
Mining Low Dimensionality Data Streams of
Continuous Attributes

Francisco J. Ferrer-Troyano, Jesús S. Aguilar-Ruiz, and José C. Riquelme

Department of Computer Science, University of Seville
Avenida Reina Mercedes s/n, 41012 Seville, Spain

{ferrer, aguilar, riquelme}@lsi.us.es

Abstract. This paper presents an incremental and scalable learning
algorithm in order to mine numeric, low dimensionality, high–cardinality,
time–changing data streams. Within the Supervised Learning field, our
approach, named SCALLOP, provides a set of decision rules whose size
is very near to the number of concepts to be extracted. Experimental
results with synthetic databases of different complexity degrees show a
good performance from streams of data received at a rapid rate, whose
label distribution may not be stationary in time.

Keywords: Classification, decision rules, incremental learning, scalable
learning algorithms, data streams.

1 Introduction

In recent years, designing scaling–up and scalable algorithms has consolidated
as an important challenge within data mining research community. Memory and
time limitations compel make such system to give an approximate answer from
few scans (ideally only one) assuring that both result and performance are not
adversely affected by the order of the examples. In addition, when the distri-
bution is not stationary (records are collected over months), algorithms based
on data partitioning techniques (instance/feature sampling) are oversensitive to
both underfitting and overfitting. Many scalable learning algorithms are based
on decision trees, modelling the whole search space hierarchically as disjointed
hypercubes. The large and complex trees given by these systems cast doubts
on its capabilities as suitable knowledge representation due to the user need to
explore paths of several dozen of levels to know interesting patterns. In addition,
mining time–changing data streams may involve to check an out–of–date sub–
tree, increasing the computational cost. A common approach in these systems
consists in repeatedly applying the learner to a sliding window of w examples.
The main goal in these systems is then to find the value for w that optimizes the
performance as a function of the input data. So interactive and user–controlled
data mining systems are becoming increasingly developed. Such approaches trade
accuracy for simplicity providing more meaningful and understandable models.

This paper introduces a scalable classification algorithm named SCALLOP
(SCALabLe classification algorithm tO learning Patterns) that provides a model

Fernando Moura Pires, Salvador Abreu (Eds.): EPIA 2003, LNAI 2902, pp. 264–278, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



Mining Low Dimensionality Data Streams of Continuous Attributes 265

on demand from several user–defined parameters. Using a window of size 1, our
approach obtains hypercubic decision rules sorted in a relevance order according
to the regions whose characteristics interest the user. In the next sections we
describe our approach and discuss its major drawbacks. Next we present experi-
mental results on synthetic data of different degrees of complexity which show its
usefulness and effectiveness to mine numerical, low–dimensionality, high–speed,
time–changing data steams.

2 Related Work

There has been many recent works on mining very large databases and data
streams. Domingos and Hulten introduce VFDT [7] and CVFDT [14] which build
a decision tree using constant time and memory per example. Their approach is
based on Hoeffding bounds, which guarantee that the output is asymptotically
nearly identical to that given by a batch conventional learner from enough ex-
amples. They also apply Hoeffding’s inequalities to build a scaling–up method
that is applicable to any induction algorithm based on discrete search [15]. De-
cision tree based classifiers are also Gehrke et al.’s BOAT [10] and Agrawal et
al.’s SPRINT [20]. BOAT obtains an approximate tree through a subsample of
fixed size. Previous approaches based on subsampling methods are also proposed
by Catlett [4]. In contrast, SPRINT [20] is disk–based learner that use all the
examples and focus on optimizing sequential access to disk.

Garofalakis et al. [17,9] propose several algorithms for building decision trees
under size and accuracy constraints in order to give an meaningful model for
the user. Dobra and Gehrke’s SECRET [6] is a regression tree based algorithm
providing a more easy to interpret output than that given by decision trees.
SECRET uses EM clustering algorithm for Gaussian mixtures to generate leaves
as linear transformation from found close clusters.

There is also large literature on scaling–up algorithms [19,11,3], model main-
tenance [8,16,5,2], and scalable clustering algorithms [18,12,13,21].

3 The SCALLOP Algorithm

Classification is generally defined as follows. An input finite data set of training
examples is given. Every training example is a pair e = (x, y) where x is a vector
of m attribute values (each of which may be numeric or symbolic) and y is a
class discrete value named label. The goal is to obtain a model y = f(x) to
classify or decide the label for new non–labelled test examples named queries.
Henceforth, the next notation is used to describe our approach. Let m be the
number of continuous attributes. Let Y = {y1, . . . , yz} be the set of class labels.
Let ei = (xi, yi) be the ith training example to be read, where xi is a normalized
vector in Rm and yi is a discrete value in Y . SCALLOP builds a model formed
by z sets of decision rules, one set per label.



266 F.J. Ferrer-Troyano, J.S. Aguilar-Ruiz, and J.C. Riquelme

In order to achieve a balanced performance between the running time and
the classification accuracy, each rule R is a data structure that comprises twelve
elements:

– Definition limits I : set of m closed intervals [Ijl, Iju], one per numerical
attribute (j ∈ {1, . . . , m}). l denotes lower bound and u upper bound.

– Centroid C : vector in Rm generated as weighted mean from the examples
covered by R.

– Central vector N : vector of the nearest example to C from all those examples
covered by R.

– Delimiters D : set of the most distant β vector to each other from all examples
covered by R. β is an user–defined parameter.

– Markers M : set of the nearest β examples to N that have been covered by
R. M, D, and C are used to modify a wrong rule.

– Overlapping rules O : set of links that reference others rules with which R
shares a sub–region belonging to the region defined by I. Only rules belonging
to the same set can make non-empty intersections among themselves.

– Growth limits B : set of m open intervals (Bjl, Bju) (one per numerical at-
tribute) so that: Bjl < Ijl ≤ Iju < Bju; ∀j ∈ [1, m]. These limits play an
important role since by knowing where a rule can extend to, the algorithm
makes stable the model faster. Furthermore, this information is very helpful
to classify new queries with few rules by voting.

– s is the support or number of examples covered by R which are associated
with the same label.

– d is the number of different labelled examples covered by R. The maximum
value of d is computed as a function of s and the user parameter γ, so that:
s−d

s ≥ γ.
– f is a boolean value that indicates if R was split ever.
– r is the index of the last example covered by R.
– u is a boolean value that indicates if R was extended with some of the last

δ read records. δ is an user parameter.

In addition, the search space is modelled according to five user–defined pa-
rameters: the maximum number of rules per label α, the minimum support λ,
the minimum confidence γ, the minimum update frequency µ, and the pruning
frequency δ. Every δ read examples, if the number of rules for a label is greater
than α then SCALLOP attempts to simplify the model by joining similar rules
and by removing uninteresting rules: those ones with a support smaller than λ
per cent of the number of read examples and those ones that were not updated
with the latest µ read examples.

The algorithm starts with α rules per label generated from the first α read
examples of each label. These rules are not hypercubes but points. We name
these rules point–rules. When there have been read more than α examples for
a certain label yi, three situations are differentiated with every new example
ei = (xi, yi):

– Correct covering : xi is covered by one or several rules associated with the
same label yi.



Mining Low Dimensionality Data Streams of Continuous Attributes 267

Fig. 1. Three cases are differentiated by updating the model with a new example. The
label distribution is stored for using it in the classification phase, if necessary.

– Possible expansion : xi is not covered by any rule in the model but there
is at least one rule associate with the same label that can be extended to
cover it without overlapping with a different labelled rule.

– Possible split : xi is covered by one or several rules associated with a dif-
ferent label y′ �= yi.

Cases 1 and 3 take turns to be firstly checked. If none of them come true, then
the actions associated with the case 2 are run. After each pruning (every δ read
examples), SCALLOP counts how many times the cases 1 and 3 come true. For
the next δ examples SCALLOP will check firstly that case with the highest count
according to the preceding δ read examples.

Correct covering : every rule that covers xi increases its positive support by
one unit, updates the index of the last covered example and moves its centroid
(procedure checkCover in Figure 1). When the first rule Rc that covers the new
example is found, the other rules that may also cover it are found thanks to the
links of Rc to them (Rc.O). All the rules that also cover xi are updated with the
same three operations.

One rule out of Rc and those linked by Rc.O, the rule Rn whose centroid
Rn.C is the nearest to xi, may be updated with respect to Rn.M and Rn.N .

If xi is nearer to Rn.C than Rn.N , then xi replaces Rn.N , and Rn.N is
checked to be in Rn.M . If the size of Rn.M is smaller than β, then xi (or the



268 F.J. Ferrer-Troyano, J.S. Aguilar-Ruiz, and J.C. Riquelme

previous Rn.N if the replacement was done) is directly added to Rn.M . If the
size of Rn.M is equal to β but xi is nearer to Rn.N than the marker z most
distant from Rn.N , then z is replaced by xi.

Possible expansion. When no rule covers xi, SCALLOP looks for rules Re

associated with the same label yi which can extend to cover xi. A rule Re can
be expanded to seize the point xi if fulfills two conditions:

1. xi is not beyond the growth–bounds Re.B, that is:

∀j ∈ {[1, . . . , m} · xij ∈ (Re.Bjl, Re.Bju)

2. The resulting extended rule does not intersect with any rule associated with
a label different to yi.

Only one rule, out of all the candidate rules that can extend to cover the new
example, is able to grow: that one whose growth or volume increase is the smallest
when covering xi (see Figure 2).

Definition 1 (Growth of a rule) Let R be a rule in Rm. Let x be a point in
Rm. It is defined the growth G of the rule R in order to cover the point xi as:

G(R, xi) =
m∏

j=1, gj>0

10φgj −
m∏

j=1, rj>0

10φrj ;

gj = uj − lj ; uj = max(xij , R.Iju); lj = min(xij , R.Ijl);
rj = R.Iju −R.Ijl; φ ∈ N

In order to measure only the new region that is taken when a rule R extends
to cover a new example xi, the growth takes into account only those dimensions
for which there is an expansion.

Since SCALLOP normalizes each attribute value in [0,1] before processing
an example, the term 10φ is used to avoid that a rule Ra without expansion in a
certain dimension k (Ra.Ikl = Ra.Iku) has greater growth than a rule Rb that has
expansion in such a dimension and the same intervals in the rest of dimensions
(Ra.Ij = Rb.Ij ;∀ j �= k). Consider two rules in R2, Ra and Rb, which can be
extended to cover a new point x = {0.5, 0.5}, so that: Ra.I = {[0.1, 0.4]; [0.5, 0.5]}
(a segment) and Rb.I = {[0.1, 0.4]; [0.6, 0.7]} (a surface). Without the term 10φ,
it results in: G(Ra, x) = 0.4−0.3; G(Rb, x) = 0.4 ·0.2−0.3 ·0.1. That is, contrary
to expected, Ra grows more than Rb. We have used φ = 3 in our experiments.

A rule can extend to cover a point if it does not overlap with any rule as-
sociated with a different label. If this rule Re is found, it is updated with six
operations:

– Re.r ← i
– Re.u← true
– Re.s← Re.s + 1
– Re.Ijb ←Min(Re.Ijb, xij);



Mining Low Dimensionality Data Streams of Continuous Attributes 269

B

R1
A R3 - A

B

d11

d12

R2 - A
X

A

�
�����

B

R1
A R3 - A

B

d11

d12

R2 - A
X

A

a new example

B

R1
A R3 - A

B

d11

R2 - A
d12

A

I II III

Fig. 2. Case Possible expansion. (1) A new A–example x is not covered by any rule.
(2) The rules R1 and R2 do not intersect with any rule associated with a different
label when are extended to cover x. (3) Because of the R2’s growth is greater than
R1’s, this latter rule extends to cover x. The set R1.D is updated with x, and the rules
R1 and R3 are linked each other through R1.O and R3.O, respectively.

– Re.Iju ←Max(Re.Ijb, xij);

– Re.Cj ← Re.Cj ·Re.s+xij

Re.s+1 ; ∀j ∈ {1, . . . , m}

When a rule Re is extended, it may overlap with other rules associated with
the same label, so that SCALLOP updates the set of links in both directions.
In addition, its set of delimiters Re.D = {de1, . . . , den} may be updated. If the
number of delimiters at the current time (n) is smaller than β, then xi is added
to Re.D. When n is equal to β, a delimiter dek may be replaced by xi. Let dek

be the nearest delimiter to xi. Let deq be the nearest delimiter to dek. If the
Euclidean distance between xi and deq is greater than the Euclidean distance
between dek and deq, then dek is replaced by xi (see Figure 2).

In a first prototype of SCALLOP the rule selected to cover a new example
xi was that one with the nearest centroid to xi. With this approach we searched
for a smaller number of rules by attempting to obtain regions greater than the
regions covered by the current rules. But this approach was not a good choice
when noise is present in data. Clean streams are unlikely since the nonstop traffic
of high dimensionality and high cardinality in the attribute values gives rise to
noise, missing, and inconsistencies frequently.

With the growth introduced, the model will have a greater number of rules,
and these rules will have smaller volume. Nevertheless, by generating more re-
duced hypercubes, the likelihood that noisy examples are located inside will
be smaller than by trying to generalize rules as large as possible. To compact
scarcely crowded and dispersed rules, the procedure refineModel is called every
δ read examples. This means an extra computational cost only at the beginning
of the process, as when the model reaches stability, such a refining is almost
unnecessary.



270 F.J. Ferrer-Troyano, J.S. Aguilar-Ruiz, and J.C. Riquelme

Fig. 3. A rule R is split when its confidence is smaller than γ. In this case, several
derived rules based on R.N ,R.D, and R.M are generated.

Possible split : when xi is covered by a rule generated for a different label
y′, the covering rule R′ with the nearest centroid to xi is founded as in the first
case.

If the new confidence of R′ ((R′.s − R′.d − 1)/R′.s) is still greater than or
equal to the minimum γ given by the user, then the number of enemies (R′.d)
covered by R′ is increased by one unit.

If the new confidence is smaller than γ, then a new point–rule Rp for xi

is added to the model. Next the support of R′ resolves two new subcases. If
R′.s is smaller than λ% examples received, then R′ is directly removed. On the
contrary, if R′.s is greater than or equal to λ% examples read, then R′ is replaced
by several derived rules that are built using an iterative procedure from R′.N ,
R′.D, and R′.M (procedure splitRule in Figure 3):

1. R′.N , the delimiters of R′.D, and the markers of R′.M are sorted in a list
LS by the Euclidean distance to xi in a decreasing order. Let sd and sm be
the size of R′.D and R′.M , respectively.

2. A new point–rule R′′ is created for the first element in LS, the most distant
vector to xi with respect to the vectors of LS. Then R′′.f is initialized as
true and such a generating vector is removed from LS. While it is possible,
SCALLOP attempts to extend R′′ with the first vector in the list. R′′ can be
extended when the resulting region does not cover xi. If R′′ is extended, the
first element in LS is removed again. If the vector that creates or extends
R′′ is a delimiter, then R′′.s is initialized to or increased by one unit. If such



Mining Low Dimensionality Data Streams of Continuous Attributes 271

R1
A

B

B

R3 - A

R4

A

c1

R1
A

B

B

R3 - A

R4

A

c1

A
R''2

R1
A

B

B

R2 - A

R3

A

c1

R5
N2

d22

m22

C2 R2-A

d21

m21

X B

A
R''3

v''1

R''1-A

m22 d21

m21

B

A R4-A

N4 d41

d42

I II III

Fig. 4. Case Possible split. (1) A new B–example x is covered by two rules (R1 and
R2 ) associated with the label A. (2) The rule whose centroid is the nearest to such
an example (R2 ) results in three new reduced rules (R”1, R”2, and R”3 ) that are
generated according to R2.N, R2.D and R2.M. (3) R”1 overlaps with a previous rule
so that both rules updates their set of links. Moreover, R”2 is removed since is totally
covered by R1. Because of R2 was never split, R”1 R”3 update their growth bounds
by x. R1 is not changed.

a vector is R′.N or belongs to R′.M , then R′′.s is initialized to or increased
by (R′.s− sd)/(sm + 1).

3. When R′′ can not be extended, R′′.B is updated with R′.B (see Figure 6).
If R′.f is true, then R′′.B may be updated with xi: when R′′ covers exactly
m−1 attribute values of xi, then the value not covered means either an upper
growth bound or a lower growth bound (procedure updateGrowthBounds in
Figure 5). Finally, R′′ is added to the list reducedRules. If LS is not empty,
the procedure repeats the loop (2) again.

A new rule R′′ generated by the procedure splitRule might be partially or
totally covered by a previous rule Rc �= R′, which must is linked through R′.O.

If a rule R′′ is totally cover by Rc, then R′′ is not included in the model (rule
R”2 in Figure 4–II). Moreover, Rc is not updated by R′′ because the examples
covered by R′ and located inside R′′ they updated Rc.r, Rc.C, and Rc.s when
they were read (case Correct covering).

If R′′ is partially covered by Rc (rule R”1 in Figure 4–II, R4 in Figure 4–
III), then both rules update to each other the sets of links R′′.O and Rc.O,
respectively.

If a new rule R′′ is disjointed with all the rules associated with its same
label (rule R”3 in Figure 4–II, R5 in Figure 4–III), then is directly added to the
model.

Although the new example xi may be covered by several rules associated with
a different label (rules R1 and R2 in Figure 4), only the rule whose centroid is
the nearest to xi is split. We have decided on this criterion under the assumption
that if the example xi belongs to a pattern, then near examples associated with
the same label yi must be read shortly later, and wrong rules will be corrected.



272 F.J. Ferrer-Troyano, J.S. Aguilar-Ruiz, and J.C. Riquelme

Fig. 5. Updating the growth bounds of the rule R2 based on the growth bounds of the
split rule R1 and the attribute values of the example x that split R1.

Every time a noisy example x is read, dividing only one rule instead of all
the rules that cover x avoids an unnecessary computational cost. In addition,
the subsequent updating of the model is hardly harmed as the number of new
rules scarcely increases (only the rules from a split that have enough support are
included in the model). If xi is noisy or belongs to a minority pattern, then Rp

will be removed in the next pruning. Furthermore, the number of overfitting–
errors in the final classification phase will be smaller since the probability of
covering a new query will be higher. Owing to data streams present a high
sensitivity to noise, to make sure a rule is wrong before splitting involves a
decisive issue to quickly attain the stability of the model.

With a similar criterion, only the nearest rule that covers a new example
xi could be updated instead of all the rules for the same label. Nevertheless
we have decided on the second option because the centroid associated to each
rule will tend to the centroid of an equal solid hypercube with the same spatial
location and with uniform mass density. It may benefit the splitting of a rule
and the computation of its delimiters and markers, in that it will tend to be
more accurate. In addition, the computational cost is not adversely affected.

When no rule associated with the label yi can cover xi, a new point–rule is
generated provided the number of rules associated with yi is smaller than α (ba-
sic case). This happens when every expansion causes a non–empty intersection
among rules associated with different labels.



Mining Low Dimensionality Data Streams of Continuous Attributes 273

R1-A

R2-A

R3-B
x (j=1)

y (j=2)

z (j=3)

Fig. 6. Updating the growth bounds of a rule in R3. The rules R2 and R3 overlap in
two dimensions (x, z), whereas R1 and R3 overlap only in one dimension. R2.B3u is
updated with R3.I3l and R3.B3l is updated with R2.I3u (= R2.I3l = 0), respectively.
R1.B is not changed.

3.1 Refining the Model

The set of rules is refined every δ new examples in order to achieve a simpler
and more accurate model. This periodical attempt of improving consists of three
phases.

First, an iterative procedure is run to join rules associated with the same
label. When no union is possible the procedure ends. In every iteration, the two
nearest rules to each other whose union is possible are analyzed. The two nearest
rules are those whose resulting volume is the smallest in relation to the volume
of the rest of the possible unions. The union Ru from two rules Ra and Rb of
the same label is done if two conditions are fulfilled:

1. Ru does not intersect with any rule associated with a different label.
2. The resulting hypercube is located inside the hypercube obtained from the

growth bounds of Ra and Rb. That is, the growth bounds of Ra and Rb

allow such a joint, so that:
rlj , ruj ∈ (blj , buj);
rlj = min(Ra.Ijl, Rb.Ijl);
ruj = max(Ra.Iju, Rb.Iju);
blj = max(Ra.Bjl, Rb.Bjl);
buj = min(Ra.Bju, Rb.Bju); ∀j ∈ {1, . . . , m}

When two rules Ra and Rb are joined as Ru, Ra and Rb are removed and Ru

is added to the model, so that:

– Ru.u← Ra.u OR Rb.u
– Ru.f ← Ra.f AND Rb.f
– Ru.r ← max(Ra.r, Rb.r)
– Ru.s← Ra.s + Rb.s - Intersection(Ra, Rb)
– Ru.Cj ← Ra.Cj ·Ra.s+Rb.Cj ·Rb.s

Ru.s ; ∀j ∈ {1, . . . , m}



274 F.J. Ferrer-Troyano, J.S. Aguilar-Ruiz, and J.C. Riquelme

– Ru.Ijl ← min(Ra.Ijl, Rb.Ijl);
– Ru.Iju ← max(Ra.Iju, Rb.Iju);
– Ru.Bjl ← max(Ra.Bjl, Rb.Bjl);
– Ru.Bju ← min(Ra.Bju, Rb.Bju);
– Ru.D ← selectFrom(Ra.D, Rb.D)
– Ru.M ← selectFrom(Ra.N, Ra.M, Rb.N, Rb.N)
– Ru.N ← selectFrom(Ra.N, Ra.M, Rb.N, Rb.N)

In a second step every rule has to satisfy two conditions to stay in the model:
1) must cover at least one of the last δ read examples; 2) the positive support
must be greater than or equal to the minimum given by the user (as percentage
of the total number of examples read at that time). δ is another user parameter.
If noise is present in data, those wrong rules that stem from noise are likely to
have a low support and a variable update rate. If after this prune the number n
of rules is still greater than α, then they are sorted by both the positive support
and the index of the last covered example, in a decreasing order, so that the last
n − α rules are directly removed. Every rules that stay in the model reset its
number of enemies (R.d← 0) and its expansion (R.u← false).

Before removing a rule Rr, some rules associated with a different label may
update their growth bounds. If Rr was extended with one of the last δ read
examples and was not split ever, then SCALLOP takes it as a valid minority
rule (not noise). Therefore, the rules of different label that will remain in the
model should not extend across the region given by the definition limits of Rr

(Figure 6). To avoid a wrong expansion that may involve a splitting shortly after,
SCALLOP updates the growth bounds of every different labelled rule Rs that
overlaps with Rr in all dimensions except one j, so that:

if Rr.Ijl > Rs.Iju then Rs.Bju ← min(Rs.Bju, Rr.Ijl)
if Rr.Iju < Rs.Ijl then Rs.Bjl ← max(Rs.Bjl, Rr.Iju)

3.2 Classifying New Queries by Voting

If a new query Q is covered by a rule Rq, then Q is directly classified as the
label associated with Rq. If there is no rule covering the new query, SCALLOP
tries to infer which labels are not possible for Q and it is classified by voting.
Figure 7 shows this procedure. If the query is beyond the growth bounds of all
the rules associated with a certain label l, then l is rejected to classify Q. If Q
is beyond the growth bounds of a rule Ry with label y, then the votes against y
are increased in one unit. If a rule Rt of label t can be extended to cover Q (it
is inside the growth bounds of Rt and the resulting expansion does not intersect
with any rule associated with a label different to y), then the votes for t are
increased in one unit. Thus, the label assigned is that with the highest number
of votes. When two labels have the same number of votes, the label distribution
(received) decides which is the class value for the new query.



Mining Low Dimensionality Data Streams of Continuous Attributes 275

Fig. 7. Algorithm to classify new queries.

4 Empirical Evaluation

We have run all our experiments on an AMD x86/1.4Ghz and 256Mb DDR
RAM PC running Windows XP. SCALLOP have been tested for 15 continuous
attributes using a method similar to [7]. The concepts to be learned are cre-
ated by randomly generation of decision trees with 8 levels (128 concepts to be
learned). Each leaf is randomly assigned a class label between only two possi-
ble values, 0/1. The tree was grown in each internal node with a random pair
(attribute,value) that is consistent with the path from the root to such a node.
For every example of the training stream, the 15 attribute values are generated
with a simple uniform number generator as a stream of pseudo–random numbers
in the real interval [0,1]. The class label associated with each training example
is then assigned according to the target tree. As in [7], we carried out all tests
without ever writing the training examples to disk (i.e., generating them on the
fly and passing them directly to the algorithm).

We have evaluated three aspects of the performance given by SCALLOP: the
prediction accuracy, the stabilization speed, and the running time. They have
been measured for different sizes of the training stream. We have added a class
label noise level of 1% so that every 100 examples, one of them was passed with
a random label. For each training set, 10% of examples were used for testing.
We have carried out ten evaluations for each training and ten training for each
size. The values used for the parameters of the algorithm were: α = 100, β = 3,
γ = 0.9, δ = 104, λ = 0.01, µ = 2 · 104, and σ = 106.



276 F.J. Ferrer-Troyano, J.S. Aguilar-Ruiz, and J.C. Riquelme

Table 1. Performance given by SCALLOP learning 128 concepts of 15 continuous
dimensions. NE is the number of examples; CA is the classification accuracy; TC is
the percentage of test examples covered by the ruleset; AC is the accuracy obtained by
direct covering; NR is the final number of rules; NS is the total number of rules split
during the process; and RP is the number of new rules generated before α examples of
each label are read.

NE %CA %TC %AC NR NS RP
5 · 104 66.0 ± 0.70 29.3 28.8 190 780 480
1 · 105 74.0 ± 0.40 45.5 45.4 185 1400 1000
2 · 105 84.0 ± 0.17 64.5 64.4 185 2150 2050
3 · 105 91.5 ± 0.15 73.6 73.5 185 2550 3080
4 · 105 93.0 ± 0.11 81.8 81.7 185 3150 4180
5 · 105 94.0 ± 0.11 84.9 84.9 185 3225 5380
1 · 106 95.3 ± 0.02 90.4 90.4 170 3330 12370
5 · 106 95.8 ± 0.02 90.3 90.3 137 4000 72200

Table 2. Running time to build the model and classify 10% test examples. NE is the
number of examples; TL is the time needed to built the model (in seconds); TC is the
time to classify the test examples (in seconds); and %UE is the percentage of examples
that are not used to update the model.

NE TL TC %UE
5 · 104 65 0.4 42
1 · 105 115 0.6 33
2 · 105 165 1.0 24
3 · 105 210 1.3 18
4 · 105 250 1.6 16
5 · 105 290 1.6 15
1 · 106 340 2.2 6
5 · 106 925 10.8 1

Table 1 shows the results obtained with respect to the accuracy and the
stability given by SCALLOP. The last row shows the results for a changing–tree,
so that every million example the target tree was replaced making SCALLOP to
reject the generated rules. From 5 million examples, the tree was stationary. The
accuracy becomes stable from one million examples like the number of covered
examples. It is important the high percentage of test examples correctly classified
without direct cover for 5 · 104 tests (almost 37% of correctly classified) and for
105 (almost 30%). The number of split rules does not increase under a linear
trend but from one million examples tend to be asymptotic bounded. From five
million examples, the number of final rules is very near to the number of concepts
to be learned.

Table 2 shows the results obtained in running time (seconds). Column TL
shows that the running time to update the model is proportionally decreasing



Mining Low Dimensionality Data Streams of Continuous Attributes 277

as the number of examples increases, so that the system’s stability increases
as the number of examples. Column UE shows that the quality of the rules is
increasingly nearer to the real concepts to be extracted. These results lead us to
think that SCALLOP is a good choice to mine major patterns from continuous
data streams.

5 Conclusions

A scalable classification learning algorithm based on decision rules and proto-
types has been introduced in this paper. Providing a model on demand, which
improves its simplicity and helpfulness for the user, we have developed a sys-
tem for mining numerical, low–dimensionality, high–speed, time–changing data
streams that updates the model with each new example. With a refining method
as part of the algorithm, SCALLOP is able to remove out–of–date rules that have
become uninteresting for the user and wrong rules caused by noise. This period-
ical pruning does not adversely affect the computational cost but rather speeds
up its subsequent updating by helping to make the model more stable.

The strong point of our algorithm is that the generated rules know where can
extend to, what provides few rules to classify new queries without decreasing the
accuracy. This approach is different to decision tree based algorithms in that the
whole search space is not modelled and the new queries are classified by voting.

Our future research directions are oriented to drop irrelevant dimensions, and
recover dropped attributes turned relevant later (there is no much literature on
feature selection from data streams). We are also studying to deal with nominal
attributes in order to be able to compare SCALLOP with another classification
algorithms, as CVFDT [14] and SPRINT [20].

Acknowledgements. The research was supported by the Spanish CICYT un-
der grant TIC2001-1143-C03-02.

References

1. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Jorge B.
Bocca, Matthias Jarke, and Carlo Zaniolo, editors, Proc. 20th International Conf.
on Very Large Data Bases, VLDB, pages 487–499. Morgan Kaufmann, 12–15 1994.

2. P.L. Bartlett, S. Ben-David, and S.R. Kulkarni. Learning changing concepts by
exploiting the structure of change. In Computational Learing Theory, pages 131–
139, 1996.

3. P.S. Bradley, U.M. Fayyad, and C. Reina. Scaling clustering algorithms to large
database. Knowledge Discovery and Data Mining, pages 9–15, 1998.

4. J. Cattlet. Megainduction: machine learning on very large databases. PhD thesis,
Basser Department of Computer Science, University of Sydney, Australia, 1991.

5. D. Wai-Lok Cheung, J. Han, V. Ng, and C. Y. Wong. Maintenance of discovered
association rules in large databases: An incremental updating technique. In ICDE,
pages 106–114, 1996.



278 F.J. Ferrer-Troyano, J.S. Aguilar-Ruiz, and J.C. Riquelme

6. A. Dobra and J. Gehrke. Secret: A scalable linear regression tree algorithm. In
Proc. 8th ACM SIGKDD International Conf. on Knowledge Discovery and Data
Mining, Edmonton, Canada, 2002. ACM Press.

7. P. Domingos and G. Hulten. Mining high-speed data streams. In Proc. 6th ACM
SIGKDD International Conf. on Knowledge Discovery and Data Mining, pages
71–80, Boston, MA, 2000.

8. V. Ganti, J. Gehrke, and R. Ramakrishnan. Mining data streams under block
evolution. ACM SIGKDD Explorations, 3(2):1–10, 2002.

9. M. Garofalakis and R. Rastogi. Scalable data mining with model constraints. ACM
SIGKDD Explorations, 2(2):39–48, 2000.

10. J. Gehrke, V. Ganti, R. Ramakrishnan, and W.Y. Loh. BOAT – optimistic decision
tree construction. In ACM SIGMOD Conference, pages 169–180, Philadelphia,
Pennsylvania, 1999.

11. J. Gehrke, R. Ramakrishnan, and V. Ganti. Rainforest – a framework for fast
decision tree construction of large datasets. In Proc. 24th Int. Conf. Very Large
Data Bases, VLDB, pages 416–427 , 1998.

12. S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan. Clustering data streams.
In IEEE Symposium on Foundations of Computer Science, pages 359–366, 2000.

13. S. Guha, R. Rastogi, and K. Shim. CURE: an efficient clustering algorithm for
large databases. In ACM SIGMOD International Conference on Management of
Data, pages 73–84, June 1998.

14. G. Hulten, L. Spencer, and P. Domingos. Mining time-changing data streams. In
Proc. 7th ACM SIGKDD International Conf. on Knowledge Discovery and Data
Mining, pages 97–106, San Francisco, CA, 2001. ACM Press.

15. G. Hulten, L. Spencer, and P. Domingos. Mining complex models from arbitrarily
large databases in constant time. In Proc. 8th ACM SIGKDD International Conf.
on Knowledge Discovery and Data Mining, Edmonton, Alberta, Canada, 2002.
ACM Press.

16. M. Kelly, D. Hand, and N. Adams. The impact of changing populations on classier
performance, 1999.

17. R. Rastogi M. Garofalakis, D. Hyun and K. Shim. Scalable data mining with
model constraints. In Proc. 6th ACM SIGKDD International Conf. on Knowledge
Discovery and Data Mining, pages 335–339, Boston, MA, 2000.

18. L. O’Callaghan, N. Mishra, A. Meyerson, and S. Guha. High–performance clus-
tering of streams and large data sets. In Proc. 18th International Conf. on Data
Engineering, pages 359–366, 2000.

19. F. Provost and V. Kolluri. A survey of methods for scaling up inductive algorithms.
Data Mining and Knowledge Discovery, 3(2):131–169, 1999.

20. J.C. Shafer, R. Agrawal, and M. Mehta. SPRINT: A scalable parallel classifier
for data mining. In Proc. 22th International Conf. Very Large Databases, VLDB,
pages 544–555, 1996.

21. T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: an efficient data cluster-
ing method for very large databases. In ACM SIGMOD International Conf. on
Management of Data, pages 103–114, Montreal, Canada, June 1996.


	Introduction
	Related Work
	The SCALLOP Algorithm
	Refining the Model
	Classifying New Queries by Voting

	Empirical Evaluation
	Conclusions



