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1 Introduction

Nowadays an increasing interest regards the study of the development of biological
systems in which more species of individuals interact (usually to perform a certain
global task). Research ranging from completely different areas like the study of
metapopulations (the study of groups of spatially separated populations of the
same species which live in fragmented habitats and interact at some level) and
HIV infections was done in essentially the same manner. Traditionally, such studies
were done by employing continuous models where (partial) differential equations
were used to capture the dynamics of these systems.

Currently, the usage of discrete models where the system dynamics is captured
from the collective actions of individual entities has been shown to be a promising
choice. This is based on the fact that living organisms are spatially discrete and the
individuals occupy particular localities at a given time. The interactions between
individuals are strongly connected with their neighborhood relations.

While characterizing these facts a basic issue regards the way the space is rep-
resented. Simple models that involve no detailed spatial structure are in general
analytically easily solvable. However, as the complexity of the reaction-diffusion
dynamics grows, the models based on partial differential equations become in-
tractable to be analyzed.

On the other hand, integrating within the model a detailed spatial structure
(as cellular automata models do, for instance) the setback comes in general from
the impossibility to analyze the models except only by performing simulations.
Although such models have much greater biological reality, they suffer from the
difficulty of generalization (hence of finding the exact behavior). This is especially
important while formulating some practical testable predictions regarding a given
model.

P systems are formal computing devices that were initially inspired and ab-
stracted from the cell functioning (see [4]). In general, P systems make use of
multisets to represent the computational support. These multisets are placed in-
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side the membranes which in their turn are disposed in some hierarchical tree
structure. The (maximal) parallel applications of some multiset rewriting rules
(particular to each membrane) were used to process the multisets.

Although these formal systems were extensively studied with respect to their
computational power and efficiency, while representing some biological processes
many difficulties arise. Representing the data support as multisets essential sim-
plifies the structure of the environment and of the individuals from within (the
neighboring relations between the individuals are completely ignored), the focus
being over the system dynamics. However, in this case, two main assumptions are
considered: the environment is homogeneous so that the concentration of the in-
dividuals do not change with respect to space and the number of individuals of
each species in the environment is “adequately” large (hence the concentration of
the individuals might be assumed to vary continuously over the time). Moreover,
the rules that describe the interactions between the individuals are assumed to be
executed in a maximal parallel manner and governed by a global clock that marks
equal steps.

Even if all these simplifications are useful while defining a computing formal
framework, they are questionable if the aim is to model and simulate actual biolog-
ical systems. This is way many new features that are meaningful to biologists were
added to the original paradigm in order to extend its functionality and versatility
for modeling.

In order to cope with these issues, probabilistic/stochastic P systems were in-
troduced (see [2], [6], [1]). In general, the main idea was to associate to the rules
some weights describing how they should be applied at a given moment. For a
particular rule, the weight gives the susceptibility of its execution at certain in-
stant. Hence, applying this principle to all interaction rules it sets up more realistic
bounds of the nondeterministic application of the rules. The ultimate goal of this
approach is to integrate the structural and dynamical characteristics of a real bio-
system into the way the rules of the model are selected to be applied and executed
(preserving at the same time the unstructured computing support). Although this
method has in general good simulation time complexity it is inadequate if the
interacting species are poorly represented, when there exist many “inactive” indi-
viduals (that are not the subject of any rule) with respect to the entire population
of individuals, or when the environment is not homogeneous.

2 Preliminaries

We assume the reader familiar with the basic notions of P systems (one can con-
sult [4] for more details), so that here we only recall some notions regarding the
abstract rewriting systems on multisets. ARM systems represent a variant of P
systems which was proposed in order to perform simulations of some bio-chemical
processes. Later on, due to its modeling flexibility, it was used to study some sym-
biotic mechanism of an ecological system and even for proposing a novel theory of
evolution.
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ARMS is a stochastic model that uses multisets to represent the bio-chemical
support. Multiset rewriting rules are used to describe the bio-chemical reactions.
As opposed to the classical definition of P systems where the rules are applied in
a nondeterministic, maximal parallel manner and with competition on the objects
composing the multisets, in ARMS the rules obey the Mass Action Law where the
frequency of a reaction follows the concentration of bio-chemicals and a rate con-
stant. Consequently, the rules to be applied are chosen probabilistically from the
rules set and each probability is given by the ratio of the total number of colliding
chemicals of a reaction to the sum of the total number of colliding chemicals of
every reactions in the rule; the applications of the rules remain parallel and with
competition on the objects.

More formally, an ARM system is a construct Π = (O, w,R) where O is the
alphabet of objects, w represents the multiset of objects at the beginning of com-
putation, and R is a set of multiset rewriting rules of type u

k→ v, where u ∈ O+,
v ∈ O∗, and k ∈ R is the rate constant of the rule.

For example, in case of a cooperative rule of type ri : aA + bB → cC + dD
and a given multiset of objects M , the probability of rule execution is defined
as Prob(ri) = kiM

a
AMb

B

R , where k is the rate constant (determined experimentally)
and R is a coefficient for normalizing the probabilities (

∑
i

Prob(ri) = 1). Similarly,

probabilities can be defined for any type of rules.
The system Π starts to evolve from the initial configuration (represented by

w) by applying the rules in parallel, randomly selecting the rules but according
with the probabilities computed as above. Π is governed by an universal clock
that marks equal time units.

We have run more tests using an ARM system Π where O = {A,B, C,D, X, F},
and the set of rules R is given bellow:

r1 : AB
k1→ X r8 : F

k8→ F

r2 : AC
k2→ X r9 : A

k9→ A

r3 : BD
k3→ X r10 : B

k10→ B

r4 : CD
k4→ F r11 : C

k11→ C

r5 : FX
k5→ FF r12 : D

k12→ D

r6 : FA
k6→ FF r13 : X

k13→ X

r7 : FB
k7→ FF

The initial configuration of Π was w = A250B250C5D5 and in our tests we used
several values for ki, 1 ≤ i ≤ 13. The system attempts to simulate the behavior
of some interacting individuals, represented here as the objects A, B, C, and D,
sharing the same environment. In addition, the individuals corresponding to the
objects C and D (which are much less than the individuals corresponding to the
objects A and B) share a localized patch in the environment. Thus, we assumed
the environment not to be homogeneous.



228 D. Sburlan

If at least once the objects C and D interact (i.e., the rule CD
k4→ F is applied)

they will produce an object F which will trigger the conversion of all existing
objects in the multiset into F (the rules r5, r6, and r7). The rest of the rules (r8

till r13) are used to slow down the rate of parallelism.
Since we have assumed the existence of a patch in the environment of indi-

viduals corresponding to objects C and D, then we could make another further
assumption: if the patch is “large enough” so that there exists at least two indi-
viduals C and D which are not interacting initially with the individuals A and B,
then there exists a “significant” probability that the rule CD

k4→ F is executed.
While using multisets to represent the individuals in the environment we lose the
structure, hence when simulating such systems we actually have to relay on the
probabilities of the executions of the rules (which in their turn depend on some
constants experimentally determined). In Figure 1, one can notice the different
behaviors of the same system and they are related to the usage of such proba-
bilities. The charts shown on the right hand side present a simulation when the
rule CD

k4→ F was executed at least once, while the charts on the right hand side
present a simulation when the rule CD

k4→ F was not executed at all. Although
the model considered is very simple a similar situation might happen when repre-
senting some complex systems. Even more, such situations might emerge during
the system evolution and sudden shifts in the behavior might arise from some
minor changes in the circumstances; if this is the case, then it would make almost
impossible the precise identification of the rate constants associated to the rules.

Fig. 1. Two runs of system Π. The results are presented on columns and they show the
different behaviors of the same system when some minor changes in the circumstances
happen.
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Besides all of these issues, if the number of objects in the model decreases
under a certain limit, the usage of probabilities to specify the way the rules are
applied becomes inadequate.

3 PGR Systems

Aiming to tackle the mentioned issues, in this section we introduce a new model
for simulating bio-systems composed by interacting individuals of various species
in a given environment.

Denote by C the set of species in an environment represented here as a metric
space (for simplicity, let Rk, k ≥ 2, be the environment). Let V ⊆ L × C be
the finite set of labeled individuals in the environment (L denotes a finite set of
labels that uniquely identify the individuals in the environment). In addition, let
f : V → Rk, k ≥ 2, be a bijective mapping; for a node v = (n, l) ∈ V , the value
h(v) denotes the position of the individual v in the environment. In addition let
r > 0, r ∈ R, be a positive constant.

Based on above definition one can represent the environment and the individ-
uals from within as a graph G0 = (V0, E0) where V0 = V and the set of edges is
constructed as follows: for two nodes v1, v2 ∈ V , if h(v1) belongs to the open ball
centered in h(v2) and with radius r (i.e., h(v1) ∈ B(h(v2), r)) then there exists an
edge from v1 to v2.

For simplicity we assume that G0 is connected, that is, for any two nodes
m,n ∈ V there exists a sequence m = v0, v1, . . . , vt = n ∈ V such that h(vi) ∈
B(h(vi−1), r), for 1 ≤ i ≤ t.

Fig. 2.

Motivated by these facts we can introduce the following model. A parallel graph
rewriting system (in short, a PGR system) is a construct Γ = (C, G0, R) where
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• C = {c1, . . . , ck} is a finite set of symbols;
• G0 = (V0, E0) is the initial global graph – a connected graph such that

V0 ⊆ L × C is a set of labeled nodes and E0 ⊆ V0 × V0 is a set of edges between
nodes from V0;

• R is a finite set of graph rewriting rules.
A graph rewriting rule r ∈ R is of the following type:

r = (G1 = (V1, E1), G2 = (V2, E2)),

where Vi ⊆ Li ×C, Ei ⊆ Vi × Vi, i ∈ {1, 2}. The graphs G1 and G2 are connected
graphs; G1 represents the neighboring relations between the individuals that are
required for an interaction to take place and G2 represents the output of an actual
interaction between individuals represented in G1. In addition we will assume
that G1 and G2 are not arbitrary graphs, but rather they obey some physical
constraints: any node from G1 and G2 cannot be the subject of more than a
constant tr ∈ IN edges – a condition that assume the nonexistence of more than
tr individuals in an open ball of radius r.

A graph rewriting rule r = (G1, G2) ∈ R can be applied on a graph G if G1

is label isomorphic with some subgraph Gs = (Vs, Es) of G, that is, there exists
a bijective mapping h : V1 → Vs such that h((m, c)) = (n, c) and h−1((n, c)) =
(m, c), where (m, c) ∈ V1, (n, c) ∈ Vs and such that any two nodes u, v ∈ Vs are
adjacent in Gs if and only if h(u) and h(v) are adjacent in G1 (see Figure 3).

In other words, a graph rewriting rule r can be applied on G iff the left-hand
side rule’s graph is “contained” in G both as layout and as corresponding node
labels (via an edge/label-preserving bijection).

Fig. 3. A graph G = (V, E) denoting the computing support and a graph rewriting rule
r = (G1, G2). The sites where the rule r can be applied in G are explicitly figured. If Gs =
(Vs = {(n4, B), (n5, A)}, Es = {((n4, B), (n5, A))}) then G1 is label isomorphic with Gs.
The neighborhood set of degree k = 1 of Gs is B1 = {(n3, A), (n6, C), (n7, C), (n8, B)}.

Applying a rule r over G follows the following steps:
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• eliminate Gs from G (all the nodes from Vs are eliminated from V ; all the edges
of the type (v, vs), v ∈ V , vs ∈ Vs are deleted from E);

• add G2 to G (some relabeling of the nodes from G2 is required in order to avoid
duplicates of nodes at multiple application of r). All the (relabeled) nodes and
edges of G2 are added to G;

• add a set of edges from some nodes of V2 to some nodes of V \ (Vs ∪ V2). The
edges are established as described below.

For the graph Gs let us define the neighborhood set of degree k

Bk = {v ∈ V \ Vs | there exists a path of length
less or equal with k from v to a node u ∈ Vs}.

As we mentioned above, the output of the application of a rule consists of new
individuals that, by hypothesis, at the moment of their apparition it is assumed to
belong to the same vicinity. How big is that vicinity and how the new individuals
are related to the rest depend on many factors among which we just mention the
type of the rule and the environment. Consequently, in our framework, the set Bk

is useful when defining the new neighborhood relations triggered by the application
of a rule. By some straightforward physical arguments, the output graph G2 of
the rule r is likely to be “connected” to G via the nodes from Bk. However, for
simplicity, we will consider the neighborhood set of degree 1 in our simulations.

Let E = {(n1, n2) ∈ E | n1 ∈ B1, n2 ∈ Vs}. Then, a number equals with
card(E) of random edges from the nodes of G2 to the nodes from B1 are added
to G but such that any node considered is not the subject of more than tr edges.

Starting from the initial configuration (the initial global graph G0), the system
evolves according to the rules from R and the current labeled graph in a non-
deterministic parallel manner (but not necessarily maximal). The labeled graph
of Γ at any given moment constitutes the configuration of the system at that
moment. For two configurations GA and GB we can define a transition from GA

to GB if we can pass from GA to GB by applying rules from R.
Determining whether two graphs are isomorphic is referred to as the graph

isomorphism problem. Although this problem belong to NP it is neither known
to be solvable in polynomial time nor it is NP-complete. A generalization of this
problem (that is used in our formalism) is the subgraph isomorphism problem
which is NP-complete; hence the known deterministic algorithms for this problem
are exponential.

Remark 1. There is a physical motivation to assume that after applying a rule of
the system, the newly produced objects (that correspond to the output nodes of
the rule) belongs to the same vicinity, hence the left hand side graph of any rule
should be complete.

Remark 2. For a given PGR system, as much as the radius r grows (hence the
number of edges in the initial global graph is close to n(n−1)

2 where n is the number
of the nodes, that is, the initial global graph is “almost” complete) and the degrees
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of the neighboring sets grow as well, the result of a simulation is similar with one
obtained using parallel multiset rewriting. This is because multisets can be seen
in our formalism as complete graphs, hence any individual in the system is in a
neighboring relation with any other individual (hence, they can interact if proper
rules exist).

4 PGRS Simulator and a Test Case

The simulator implements the model introduced in Section 3. Its main characteris-
tics regard the definition of the rules set by using an XML file, and the possibility
to save/load intermediate configurations. The simulator is written in Java lan-
guage hence it benefits of cross-platform compatibility, parallelism, and possibility
to distribute the computational effort.

The task that has the most computational resource consumption is the sub-
graph isomorphism problem which is addressed whenever a rule r = (G1, G2) is
selected for application and the set S of all the subgraphs of the global graph that
are isomorphic with G1 has to be determined. Even more, whenever a subgraph
G ∈ S is selected to be rewritten by r, a run through all the elements of S has
to be performed in order to eliminate those subgraphs that have some nodes from
G. Considering all these matters for all the rules from the rule set and a relatively
small global graph, the overall time complexity for simulating just one computa-
tional step is exponential. Nevertheless, if the left hand side graphs of the rules
from the rule set are very simple (i.e., less than 4 nodes) and the global graph
contains at most hundreds of nodes, the problem is feasible. Moreover, taking into
account that the problem can be easily parallelized one can divide the the problem
into smaller instances and distribute them over a network.

Let us consider the following PGR system Γ = (C, G0, R) where
• C = {A,B, C,D, F,X},
• R = {r1, r2, r3, r4, r5, r6, r7, r8} is defined as follows:

In our tests, the initial global graph G0 was build to obeying some properties.
First of all, a random graph G′0 was generated and this graph contains 500 nodes
labeled only with A and B (the apparition of these labels are equally probable) and
2000 edges. A second graph G′′0 was generated and this graph contains 10 nodes
labeled only with C and D (the apparition of these labels are equally probable)
and 30 edges. Finally, G′0 and G′′0 were merged together in order to form G0 by
connecting 10 randomly chosen nodes from G′0 with 10 randomly chosen nodes
from G′′0 .

We ran the simulator for 100 times, considering for each run a new initial
global graph generated as above. In Figure 4 are represented the minimal and the
maximal values at each step of the simulation for the objects A, B, C, and D.
Any particular simulation graphic from our test case lay between the boundaries
established.
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Fig. 4. The results of 100 simulations of different GPR systems but having the same
properties. The minimal and maximal obtained values are explicitly marked.

5 Conclusions

Simulations performed using PGR systems in some cases give more accurate an-
swers than ARMS simulations because they explicitly use the spatial distribution
of individuals (hence the neighborhood relations can be extensively expressed).
However the price to pay while using PGR systems regards the computational
effort which in their case is exponential as time complexity. Nevertheless, for some
cases when the number of interacting individuals in the environment is small and
they are not dense, the PGR systems might be useful for performing simulations.

In order to handle these issues, a hybrid system combining features from the
ARM and PGR systems might be proposed. Two directions could be taking into
account:

• one can use alternatively an ARMS-type simulation whenever the number of
individuals from all the species is large and a PGRS-type simulation whenever
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the number of individuals from certain species goes below some threshold;
in this case the newly obtained system uses in a more careful manner the
probabilities for the rules executions.

• one can use in parallel an ARMS-type simulation over a multiset of many
individuals and a PGRS-type simulation on relatively small instances of graphs.
Then one can consider a time sequence and at each moment in the sequence
one can merge the ARMS configuration with the multiset of labels of the nodes
from the graph (or one can exchange some data between these simulations). In
this way, the newly obtained hybrid systems become more robust against some
unexpected changes in the behavior (which might be triggered by some minor
changes).
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