0.82 70 10.31
9 MTaLL 5.34 16.67 10.35 0 0.30
Cs 1.19 9.97 4.22 0 31.8
REI 0.47 6.63 2.55 2.9 92.12
Integrated 3 MTaLL 9.40 27.54 17.80 0 0.02
approach Cs 1.13 16.34 7.15 0 0.58
REI 0.00 7.28 2.64 14.6 10.27
9 MTaLL 17.86 30.04 24.14 0 0.35
Cs 5.28 23.76 10.35 0 45.21
REI 4.93 24.96 13.00 0 92.21

Table 4.4. Heuristic performance for solving the off-line decision level

Regarding meta-heuristics, the results show that there are statistically significant
differences between the REI algorithm and the remaining meta-heuristics for the
advance scheduling problem and the integrated approach, yielding 1.7% and 7.8% of
RPD values respectively. Finally, as described above, the number of ORs is the most
influential factor on the performance of heuristics for off-line decision problems,
especially for the integrated approach.

Table 4.4 shows the minimum, the maximum, and the average RPD for the best
heuristics in the manuscript (constructive, improvement and meta-heuristic), along with
the percentage of solutions with RPD values less than 1% and the average CPU times.
Finally, Figure 4.5 shows the average RPD values of the proposed heuristics to solve

the off-line decision problems for each level of |J|.
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Figure 4.5. Influence of the number of ORs on the off-line decision problems

4.5 Conclusions

In this chapter, we have analyzed the advance OR scheduling problem on the off-line
operational decision level. The problem consists of assigning an intervention date and
OR to surgeries on the waiting list over a given planning horizon, taking into account
the following constraints: resources availability (OR and surgeon), time period (a
surgery must be performed between a release date and a deadline), eligibility (surgeries
must be performed on a suitable OR) and resources assignment (surgeons has limited
the number of ORs in where the can operated during a day). The objective function is
related to minimizing access time for patients with higher clinical weight values
(defining based on the priority of the patient --surgery’s urgency-- and the number of

days spent on the waiting list at the time of the planning).

A set of approximate methods have been proposed for solving the problem under

consideration. To show the efficiency of our proposed heuristics, we have adapted
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existing heuristics to the problem and compare them using a testbed we have developed
based on the literature. In total, we have compared 17 efficient heuristics (i.e. the best
parameters of any method have been selected by a calibration procedure). The
computational experiments show that the proposed heuristics statistically outperform
existing ones in the literature for every type of heuristic proposed (constructive,

improvement and meta-heuristic).
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Chapter 5

The Stochastic Operating Room Planning
Problem

5.1 Introduction

In this chapter, we address a stochastic OR planning problem which consists of
assigning an intervention date and OR to a set of surgeries on the waiting list,
minimizing the unexploited OR time and overtime costs. Uncertainty in surgeries
duration and in the arrivals of emergency surgeries and in surgeons’ capacity is
considered. To solve the problem we present a stochastic mathematical model (Section
5.2) and a Monte Carlo optimization method based on the SAA method (Section 5.3),
which combines an iterative greedy local search (IGLS) method (Section 5.4) and
Monte Carlo simulation. The performance of the IGLS method is evaluated against an
exact method and two existing heuristics for solving the deterministic version of the
problem, using a testbed generated based on the literature (Section 5.5). Finally, a
computational experiment is presented to evaluate the performance of the Monte Carlo
optimization method in a stochastic setting (Section 5.6). The results highlight that the
objective function value obtained by our proposal converges to the optimal value of the
problem and presents a high robustness in terms of the proportion of feasible
simulations when the number of samples increases. Finally, Section 5.7 presents the

conclusions.

5.2 Problem formulation

In this section, we formalize the stochastic advance OR scheduling problem with
uncertainty in surgical activities, which has been analyzed in the literature review
presented in Chapter 2 (see Section 2.3). Our problem is to determine the OR and the
intervention date for surgeries on the waiting list, considering the open scheduling
strategy, resources availabilities (OR and surgeons), and deadline constraints. The
objective function is to minimize the total cost of the unexploited OR time and
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Indices and Sets

heH Set of days within the planning horizon

i€l Set of patients (surgeries) on the waiting list

jed Set of ORs

keK Set of surgeons

(eZ Set of scenarios

Parameters

T,{h Regular capacity (in minutes) of OR j on day h under scenario {

0j Overtime capacity (in minutes) of OR j on day h

af‘h Regular capacity (in minutes) of surgeon k on day h under scenario {
T Surgeon in charge of patient i

rd; Release date for performing the surgery on patient i

d; Deadline for performing the surgery on patient i

tl{ Length of surgery i (in minutes) under scenario ¢

0 Ratio of the cost of an hour of overtime to the cost of a regular working hour
Variables

Xijn 1 if patient i is to be scheduled in OR j on day h; 0 otherwise

Table 5.1. Indices, sets, parameters and variables used in the decision model

overtime. The uncertainty in surgical activities is denoted by scenario € Z as in Min
and Yih (2010). A scenario ( is defined by three random variables: surgery durations,
emergency surgeries’ arrivals (by means of OR capacity that must be booked in advance
for emergencies) and the surgeon time for performing emergency surgeries during a day
(by reducing their regular capacity).

In the stochastic advance OR scheduling problem (see Section 2.3) we consider a set H
of planning days (h = 1...|H|) where there is a set J of parallel ORs (j = 1...|J|) available
on each day h in the planning horizon. The regular capacity for performing elective

surgeries of the j-th OR during day h under scenario { (¢ =1...|Z[) is denoted by ;. In

the following, a tuple (j, h) is denoted as OR-day. On each OR-day (j, h), the OR
overtime is limited to o;,. There is a set K of surgeons (k = 1...|K|) and, on each day h

and each scenario ¢, each surgeon k has a maximum available time (a,ih) for performing
elective surgeries. The remaining human and instrumental resources are assumed to be
available whenever needed. Recovery facilities are also assumed to be always available
during the planning horizon. A set | of elective surgeries (i.e. patients) are on the
waiting list (i = 1...]l|). For each surgery i and each scenario {; the surgery duration is
represented by tf . Each surgery i has a surgeon in charge (zj) and must be scheduled

within the time period defined by its release date (rd;) and deadline (d;).
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We present below the stochastic integer programming model to solve the problem under

consideration. Table 5.1 summarizes sets, data and variables used in the decision model.

(P) Minimize z Z z max {(ni - Z tf . Xl-jh> ,Q (Z tf “Xijn — 7}2)} (5.1)

{€Z heH jej i€l i€l

Subject to:
Z Z Xjn<1 (VieD (5.2)
j€J heH
jeJ heH

hsrd;-1

Z Xgn=1 (Vielld; < [H]) (5.3b)
jeJ heH

hSdi
Z £ Xyn <74+ o (W €J,Vh € H,v{ €2) (5.4)
i€l
Z Z tS Xyn < al, (Vk €K,vhe€H, V] €Z) (5.5)
jej i€l

Ti=k
Xin€{01} (VielLVvj€e],YheH) (5.6)

The objective function (5.1) minimizes the total cost of the unexploited OR time and
overtime. Following Fei et al. (2009) we use a cost ratio ¢ between a regular working
hour and overtime to penalize overtime. Constraints (5.2) enforce that each surgery is
scheduled at most once during the planning horizon. Constraints (5.3a) and (5.3b)
define the earliest and the latest date on which a patient has to be scheduled. Constraints
(5.3a) ensure that the patient is scheduled after his/her release date, while constraints
(5.3b) ensure that the surgery of a patient with a deadline within the planning horizon
must take place before his/her deadline. Constraints (5.4) ensure that the total amount of
OR time assigned to surgeons in an OR-day under a scenario is lesser than its total
capacity (i.e. regular plus overtime). Constraints (5.5) ensure that the total amount of
time allocated to a surgeon is lesser than his/her capacity in any day and scenario.

Finally, constraints (5.6) are binary constraints for decision variables.
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5.3 Monte Carlo optimization method

In this section we present a Monte Carlo optimization method to solve the proposed
stochastic advance OR scheduling problem. The Monte Carlo optimization method is
based on the SAA method proposed by Min and Yih (2010) for solving a stochastic OR
scheduling problem. The problem (P) can be approximated by a SAA problem (Py) and
formulated as the following decision model for a sample size N:

(Py) Minimize zy = i %Z Z max [(rf,’l - Z th- Xijh> ,Q (Z tlh Xijn — rf,ﬁ)} (5.7)

n=1 heH jeJ i€l i€l

Subject to:
Z Z Xjn<1 (i€l (5.8)
j€J heH
Z Z Xyn=0 (Viel (5.9.1)
JEJ heH

hsrd;—1
Z Z Xijn =1 (Vi€elld; < |H|) (5.9.2)
JjEJ heH

h=d;
Z e Xy <t +0p (VjELVREHNn=1..N) (5.10)
i€l
ZZtln'Xi,-hSa?h (VkeK,.YvheHn=1..N) (5.11)
jej i€l

Ti=k
Xijn €{0,1} (Vi€ l,Vj€],Vh€H) (5.12)

The procedure of the Monte Carlo optimization method is shown in Figure 5.1. A
number of replications (M) are introduced in the procedure for reducing the effects of
large variances in the calculation of the objective function value (Min and Yih, 2010).
In step 2, the problem Py is heuristically solved using the IGLS method (see Section
5.4) because of the long computation times required by the integer programming for
solving problems of realistic size (see e.g. Lamiri et al., 2009), providing an
approximated objective function value (zy'). In step 3, a Monte Carlo simulation is used

to evaluate the objective function value. A good feasible solution is required to obtain a
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Figure 5.1. Monte Carlo optimization method

good estimated objective function value (z'y7). Even though several procedures to
obtain a feasible solution exist, the solution of the problem Py (i.e. X§') is selected to
evaluate the true value of the objective function of P, following what has been
previously considered in the OR scheduling literature (see e.g. Lamiri et al., 2009) and
because it yields the best results (Min and Yih, 2010). Finally, in the calculation of z' 7,
we only consider samples satisfying the stochastic constraints (i.e. constraints 5.4 and
5.5).
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5.4 Iterative greedy local search method

In this section we propose an IGLS method for solving the problem Py. The method is
composed of two phases: the construction surgical schedule phase and the iterative

greedy local search phase.

The construction surgical schedule phase determines a feasible surgical schedule as

follows:

= Step 1: Waiting list sorting. In this step, a sorted waiting list (WLsot) iS obtained by
sorting the surgeries in the initial waiting list, following the procedure employed in
the constructive heuristics proposed in Chapter 4 (see Section 4.3.1). Regarding
sorting criteria, we consider the same criteria used in Section 4.3.1 (i.e. INC, DEC,
HILL, VALLEY, LOHI, HILO, and RAN), while we only consider the surgery
duration (t) as sorting indicator. As t is a random variable, a sample of the N samples
is randomly selected (nran), considering the corresponding surgery duration values in

the sorting procedure. Note that seven sorted waiting lists are obtained in Step 1.

= Step 2: Surgical schedule construction. In this step, a surgery schedule is obtained by
applying a BP operator to each WL, Obtained in Step 1 taking into account
constraints (5.8)-(5.12). We consider the following BP algorithms presented in
Section 4.3: FF, BF and LF. Due to the nature of the objective function, in this step,
we assume that OR overtime is not allowed, considering only OR regular capacity. In
order to select the suitable OR-day on BP algorithms (i.e. to determine the available
OR time), the values of surgery durations and OR regular capacities considered are
those corresponding to the ng, sample. Note that 21 surgical schedules are
constructed in Step 2. We select the one that yields the best value of the objective
function (5.7).

= Step 3: Iterative improvement. Starting from the best surgical schedule obtained in
Step 2, the solution is improved by applying a swapping method. The method
consists of swapping two surgeries between different OR-days (a pair-wise swap)
and swapping a pair of surgeries scheduled in the same OR-day with another surgery
scheduled in a different OR-day (a triplet-wise swap). Note that swaps between
scheduled and unscheduled surgeries are also considered (i.e. a scheduled surgery is

unscheduled, while an unscheduled surgery is assigned its OR-day). In order to
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evaluate a given swap, the values of the random variables (i.e. surgeries duration, OR
regular capacities and surgeons’ capacities) are those corresponding to the Ngap
sample, and the total capacity of an OR-day is the regular capacity plus the overtime
capacity (note that the overtime is not allowed in Step 2). In each iteration, for each
OR-day, surgeries (pair-wise swap) and pairs of surgeries (triplet-wise swap) are
considered one by one in the swapping method, determining and performing the
swap that yields the largest improvement and satisfies constraints (5.8)-(5.12). The

iterative improvement step finishes when the solution cannot improve any more.

The local search phase determines a new surgical schedule from the surgical schedule

constructed in the previous phase by the following five steps:

= Step 4. Destruction step: randomly remove q surgeries from an incumbent surgical

schedule. This yields a surgical schedule composed of |I| - g surgeries.

= Step 5. Construction step. It reinserts the q surgeries (one by one) in the OR-day that
yields the best value of the objective function, while satisfying constraints (5.8)-
(5.12). After the reinsertion of the q surgeries, Step 3 is applied to the surgical
schedule obtained. Note that a sample of the N samples (n 1an) is randomly selected

for evaluating swaps.

= Step 6. The resulting surgical schedule is considered as the incumbent surgical
schedule if the value of the objective function improves the best value obtained so
far. A simulated annealing-like acceptance criterion with a constant temperature is
implemented to avoid the stagnation in the search procedure. The constant
temperature is set such that moves that deteriorate the solution more than a
percentage € of the maximal deterioration are accepted with a probability smaller
than ¢ (Lamiri et al., 2009).

= Step 7. If the termination criterion is not satisfied, return to Step 4. The termination
criterion of the iterative greedy local search phase is defined as a CPU time limit
depending on the size of the problem (see Section 5.4).
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Combination  |J| B a CV 1 S
1 4 1 15 0.1 81.1 8.1
2 4 1 15 0.5 82.3 8.3
3 4 1 2 0.1 80.7 10.1
4 4 1 2 0.5 81.2 11.1
5 4 125 15 0.1 101 8
6 4 125 15 0.5 102.8 7.9
7 4 125 2 0.1 1008 10.7
8 4 125 2 0.5 105.7 11
9 8 1 15 0.1 161 15.7

10 8 1 15 0.5 163.2 15.3
11 8 1 2 0.1 161.1 20.3
12 8 1 2 0.5 162 20.7
13 8 125 15 0.1 200.4 15.8
14 8 125 15 0.5 204.9 155
15 8 125 2 0.1 2019 20.8
16 8 125 2 05 2074 21.2

Table 5.2. Size of problems considered in the proposed testbed

5.5 Analysis of deterministic solutions

In this section we present the results of the integer programming approach, the IGLS
method and the existing heuristics for solving the advance OR scheduling problem in a
deterministic way. In order to conduct the fairest computational experience, we carry
out an experimental calibration of the parameters of the IGLS method. We have
generated a 160-instance calibration testbed using the procedure described in Chapter 3.
We have considered 16 different combinations of |J|, £, « and CV (see Table 5.2) and,
for each combination, we have generated 10 instances. Table 5.2 details the average size
of the problem for each combination. The values of |H|, », and a are 5, 120 and 480
respectively (see Section 3.5). Finally, mds is drawn from a uniform distribution [3, 5].
In order to select the best algorithm, we consider the following response variables:

(1) feasibility of the solution,

(2) Relative Deviation Index (RDI), according to the expression RDI = (Heug,; —
Best,,;)/(Worstg, — Bestg,;) Where Bestsy, and Worsts, are the best and the
worst solutions obtained among all the methods and Heus, is the solution obtained

by a given algorithm configuration, and
(3) CPU time (in seconds) required for solving a given instance.

In the construction surgical schedule phase, the sorting criterion (Sc) and the BP

algorithm have been calibrated. The results show that the 21 surgical schedules obtained
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in the construction surgical schedule phase are feasible. Regarding the objective
function value, the results show that INC is the worst sorting criterion, while there are
no statistically significant differences among the remaining sorting criteria. Note that
DEC provides better results than the other sorting criteria. Finally, there are statistically
significant differences between LF and the remaining BP algorithms at a 95%
confidence interval, where LF obtains the best average objective function value.
Regarding CPU time, there are no statistically significant differences for the parameters
at a 95% confidence interval. In the iterative greedy local search phase, the number of
extracted surgeries (q), the percentage of the maximal deterioration (6) and the
probability of accepting a solution which deteriorates a solution (¢) have been
calibrated. The IGLS method has been tested with the following levels: q is set to 3, 5
and 7; 0 is set to 10% and 20%, and ¢ is set to 1%, 5%, and 10%. According to RDI
values, the best setting is q = 3, 8 = 10% and ¢ = 10%.

Regarding the existing heuristics for solving the problem under consideration, Fei et al.
(2009, 2010) propose a column-generation-based heuristic (CGBH) procedure. Liu et al.
(2011) propose a heuristic based on the dynamic programming idea (in the following
dynamic programming heuristic, DPH), where the objective is to partition the set of
surgeries to be performed into subsets, and then assign an OR-day to each subset in
order to optimize the objective function. In the computational experiments carried out
by Liu et al. (2011), DPH outperforms CGBH for large size instances (120 and 160
surgeries on the waiting list) with respect to the feasibility of the surgical schedule and
to CPU time requirements. Therefore, DPH can be considered the best-so-far heuristic
method for the problem. In order to make a fair comparison regarding CPU time, we
code the DPH algorithm.

The analysis of the effectiveness of the integer programming approach, the DPH
method and the IGLS method is carried out using the testbed provided by Liu et al.
(2011) and the 160-instances testbed. The experiments have been executed on a PC with
2.40 GHz Intel Core i5-450 processor and 4 GBytes of RAM memory. The integer
programming decision model is solved using the commercial software Gurobi version
5.6. The computation time limit is fixed to |I| - |J| - |[H| - # seconds for the integer
programming model and the IGLS method. # is a time factor, which is set to 0.003125,
0.00625, 0.0125 and 0.025.
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Figure 5.2. Feasibility, optimality and RDI results for methods using the testbed based on the

literature
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Figure 5.2 shows the results using the testbed generated in this chapter. Note that, for
this testbed, RDI is calculated replacing Best,, by BeStpoung, Which is the best bound
provided by the solver Gurobi. Regarding feasibility, it should be pointed out that the
high percentage of unfeasible solutions (33%) obtained by DPH algorithm is due to the
non fulfilment of deadline constraints. The procedure used to sort the waiting list (see
the waiting list sorting step) guarantees a feasible solution on every instance solved by
the IGLS method. Furthermore, the high percentage of optimal solutions (52%)
obtained by the IGLS method should be noted. It finds an optimal solution whenever the
factor g is set to 125% (i.e. 50% of the instances). Regarding RDI, the results show that
the IGLS method is statistically the best algorithm at a 95% confidence interval. The
time factor does not affect the performance of the IGLS method, being 0.03 the average
RDI value after an average CPU time limit of 20 seconds (y = 0.003125). The DPH
algorithm yields a RDI value of 0.52 after an average CPU time of 38 seconds. Note
that the DPH algorithm is a constructive heuristic and, therefore, no stopping criterion
has to be considered. The results show that there are no statistically significant
differences between the DPH algorithm and the integer programming method with # =

0.00625 (40 seconds on average) and # = 0.0125 (80 seconds on average).

Figure 5.3 shows the results using the testbed proposed by Liu et al. (2011). Note that
the IGLS method is only analyzed considering the lowest time factor (» = 0.003125),
and time factors are not taken into account for the integer programming method since
optimal solutions are found in less CPU time. We observe that the DPH algorithm
increases the percentage of feasible solutions obtained from 77% to 90%, and we
observe a significant increase of the optimal solutions obtained by the methods
(especially the DPH method). In contrast with the performance in the testbed proposed
in the paper, the algorithms obtain similar RDI average values in the testbed proposed
by Liu et al. (2011) especially for 40, 80 and 120 surgeries. This fact, together with the
high unexploited OR time obtained (the mean objective function values are 2854.7,
1982.8 and 1150.50 for 40, 80, and 120 respectively), suggests that instances involve
excessive resources (OR time) relative to the total surgery time in the waiting list and

explains the significant increase of the proportion the optimal solutions.

In view of the results, we conclude that the IGLS method is the best method for solving
the deterministic version of the advance OR scheduling problem, yielding a high

percentage of optimal solutions for realistic size instances.
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5.6 Analysis of stochastic solutions

A computational experiment is presented to evaluate the performance of the Monte
Carlo optimization method for solving the proposed stochastic advance OR scheduling
problem. The Monte Carlo optimization method is used with a number of replications
(M) equals to 20. The values of the number of samples (N) for solving the SAA problem
(Pn) are 1, 5, 10, 20, 30, 40, 50, 100, 200, and 300. Finally, we consider 50,000 samples
(V) in the Monte Carlo simulation as in Min and Yih (2010). In this section, we have
only considered the factors which statistically influence on the deterministic version of
the problem, i.e. |J| and B, considering the resulting 4 different combinations (see Table
5.2). Without loss of generality, factors o and CV are set to 1.5 and 0.1 respectively,
since these levels resulting in more difficult problems in terms of RDI. The computation
time limit is fixed to 0.0003125 - N - || - |J] - |H| seconds for the IGLS method.

Regarding surgery durations, we assume that tf follows a 2-parameter log-normal
distribution. The expected duration is set to the deterministic surgery duration for
surgery i (t;), while the standard deviation is calculated as CV*t;. CV’ is randomly and
uniformly drawn from the set {0.1, 0.2, 0.3}. Regarding emergency arrivals, the

following statistical distributions are used to generate the total OR time of an OR-day
required for emergency demands (ej{h): an exponential distribution (Lamiri et al., 2009;

Lamiri, Xie, Dolgui et al., 2008; Lamiri, Xie and Zhang, 2008), a log-normal
distribution (Lamiri et al., 2007), a normal distribution (Lamiri et al., 2009), and an
uniform distribution (Min and Yih, 2010). According to Lamiri et al. (2009), we assume
an expected emergency capacity of 72 minutes and a coefficient of variation 0.5.
Finally, the surgeon capacity uncertainty due to emergency arrivals has not been
previously addressed in the literature. In this paper, we propose the following procedure
to generate the regular capacity of a surgeon considering emergency demands: In the
first step, for each day, the total OR time for emergency surgeries is determined. In the
second step, for each day, surgeons are randomly sorted (in order to randomize the
allocation of emergency surgeries to surgeons) and, one by one, the regular capacity
(i.e. 8 hours) is reduced by a 0%, 25% (2 hours) or 50% (4 hours) with an equal
probability of 1/3. The procedure stops when the total reduced time is equal to the total

OR time for emergency surgeries determined in the first step.
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For each N sample size and each statistical distribution considered to generate
emergency demands, the mean approximated objective function value (z}/), the mean
estimated objective function value (z’%,), the optimality index value, and the mean
proportion of feasible simulations are shown in Figure 5.4. Note that only feasible
simulations are considered for determining z'ys . The results highlight that,
independently of the statistical distribution considered to generate emergency demands,
the objective function value obtained by the IGLS method converges to the optimal
value of the problem and presents a high robustness in terms of the proportion of
feasible simulations when the number N of samples increases (see red and orange
curves in Figure 5.4). Depending on the statistical distribution considered to generate
emergency demands, an optimality index value of around 1% is obtained with sample
size 40 (exponential) and 100 (log-normal, normal, and uniform). However, the number
N of samples must be greater than the above sizes for yielding a reasonable proportion
of feasible simulations (e.g. more than 85% of simulations are feasible with N = 200 for
any statistical distribution). As shown in the blue curve of Figure 5.4, a high robustness
of the solution implies an important increase of the total cost of the unexploited OR
time and overtime. Without loss of generality, we present the conclusions obtained for
the exponential distribution since similar performances are observed for the statistical

distributions.

To increase the percentage of feasible simulations obtained from 37.1% (N = 40) to
88.3% (N = 200), an increase of 95% of the objective function value is observed (from
2,186 to 4,263). In order to clarify the increase of the total cost of the unexploited OR
time and overtime, nine performance indicators values are detailed in Table 5.3. First,
the mean values of the number of scheduled surgeries, the total OR undertime, and the
total OR overtime are calculated considering only feasible simulations. Second, in order
to analyze the unfeasibility of simulations, Table 5.3 also shows the mean values of the
number of cancelled surgeries, the mean OR time exceed (over the OR overtime
allowed) and the surgeon overtime. The increase of 95% is because of both important
increases of the mean OR undertime per OR-day (from 114.9 to 222.0 minutes) and the
number of under-utilized OR-days (from 15.02 to 18.61 OR-days), as consequence of
the decrease of the mean number of scheduled surgeries (from 58.7 to 34.7 surgeries)
due to the high uncertainty considered (by increasing N) in emergency demands and

surgeons’ capacity for performing emergency surgeries.
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Feasible simulations

Unfeasible simulations

N :f)nISIa;:?olr?\s Schedgled Unex. quertime Overex. O\{ertime Cancel_led g(\éeeret(;me g\l;ergt?(r)r?e
surgeries OR-days (min/OR-day) OR-days (min/OR-day) surgeries (min.) (min.)
1 06 72.30 9.99 81.34 9.93 67.99 8.34 39.76 324.49
5 42 70.84 10.90 70.32 9.01 66.93 6.78 28.91 176.60
10 101 68.47 11.72 78.72 8.19 67.41 5.42 26.06 117.49
20 203 64.86 13.44 86.31 6.49 66.03 4.85 20.64 74.48
30 307 61.10 14.46 102.79 5.47 66.27 4.41 18.84 50.22
40 371 58.65 15.02 114.88 4.92 66.31 3.90 18.04 42.43
50 432 56.30 15.94 120.99 4.01 64.60 3.74 14.19 39.45
100 66.2 46.30 17.42 169.34 2.54 63.62 2.87 11.95 30.44
200 883 34.65 18.61 221.96 1.37 61.59 2.22 13.43 23.85
300 94.6 27.63 19.04 256.14 0.95 59.42 1.94 18.57 21.41

Table 5.3. Mean values for problem |J| = 4 and g = 1.25 considering the exponential distribution to

generate emergency demands

However, the latter decrease supposes that the proportion of feasible simulations
increases by reducing the surgeon overtime (from 42.43 to 23.85 minutes) and the OR
time exceed (from 18.04 to 13.43 minutes). Note that the latter values imply a reduction
of the number of cancelled surgeries (from 3.90 to 2.22 cancelled surgeries). In view of
the results, the setting of the number of samples will depend on a tradeoff between costs

and robustness.

Finally, Table 5.4 shows the 95.0 confidence intervals of z) for each statistical
distribution and each N sample size. The results highlight that the IGLS method is
robust for solving the problem Py, since reasonable confidence intervals of zY are
obtained considering M = 20 (number of replications in the Monte Carlo optimization
method). Given that the low error margins obtained for solving the problem Py (8.93%
for the exponential distribution and N = 300 in the worst case), the CPU time (see Table

5.4) required for solving the problem can be reduced by decreasing the value of M.

5.7 Conclusions

In this chapter, we have addressed a stochastic advance OR scheduling problem under
the open scheduling strategy, taking into account resources availability (OR and
surgeons) and time period constraints (release and deadlines) in order to minimize the

unexploited OR time and overtime costs. A stochastic decision model is proposed for
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N Statistical Distribution CPU Time
Exponential Log-normal Normal Uniform (sec./replication)

1 (0.94, 5.81) (0.5,3.8) (-0.3,17) (0.1,1.7) 0.64

5 (1218.4,1336.4)  (1028.2,1044.1) (961.1,1134.5)  (985.0, 1058.3) 3.22

10  (1575.8,17085) (1225.6,1256.8) (1183.6,1310.5) (12252, 1282.5) 6.44

20  (1714.7,1822.6)  (1389.9, 1444.4) (1357.4,1491.0) (1359.2, 1473.1) 12.88

30  (1883.1,2152.8)  (1512.0,1538.4) (1462.2,1610.0) (1455.9, 1531.6) 19.31

40  (2073.4,22982)  (1583.0,1592.7) (1476.0,1690.0) (1520.0, 1648.9) 25.75
50  (2179.4,24130) (1674.3,1766.5) (1640.9,1813.8) (1688.5, 1817.0) 32.19
100 (3026.0,3329.8)  (2306.1, 2474.0)  (2306.3,2520.5)  (2315.4, 2459.3) 64.38
200 (3929.5,4595.6)  (3263.7,3440.6) (3266.6,3391.3) (3310.5, 3424.5) 128.75
300 (4533.9,5423.4) (3763.7,3829.0) (3735.8,3882.9) (3703.9, 3870.5) 193.13

Table 5.4. 95.0% Confidence intervals of z}f and CPU time values

solving the problem, taking into account the uncertainty in the surgery duration, in the
total emergency surgery time in the planning horizon and in the surgeons’ regular
capacity. A Monte Carlo optimization method, based on the SAA method proposed by
Min and Yih (2010), is proposed for solving the problem. The method combines an
iterative local search method and Monte Carlo simulation. The performance of the
iterative local search method is analyzed against a column-generation-based heuristic
procedure proposed by Fei et al. (2009) and a heuristic based on the dynamic
programming idea proposed by Liu et al. (2011) for solving the deterministic version of
the problem. These methods constitute the up-to-now state of the art heuristics for the
(deterministic) problem. The analysis is carried out using the testbed proposed by Liu et
al. (2011) and a testbed generated based on the literature. The results show that the
iterative local search method is the best method for solving the deterministic version of
the advance OR scheduling problem, yielding a high percentage of optimal solutions for
realistic size instances. We also carry out a computational experiment to evaluate the
performance of the Monte Carlo optimization method for solving the proposed
stochastic advance OR scheduling problem. The results highlight that, regardless the
statistical distribution employed to generate the arrivals of emergency surgeries, the
objective function value obtained by the IGLS converges to the optimal value of the
problem and presents a high robustness in terms of the proportion of feasible

simulations when the number of samples increases.
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Chapter 6

The Integrated Operating Room Planning and
Scheduling Problem

6.1 Introduction

As described in Chapter 2, the offline operational level is traditionally solved into two
steps (the OR planning and scheduling problems), intending to reduce the complexity of
the integrated problem. In Chapters 4 and 5, we have addressed the OR planning
problem considering deterministic and stochastic surgery durations, emergency arrivals
and resources capacity. However, due to the high interdependence among these
problems, an integrated approach would improve the quality of the surgery schedule.
Therefore, in this chapter, we address the integrated OR planning and scheduling

problem.

There is evidence in the literature that most surgeries in hospitals are performed by a
team composed of two surgeons, and that their experience largely influences the surgery
duration. However, to the best our knowledge, only one contribution has addressed the
OR planning and scheduling problem with surgical teams, but in such case surgery
durations did not depend on the experience of surgeons. In this chapter we address an
integrated OR planning and scheduling problem with surgical teams composed by one
or two surgeons where surgery durations depend on their experience and skills (Section
6.2). We propose an ILP model to optimally solve this problem (Section 6.3). Given the
high computation requirements of our ILP model, Section 6.4 proposes an iterative
constructive method. The computational experience presented in Section 6.5 shows that
the proposed algorithm is able to find feasible solution for all problems requiring shorter
CPU time and average relative percentage deviation than the ILP model. In addition, the
robustness of the so-obtained surgical schedules is analyzed using simulation. Finally,

conclusions and further research are presented in Section 6.6.
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6.2 Problem formulation

In the integrated OR planning and scheduling problem we consider a set H of planning
days (h = 1,...,|H|) where there is a set J of parallel ORs (j = 1,...,|J|) available on each
day h in the planning horizon. The regular capacity of the j-th OR during day h is
denoted by rj. In the following, a pair (j, h) is denoted as OR-day. Recovery facilities
are also assumed to be always available during the planning horizon. There is a set K of
surgeons (k = 1,...,|JK|) and, on each day h, each surgeon k has a maximum available
time (Sx,) to perform surgeries without limits in the number of surgeries performed and
in the number of different ORs that he/she may visit in an OR-day. Additionally, we
consider a set L of levels of experience of the assistant surgeons (I = 1,...,/L[). We
denote the set of surgeons belonging to level | as K, (k" = 1,...,|K|), and };|K;| = |K].
Note that each surgeon may belong only to one level of experience. The remaining
human and material resources are assumed to be available whenever needed. In this
setting, a set | of elective surgeries (i.e. patients) are in the waiting list (i = 1,...,|l|).
Each surgery i should be performed before a given deadline (d;) according to the
disease’s characteristics and the waiting time in the waiting list. The binary parameter
oij yields 1 if surgery i can be performed in OR j, O otherwise. Many realistic situations
can be modeled with this parameter such as, for example, to book OR-days in order to
plan a certain type of surgery or to forbid the assignment of a surgery to an OR that
does not have the equipment required to perform this specific surgery. Finally, the

following additional assumptions will help in formulating the problem.
= Surgical team composition.

In this chapter, we consider that a surgery can be performed by a surgical team
composed by either one surgeon (the most extended assumption in the literature), or two
surgeons (a realistic setting in many cases, see the previous section). In the first case,
the surgery is performed only by the responsible surgeon (z;), which is assigned to each
surgery in the waiting list before solving the integrated OR planning and scheduling
problem. Such decision is usually made by the head of the surgical specialty according
to surgeon’s specialty, availability, workload, etc. In the second case, the responsible
surgeon is accompanied by an assistant surgeon, due to the complexity of a surgery, the
need of training residents, etc. As a surgical specialty is usually composed by faculty

and resident surgeons, we assume that any of them can perform a surgery as assistant
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surgeon. In order to simplify the exposition of the ILP model, a dummy assistant
surgeon (k = 0) is introduced for considering a surgical team of two surgeons when a

surgery is carried out only by the responsible surgeon.
" Assistant surgeon’s level of experience.

Due to the medical characteristics of each surgery, only assistant surgeons with the
required level of experience are able to perform the surgery. We define parameter y; to
indicate whether surgery i can be performed by an assistant surgeon with a level of
experience | (yi = 1), or not (yii = 0). In this chapter, the following levels of experience
have been considered: 0 (for the dummy surgeon), 1 (for junior residents), 2 (for senior
residents), and 3 (for faculty surgeons).

= Impact of the level of experience on the surgery duration.

Depending on the experience of the responsible surgeon assigned to a surgery, the
surgery duration (the duration required by one surgeon surgical team) is established by
the head of the surgical specialty. As discussed in Chapter 2, the assistant surgeon’s
experience also influences on this duration. The effect might be positive (reducing the
duration, see e.g. Ludwig et al., 2005) or negative (increasing the duration, see e.g.
Bridges and Diamond, 1999). In our notation, the parameter t; represents the expected
duration (in minutes) of surgery i when it is performed with an assistant surgeon with a
level of experience I. For surgery i, the value t; (1 = 1, 2, 3) is assumed to be related to tj
(i.e. the length of the surgery when performed only by the responsible surgeon).
Therefore, for each value of |, a variation interval affecting ti is defined as follows: (1)
junior residents’ surgeries are commonly trained surgeries, whereby the involvement of
them always causes an increase of the surgery duration; (2) however, for senior
residents, there are situations in which the resident has a similar level of experience that
the faculty surgeon, causing a decrease of the surgery duration; (3) finally, the
involvement of a faculty surgeon as assistant surgeon always produces a decrease of the

surgery duration.

Hence, the problem can be considered as an integrated OR planning and scheduling
problem under an open scheduling strategy where the assistant surgeons may influence
surgery’s duration (see Section 2.4). Additionally, the interventions may require a

certain level of experience of the assigned assistant surgeon.
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Indices and Sets

iel Index of surgery in the waiting list

jeJ Index of OR

keK Index of surgeon

leL Index of level experience

k’ €K, Index of surgeon in level of experience |

heH Index of day within the planning horizon

Parameters

ti Expected time of surgery i performed by an assistant surgeon belonging to level of experience |
d; Latest day to perform surgery i

Ti Responsible surgeon of surgery i

Jij 1 if surgery i can be performed in OR j; 0 otherwise

Pil 1 if surgery i can be performed by an assistant surgeon belonging to surgeon type I; 0 otherwise
Skh Maximum available time for surgeon k to conduct surgeries in day h

Fin Regular capacity of OR jinday h

B Maximum value of OR regular capacity (max;e; nen jn)

A Total surgeon availability, Yiex Ynen Sk

Wp Weighted factor for the maximization of surgeries scheduled

Wr Weighted factor for the minimization of tardiness

Ws Weighted factor for the minimization of surgeons’ idle time

Variables

Xikjn 1 if surgery i is performed by assistant surgeon k in OR-day (j,h); 0 otherwise
Yirr 1 if surgery i precedes surgery i’ on a shared resource; 0 otherwise, i <i’

Cin Completion time of surgery i in day h

C™%  Maximum surgery completion time of surgeon k in day h

1™ Minimum surgery starting time of surgeon k in day h

Zn Idle time between surgeries of surgeon k in day h

Table 6.1. Sets, data and variables used in the ILP decision model

The objective of the problem is to maximize a weighted objective function which
includes the number of surgeries scheduled, the tardiness of each surgery, and the idle

time of each surgeon between consecutive surgeries.

6.3 ILP model formulation

In this section, we present an ILP model to solve the integrated OR planning and
scheduling problem. Table 6.1 summarizes sets, data and variables used in the decision
model.

The objective function is:
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keK jeJ
ZZZ z til’Xik’jh+ZZtilXikjhSskh' VlEL,VkEKl,VhEH|k¢O (611)
i€l jeJ U'eLk'eKy i€l jeJ
n= k'#k
Xl-kthO, VLEI,VkEK,V]E],VhEHH’l:k (612)
Xikjn € {0,1}, Viel,vkeK,Vje],VhEeH (6.14)
Y;ir €{0,1}, vielLvi'el|i'>i (6.15)
Cn=0  VielVheH (6.16)
Chax [min >0,  vkeK,VYheH (6.17)
Zeyw =0, VkeKVheH (6.18)

Equation (6.1) represents the objective function. As describe above, the first term is

related to the maximization of the number of patients scheduled. The second term

considers the minimization of the tardiness (i.e. the difference between the scheduled

date and the deadline when the scheduled date is higher than the deadline). Surgeries

which are scheduled after their deadlines as well as non-scheduled surgeries with

deadline within the planning horizon are considered. Finally, the third term is related to

the minimization of surgeons’ waiting time between their surgeries. Note that each

objective is normalized since these are measured in different units.
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Constraints (6.2) enforce that each surgery is performed by only one assistant surgeon
in only one suitable OR-day at most once. The set of constraints (6.3) ensures that a
surgery is performed by an assistant surgeon with the level of experience required.
Constraints (6.4) define the precedence relationship in each OR-day avoiding the
overlap of surgeries. For each pair of surgeries (i, i), the constraints do not apply if any
of these surgeries are not scheduled in the same OR-day (j, h). Therefore, B is defined
as the maximum value of OR regular capacity available in the planning horizon, being
the completion times of these surgeries non positive numbers. The variable Y;; is
introduced to consider whether surgery i is finished before surgery i’ (6.4a) or vice
versa (6.4b) when both surgeries are scheduled in the same OR-day (j, h). The set of
constraints (6.5) defines the precedence relationship for each surgeon k avoiding the
overlap of surgeries (i, i’) in the same day. As in constraints (6.4), B makes redundant
the constraint if surgeries are not performed in the same day and Y;; is introduced to
obtain the precedence between surgeries if both are scheduled in the same day. In this
manner, the following situations can be considered for two consecutive surgeries (i, i’)
in day h: ni = n;» assumes that a given surgeon is the responsible surgeon in both
surgeries; k = k> supposes that a given surgeon is the assistant surgeon in both surgeries
; 77i = K* assumes that surgeon k£’ operates surgeries i and i’ as responsible and assistant
surgeon, respectively; and finally, ;- = k assumes that surgeon k operates surgeries i’
and i as responsible and assistant surgeon respectively. Constraints (6.6a)-(6.6b)-(6.7a)-
(6.7b) define the earliest starting time (I™",) and the latest completion time (C™,) for
each surgeon during a day respectively, working as a responsible surgeon (6.6a)-(6.7a)
or assistant surgeon (6.6b)-(6.7b). The waiting time of a surgeon during a day (Z) is
determined by constraints (6.8). Constraints (6.9) and (6.10) ensure that the completion
time of a surgery in an OR-day must be higher or equal than the surgery duration -- set
(6.9)--, and lesser or equal than OR-day regular capacity --set (6.10)--, respectively.
Constraints (6.11) prohibit that the total surgery time allocated to a surgeon during a day
is higher than his/her availability in this day. Note that the first and the second term take
into account surgeries performed by the responsible surgeons and assistant surgeons,
respectively. Constraints (6.12) prohibit that a surgeon perform a surgery as responsible
and assistant, while constraints (6.13) ensure that each surgery is performed in a suitable
OR. Finally, constraints (6.14)-(6.15) and constraints (6.16)-(6.17)-(6.18) are binary and

non-negative continuous constraints for decision variables, respectively.
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Procedure approximate algorithm
WL := waiting list including patients data; % surgery durations, due date...
SL := surgeon list including surgeons characteristics; % availability, level of experience. .
ORL = OR list including regular capacity;
AS = 0; % assistant surgeon assigned to each surgery (initially zero)
WLg = 0: % sorted waiting list employved to build the surgery schedule (initially zero)
V :=0; % the value of the objective function

% Phase I
(V, AS,WLs) = Phase I (WL, SL, ORL);

%o Phase IT
(V. AS,WLs) = Phase II (WL, SL. ORL, ¥, AS, WLs);

Figure 6.1. Iterated Constructive algorithm

6.4 lterated constructive method

In this section we propose an lterated Constructive (IC) method for the problem. The
algorithm is composed of two phases (see Figure 6.1): Phase | and Phase Il. Phase 1 is
aimed to obtain a fast feasible surgery schedule for a given problem. Then, the surgery
schedule is improved using Phase 1l by changing the assistant surgeons and the order in

the sequence of several surgeries.
The pseudocode of Phase | is shown in Figure 6.2, and consists of three steps:

= Step 1: Surgeon Assignment. In this step, an assistant surgeon is assigned to each
surgery in the waiting list according to the following procedure: If possible (yio = 1),
the dummy surgeon is assigned to the surgery (i.e. the surgery is only performed by
the responsible surgeon). If not, a suitable assistant surgeon is randomly selected
from the surgeon list. The result of this step is a vector (AS) containing the assistant

surgeon for each surgery.

= Step 2: Waiting list sorting. In this step, surgeries in the waiting list are grouped into
two lists: surgeries whose deadline falls within the planning period (WL,), and the
rest of patients (WLg). A sorted waiting list (WLs) is obtained by sorting the surgeries
in WL, in ascending order of deadline (ties are broken by selecting the surgery with
the lowest surgery duration), and then adding at the end the remaining surgeries (i.e.

surgeries in WLg) sorted in ascending order of surgery duration (note that surgery
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Procedure Phase I (WL, SL, ORL)
Y% Step 1. Surgeon Assignment
AS = 0; % assistant surgeon assigned to each surgery (initially zero)
fori:=1+to|I] do
if the dummy surgeon is available for surgery i then
AS[i] := the dummy surgeon assigned to surgery i as assistant surgeon
else
AS[i] := a random suitable assistant surgeon is selected from SL;
end if
end for
% Step 2: Waiting list sorting
WL, = waiting list obtained by sorting surgeries with due date within the planning horizon in
ascending order of due date (ties are broken with surgery duration);
WL g :== waiting list obtained by sorting sugeries with due date out of the planning horizon in ascending
order of surgery duration;
WLg == WL, UWLg;
% Step 3: Surgery schedule construction
V := construction_surgery_schedule (AS, WLs); % the objective function value
return V, AS, Wls;
end

Figure 6.2. Phase | procedure

durations are already set as the assistant surgeons have been assigned to each surgery

in the previous step).

= Step 3: Surgery schedule construction. A surgery schedule (date, OR and time
indication for each surgery scheduled) is obtained here once AS and WLs have been
determined in the previous steps. Then, ORs in day h are ordered in descending order
of the amount of time that has been previously assigned to the responsible or
assistant surgeon of the surgery. This order is denoted by RO. Each surgery is
assigned to the earliest feasible day according to the order RO of ORs. Using this
procedure, the completion times of the surgeries are determined, as well as their OR
and day where they take place. When trying to assign surgery i to OR RO[j] in day h,
it is tried to be placed as soon as possible i.e. with a completion time equal to its
surgery duration. Then, the feasibility with the rest of surgeries in the waiting list is
checked. Note that infeasibilities due to other surgeries or due to the surgeons may
appear. In case of infeasibility with surgery j’, the completion time of surgery j is
replaced by the completion time of ;’ plus the surgery duration of j and again, this
completion time is checked against each other surgery. If it is not possible to further
assign the surgery in RO[j], RO[j+1] is tried.
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Procedure construction_surgery_schedule (45, WLg)
fori:=1to |I| do
forh:=1 to |H| do
26 Determine the maximum OR time for each OR-day
MOT = 0; % maximum OR time assigned to the responsible and/or the assistant surgeon in each OR-day (initially zera)
for j:=1to|/| do
if the responsible surgeon and/or the assistant surgeon have been previously allocated to OR-day (j.#) then
MOTTj, h] == maximum OR time assigned to one of them;
end if
end for
% Sort OR-days
RO = list obtained by sorting MOT in descending order for day h; % Ties are broken by selecting the next OR-day to
the OR-day where the last surgery was allocated
% Schedule surgery [
forj:=1to |/| do
if surgery WLg[i] can be scheduled in RO[}] satisfying all constraints then
Surgery WLg[i] is scheduled in RO[j]:
=1+ 1; %exit the loop
end if
end for
end for
end for
Determine the objective function value (¥);
return ¥
end

Figure 6.3. Construction surgery schedule procedure

After assigning the surgeries, the new weighted objective function is calculated. The

detailed procedure employed for obtaining such schedule is shown in Figure 6.3.

In order to improve the solution obtained in Phase I, successive calls of the construction
surgery schedule step are made in Phase Il. First, N surgeries are randomly selected
from WLs. Then, new assistant surgeons (ASpew) and new positions in the waiting list
(WLsnew) are randomly chosen for the N surgeries and the constructive surgery schedule
is invoked. Then, the new weighted objective function is calculated. The procedure is
iteratively called while the stopping criterion is not reached. The stopping criterion is
defined as a CPU time limit depending on the size of the problem (see section 6.5.2).

The pseudo-code of Phase Il is shown in Figure 6.4.

6.5 Computational evaluation

In this section, we formulate the integrated OR planning and scheduling problem by
slightly modifying the multi-mode blocking job shop model proposed by Pham and
Klinkert (2008). Then, we compare the performance of the proposed model with that of
the model proposed by Pham and Klinkert (2008). Finally, we carry out an extensive
computational analysis to compare the quality of the solution obtained by solving the

proposed model in an exact way and by using the proposed approximate method.
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Procedure Phase II (WL, SL, ORL, ¥V, AS, WLs)

Vbest = V;

ASpese = AS;

WLspes = Wl

while the stopping criterion is not reached do
N surgeries are randomly selected (RL);
"qsnew = "qsbest;
WLgpe, = waiting list obtained from WLg,.; by excluding the N selected surgeries ;
for i == 1to N do

AS, o [RL[{]] = assign a new random assistant surgeon whose level of experience can operate surgery RL[i];
Introduce surgery RL[i] in a random position in WLg,,...
end for

V.o = construction surgery schedule (ASnew, WLsnew);
if V. = V.o and the new solution is feasible then
Voest ™= View:
ASbest = AS‘J’IBW;
WLgpest = Wlsnows:
end if
end while
return Fiess, ASbess, Wihiess;
end

Figure 6.4. Phase Il procedure

We generate a testbed according to the procedure described in Chapter 3, considering
the 54 different combinations of [H|, |J|, # and « shown in shown in Table 6.2.
Additionally, four different scenarios were defined by means of the following values of

the objective weights:

Scenario |I: wp = 0.33, wr = 0.33 and wg = 0.33.

Scenario Il; wp = 0.6, wr = 0.2 and ws = 0.2.

Scenario Il: wp = 0.2, wr = 0.6 and ws = 0.2.

Scenario IV: wp = 0.2, wr = 0.2 and wg = 0.6.

The different scenarios have been chosen in order to determine the influence of each
objective. Thereby, in Scenario I, all objectives are equally weighted, while in scenarios
I1, 11l and 1V, an objective (the number of surgeries scheduled, the tardiness for each
surgery scheduled and the total idle time of each surgeon during a day) is prioritized
above the others. For each combination of the parameters and scenarios, 10 instances
are generated, resulting in a total of 1,080 instances. The experiments were carried out
on a PC with 2.80 GHz Intel Core i7-930 processor and 16 GBytes of RAM memory.
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Factor Level

[H| 1,25

N 3,6,9

p 0.75,1.00,1.25

a 15,20

cv Ran [0.1...0.5]

Y7l Ran [60,120,180,240]
mds Ran [3...5]

a Ran [240, 360, 480]

Table 6.2. Factors and levels in the integrated OR planning and scheduling problem

6.5.1 Comparison to the multi-mode blocking job shop model
proposed by Pham and Klinkert (2008)

Pham and Klinkert (2008) propose a multi-mode blocking job shop model to solve the
elective surgical case scheduling problem, considering the makespan minimization
objective (i.e. the maximum completion time). A mode is defined as a set of resources
required to perform a surgery. Preoperative (a nurse), perioperative (a suitable OR, the
responsible surgeon, a nurse and an anesthetist) and postoperative (a post-anesthesia
care unit bed or a recovery bed) resources modes are considered. They assume
constraints related to the availability of the resources as well as OR eligibility
constraints. In order to adapt the multi-mode blocking job shop model proposed by
Pham and Klinkert (2008) to our assumptions, the following modifications are made:

= Preoperative and postoperative stages are not taken into account. Blocking

constraints are not allowed since the postoperative stage is not considered.

= Nurses and anesthetists are excluded from the model. Therefore, each surgical mode

is composed by an OR, a responsible surgeon and an assistant surgeon.

= Since both deadlines constraints and surgeons idle time are not considered in the
multi-mode proposed by Pham and Klinkert (2008), we only consider the
maximization of the number of surgeries scheduled as objective function for the
comparison, i.e. the following objective weights are taken into account: wp =1, wy =

0 and wg = 0.
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Problem Our model Pham and Klinkert model adaptation

[H 9] B [l |K| |Variables Constraints OS FS NS EI;LT(; Variables Constraints OS FS NS z;'erg(;
3 075 10 11 |446 3,253 10 0 O 0 |243 10,337 9 1 0 67

1 6 200 40 42 (11,820 242,466 7 3 0 202 16,731 6,211,743 0 1 9 600
9 150 45 47 |21,339 350,753 6 4 0 367 11,463 16,039,818 0 O 10 600
3 200 40 22 |6,900 257,125 8 2 0 158 (4,139 2977093 0 9 1 600

2 6 150 59 32 |26,077 874,369 0 10 0 600 (14,383 32245172 0 O 10 600
9 0.75 47 25 |22,799 429,593 10 0 O 69 [12,327 26,646,042 0 O 10 600
3 150 74 21 |29,073 2332420 O 100 0 600 (16,211 54,082,673 0 O 10 600

5 6 075 72 21 |51,668 2,295601 O 100 0 600 (26,827 1.55-108 0 O 10 600
9 2.00 294 75 [609,159 57,793,120 0 0 10 600 |323,058 6.33-10° 0 O 10 600

Table 6.3.Comparison of decision models.

The following indicators are considered in the comparison:
= Size of both models (average number of variables and constraints),

= Effectiveness of both models, according to the type of solution found after a given
CPU time limit: Number of optimal solutions (OS), number of feasible (not optimal)
solutions (FS), and number of problems for which no feasible solution is found (NS).

= Average CPU time required for both models.

Regarding the solver employed to analyze both models, Gurobi 5.6 and CPLEX 12.4
were initially tested. The best results were obtained by Gurobi, so it was selected for
solving both models. The results are shown in Table 6.3 (for several sizes of the
testbed). Note that the mean CPU time is obtained by averaging these results only for
optimal and feasible solutions among the 10 instances of each size. It can be seen that
our ILP model is more effective than the adaptation of the multi-mode decision model
due to the much lesser number of constraints. Together with the fact that our ILP model
always find better solutions than the adapted model, the proposed ILP model provides
88.9% feasible solutions (45.5% optimal solutions), while the adaptation of the multi-

mode decision model yields 22.2% feasible solutions (10% optimal solutions).

Despite its efficiency, the proposed ILP model requires very long CPU times to obtain
good feasible solutions (most instances reach the CPU time limit) and it is not able to
obtain feasible solutions for planning horizons employed in practice (most commonly,
the planning horizon length is 5 days). Therefore, in the next section, we evaluate the

performance of the proposed approximate algorithm in terms of the CPU time required
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and the relative percentage deviation of feasible solutions for large planning horizons
such as those appearing in real cases.

6.5.2 Performance of the iterated constructive method

In order to compare the quality of the solution obtained by solving the proposed model
in an exact way or by using the proposed approximate method, we consider the

following response variables:
= CPU time required for solving a given instance, and

» Relative Percentage Deviation (RPD) and Relative Percentage Deviation’ (RPD’),
according to expressions RPD =100-(M, —M_,,)/M, and

RPD’ =100 (M u0a = M1 )/ M pouns» Where Mg is the value of the objective function

obtained by a given method for a given instance, My, is the value of the objective
function corresponding to the best solution found and Mpoung is the upper bound
obtained by solving the instance by means of Gurobi (version 5.6) with a CPU time
limit of 600 seconds. Note that the upper bound is determined by taking the
maximum of the optimal objective values of all of the leaf nodes in the branch-and-

bound procedure used by Gurobi.

In order to determine the best parameter setting for the approximate method, different
values of the parameter N (3, 5, 7, 9) are tested, obtaining N = 5 the best results.

Regarding the CPU time limit, it is calculated as (1|-|3|-|H|/2)-v milliseconds, being v

an integer parameter (25 and 100).

For each level of parameter |H|, the results are classified with respect to |J|, 5 and the
number of each scenario. The average number of patients (]/|) and the average number
of surgeons (|K|) are presented for each set of instances. Regarding the ILP model,
Table 6.4 shows the number of optimal solutions (OS), the number of feasible (non-
optimal) solutions (FS), and the number of instances for which no feasible solution is
found (NS). Note that no statistically significant differences at a 99% confidence
interval between the levels of o were found, setting to 1.5 without loss of generality.
The results highlight the difficulty for the ILP model to find optimal solutions, or even

feasible solutions as the problem size increases. Thereby, 178, 41 and 0 optimal
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solutions are found for 1, 2 and 5 days respectively. Regarding feasible (non-optimal)
solutions, the ILP model is able to find solutions in 182, 282 and 167 instances for 1, 2
and 5 days respectively. No solution has been found for the 230 remaining instances. To
sum up, the ILP model is able to obtain 219 optimal solutions and 631 feasible (non-
optimal) solutions while there are 230 unsolved instances. The CPU time (seconds)
values for the ILP model and the IC (with v = 25 and v = 100) are also detailed in Table
6.4. The CPU time required by the ILP model increases with the problem size. The time
limit of 600 seconds is reached in 861 times by the ILP model with an average runtime
of 488.6 seconds for the total testbed. This represents a huge amount of time as
compared to the average CPU time required by the IC with v = 25 and v = 100 for the
total testbed (24.5 and 98.1 seconds respectively). The Average RPD (ARPD) and the
Average RPD’ (ARPD’) values for the ILP model and the IC (with v = 25 and v = 100)
are detailed in Table 6.5. Note that ARPD and ARPD’ values are obtained by averaging
these results only for optimal and feasible solutions. The approximate methods clearly
outperform the ILP model. Thereby, the global ARPD-ARPD’ values (for the whole
testbed) are 6.90%-8.02%, 0.38%-1.69% and 0.11%-1.41% for the ILP model, the IC
with v = 25 and v = 100 respectively.

For one-day planning horizons, ARPD and ARPD’ values obtained by the ILP model
(0.4%-1.2%) are closer to those obtained by the heuristics. However, these values
significantly increase with the size of the problem, being 9%-10.6% and 12.1%-15.8%
for 2 and 5 days, respectively. This fact, together with the CPU time requirements,
justifies the implementation of approximate methods to find acceptable solutions in

short period of times.
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Problem Type of solutions obtained by MILP CPU time (sec.)

HI=1 H| =2 [HI=5 HI=1 H| =2 H| =5
[J1 B (%) Scenario| = - = - = MILP IC IC MILP IC IC MILP IC IC

1| K| OS FS NS |1 Kl OS FS NS || K| OS FS NS (v=25) (v=100) (v=25) (v=100) (v=25) (v=100)
3 075 100 10810 0 O (163 99 9 1 0 [396 1180 10 O |05 04 15 87.0 12 49 600.0 7.4 297
3 150 162 1848 2 0 [294 1770 10 0 [737 2090 10 0O |1424 06 24 6000 2.2 88 600.0 13.8 55.3
3 2.00 211 2385 5 0 [396 2190 10 0 [977 2710 10 O [3245 0.8 3.2 600.0 3.0 11.9 600.0 183 73.3
6 0.75 156 18510 0 O 311 1791 9 0 [717 2140 10 O |21 12 47 551.1 4.7 187 600.0 26.9 107.6
6 1.50 | [318 3420 10 0 [591 3150 10 0O 1445 3960 0 10 [600.0 24 95 600.0 89 355 600.0 54.2 216.8
6 2.00 403 4170 10 0 [805 4170 10 O [1982 5190 O 10 [6000 3.0 121 |[600.0 12.1 483 600.0 743 297.3
9 0.75 259 26210 0 O [465 2450 10 0 |1072 2990 2 8 [220 29 117 [600.0 105 41.9 600.0 60.3 2412
9 150 450 4730 10 0 [895 4770 10 O [2214 5710 O 10 [600.0 51 203 [600.0 20.1 80.6 600.0 1245 498.2
9 2.00 506 6280 10 O (1178 6190 1 9 (2935 7510 O 10 [600.0 6.7 268 [600.0 265 106.0 |600.0 165.1 660.4
3 075 100 10810 0 O (163 99 9 1 0 (396 1180 10 0O |05 04 15 738 12 49 600.0 7.4 297
3 150 162 1848 2 0 (294 1770 10 0 [737 2090 10 O |[1693 06 24 6000 2.2 88 600.0 13.8 55.3
3 2.00 2121 2387 3 0 [396 2190 10 0 [977 2710 10 O [2398 0.8 3.2 600.0 3.0 119 600.0 183 73.3
6 0.75 156 18510 0 O 311 1790 10 0 (717 2140 10 O |24 12 47 600.0 4.7 187 600.0 26.9 107.6
6 1.50 11 (318 3420 10 0 591 3150 10 O 1445 3960 0 10 [600.0 24 95 600.0 89 355 600.0 54.2 216.8
6 2.00 403 4170 10 0O [805 4170 10 O [1982 5190 0 10 [600.0 3.0 121 [600.0 121 483 600.0 743 2973
9 0.75 259 26210 0 O 465 2450 10 0O |1072 2990 1 9 [278 29 117 [600.0 105 419 600.0 60.3 2412
9 1.50 450 4730 10 0 [895 4770 10 O [2214 5710 O 10 [600.0 51 203 |600.0 20.1 806 600.0 124.6 498.2
9 2.00 506 6280 10 O [1178 6190 1 9 [2935 7510 O 10 [600.0 6.7 268 [600.0 265 106.0 [600.0 1651 660.4
3 075 100 10810 0 O [163 99 8 2 0 [396 1180 10 0O |05 04 15 1445 12 49 600.0 7.4 297
3 150 162 1849 1 0 (294 1770 10 0 (737 2090 10 O |[89.8 06 24 600.0 2.2 88 600.0 13.8 55.3
3 2.00 211 2388 2 0 [396 2190 10 O [977 2710 10 O [1734 08 3.2 600.0 3.0 119 600.0 183 73.3
6 0.75 156 18510 0O 0 311 1792 8 0 (717 2140 10 0 [20 12 47 531.9 4.7 187 600.0 26.9 107.6
6 1.50 I (318 3420 10 0 (591 3150 10 0 [1445 3960 0 10 |[6000 24 95 600.0 89 355 600.0 54.2 216.8
6 2.00 403 4170 10 0O (805 4170 10 O [1982 5190 0 10 [600.0 3.0 121 [600.0 121 483 600.0 743 2973
9 0.75 259 26210 0 O |465 2450 10 0 (1072 2990 3 7 [175 29 117 [600.0 105 41.9 600.0 60.3 2412
9 1.50 450 4730 10 0 [895 4770 10 O [2214 5710 O 10 [600.0 51 203 [600.0 20.1 80.6 600.0 124.6 498.2
9 2.00 596 6280 10 O [1178 6190 1 9 [2935 7510 O 10 [600.0 6.7 268 [600.0 265 106.0 [600.0 165.1 660.4
3 075 100 10810 0 O (163 99 9 1 0 [396 1180 10 O |08 04 15 770 12 49 600.0 7.4  29.7
3 150 162 1847 3 0 [294 1770 10 O 737 2090 10 O [1923 06 24 600.0 2.2 88 600.0 13.8 55.3
3 2.00 211 2386 4 0 [396 2190 10 0 |977 2710 10 O [3103 08 3.2 600.0 3.0 119 600.0 183 73.3
6 0.75 156 18510 O 0 311 1793 7 0 (717 2140 10 0 [50 12 47 5169 4.7 187 600.0 26.9 107.6
6 1.50 IV 318 3420 10 0 [591 3150 10 O [1445 3960 0 10 [600.0 24 95 600.0 89 355 600.0 54.2 216.8
6 2.00 403 4170 10 0 [805 4170 10 O [1982 5190 0 10 [6000 3.0 121 |[600.0 12.1 483 600.0 743 297.3
9 0.75 259 26210 0 O |465 2450 10 0 |1072 2990 1 9 [201 29 117 [600.0 105 41.9 600.0 60.3 2412
9 150 450 4730 10 0 [895 4770 10 O [2214 5710 O 10 [600.0 51 203 [600.0 20.1 80.6 600.0 1245 498.2
9 2.00 596 628 0 10 O [1178 6190 O 10 [2935 7510 O 10 [600.0 6.7 268 [600.0 265 106.0 |600.0 1651 660.4
Average 178 182 0 41 282 37 0 167 193 [315.1 2.6 102 [5384 9.9 396 600.0 60.6 2422

Table 6.4. Number of optimal solutions (OS), feasible solutions (FS), not feasible solution found (NS) and CPU time values
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Problem ARPD (%) ARPD’(%)
H=1 H =2 H =5 HI =1 H[=2 H=5
|J] B (%) Scenario|MILP IC IC MILP IC IC MILP IC IC MILP IC IC MILP IC IC MILP IC IC
(v=25) (v=100) (v=25) (v=100) (v=25) (v=100) (v=25) (v=100) (v=25) (v=100) (v=25) (v=100)
3 0.75 0.0 0.1 0.1 0.0 0.1 0.0 0.7 04 0.2 0.0 0.1 0.1 0.0 0.1 0.0 1.0 0.7 0.5
3 1.50 0.0 04 0.3 1.8 04 0.1 9.6 0.5 0.0 0.2 06 05 3.4 1.9 1.6 120 3.2 2.7
3 2.00 0.0 0.8 0.5 2.9 0.3 0.1 215 04 0.1 0.0 1.1 0.8 4.6 2.0 1.8 235 29 2.6
6 0.75 0.0 0.1 0.0 0.1 0.5 0.2 13.3 0.5 0.0 0.0 0.1 0.0 0.3 0.6 0.4 144 1.8 1.3
6 1.50 | 0.1 0.5 0.3 7.8 04 0.1 -- 0.3 0.0 1.6 1.9 1.8 105 3.3 3.1 - - -
6 2.00 0.7 0.7 0.0 169 04 0.1 -- 0.3 0.0 2.3 2.3 1.6 190 238 2.6 - - -
9 0.75 0.0 0.6 0.1 6.8 0.7 0.0 267 04 0.0 0.0 06 0.1 7.9 1.9 1.2 283 2.8 2.0
9 1.50 0.6 0.9 0.1 247 0.2 0.1 -- 0.2 0.0 2.8 3.2 2.4 271 3.4 3.3 - - -
9 2.00 1.1 0.8 0.0 216 0.3 0.0 - 0.2 0.0 3.2 2.9 2.1 23.8 2.9 2.6 -- -- --
3 0.75 0.0 0.1 0.0 0.0 0.0 0.0 0.4 0.3 0.1 0.0 0.1 0.0 0.0 0.1 0.0 05 04 0.2
3 1.50 0.0 0.5 0.5 11 0.8 0.1 124 05 0.0 0.0 06 0.6 2.4 2.2 15 151 35 3.1
3 2.00 0.0 0.9 0.8 1.7 0.1 0.1 252 04 0.1 0.2 1.0 1.0 3.4 1.9 1.8 275 35 3.2
6 0.75 0.0 0.2 0.0 0.0 0.4 0.1 30.8 05 0.0 0.0 0.2 0.0 0.0 0.5 0.2 317 1.8 1.3
6 1.50 1 0.1 0.7 0.6 55 0.2 0.0 - 0.5 0.0 1.6 2.1 2.1 8.6 35 3.4 - - -
6 2.00 0.3 0.7 0.1 256 0.3 0.2 -- 0.3 0.1 2.2 26 20 276 3.1 3.0 -- -- --
9 0.75 0.0 04 0.2 16.0 05 0.0 378 04 0.0 0.0 04 0.2 16.7 15 1.0 39.0 25 2.0
9 1.50 0.3 0.9 0.6 343 05 0.1 -- 0.3 0.0 2.7 33 30 36.6 4.1 3.7 -- -- --
9 2.00 3.5 0.5 0.2 305 0.2 0.1 - 0.4 0.0 5.9 30 27 323 3.7 3.0 -- -- --
3 0.75 0.0 0.0 0.1 0.0 0.2 0.1 0.4 0.4 0.1 0.0 00 0.1 0.0 0.2 0.1 0.5 0.5 0.2
3 1.50 0.0 0.5 0.1 0.9 0.1 0.0 4.0 0.2 0.0 0.1 06 0.2 2.0 1.2 1.1 5.9 2.1 2.0
3 2.00 0.0 0.6 0.3 1.6 0.2 0.0 175 0.1 0.1 0.0 0.7 0.4 2.8 1.4 1.2 19.0 2.0 1.9
6 0.75 0.0 0.1 0.1 0.2 0.3 0.1 16.0 0.3 0.0 0.0 0.1 0.1 0.4 0.4 0.2 16.7 1.2 0.9
6 1.50 I (0.3 0.6 0.1 4.5 0.4 0.0 - 0.2 0.1 1.1 1.3 0.9 6.3 2.2 1.9 - - -
6 2.00 0.3 0.6 0.0 171 0.3 0.1 - 0.2 0.0 1.5 1.7 1.2 185 2.0 1.8 - - -
9 0.75 0.0 0.3 0.2 125 0.1 0.2 229 04 0.0 0.0 0.3 0.2 13.2 1.0 1.0 232 16 1.4
9 1.50 0.4 0.4 0.1 228 0.1 0.1 -- 0.3 0.0 2.0 1.9 1.6 245 2.3 2.3 - - -
9 2.00 0.8 0.5 0.0 20.1 0.3 0.0 -- 0.2 0.0 2.2 1.9 15 226 1.8 2.0 - - -
3 0.75 0.0 0.3 0.1 0.0 0.4 0.1 1.4 0.4 0.0 0.0 03 0.1 0.0 0.4 0.1 2.0 0.9 0.6
3 1.50 0.0 0.5 0.3 1.6 0.3 0.0 7.0 0.4 0.0 0.3 08 0.6 2.8 15 1.2 9.3 2.8 2.4
3 2.00 0.1 0.7 0.5 4.0 0.3 0.0 127 04 0.1 0.2 0.8 0.6 5.3 1.7 1.4 145 25 2.2
6 0.75 0.0 0.2 0.1 0.5 0.5 0.1 124 04 0.1 0.0 0.2 0.1 0.8 0.8 0.4 136 1.8 15
6 1.50 IV 0.6 0.5 0.1 6.7 0.5 0.1 - 0.3 0.1 1.9 1.8 14 9.0 2.9 2.5 - - -
6 2.00 1.1 0.5 0.1 123 0.3 0.1 - 0.2 0.1 2.6 1.9 15 144 2.6 2.4 -- -- --
9 0.75 0.0 0.7 0.5 5.3 0.3 0.1 17.2 0.3 0.1 0.0 0.7 0.5 6.9 2.0 1.8 189 2.6 2.3
9 1.50 1.3 0.4 0.0 156 05 0.0 - 0.4 0.0 3.3 2.4 2.1 18.0 3.3 2.8 - - -
9 2.00 3.2 0.5 0.0 -- 0.1 0.1 - 0.2 0.0 5.0 2.3 1.8 -- -- -- -- -- --
Average 0.4 0.5 0.2 9.0 0.3 0.1 121 0.3 0.0 1.2 1.3 1.0 106 1.9 1.7 158 2.1 1.7

Table 6.5. ARPD and ARPD’ values
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L Scenario
Obijective
| I 1l v
No. scheduled surgeries 0.778 0.801 0.782 0.765
Tardiness 0.016 0.023 0.010 0.019
Surgeon idle time 0.022 0.035 0.023 0.011

Table 6.6. Objective functions normalized values

Finally, Table 6.6 shows the normalized average value for each objective under the
different scenarios, providing to the OR manager an overview of the implications of
choosing any of the proposed scenarios. Obviously, scenario 11, 11l and IV maximize the
number of surgeries, minimize the tardiness of the surgeries and minimize the surgeons’
waiting time respectively. Thereby, for example under the scenario Ill, the tardiness
sharply decreases from 0.016 to 0.010 with respect to the equally weighted scenario (i.e.
scenario 1) as well as the number of scheduled surgeries increases from 0.778 to 0.782,

while the surgeon idle time stay very similar (from 0.022 to 0.023).

6.5.3 Analysis of surgery duration uncertainty: a simulation approach

In Section 6.5.2, the computational experience of this section has been carried out
assuming deterministic surgery durations. However, the surgical schedule is usually
influenced by the stochastic nature of the surgery duration (see e.g. Cardoen et al.,
2010). For these reasons, a number of simulations have been carried out to analyze the
robustness of the so-obtained surgical schedules. More specifically, for each instance of
the testbed, the surgical schedule obtained in a deterministic way was simulated 100
times by modifying the surgery duration of surgeries scheduled. Surgery durations were
varied according to a log-normal distribution where the expected duration is the
deterministic surgery duration and the standard deviation is 5%, 10%, 15% or 20% of
the expected duration (i.e. CV = 0.05, 0.10, 0.15 and 0.20). Note that 432,000
simulations were performed, being the feasibility of each surgical schedule analyzed for
each value of CV. The robustness is measured by: the average OR-day utilization, the
percentage of surgical resources (OR and surgeons) with overtime and the average

overtime. These results and the average OR-day utilization are shown in Table 6.7.
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Av. OR-day % OR-days Av. OR-day % Surgeons Av. Surgeon
Utilization (min.)  with overtime  Overtime (min.)  with overtime  Overtime (min.)
0.05 376.46 5.58% 9.24 1.99% 8.46
0.10 376.46 11.91% 18.99 4.21% 17.12
0.15 376.51 16.88% 29.49 6.27% 26.10
0.20 376.50 20.66% 40.63 8.14% 35.41

Table 6.7. Simulation results for analyzing the stochasticity of surgery durations

It can be seen that the average OR utilization is not influenced by the stochasticity of the
surgery duration. Thereby, the average utilizations are 376.46, 376.46, 376.51 and
376.50 minutes by using CV = 0.05, 0.1, 0.15 and 0.20 respectively. Due to the large
number of simulations performed, 95% confidence intervals lengths are very narrow for
each case, being, for example, 0.85 minutes for CV = 0.20. Regarding OR overtime,
only 5.58% of OR-days have overtime for CV = 0.05, being the average overtime 9.24
minutes. Even for a high stochasticity of surgery durations represented by CV = 0.20,
20.66% of the OR-days have overtime, being the average overtime 40.63 minutes
(which represents 8.47% of the capacity of the ORs). Finally, surgeons’ overtime are
still more favorable since only the 1.99%, 4.21%, 6.27% and 8.14% of the surgeons
have overtime for CV = 0.05, 0.10, 0.15 and 0.20 respectively. In case of overtime, it is
8.46, 17.12, 26.10 and 35.41 minutes on average for CV = 0.05, 0.10, 0.15 and 0.20
respectively. Summarizing the results of the simulation, we can conclude that the
surgical schedules proposed by the approximate method are robust in terms of: (i) ORs,
since the worst overtime value (i.e. 40.53 minutes, a 8.47% of the OR-day regular
capacity for CV = 0.20) is acceptable in real/literature settings, in which the overtime
allowed varies from 25% to 50% of the regular capacity (see e.g. Roland et al., 2010);
(if) Surgeons, since the average surgeon overtime is 35.41 minutes, which represents a
9.84% of the average available time of surgeons. In the case overtime is not allowed, the
simulation results can be used to determine planned slacks for reducing/avoiding the

overtime (see e.g. Hans et al., 2008).
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6.6 Conclusions

In this chapter, we have addressed the integrated OR planning and scheduling problem
which consists on assigning the date, the OR and the time indication for each surgery in
the waiting list over a given planning horizon. In practice, surgeries are usually
performed by two-surgeon surgical teams (the responsible surgeon and the assistant
surgeon), and the surgery duration depends on the type of the assistant surgeon assigned
to the surgery. To the best of our knowledge, this decision problem has not been
addressed in the literature. The novelty of our contribution is that surgery durations
depend on the surgical team, which may be composed by one or two surgeons with

different level of experience.

We have proposed a ILP model and an adaptation of the multi-mode blocking job shop
model (Pham and Klinkert, 2008) to solve the problem. The performance of both
models is compared by generating a set of instances based on the literature. The results
show that the proposed model is more effective than the adapted multi-mode model.
Nevertheless, both approaches are not able to find feasible solutions for real-life
instance sizes in an acceptable CPU time. Therefore, we propose an approximate
algorithm for obtaining good feasible solutions in short CPU times. The computational
experience shows that the proposed algorithm is able to find feasible solutions for all
problems in the testbed, requiring shorter CPU times than the ILP model. Additionally,
the algorithm provides better average relative percentage deviations than the ILP model
for each planning horizon of the testbed, resulting in an ARPD of 0.11% for IC (v =
100), which is a 7.52% lower than that of Gurobi. Finally, the robustness of surgical
schedules calculated in such deterministic way has been analyzed via simulation,
resulting that, in the worst case, 20.66% of OR-days and 8.14% of surgeons would have
overtime. Nevertheless, the average overtime for both surgeons and ORs is 8.47% of the
OR-day regular capacity and 9.84% of the average available surgeon time. These results
are acceptable in real settings and hence, a deterministic approach is suitable for solving
the proposed problem.
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Validation of Solution Procedures: A Real
Application

7.1 Introduction

In this chapter we present the results of the implementation of the decision models and
solution approaches described in previous chapters in the University Hospital “Virgen
del Rocio”, focusing on the Plastic Surgery and Major Burns Specialty, the pilot
surgical specialty. In order to give a clear idea of this surgical specialty, first, the
specific OR planning and scheduling problem of the Plastic Surgery and Major Burns
Specialty is described in Section 7.2. Then, the decision models and solution approaches
presented in Chapter 4 are validated for this Specialty. The validation is carried out both
with experimental (i.e. generating specific problem instances based on the sizes and
patterns of past interventions in this department, together with the specific constraints
and policies employed in this specialty), and historical data (i.e. by using pasts waiting
lists to compare the solution obtained by the procedures with the schedules applied in
practice) in Section 7.3. By conducting the experimental validation we aim to ensure the
quality of the solution procedures (already tested in testbeds extracted from the
literature) when applied to this specific. The so-called historical validation provides us
with a quantification of the advantages of using the proposed models, which serves us to
increase the acceptance of the DSS by the responsible of the surgical and to set goals for
and after its implementation. Furthermore, the capabilities of such DSS are explored by
conducting a what-if analysis on several allocation policies, and on different objectives.
In Section 7.4., the DSS implemented and currently in use in the Specialty is outlined.

Finally, in Section 7.5, the conclusions of the chapter are presented.
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7.2 The OR planning and scheduling problem of the Plastic
Surgery and Major Burns Specialty

In this Section, we describe the specific OR planning and scheduling problem in the
Plastic Surgery and Major Burns Specialty of the University Hospital “Virgen del
Rocio”. Note that the problem under consideration is modeled by the decision model

presented in Chapter 4.

The Plastic Surgery and Major Burns Specialty performs around 3,000 surgeries per
year, including emergency, deferred urgency, elective and ambulatory surgeries. More
specifically, the specialty has 14 surgeons and 4 multifunctional ORs for performing
deferred urgency, elective and ambulatory surgeries. Emergency surgeries are not
considered as a part of our problem, since these surgeries are performed using additional
resources (called urgent surgical resources). Currently, on each day, 3 ORs are available
for performing deferred urgency and elective surgeries from 8.30 a.m. to 3 p.m., and 1
OR is reserved for performing ambulatory surgeries from 3 p.m. to 8 p.m. Regarding
surgeons availability, a weekly schedule is defined by the responsible of the surgical
unit, specifying who surgeons are available for performing surgeries (the maximum
surgery time is 6.5 hours per day), and for doing other tasks (consultations, look after
patients operated, etc.). The number of ORs where a surgeon could be allocated is
limited in order to reduce surgeon idle time and overlapping of consecutive surgeries by
the same surgeon. Finally, the remaining human and instrumental perioperative
resources and recovery facilities are assumed to be available whenever needed, thus not

representing bottlenecks.

The modified block scheduling strategy is used by the Decision Maker to manage ORs.
Burn surgeries (i.e. deferred urgency surgeries) have two reserved OR-days (i.e. a tuple
of an OR and a day) every week because of their unpredictable arrivals and their high
priority (they have to be operated as soon as possible), and because they can only be
operated by only few surgeons. Most plastic surgeries can be performed in any available
OR by any available surgeon, with the exception of microsurgeries which have two
reserved OR-days every week because of their complexity, the special surgical

equipment required, and the high estimated length of the surgery (around 10 hours).
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At the consultation stage, each patient on the waiting list is assigned to a surgeon who is
the responsible for performing the surgery. This assignment is made by the responsible
of the surgical specialty (Decision Maker) based on surgeon’s specialty (i.e. types of
surgery which could be performed by the surgeon), his/her skills and workload. The
expected surgery duration is forecasted by the Decision Maker based on the historical
data and patient’s characteristics. Each surgery must be scheduled within a time period
defined by its release and deadlines. The release date is the earliest date in which the
patient could be operated (i.e. once all medical tests are completed). The deadline (i.e.
the latest date for performing the surgery) depends on the maximum time before
treatment (in days) established by the patient’s urgency-related group, which is defined
by National Healthcare Services based on a set of explicit clinical and social criteria.

The maximum times considered in the Specialty are 45, 180 and 365 days.

The objective function is derived from the performance indicators employed by the
Regional Healthcare System in Andalusia (Spain), and it is related to minimizing access
time for patients with higher clinical weight values. The clinical weight depends on a
linear combination of the priority of the surgery (so a higher urgency of the surgery
leads to a greater weight) and the number of days per patient spent on the waiting list at
the time (patients with longer stays on the waiting list have higher weights and thus it
aims to reduce access time). It is to note that this weighting function yields a higher
priority to the single patient with the highest weight as long as a set of patients whose
sum of weights is highest than that of the single patient and they all together can be
planned in the available slot. For this reason, it is necessary to give greater weight to a
single patient’s clinical weight as compared to the sum of patients’ clinical weight. In
Section 7.4, we take into account this issue in the objective function by means of a
parameter g which is the exponent of the patient’s clinical weight, so that if g =1 we

consider the first scenario, while g > 1 indicates the second one.

Finally, the OR planning and scheduling problem is performed on a two weekly base
and is finalized on Friday for the following two weeks. In addition, other decisions are
made over medium-long planning horizons (four-week, eight-week or twelve-week
planning horizons) in order to inform patients several weeks or even months in advance
of their surgeries (reducing the number of cancellations, and improving the quality of
service) or to negotiate surgical resources for future planning periods (managerial what-
if analyses).
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7.3 Validation and analysis

In this section we carry out computational experiments in order to validate the proposed
solution procedures for solving the OR planning and scheduling problem in the Plastic
Surgery and Major Burns Specialty of the University Hospital “Virgen del Rocio”. Note
that, the problem is modeled using the decision model proposed in Chapter 4, and
solved using the proposed constructive heuristics and the Random Extraction-Insertion
(REI) algorithm. Although the REI metaheuristic is the best method for solving the OR
planning problem (see Chapter 4), the constructive heuristics are also taken into account
in this analysis due to the lower CPU times required to solve the problem, which would
be an important advantage to make decisions over medium-long planning horizons.
First, an experimental validation is carried out to ensure the quality of the solution
approaches for solving the problem (see Section 7.3.1). We focus on the performance
for solving the problem over medium-long planning horizons, since the efficiency for
solving the problem over a short planning horizon (week) has been showed in Chapter
4. Once the efficiency of the proposed solution approaches is showed for solving the
problem, we present a historical validation to quantify the advantages of using the
decision model and the REI method (see Section 7.4.2). Finally, Section 7.4.3 presents
what-if analyses for solving the problem to compare the impact on several patient
allocation policies, several objective functions, several resource management strategies

and several planning horizons.

7.3.1 Experimental validation

As described above, the Decision Maker makes decisions related to inform patients
several weeks or even months in advance of their surgeries or negotiate surgical
resources for future planning periods. In this context, the complexity of the problem
increases due to the huge number of decision variables (i.e. the number of surgeries in
the waiting list, and the number of OR-days) and constraints. With this consideration in
mind, we propose a solution approach to solve the problem over medium-long planning

horizons. The solution approach is as follows:

o First, the planning horizon is divided into weekly planning horizons, since a week is

typically used for solving the OR planning problem (see Chapter 4).
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e Second, a partial waiting list is determined for each weekly planning horizon. The
partial waiting list is determined using the following procedure: (i) patients that
could not be scheduled in previous planning horizons are sorted according to their
clinical weight (i.e. the best sorting indicator as shown in Chapter 4); (ii) patients are
selected one by one until the total sum of their expected surgery duration exceeds a
percentage y of the OR regular capacity available in the weekly planning horizon.
For each partial waiting list, the planning problem is solved by the constructive
heuristics and the REI metaheuristic proposed in this Thesis.

A calibration procedure is carried out to determine the best parameter setting for the
REI metaheuristic. We generate a test bed according to the procedure described in
Chapter 3, considering the 20 different combinations of £, |H| and |J| (see Table 7.1).
For each combination of the factors, 10 instances are generated, resulting in a total of
120 instances. The experiments were carried out on a PC with 2.40 GHz Intel Core i5
processor and 4 GBytes of RAM memory. The RPD is considered as the response
variable, being define as RPD =100-(M, —M_,)/M, . My, is the value of the objective

function obtained by a given method for a given instance, and My is the value of the

objective function corresponding to the best solution found.

Regarding the percentage used to determine the waiting list considered at each weekly
planning horizon, we test 100%, 125% and 150% as levels of y, being y = 125% the best
level. As describe in Chapter 4, REI is characterized by the constructive heuristic used
to generate the initial solution, the number of extracted surgeries (n), the percentage of
the maximal deterioration (6) and the probability of accepts a solution which
deteriorates a solution (p). Regarding the constructive heuristic used to generate the
initial solution, we consider ST and MT heuristics proposed in Chapter 4. The MTa..
heuristic yields the best results to determine the surgical schedule from which the initial
waiting list is constructed. In order to reduce CPU time values, we only consider the
sorting tuples (t, HILL) and (w, DEC), which are involved in the best ST heuristics (see
the best ST heuristics for each level of |H| in Table 7.2). REI is tested with the following
levels: nissetto 1, 3 and 5; @ is set to 10% and 20%} and; ¢ is set to 1%, 5%, and 10%.
The best setting was n = 1, 6 = 10% and ¢ = 5%.
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Factor Level

[H| 5, 10, 20, 40, 60
|9 4,8

B 1.00,1.25

K] 8,16

Ccv 0.1

H 120

mds Ran [3...5]

a 480

u |J|

Table 7.1. Factors and levels considered in the OR planning and scheduling problem in the

University Hospital “Virgen del Rocio”

A BP I C RPD
algorithm (%0)
FF 0.10

5  BF w  DEC g
LF 10.64
FF 0.16

10 BF w  DEC ;g9
LF 5.43
FF 0.50

20 BF w  DEC 45
LF 252
FF 1.40

40 BF w  DEC g
LF 1.23
FF . DEC 254

60 BF 1.76
LF t  HILL 1.08

Table 7.2. TSBP heuristics calibration results

The results are classified with respect to |H|, |J| and g, being the average number of

patients in the waiting list (|/]) and the average number of surgeons (|K|) presented for

each set of instances. Table 7.3 shows the Average RPD (ARPD), the number of

instances in which a feasible solution is found and the CPU time (in seconds) required
for each approach (i.e. ILP, best ST heuristics, MT .. and REI). Note that ARPD values

are obtained by averaging these results only for feasible solutions. The ILP approach is

solved by using the commercial software Gurobi version 5.6 with a stopping criterion.
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ARPD (%) /No. solutions found CPU time (sec.)
w0 AU Kl 1 p ST MTa.  REI ILP ST MTa.  REI
4 L00(8LI) 8.1 026/10 431/10 431/10 012/10 | 200 0.015  0.016 20.0
5 1.25(100.4) 82 055/10 471/10 452/10 0.00/10 | 25.0 0012  0.016 25.0
g 100(1615) 157 | 027/10  337/10 333/10 006/10 | 400 0.020  0.053 40.0
1.25(201.6) 157 | 029/10 347/10 3.30/10 0.35/10 | 50.0 0.019  0.070 50.0
4 100(1609) 82 090/10 479/10 470/10 0.01/10 | 40.0 0.020  0.030 40.0
10 1.25(201.8) 8.1 151/10 533/10 487/10 0.00/10 | 50.0 0.020  0.031 50.0
g 100(3212) 154 | 024/10  387/10 385/10 0.07/10 | 80.0 0.040  0.18 80.0
1.25(4025) 157 | 072/10 426/10 4.08/10 0.14/10 | 100.0 0.039  0.130 100.0
. 100(B3222) 81 139/10 570/10 5.33/10 0.00/10 | 80.0 0.041  0.066 80.0
20 1.25(401.7) 86 145/10 7.00/10 6.26/10 0.00/10 | 100.0 0.047  0.066 100.0
g 100(6437) 154 | 133/10 399/10 3.74/10 0.00/10 | 160.0 0.091  0.268 160.0
1.25(804.7) 157 | 091/10 565/10 553/10 0.11/10 | 200.0 0102 0.276 200.0
4 100(6430) 79 189/10 6.63/10 550/10 0.09/10 | 160.0 0.104  0.150 160.0
40 1.25(803.2) 8.1 153/10 7.05/10 5.62/10 0.00/10 | 200.0 0122  0.166 200.0
g 100(12845) 153 | 158/10 593/10 505/10 0.00/10 | 320.0 0.265  0.648 320.0
1.25(1606.2) 149 | 0.76/10  6.30/10 551/10 0.01/10 | 400.0 0.337  0.696 400.0
, 100(9638) 81 233/10 6.81/10 544/10 0.00/10 | 240.0 0206  0.284 240.0
60 1.25(1206.0) 7.9 1.34/8 651/10 528/10 0.05/10 | 300.0 0264  0.333 300.0
g  100(19259) 158 | /0 526/10 4.16/10 0.00/10 | 480.0 0610  1.149 480.0
1.25(24082) 159 | --/0 471/10 477/10 0.00/10 | 600.0 0.828  1.367 600.0
Average 1.07/84 528/10 476/10 0.01/10 | 1823 0.160  0.297 182.3

Table 7.3. ARPD, No. solutions found and CPU time values

The stopping criterion is defined as a CPU time limit for the ILP approach and using the
REI heuristic. The CPU time limit depends on the size of the problem, being calculated
as |H| - [J| - p. Results highlight that REI heuristic is better than the ILP approach, being
0.01% and 1.07% the ARPD values respectively. It is also important to remark that
constructive heuristics (ST and MTa.,) Yield good quality of solutions requiring short
CPU times (5.28% and 4.76% in 0.160 and 0.297 seconds respectively). Regarding the
number of solutions found, the proposed heuristics always find feasible solutions, while
the ILP approach presents difficulties to find feasible solutions when the size of the
problem increases (it only finds feasible solutions for 45% of the instances for a twelve-

week planning horizon).

7.3.2 Validation with historical data

In this Section we present results of a historical validation of the decision model and the
REI metaheuristic for solving the OR planning and scheduling problem in the Plastic

Surgery and Major Burns Specialty of the University Hospital “Virgen del Rocio”.

First, we present computational experiments to evaluate and compare the results
obtained by using the decision model against the real results obtained by the Decision
Maker from February 2009 to July 2009. As an example, we show the results for

February. The waiting list was composed by 365 patients, getting the data for several
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information systems of the Hospital. In order to consider the prioritization criteria
proposed in Section 7.2, we introduce the parameter g in the objective function in the

following manner:

1
Maximize Z E Z Z wXiin (7.1)
heH i€l jeJ

We propose the following scenarios to compare the results obtained by the decision
model against the real results obtained by the Specialty:

= Scenario I, the parameter g is set to 1, i.e. the objective of maximizing the sum of

patients’ weights scheduled in the planning horizon is considered.

= Scenario Il, the parameter g is set to 4, i.e. the objective of maximizing the service
level by planning patients with greater clinical weight as soon as possible in the

planning horizon.
= Scenario I1l, same scenario as in I, increasing a 10% the length of each surgery.
= Scenario IV, same scenario as in |1, increasing a 10% the length of each surgery.

Table 7.4 shows the value of the service level, and the number of scheduled patients in
the considered planning horizon. The real schedule column represents the value of the
service level and the number of patients scheduled in the Specialty. In order to compare
the scenarios, the service level showed on Table 7.4 is determined as the sum of the
quotients between the clinical weight and the date of the intervention of scheduled
patients with g =1. The values of the service level and the numbers of patients

scheduled in the tested scenarios are greater than the ones in the real schedule.

In view of these results, the proposed decision model were used to solve the OR
planning problem in the Plastic Surgery and Major Burns Specialty from October 2009
to May 2010. The values of the service level and the number of scheduled patients were
better than the real results obtained in last years, turning out surgical schedules with a
high adhesiveness (80% of surgeries were performed in the OR-day proposed by the
solution approaches). In addition, it also has to be noted that the time that the Decision
Maker devotes to planning surgeries is greatly reduced by the use of the decision.
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Scenario Decision model Real schedule

Service level  No. of scheduled patients  Service level  No. of scheduled patients
| 7617 (116%) 120 (35%)
] 4723 (34%) 111 (25%)
i 6821 (93%) 112 (26%)
v 4001 (13%) 105(18%)

3525 89

Table 7.4. Decision model result vs. real results

Then, we generate an extensive testbed to validate the performance of the REI
metaheuristic for solving the problem. The testbed (100 instances) is generated based on
meetings with the Decision Maker, data provided by the annual management report and
historical data from the Specialty following the procedure proposed in Chapter 3. Each
instance contains an initial waiting list along with the patient arrivals for each week of
the year (i.e. 52 weeks). Surgery parameters are generated by empirical statistical
distributions. Note that the results are compared against the real results obtained by the
Specialty during 2012. The number of surgeries performed by the Specialty during 2012
was 2,823. Using the same surgical resources (ORs and surgeons) and the same initial
waiting list, the REI metaheuristic is able to schedule 2,962 surgeries, which means an
average increase of 2.67 surgeries per week.

7.3.3 What-if analysis

In this section we present results of different managerial what-if analyses for solving the
OR planning and scheduling problem in the Plastic Surgery and Major Burns Specialty.
Several managerial decisions were identified by meetings with the Decision Maker
during two years, as were the selection of the patient allocation strategy (how patients
are allocated to surgeons), the objective function (which is the impact on the size of the
waiting list and on the use of resources), the planning horizon (what is the best planning
horizon to solve the problem), and, finally, the resource management strategy (how the
operating theatre resources are managed). The results presented in this section have
been obtained from solving testbeds used in Section 7.3.1 using the decision model and

the REI metaheuristic proposed in Chapter 4.

7.3.3.1 Patient allocation strategies

The following patient allocation policies are analyzed to solve the OR planning problem

of the Plastic Surgery and Major Burns Specialty:
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= In the P-S-OR policy, it is assumed that patients have been previously assigned to a
surgeon. Therefore the set “patient-surgeon” is allocated to an OR-day where the
surgery can be performed. This policy guarantees the continuity of care, i.e. each
patient is operated by the surgeon who examined him/her from his/her arrival to the
hospital (see e.g. Guinet and Chaabane, 2003; Jebali et al., 2006).

= |n the P-OR-S policy, patients are first assigned to an OR-day, and then surgeons are
allocated to the set “patients-OR-day” (see e.g. Hans et al., 2008). This policy is
more flexible than P-S-OR, as the patient does not depend on the capacity of a
particular surgeon, but it may present problems both from social and professional
point of view. On one hand, it is possible that a patient does not want to be operated
by a surgeon who did not examine him/her before. On the other hand, it may happen
that a surgeon does not want to operate a patient who has been initially examined by

another surgeon.

= In order to reduce the drawbacks of the so-called P-OR-S policy, we propose a
hybrid policy in which there are patients who are scheduled based on the so-called P-
S-OR policy and others are scheduled based on the P-OR-S. Patients, who are
scheduled according to the P-OR-S policy, must be a level of medical priority
established by the Decision Maker. These patients are assigned to a “knapsack
surgeon” available in each OR-day in the planning horizon. In fact, surgeries
assigned to the fictitious surgeon in a day will be performed by surgeons in the

Specialty who are not assigned to any OR-day.

Note that the P-S-OR policy is the strategy used in the Specialty, and it is modeled by
using the decision model proposed in Chapter 4. However, minor modifications are
needed to model the P-OR-S and hybrid policies:

= To model the P-OR-S policy, we replace constraints (4.5)-(4.7), and adding the

following ones:

szjh <1 (Vk€K,Vhe H|ag > 0) 7.1)
jEJ

Z Zun=1 (Vj€J,YheH) (7.2)

keEK
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Scenario Policy Real schedule
P-S-OR Hybrid P-OR-S
7617 (116%) 7705 (119%) 8075 (129%)
1 4723 (34%) 4820 (37%) 5027 (43%)
i 6821 (93%) 7030 (99%) 7332 (108%)
v 4001 (13%) 4062 (15%) 4205 (19%)

3525

Table 7.5. Service level of the surgical schedule

Scenario Policy Real schedule
P-S-OR Hybrid P-OR-S

| 120 (35%) 120 (35%) 126 (42%)

1 111 (25%) 112 (26%) 116 (30%) 89

i 112 (26%) 112 (26%) 117 (31%)

v 105(18%) 105 (18%) 108 (21%)

Table 7.6. Number of scheduled patients

Constraints (7.1) specify that a surgeon can be assigned at most to one OR-day
during a day if he/she is available to perform surgeries, while constraints (7.2) ensure

that each OR-day must be assigned to a surgeon.

* To model the hybrid policy, we include the knapsack surgeon in the model by
extending the set K (i.e. k =1...|K|+1). We assume that the regular capacity of the
knapsack surgeon (ajk+1n) is equal to the total OR capacity during the day in order to
consider the extreme scenario in that all surgeries scheduled during a day belong to
the knapsack surgeon. Finally, we replace constraints (4.6) for the knapsack surgeon
due to surgeons belonged to the Specialty will perform the surgeries allocated to the

knapsack surgeon.

The value of the service level and the number of scheduled patients in February 2009
are shown in Table 7.5 and 7.6 respectively. In the P-OR-S policy, the value of the
service level and the number of scheduled patients is the largest for each scenario. A
patient is not assigned to a specific surgeon, and therefore can be scheduled earlier in
the planning horizon. Regarding the hybrid policy, the number of patients assigned to
the “knapsack surgeon” influences the quality of service of a surgical specialty.
According to the results, if the percentage of patients assigned to the “knapsack
surgeon” in the waiting list is high, then the value of the service level is close to the
value obtained in the P-OR-S policy. In our case, only 20 patients are assigned to the

“knapsack surgeon” so the value is closer to the results of the P-S-OR policy. On the
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other hand we can choose to schedule as many surgeries as possible in the planning
period by setting g = 1 or to prioritize the scheduling of patients with greater clinical
weight g = 4. As a consequence, the value of the service level and the number of

scheduled patients in scenarios with g = 1 is bigger than scenarios with g = 4.

7.3.3.2 Selection of planning horizons and objective functions

In this section, with the help of the REI metaheuristic, we evaluate different objectives
functions using several planning horizons under several guidelines (patient
prioritization, waiting list reduction, etc.). Besides analyzing the service level (O1)
under the modified block scheduling strategy that is used in the Specialty, the following
objectives have been considered: number of scheduled surgeries maximization (02),
ORs utilization maximization (O3), and a weighted objective that maximizes the service
level during the first 6 months and the number of scheduled surgeries during the second
6 months (O4) using different planning horizons of a week, a two-week, and four-week.

On Table 7.7, the average annual values for each objective and planning horizon are
shown, taking into account the average values of service level, the number of scheduled
surgeries (increase in number of patients with respect to the effectively intervened is
shown in brackets), ORs utilization, number of patients on the waiting list at the end of
the year (within brackets, the difference with respect to the size of the waiting list at the
beginning of the year), and CPU time required to solve the instance. Note that the
termination criterion of REI for each planning horizon is determined by the length (1, 2
and 4 seconds for each weekly, two-weekly and four-weekly planning horizons
respectively). The results show that the selection of the planning horizon greatly
depends on the indicator selected by the Decision Maker. More specifically, the four-
week horizon seems the best one regarding the service level, as there are a larger
number of high-priority surgeries that can be schedule as compared to shorter horizons.
With respect to the number of scheduled surgeries, the best horizon is a week, as in this
case there are lesser surgeries on the waiting list whose deadline is within the planning
horizon and therefore there is more flexibility to build the surgical schedule. Finally, the
planning horizon does not seem to be a significant factor when the objective involves
OR utilization. With respect to the time required to generate the surgical schedules, it
has to be noted that the maximum average time for the evaluation of a scenario is 467.5

seconds.
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Objective  Planning Service  Scheduled OR Waiting list CPU time
Function horizon Level surgeries utilization (sec.)
Weekly 1322.0 2970 (2.83) 89% 666 (29.1%) 159.1
0O; Two-weekly 1641.0 962 (2.67) 89% 674 (30.7%) 2435
Four-weekly  1816.3 2943 (2.31) 89% 693 (34.2%) 399.0
Weekly 1298.3 3151 (6.30) 88% 485 (-6.0%) 122.2
0, Two-weekly 1586.9 3138 (6.06) 88% 498 (-3.5%) 184.5
Four-weekly  1960.6 3097 (5.27) 87% 539 (4.4%) 313.5
Weekly 1220.0 2857 (0.65) 91% 780 (51.1%) 188.7
O3 Two-weekly 1464.7 2821 (-0.04) 91% 816 (58.0%) 296.6
Four-weekly ~ 1720.9 2836 (0.25) 91% 800 (55.1%) 467.5
Weekly 1250.6 3143 (6.15) 88% 493 (-4.5%) 134.9
Oq4 Two-weekly 1522.9 3134 (5.98) 88% 502 (-2.7%) 207.7
Four-weekly 17254 3100 (5.33) 88% 536 (3.8%) 348.7

Table 7.7. Analysis of the objectives and horizons under the modified block scheduling strategy

7.3.3.3 Resource management strategies

In this section we use the REI metaheuristic to assess the impact of the different
strategies to manage the resources. Table 7.8 shows the results assuming an open
scheduling strategy, releasing ORs reserved to burn surgeries. In general, there are
substantial improvements for all objectives and planning horizons. Regarding the
service level, a maximum improvement of 7.71% is achieved (over the value obtained
assuming the modified block scheduling strategy). Again, a four-week planning horizon
seems to offer the best results. The number of scheduled surgeries increases from 6.30
to 9.65 patients per week, which translates into a 39.8% reduction of the waiting list at
the end of the year. Finally, ORs utilization increases a 6% average for all objectives

and planning horizons under consideration.

Finally, the heuristics help the Decision Maker to negotiate with the hospital manager
with respect to the services (blood tests, anesthesia tests...) and the resources required
(ORs, surgeons...) in order to reduce surgery cancellations (e.g. expired tests). The
graph in Figure 7.1 shows the evolution of the number of scheduled surgeries depending
on the objectives sought. As shown in this figure, the number of scheduled surgeries
greatly depends on surgeries’ deadlines and on the objective. For Ol, the deadline has
no influence on the scheduled surgeries, because the surgeries with a deadline within the
planning horizon are those with highest clinical weight, and are therefore gradually
scheduled. For O2, the effect of the deadline can be clearly seen, reaching the maximum

values for months 2 and 9.
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Objective Planning Service  Scheduled OR Waiting list CPU time
Function horizon level surgeries utilization (sec.)
Weekly 1348.1 3151 (6.30)  95% 485 (-6.1%) 124.4
0O; Two-weekly 1681.6 3143 (6.15)  95% 493 (-4.5%) 191.5
Four-weekly ~ 1956.0 3129 (5.88) 95% 507 (-1.7%) 311.2
Weekly 1297.8 3325(9.65) 93% 311 (-39.8%) 108.1
0, Two-weekly 1584.3 3317 (9.5) 93% 319 (-38.1%) 139.9
Four-weekly  1963.7 3256 (8.33) 92% 380 (-26.4%) 243.1
Weekly 1260.8 3050 (4.36) 98% 587 (13.7%) 147.8
O3 Two-weekly 1454.2 3132 (5.94)  98% 504 (-2.3%) 198.8
Four-weekly ~ 1691.8 3084 (5.02) 97% 552 (6.9%) 358.8
Weekly 1252.2 3319 (9.54) 94% 317 (-38.5%) 107.2
Oq4 Two-weekly 1515.8 3310(9.36) 94% 326 (-36.9%) 162.5
Four-weekly ~ 1770.58 3263 (8.46) 94% 373 (-27.8%) 2735

Table 7.8. Analysis of the objectives and horizons under the open scheduling strategy
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Figure 7.1. Plot of the evolution of the scheduled surgeries based on objectives O; and O,

In both months there are patients close to their deadline and with long duration of the

intervention (otherwise they would have been previously scheduled according to O2).

7.4 The Decision Support System

In view of the results presented in Section 7.3, the decision model and the solution
approaches (ST, MTa.L and REI) presented in Chapter 4 were embedded in a DSS for
solving the problem in the Plastic Surgery and Major Burns Specialty. The DSS is
currently in use in the Hospital. In this section we briefly discuss the main design and

implementation issues of the DSS. We first outline the main requirements, secondly we
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briefly explain the framework architecture and then we present the main use cases of the
DSS.

7.4.1 Requirement and Design

The main features of the DSS are:

It must accomplish with DPA (Data Protection Act), i.e. the system must be secured

by checking user identity and that the host is licensed before executing the DSS tool.

Since the Decision Maker usually decides the surgical schedule using his/her own
laptop (sometimes out of working hours), the required tool is conceived to be a
standalone system. As a consequence, the DSS is not integrated with the Hospital
Information System, but imports from it the relevant data of patients in the waiting
list and the corresponding surgery data, such as surgery duration, surgeon (or group
of surgeons) in charge, OR (or group of ORs) where the patient can be intervened,
clinical weight, etc.

The optimization engine should provide a surgical schedule that can be manually
modified by the Decision Maker, so he/she can incorporate 'soft' constraints that
cannot be easily integrated in the model, such as the preference of using the first
hours of a shift for certain types of surgeries (not only depending on the type of
surgery, but on the specific patient), or some days in the beginning/end of the week
due to the specific needs of post-surgery recovery. Therefore, easy manual fine-

tuning of the solution is required.

The DSS tool should provide detailed analysis tools and drill-down capabilities so
the Decision Maker can analyze the so-called scenario (i.e. a surgery schedule arisen
from a waiting list and staffed ORs for a specific planning horizon) with great detail.
Consequently, the system should be capable of handling different possible scenarios,
that is: several solutions of the decision problem with the same/different data and
using same/different parameter settings must be maintained so that the Decision
Maker may explore their feasibility, introduce manual changes, etc. and ultimately

choose one as an ‘executable’ schedule.
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= The DSS is required to be flexible and extensible, so that it satisfies the currently
identified business rules while makes it easy to add new ones. Consequently, the tool
should be modular to allow incorporating new decision problems (decision models/

solution approaches) to the system.

= Since, in most surgical specialties, surgeons can be organized in groups (i.e. patients
may be assigned to a group of surgeons instead of to a single surgeon), the DSS
should allow for setting groups of surgeons and defining surgeons' capacities within
each group. In order to include groups of surgeons in the decision model presented in
Chapter 4, we introduce a fictitious surgeon for each group of surgeons existing in
the Specialty, defining the maximum time for performing surgeries in a given day
from the regular capacity of the surgeons belonged to the group.

The most appropriate architecture for the required system is composed of three
modules: Database Management, Model Management and Dialogue Management. As in
other DSSs designs (see e.g. Moormann and Lochte-Holtgreven, 1993; Power and
Sharda, 2007), splitting a software system into these three modules allows a greater
degree of flexibility to independently renew the database technology, the decision

model embedded or the user interface.

The Database Management module is based on a relational database including the
relevant input data, as data about patients (name, age, address), surgeries (duration,
clinical weight, medical priority), human resources (surgeons and their capacity), and
material resources (number of ORs), etc. This component includes different
mechanisms for storing, handling, updating and retrieving these data, which are used for
efficient scenario management. More specifically, the module is in charge of reading
input data from database, gathering the computed solution (i.e. obtained by the
resolution of the optimization model), and then creating an scenario by saving both

together, so they can be used when conducting “what-if” analysis.

The Model Management module brings together data from the database,
models/solution approaches from an optimization repository, and user preferences
(parameter sets by the Decision Maker) from the Dialogue Management module. More
specifically, it is responsible for generating a problem instance and for controlling the

launching of optimization calls. Note that the Model Management module includes the
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decision model proposed in Chapter 4, along with the decision models required for
solving the problem under the P-OR-S and hybrid strategies. Regarding the solution
procedures, the module includes the constructive heuristics (ST and MTa..) and the

REI metaheuristic presented in Chapter 4.

Finally, the Dialogue Management module is responsible to handle the communication
between the DSS and the Decision Maker.

111



Operating Theatre Planning & Scheduling in Real-Life Settings Chapter 7

7.4.2 Implementation and Main Use Cases

Taking into account the above requirements and the design proposed, the DSS was
implemented using Microsoft's C# and Visual Studio as Integrated Development
Environment (IDE), and MySQL as database management system. An overview of the
system functionalities is provided in Figure 7.2. The main use cases of the DSS (shown

in Figure 7.3) are:

* Medium term estimation, with the objective of generating a tentative surgical
schedule for a period of up to six months by assuming a weekly pattern (i.e. same
ORs and surgeons capacity in all weeks). The purpose is twofold: Check whether the
available surgical resources pattern (ORs, surgeons, and working shifts) is sufficient
to accomplish the surgeries in the waiting list in a proper manner, and to notify the
patients with an estimated week for their schedule dates. To develop this surgical
schedule, ST, MTa.. and REI (considering short termination criteria) proposed in

Chapter 4 are employed.

= Short term scheduling. The objective of this use case is to obtain a detailed surgical
schedule for a short planning period (typically the next two weeks) over a rolling-
horizon basis. More specifically, at the end of each week, the Decision Maker
imports the waiting list from the Hospital Information System, refines the availability
pattern of resources along the next two weeks by incorporating specific events
(closure of certain OR, punctual non-availability of a surgeon, etc.) and generates a
detailed surgical schedule for the next two weeks using the REI metaheuristic
presented in Chapter 4. The choice of approximate methods is left to the Decision
Maker in view of the size of the problem. It is also possible to specify the maximum
running time allowed to generate the surgical schedule so the DSS may choose the
best method.

» Manual fine-tuning. As stated before, a requirement for the DSS was that the
Decision Maker will be able to move any of the scheduled surgeries within the short
term surgical schedule, whether to postpone it (e.g. a patient has flu or some health
complication impeding the intervention), or to put them into a specific OR-day.
Moreover, not scheduled surgeries could also be manually allocated into a specific
OR-day.
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7.4.3 Friendly operational decision level

As mentioned before, the DSS allows for setting groups of surgeons and defining
surgeons' capacities inside each group. Similarly, ORs sharing certain properties (e.g.
equipped for certain specific procedures) can be also grouped to define group of ORs
where a certain type of surgeries can be performed (see parameter d; in Chapter 3).
Starting from this initial assignment, there is an easy procedure for refining
availabilities within the planning horizon, to obtain the so-called 'refined availability'.
The DSS guides the Decision Maker through a road map to specify the day-to-day
availability of staffed ORs, which comprises both facilities' and surgeons' capacities

(see the sequence in the upper part of Figure 7.5).

As mentioned in the requirements, data from patients and their surgeries are imported
from the Hospital information systems. The last step in the sequence shown in Figure
7.5 allows specifying patients' unavailability in a very intuitive manner. Detailed tools
for analysis and drill-down capabilities have been also built in the DSS so the Decision
Maker can study their scenarios in greater detail. All use cases invoke the heuristics for
either scheduling or rescheduling. For manual fine-tuning, the Decision Maker can
“freeze” a number of formerly staffed and scheduled OR-days so the surgeries who
have already been notified remain unmodified. Once the optimization engine produces a
solution (either exact or approximate), the resulting surgical schedule is displayed in a
user-friendly graphical interface so the Decision Maker can visualize the available
information of every surgery, the surgical timetable for every surgeon, and the graphic
representation of the surgical schedules (sketched as a time-space matrix drawing, see
Figure 7.6).

The above mentioned functionalities help the Decision Maker to conduct “what-if”
analyses. Figure 7.7 shows an example in which the Decision Maker may use the DSS
to assess the impact of using additional ORs and surgeons in order to discuss with the

Hospital Managers future budget/OR-time allocation for his/her surgical specialty.

7.5 Conclusions

The purpose of the objective is to validate the decision model and the solution
procedures presented in the Thesis for solving the specific OR planning and scheduling
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Figure 7.7. “What-if” analysis

problem in the Plastic Surgery and Major Burns Specialty of the University Hospital

“Virgen del Rocio”.

First we introduce the problem in the Specialty, which is modeled and solved by the
decision model and the solution procedures proposed in Chapter 4. Then, the decision
model and solution procedures have been validated both experimental and historical

manners:

= By the experimental manner, we ensure the quality of solution procedures to solve
the problem over medium-long planning horizons in order to make decisions as
inform patients several weeks or even months in advance of their surgeries or to
negotiate surgical resources for future planning periods. With these considerations in
mind, a solution approach for handling medium-long planning horizons is
incorporated in the solution procedures presented in Chapter 4, since the complexity
of the problem increases due to the huge number of decision variables. The results of
the computational experiments show that the REI metaheuristic clearly outperforms
the ILP approach (both in the quality of the solution and in the number of feasible
solutions found), and the good performance of the constructive heuristics (ST and
MT aLL) with short CPU times.
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= By the historical manner, we have quantified the advantages obtained by the

responsible of the Specialty using the decision model and the solution procedures.

Once decision models and solutions procedures are validated, several managerial
decisions identified by meetings with the Decision Maker during two years are
analyzed. The main findings are: (1) the selection of a flexible patient allocation
strategy yields a considerable reduction of the waiting list; (2) the selection of the
planning horizon (a week, a two-weeks and a four-week) has a great impact on the
problem, depending on the objective function optimized; (3) the evolution of the
number of scheduled surgeries over a year depends on the selected objective function,
being an important issue for the Decision Maker to negotiate the availability of shared
services and resources (blood tests, anesthesia test...) with the hospital management;
and (4) an important improvement is observed by changing from a modified block

scheduling to an open scheduling strategy (the ORs reserved are released).

Finally, we present the DSS for solving the OR planning problem in the Plastic Surgery
and Major Burns Specialty of the University Hospital “Virgen del Rocio”, which is

currently in use in the Hospital.
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Chapter 8

Conclusions and Future Research Lines

8.1 Conclusions

This Thesis focuses on operating theatre planning and scheduling. This decision
problem is commonly decomposed into three hierarchical decision levels: strategic,
tactical, and operational (see Chapter 1). Despite the importance and the complexity of
decisions related to these hierarchical levels, it is a common practice that decision
makers make such decisions based on their experience without considering the
underlying optimization problems, providing solutions that are far from being optimal,
and consuming long times on performing management tasks instead of healthcare tasks.
In this context, the goal of this thesis is to develop models and solution procedures from
operations research techniques that can help healthcare professionals to improve the
efficiency of the operating theatre resources and the quality of the healthcare services at

the operational level.

In order to fulfill the general goal of the Thesis, a number of research objectives were
established in Chapter 1. Next we present a review of these objectives and how they
have been addressed in this document:

i. To carry out a literature review on the operational level of the operating theatre

management problem.

This objective has been extensively addressed in Chapter 2. Usually, this decision
level is decomposed into two separate steps: the OR planning problem and the OR
scheduling problem. This decomposition reduces the complexity of the whole
problem, although the quality of the decisions is reduced due to the high
interdependence among these steps. Therefore, we study both the OR planning
problem (which is the most extended operational problem in the University Hospital
“Virgen del Rocio”), and the integrated OR planning and scheduling problem. For

each decision problem, their main features are presented (see Section 2.3 and Section
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2.4), and the literature is extensively reviewed and classified. The main conclusions

are:

= There are not experimental benchmarks to analyze and evaluate the performance
of the different solution approaches. Comparisons are carried out mostly in ad-hoc
data sets, which makes difficult to extract conclusions on the general validity of

existing methods, and to compare new ones.

» The deterministic OR planning problem has been extensively analyzed in the
literature, with efficient decision models and solution procedures. However, given
the computation times required for the exact methods (i.e. procedures yielding the
optimal solution), there is room for investigating more efficient approximate
methods (i.e. yielding better quasi-optimal solutions in less CPU time),
particularly in view of the need of a) an interactive approach to re-plan the
interventions, and b) a long-term planning that allows the Decision Maker to have
a higher visibility of the plan in order to check for the availability of additional

resources.

= While the stochastic OR planning problem assuming a block scheduling strategy
is considered in the literature, there is no such analysis assuming an open
scheduling management strategy taking into account the responsible surgeons and
their availabilities, together with time period constraints (specially, the deadline

constraints established by the National Healthcare Services).

= The integrated OR planning and scheduling problem has been analyzed by
considering that surgeries are performed by only one surgeon. In addition, the
influence of the assistant surgeon’s experience on the length of the surgery has not
been considered in the literature. Since, according to the literature, 90% surgeries
are performed by surgical teams composed by more than one surgeon --being two-
surgeons team the most extended-- addressing this problem remains a research

opportunity.

ii. To propose a testbed generator to analyze the operating theatre problems identified

in i).
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Chapter 3 presents a testbed generator for solving the OR planning and scheduling
problems identified in the Thesis, providing the literature with a set of benchmarks.
The proposed testbeds allow to researches to solve any OR planning and scheduling

that involve constraints and objectives related to patients, OR and surgeons.

.To address the OR planning problem by proposing decision models and solution

procedures under deterministic and stochastic surgery durations, emergency arrivals

and resources capacity.

The deterministic OR planning problem is analyzed in Chapter 4. We propose a
mathematical decision model to solve the problem of assigning the intervention date
and the OR where a set of surgeries will be performed, minimizing access time for
patients with diverse clinical priority values. A set of approximate methods are
proposed for solving the problem under consideration. To show the efficiency of the
heuristics proposed, existing heuristics for the problem are adapted and compared in

a testbed based on the procedure presented in Chapter 3. The main conclusion is:

= The proposed heuristics statistically outperform existing ones in the literature for
every type of heuristic proposed (constructive, improvement and meta-heuristic),
providing the literature with a benchmark for the deterministic version of the

problem.

The stochastic OR planning problem is addressed in Chapter 5. We propose a
mathematical decision model considering resources availability (OR and surgeons)
and time period constraints in order to minimize the unexploited OR time and
overtime costs. Uncertainties in surgeries duration, in the arrivals of emergency
surgeries and in surgeons’ capacity are considered. A Monte Carlo optimization
method, based on the SAA method, is proposed for solving the problem. The method
combines an iterative local search method and Monte Carlo simulation. The main

conclusions are:

= The performance of the iterative local search method is analyzed against the up-
to-now state of the art heuristics for solving the deterministic version of the

problem, yielding the best results.
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= The results of the computational experiments highlight that, regardless the
statistical distribution considered to generate the arrivals of emergency surgeries,
the solution obtained by the Monte Carlo optimization method converges to the
optimal solution of the problem and presents a high robustness in terms of the

proportion of feasible simulations when the number of samples increases.

iv. To address a deterministic integrated OR planning and scheduling problem, taking
into account the case where there is a surgical team composed by surgeons with

different surgical experience.

Chapter 6 analyzes an integrated OR planning and scheduling problem which
consists on assigning the date, the OR and the time indication for each surgery in the
waiting list over a given planning horizon, maximizing a weighted objective
function. The objective function includes the number of surgeries scheduled, the
tardiness of each surgery, and the idle time of each surgeon between consecutive
surgeries. We assume that surgery durations depend on the surgical team, which may
be composed by one or two surgeons with different level of experience. We propose
an ILP decision model to optimally solve the problem. Given the high computation
requirements of our MILP model, we also propose an iterative constructive method.

The main conclusions are:

» The computational experience shows that the proposed algorithm is able to find
feasible solution for all problems requiring shorter CPU time and average relative

percentage deviation than the ILP-based approach.

= A simulation analysis shows that the deterministic approach is suitable for solving
the proposed problem considering random surgery durations, yielding acceptable

values of OR and surgeon overtime.

v. To demonstrate the validity of decision models and solution procedures developed in
the Thesis for solving the OR planning and scheduling problem in the University

Hospital “Virgen del Rocio”.

Chapter 7 presents the OR planning and scheduling problem in the Plastic Surgery
and Major Burns Specialty, which is modeled and solved using the decision model

and solution procedures proposed in Chapter 4. A solution approach integrated in the
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solution methods is proposed to help the Decision Maker to make decisions over
medium-long planning horizons. Computational experiments are carried out to
validate the decision model and the solution procedures with experimental and

historical data. The main conclusions are:

» The REI metaheuristic clearly outperforms the ILP approach (both in the quality
of the solution and in the number of feasible solutions found), and the good
performance of the constructive heuristics (ST and MT ) with short CPU times.

» The usage of the decision model and the solution procedures clearly improves the
operating theatre management, providing the Decision Maker with a tool to

analyze managerial decisions under different scenarios.

Finally, we present a DSS developed for the University Hospital “Virgen del Rocio”,
where the decision models and solution procedures presented in Chapter 4 are
embedded.

8.2 Contributions

This section summarizes the research output of the Thesis. Section 8.2.1 describes the
framework (i.e. research projects and grants) in which the Thesis has been carried out.
Section 8.2.2 and Section 8.2.3 present the research outcomes published on international

journals and conferences respectively.

8.2.1 Research projects

The Thesis has been carried out in the framework of several healthcare research projects
carried out by the Industrial Management Research Group, where the author of the

Thesis has been member since 2007. These projects are:

= “Operations Research & Operating Room (OR2)” funded by the Spanish Ministry of
Science and Innovation (reference ACC-300100-07-5),

» ASSYST funded by the Progress and Healthcare Foundation of the Andalusian
Government (reference P1-0661/2010),

» PLAGES-IDQ funded by INGENIA company (reference P1-0502/2010), and
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= SUPPORT funded by the Andalusian Government (reference P1-0502/2010).

The agent for validation and implementation of these projects has been the University

Hospital “Virgen del Rocio” in Seville (Spain).

8.2.2 Journals

The following journal publications have derived from the contributions in this Thesis:

» Molina-Pariente J.M., Fernandez-Viagas, V., Framinan, J.M., (2015). Integrated
operating room planning and scheduling problem with assistant surgeon dependent
surgery durations. Computers and Industrial Engineering, 88, 8-20 (2014 Impact
Factor: 1.783).

= Dios, M., Molina-Pariente J.M., Fernandez-Viagas, V., Andrade-Pineda J.L.,
Framinan, J.M., (2015). A decision support system for operating room scheduling.
Computers and Industrial Engineering, 88, 430-443 (2014 Impact Factor: 1.783).

» Molina-Pariente, J.M., Hans, E.W., Framinan, J.M., Gomez-Cia, T. New heuristics
for planning operating rooms. Computers and Industrial Engineering (2014 Impact
Factor: 1.783). Accepted.

* Molina-Pariente, J.M., Hans, E.W., Framinan, J.M. A stochastic approach for solving
the operating room scheduling problem. Under review

8.2.3 Conferences

= Dios, M., Molina-Pariente, J.M., Hans, E.W., Framinan, J.M. A decision support
system for solving the stochastic operating theater tactical problem. Proceedings of
the 40" International Conference on Operational Research Applied to Health
Services (ORAHS), Lisbon, July 20-25, 2014.

» Molina-Pariente, J.M., Framinan, J.M., Perez-Gonzalez, P. Employing fast heuristics
for operating room planning. Proceedings of the 13" International Conference on
Project Management and Scheduling (PMS), Leuven, April 1-4, 2012.

= Dios, M., Ferndndez-Viagas, V, Molina-Pariente, J.M., Andrade-Pineda, J.L.,
Framinan, J.M. ASSYST®: Herramienta para el soporte a la toma de decisiones en
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planificacion quirargica. XV Congreso Nacional de Informética de la Salud, Madrid,
March 20-22, 2012.

* Molina-Pariente, J.M., Dios, M., Andrade-Pineda, J.L., Fernandez-Viagas, V.,
Framinan, J.M. Métodos avanzados de resolucion para la planificacion vy
programacion de quiréfanos. XV Congreso Nacional de Informatica de la Salud,
Madrid, March 20-22, 2012.

» Dios, M., Fernandez-Viagas, V, Molina-Pariente, J.M., Andrade-Pineda, J.L.,
Framinan, J.M. Arquitectura de un sistema de soporte a la toma de decisiones para
planificacion de quirdéfanos. XV Congreso Nacional de Informatica de la Salud,
Madrid, March 20-22, 2012.

» Molina-Pariente, J.M., Framinan, J.M., Perez-Gonzalez, P. New heuristics for the
Operating Room Planning Problem. Proceedings of the International Conference on

Industrial Engineering and Systems Management (IESM), Metz, May 25-27, 2011.

= Molina-Pariente, J.M., Framinan, J.M., Perez-Gonzalez, P. Approximate Methods for
Solving the Operating Room Planning Problem. Proceedings of the 24™ European
Conference in Operational Research (EURO XXIV), Lisbon, July 11-14, 2011.

* Molina-Pariente, J.M., Framinan, J.M., Perez-Gonzalez, P., Andrade-Pineda, J.L.
Algoritmos Aproximados para la Resolucion de la Planificacion de Intervenciones
Quirdrgicas. Proceedings of the 4™ International Conference on Industrial

Engineering and Industrial Management, San Sebastian, September 8-10, 2010.

= Molina-Pariente, J.M., Framinan, J.M., Gonzalez-Rodriguez, P.L., Andrade-Pineda,
J.L. Planificacién Quirdrgica: Revisién de la Literatura. Proceedings of the 3™
International Conference on Industrial Engineering and Industrial Management,
Barcelona, September 2-4, 2009.

* Molina-Pariente, J.M., Framinan, J.M., Perez-Gonzalez, P., Leon, J.M. Modelos para
la Resolucién de la Programacion de Quirdfanos. Proceedings of the 3™
International Conference on Industrial Engineering and Industrial Management,
Barcelona, September 2-4, 2009.
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» Molina-Pariente, J.M., Framinan, J.M. Testing Planning Policies for Solving the
Elective Case Scheduling Phase: a Real Application. Proceedings of the 35"
International Conference on Operational Research Applied to Health Services
(ORAHS), Leuven, July 12-17, 2009.

» Molina-Pariente, J.M., Framinan, J.M. Policies and Decision Models for Solving
Elective Case Operating Room Scheduling. Proceedings of the 39" International
Conference on Computers & Industrial Engineering (CIE-39), Troyes, July 6-9,
2009.

8.3 Future research lines

In this section we present some research issues that need to be further addressed for
enhancing the real-life application of the proposed decision models and solution
procedures. In addition, we discuss future research lines to improve the efficiency of the
operating theatre resources and the quality of the healthcare services.

1) In this Thesis, the OR planning and scheduling problem is analyzed and solved
considering only the perioperative stage, given the fact that the resources that
commonly represent bottleneck at most hospital are the ORs and surgeons. However,
the unavailability of other operating theatre resources could negatively influence the
surgical schedule, causing delays or cancellations. Therefore, the integration of pre-
operative (ward) and post-operative (post anesthesia care unit, intensive care unit and
wards) resources in the OR planning and scheduling problem, along with the

consideration of stochastic issues represents an interesting future research line.

2) In order to improve the efficiency of the operating theatre resources and the quality
of the healthcare services, new research lines would be focused on the integration of

tactical and operational decision levels, as are:

2.1) the construction of efficient master surgical schedules and surgical schedule,
integrating simultaneously all surgical resources and waiting lists of surgical

specialties,

2.2.) the determination of the pool of sharable surgical resources (surgeons, nurses,
etc.) to reach the goals defined in the surgical specialty (i.e. how much surgeon time
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is allocate to do consultations and to perform surgeries during a given planning

horizon), and

2.3) the development of solution procedures that allow to decision makers use
planning horizons shorter than those decision makers use in real-life applications

(typically, a year) for solving the problem.

3) Finally, in order to ensure patient safety and to minimize risks, an interesting
direction would be to analyze, in the construction of the surgical schedule, the tradeoff

between the efficiency and the formation of stable functional surgical teams.
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Acronyms

A
ANOVA ANalysis Of Variance
ARPD Average relative Percentage Deviation
B
Be Bernoulli distribution
BF Best Fit algorithm
BP Bin Packing
C
C Composite heuristic
CGBH Column-Generation-Based Heuristic procedure
CPU Computing Processing Time
CVv Coefficient of Variation
D
DEC DECreasing sorting criterion
DOE Design Of Experiments
DPA Data Protection Act
DPH Dynamic Programming Heuristic
DSS Decision Support System
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Acronyms

FF

HILL

HILO

HM

HS

HSG

ICU

IDE

IGLS

ILP

INC

LF

LN

LOHI

Fist Fit algorithm

HILL sorting criterion
HILO sorting criterion
Hungarian Method
Hybrid Swapping method

Hybrid Swapping Global method

Iterated Constructive method
Intensive Care Unit

Integrated Development Environment
Iterative Greedy Local Search method
Integer Linear Programming

INCreasing sorting criterion

Level Fit algorithm
LogNormal distribution

LOHI sorting criterion
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Acronyms

MT

MTBT

MS

NC

NF

OF

OFF

OR

PACU

Pl

PS

PSG

M
Multiple-Tuple method
Maximum Time Before Treatment

Multi-Start method

Normal distribution
Not Considered in the literature

Next Fit algorithm

O
Obijective Function
OFF-line method
Operating Room

P

Post Anesthesia Care Unit
Pearson 111 distribution
Pair-wise Swapping method

Pair-wise Swapping Global method

Random generation
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Acronyms

RDI

REI

RPD

SA

SAc

SAA

Sc

Si

ST

TABOO

TS

TSG

VALLEY

Relative Deviation Index
Random Extraction-Insertion algorithm

Relative Percentage Deviation

S

Simulated Annealing method

Simulated Annealing method with constant temperature

Sample Average Approximation
Sorting Criterion
Sorting Indicator

Single-Tuple method

TABOO search method
Triplet-wise Swapping method

Triplet-wise Swapping Global method

Uniform distribution

VALLEY sorting criterion
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