
Applied Mathematics and Computation
Computing the Tutte polynomial of Archimedean tilings
⇑ Corresponding author.
E-mail addresses: dgarijo@us.es (D. Garijo), manuel.gegundez@gmail.com (M.E. Gegúndez), almar@us.es (A. Márquez), pastora@us.es (M.P. R

fsagols@math.cinvestav.edu.mx (F. Sagols).
D. Garijo a,⇑, M.E. Gegúndez b, A. Márquez a, M.P. Revuelta a, F. Sagols c

a Departamento de Matemática Aplicada I, Universidad de Sevilla, Spain
b Departamento de Matemáticas, Universidad de Huelva, Spain
c Departamento de Matemáticas, CINVESTAV-IPN, Mexico

o

Keywords:
Tutte polynomial
Archimedean tilings
Tutte polynomial evaluations
a b s t r a c t

We describe an algorithm to compute the Tutte polynomial of large fragments of Archime-
dean tilings by squares, triangles, hexagons and combinations thereof. Our algorithm
improves a well known method for computing the Tutte polynomial of square lattices.
We also address the problem of obtaining Tutte polynomial evaluations from the symbolic
expressions generated by our algorithm, improving the best known lower bound for the
asymptotics of the number of spanning forests, and the lower and upper bounds for the
asymptotics of the number of acyclic orientations of the square lattice.
1. Introduction

The Tutte polynomial is a two-variable polynomial TðG; x; yÞ associated with any graph G, which contains a significant
amount of information about the graph. It encodes many numerical invariants such as the number of spanning trees, the
number of spanning forests, the number of acyclic orientations and the number of spanning connected subgraphs. Addition-
ally, many one-variable polynomials associated to graphs can be obtained from partial evaluations of the Tutte polynomial,
among them, the chromatic polynomial, the flow polynomial and the reliability polynomial [2].

It is well-known that the computation of the Tutte polynomial is NP-hard [16]. Also, evaluating TðG; x; yÞ for specific
points ðx; yÞ is NP-hard except for the points on the hyperbola ðx � 1Þðy � 1Þ ¼ 1 or when ðx; yÞ equals
ð1; 1Þ; ð�1; �1Þ; ð0; �1Þ; ð�1; 0Þ; ði; �iÞ; ð�i; iÞ; ðj; j2Þ; ðj2

; jÞ where j ¼ eð2pi=3Þ for which it can be done in polynomial time
[16,26]. Vertigan [29] has extended this by showing that a similar result holds for planar graphs except that, in this case,
for the additional points lying on the hyperbola ðx � 1Þðy � 1Þ ¼ 2, the problem can be solved again in polynomial time.

Thus, there are no efficient algorithms to compute the Tutte polynomial of large graphs, i.e., dealing with a significant
number of vertices. Royle [20] developed an algorithm which determines in seconds the Tutte polynomial of scarce graphs
with at most 14 vertices. Sekine et al. [21] described algorithms requiring about an hour in a workstation (from 1995) to
compute Tutte polynomials of general random graphs with 14 vertices and 91 edges; also, it took a similar time to compute
the Tutte polynomial of a plane graph with 144 vertices and 246 edges using their method. Haggard et al. [14] presented an
algorithm that can go much further, processing random graphs of 14 vertices and 70 edges in seconds. They repeated their
experiments with random graphs containing 16 vertices and 100 edges requiring 3000 s; they also performed additional
experiments using random planar graphs, requiring 3500 s for 3-regular planar graphs with 40 vertices, and the same time
evuelta),

http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2014.06.067&domain=pdf
mailto:dgarijo@us.es
mailto:manuel.gegundez@gmail.com
mailto:almar@us.es
mailto:pastora@us.es
mailto:fsagols@math.cinvestav.edu.mx

D. Garijo et al. / Applied Mathematics and Computation 242 (2014) 842–855 843
was needed on 4-regular planar graphs with 26 vertices. The authors also used their implementation to find counterexam-
ples to a conjecture of Welsh on the location of the real roots of the flow polynomial of a graph.

A natural approach to the problem of computing Tutte polynomials is to restrict the study to specific fam-
ilies of graphs. Calkin et al. [6] used transfer matrices to compute Tutte polynomials of square lattices in order
to obtain asymptotic results for the number of forests and acyclic orientations. Nevertheless, they mentioned
that, computationally, their method is not feasible since the required space to store the transfer matrix grows
exponentially.

From the point of view of statistical physics, the Tutte polynomial appears as the partition function of the q-state Potts
model ZðG; q;vÞ [27]. Indeed,
TðG; x; yÞ ¼ ðx� 1Þ�cðy� 1Þ�nZðG; ðx� 1Þðy� 1Þ; ðy� 1ÞÞ;
where G is a graph with n vertices and c connected components. In particular, the Tutte polynomial is remarkably close to
two classical models: the Ising and the Potts models. They have an interpretation as direct evaluations of the Tutte polyno-
mial [25].

Part of our motivation for computing the Tutte polynomial of fragments of Archimedean tilings is because of the impor-
tance of some of these structures as vertex models in statistical physics. There is an extensive physics literature about com-
puting the partition function of families of graphs, most of which are square lattices, triangular lattices or different types of
graphs with repetitive structures. See [7,8,23] for information about this topic.

In this paper, we present an algorithm for computing the Tutte polynomial of large fragments of Archimedean tilings
by squares, triangles, hexagons and the possible combinations thereof. These tilings are introduced together with the
Tutte polynomial in Section 2. In Section 3, we introduce the notion of graphic tile which is the key tool to codify
Archimedean tilings as repetitive structures of graphs. Using this codification, in Section 4, we first describe the algo-
rithm pointing out some factors which might affect its performance. Then, we discuss its running time complexity,
and explain how our algorithm improves the method presented by Calkin et al. [6] for the square lattice. Finally,
Section 5 is devoted to obtain numerical results since Tutte polynomial evaluations have important physical applications.
We also compare our numerical results against the evaluations performed by Calkin et al. [6], improving the best known
lower bound for the asymptotics of the number of spanning forests, and the lower and upper bounds for the asymptotics
of the number of acyclic orientations of the square lattice. For evident reasons we do not include the Tutte polynomials
we have calculated, but the files containing them, the programs used, and the documentation are available on request
from fsagols@math.cinvestav.edu.mx.

2. Preliminaries

2.1. Archimedean tilings

A plane tiling is a countable family fT1; T2; . . .g of closed sets, called tiles, which cover the Euclidean plane with-
out gaps or overlaps, i.e., the union of the tiles T ¼ [ifTig is the whole plane and the interiors of the tiles are
pairwise disjoint. In this paper, we follow the notation and terminology introduced by Grünbaum and Shephard
in [13].

An edge-to-edge tiling is a type of plane tiling where each tile is a regular convex polygon and the intersection of every
pair of non-disjoint tiles is either a vertex of the tiling or an edge of the tiling which correspond to vertices and edges of the
polygons, respectively. Thus, no tile shares a partial side with any other tile.

A vertex of the tiling is said to be of type p1:p2: � � � :pr if it is surrounded in cyclic order by regular polygons of order
p1; p2; . . . ; pr .

All the vertices of the tiling are of the same type if the same types of polygons meet in the same order (ignoring orienta-
tion) at each vertex. In this case, the tiling is denoted by p1:p2: � � � :pr , referring the vertex type.

An edge-to-edge plane tiling by copies of a single regular polygon is called a regular tiling. It is well known that there are
exactly three regular tilings of the plane: by equilateral triangles, by squares or by regular hexagons (which are written, for
short, 36;44 and 63, respectively). More generally,

Theorem 2.1 [13]. There are precisely 11 distinct types of edge-to-edge tilings by regular polygons such that all the vertices of the
tiling are of the same type.

These 11 tilings are called Archimedean tilings (also homogeneous tilings or semi-regular tilings). Note that they include the
three regular tilings.

We have considered those Archimedean tilings by three types of polygons: squares, triangles and hexagons. This
gives a total of eight tilings which are: 36;44;63, 3:4:6:4;33:42;32:4:3:4;34:6, and 3:6:3:6. Nevertheless, for the sake
of brevity, we only show as examples in this paper the tilings 44 and 3:4:6:4. In both cases, where no confusion
can arise, we shall write 4 and 3:4:6, indicating only the polygons that are used to obtain the tiling. See Figs. 1(d)
and 2(b) for fragments of these tilings (the notation used in the caption of these figures will be introduced in the next
section).

Fig. 1. Graphic tile T 4: (a) G4;GH;1;GH;2;GV ;1 and GV ;2; (b) T 4ð1;1Þ; (c) T 4ð2;2Þ and (d) T 4ð3;3Þ.

Fig. 2. Graphic tile T 346: (a) G346 and (b) T 346ð3;4Þ.

844 D. Garijo et al. / Applied Mathematics and Computation 242 (2014) 842–855
2.2. The Tutte polynomial

Let G ¼ ðV ; EÞ be a graph with kðGÞ connected components, rank rðGÞ ¼ jV j � kðGÞ and nullity nðGÞ ¼ jEj � rðGÞ. For every
subset A # E, its rank is rðAÞ ¼ jV j � kðGjAÞ where kðGjAÞ is the number of connected components of the spanning subgraph
ðV ;AÞ. The Tutte polynomial of G is given by
TðG; x; yÞ ¼
X
A # E

ðx� 1ÞrðEÞ�rðAÞðy� 1ÞjAj�rðAÞ
: ð1Þ
The graphs resulting from deleting and contracting an edge e 2 E are denoted by G� e and G=e, respectively. An edge e is a
bridge in G if rðG� eÞ ¼ rðGÞ � 1 and a loop in G if nðG=eÞ ¼ nðGÞ � 1. The edges that are neither a bridge nor a loop are called
ordinary.

A function F from (isomorphism classes of) graphs to the polynomial ring C½a; b; c; x; y� is a generalized Tutte–Gröthen-
dieck invariant [4,11] if it satisfies, for each graph G ¼ ðV ; EÞ and any edge e 2 E, the following recurrence relations
FðGÞ ¼

cjV j if E ¼ ;;
xFðG=eÞ if e is a bridge;
yFðG� eÞ if e is a loop;
aFðG=eÞ þ bFðG� eÞ if e is an ordinary edge:

8>>><
>>>:

ð2Þ

D. Garijo et al. / Applied Mathematics and Computation 242 (2014) 842–855 845
The Tutte polynomial is an example of Tutte–Gröthendieck invariant for a ¼ b ¼ c ¼ 1 [26] and so,
TðG; x; yÞ ¼

1 if E ¼ ;;
xTðG=e; x; yÞ if is a bridge;
yTðG� e; x; yÞ if is a loop;
TðG=e; x; yÞ þ TðG� e; x; yÞ if e is ordinary:

8>>><
>>>:

ð3Þ
This alternative formulation in terms of deleting and contracting edges is, perhaps, one of its most important properties.
In fact, the following theorem states that every Tutte–Gröthendieck invariant is essentially an evaluation of the Tutte
polynomial.

Theorem 2.2 [4]. If F is a generalized Tutte–Gröthendieck invariant satisfying Eq. (3) then
FðGÞ ¼ ckðGÞarðGÞbnðGÞT G;
x
a
;
y
b

� �
:

The interpretation of this expression for a ¼ 0 or b ¼ 0 is given in [3].

Note that the definition of the Tutte polynomial as a Tutte–Gröthendieck invariant makes clear that the coefficients of the
Tutte polynomial are non-negative integers [3] which is not evident from Eq. (1).

3. Codifying large fragments of Archimedean tilings

We start by introducing the notion of graphic tile which is the key tool to codify Archimedean tilings as repetitive struc-
tures of graphs.

A graphic tile is a 7-tuple T ¼ ðG;GH;1;GH;2;/H;GV ;1;GV ;2;/V Þwhere: (1) G is a graph, called the base graph, (2) GH;1;GH;2, GV ;1

and GV ;2 are subgraphs of G such that VðGH;1Þ \ VðGH;2Þ ¼ ; and VðGV ;1Þ \ VðGV ;2Þ ¼ ;, (3) /H is an isomorphism from GH;1 to
GH;2, (4) /V is an isomorphism from GV ;1 to GV ;2.

A first example of graphic tile is illustrated in Fig. 1(a) where we have
T 4 ¼ ðG4 ¼ ðf0;1;2;3g; fð0;1Þ; ð1;3Þ; ð3;2Þ; ð2;0ÞgÞ;GH;1 ¼ ðf0;2g; fð0;2ÞgÞ;GH;2 ¼ ðf1;3g; fð1;3ÞgÞ;
/H ¼ ffð0;1Þ; ð2;3Þgg;GV ;1 ¼ ðf0;1g; fð0;1ÞgÞ;GV ;2 ¼ ðf2;3g; fð2;3ÞgÞ;/V ¼ ffð0;2Þ; ð1;3ÞggÞ
and an isomorphism is written as / ¼ fðv ;/ðvÞÞ jv 2 Vg.
From now on, let m;n be positive integers and let T be a graphic tile. Denote by T ðm;nÞ the graph composed by an

arrangement of mn graphs Gi;j;0 6 i 6 m� 1;0 6 j 6 n� 1, where each Gi;j is a copy of G. For i ¼ 0; . . . ;m� 2 the vertices
in GH;2 of Gi;j are identified with their corresponding isomorphic vertices in GH;1 of Giþ1;j, and for j ¼ 0; . . . ;n� 2 the vertices
in GV ;2 of Gi;j are identified with their corresponding isomorphic vertices in GV ;1 of Gi;jþ1. Any parallel edge generated in this
construction is deleted.

Among all possible fragments of tilings generated by graphic tiles as described above, we focus on Archimedian tilings. To
identify them, we use the vertex type as a sub-index for the graphic tile T and also for the base graph G (see Figs. 1 and 2). For
instance,
T 3:4:6 ¼ ðG3:4:6;GH;1 ¼ ðf0;1g; fð0;1ÞgÞ; GH;2 ¼ ðf16;17g; fð16;17ÞgÞ; /H ¼ fð0;16Þ; ð1;17Þg;
GV ;1 ¼ ðf3;5;8;11g; ;Þ; GV ;2 ¼ ðf4;7;10;13g; ;Þ; /V ¼ fð3;4Þ; ð5;7Þ; ð8;10Þ; ð11;13ÞgÞ
and T 3:4:6ðm;nÞ denotes the fragment of the Archimedean tiling by triangles, squares and hexagons formed by the arrange-
ment of mn copies of the base graph (Fig. 2). To simplify this notation the dots separating the numbers of the type are
dropped.

We shall use the following non-standard definition of sum of two graphs. For a graph H and e 2 EðHÞ, denote by pHðeÞ the
multiplicity of e (i.e., the number of edges sharing the same end vertices). Given two vertex-labeled graphs H1 and H2, the
sum H1 þ H2 has vertex set VðH1Þ [VðH2Þ and edge set consisting of all edges e 2 EðH1Þ [EðH2Þ taken with multiplicity
pH1þH2

ðeÞ ¼maxðpH1
ðeÞ; pH2

ðeÞÞ. Fig. 3 illustrates this operation.
Fig. 3. Sum of H1 and H2.

846 D. Garijo et al. / Applied Mathematics and Computation 242 (2014) 842–855
Let k be an integer in ½1;m�. The k-level graph of T ðm;nÞ, denoted by Lk, is the graph induced by the edges in T ðm;nÞ com-
ing from the copies Gk�1;j for 0 6 j 6 n� 1; therefore T ðm;nÞ ¼ Rm

k¼1Lk (see Fig. 4). Clearly, two graphs Lk and Lk0 are isomor-
phic for any pair of integers k; k0 2 ½1;m�.

The edges in Lk are split into two sub-sets: Bk containing those edges coming from a copy of one edge in GH;1, and
Ek ¼ EðLkÞ � Bk. Note that the edges in Bk do not necessarily form a connected graph. Observe also that these edges belong
to both Lk and Lk�1;1 < k 6 m.

For technical reasons, we shall use Lmþ1;Bmþ1 and Emþ1 which are natural extensions to the graphs introduced above.

4. Computing the Tutte polynomial of T ðm;nÞ

In this section, we first present an algorithm to compute the Tutte polynomial of large fragments of Archimedean tilings.
Then, we analyze its running time complexity, and explain how our algorithm improves the method presented by Calkin
et al. in [6] for the square lattice.

The computation of the Tutte polynomial of T ðm;nÞ proceeds by levels starting at k ¼ m, then it continues with level
k ¼ m� 1 and so on. To start, we process level m applying the recursive relations given by Eq. (3) to TðLm; x; yÞ. Then an
expression of the following type is obtained,
TðLm; x; yÞ ¼
Xt

i¼1

Piðx; yÞTðRm;i; x; yÞ; ð4Þ
where Rm;i is a residual graph, i.e., a graph obtained from Lm by successively deleting or contracting edges that satisfies
two conditions: (1) it contains Bm as a subgraph; (2) the resulting graph of either deleting or contracting any of its edges
does not contain Bm as a subgraph. It is easy to check that Bm is a residual graph of Lm, say Bm ¼ Rm;1. Further, variable t
in Eq. (4) indicates the number of different residual graphs obtained from Lm, and Piðx; yÞ is a polynomial in x; y with
coefficients in Z.

Note that if m is replaced by an arbitrary k in Eq. (4), the equality is preserved since Lm and Lk are isomorphic graphs and
so the residual graphs Rm;i and Rk;i are exactly the same. Hence, an explicit reference to the level is irrelevant and the residual
graphs corresponding to any Lk will be written as Ri;1 6 i 6 t, assuming that R1 ¼ Bk.

Now, for each residual graph Ri;1 6 i 6 t, we determine TðLk þ Ri; x; yÞ by applying the same contraction–deletion proce-
dure as above (except for the case Lk þ R1 which is isomorphic to Lk). Different residual graphs from those obtained for Lk

might appear. Denote by R1 the set of all residual graphs coming from Lk þ Ri for i ¼ 1; . . . ; t. Then, apply again the contrac-
tion–deletion process to Lk þ R for every R 2 R1 giving rise to a new set of residual graphsR2. The procedure is repeated until
no new residual graph appears. Denote by R1;R2; . . . ;Rs; s P t, the complete sequence of residual graphs obtained after com-
pleting the process. Compute TðLk þ R‘; x; yÞ for ‘ ¼ 1; . . . ; s (many of which have already been computed in previous steps of
the process) obtaining similar expressions to Eq. (4),
TðLk þ R‘; x; yÞ ¼
Xs

j¼1

P‘;jðx; yÞTðRj; x; yÞ: ð5Þ
Fig. 4. Definitions of Lk and Bk: (a) for T 4ð7;5Þ and (b) for T 346ð3;4Þ.

D. Garijo et al. / Applied Mathematics and Computation 242 (2014) 842–855 847
Notice that only deletions and contractions which do not modify Bk are done. Observe also that the number s of
residual graphs could be infinite unless the edges in R‘ are processed first. The deletion and the contraction of these
edges do not modify Bk since, by definition, VðGH;1Þ is disjoint from VðGH;2Þ; in other words Bk and R‘ do not have com-
mon vertices. After all edges in R‘ are deleted or contracted, the remaining graph has at most jEmj edges which could be
deleted and contracted, so the number of residual graphs is bounded and s is finite. Thus, we have shown the following
result.

Proposition 4.1. For every integer k;1 6 k 6 m, there exists a finite number s of residual graphs R1; . . . ;Rs with R1 ¼ Bk and such
that, for every ‘ 2 ½1; s� the Tutte polynomial TðLk þ R‘; x; yÞ can be expressed in terms of TðRj; x; yÞ for j ¼ 1; . . . ; s.

Observe that, in Eq. (5), P‘;jðx; yÞ are polynomials in x and y (which might be zero) and independent of k since for any pair
k; k0 2 ½1;m� the graph Lk þ R‘ is isomorphic to Lk0 þ R‘. Hence, for each residual graph R‘, the Tutte polynomial
TðT ðm;nÞ þ R‘; x; yÞ can be computed as follows
TðT ðm;nÞ þ R‘; x; yÞ ¼ T
Xm

k¼1

Lk þ R‘; x; y

 !
¼
Xs

j¼1

P‘;jðx; yÞ � T
Xm�1

k¼1

Lk þ Rj; x; y

 !
: ð6Þ
Then
T
Xm

k¼1

Lk þ R1; x; y

 !

T
Xm

k¼1

Lk þ R2; x; y

 !

. . .

T
Xm

k¼1

Lk þ Rs; x; y

 !

2
666666666666664

3
777777777777775

¼ M �

T
Xm�1

k¼1

Lk þ R1; x; y

 !

T
Xm�1

k¼1

Lk þ R2; x; y

 !

. . .

T
Xm�1

k¼1

Lk þ Rs; x; y

 !

2
666666666666664

3
777777777777775

¼ M2 �

T
Xm�2

k¼1

Lk þ R1; x; y

 !

T
Xm�2

k¼1

Lk þ R2; x; y

 !

. . .

T
Xm�2

k¼1

Lk þ Rs; x; y

 !

2
666666666666664

3
777777777777775

¼ . . . ¼ Mm � b; ð7Þ
where
M ¼

P1;1ðx; yÞ P1;2ðx; yÞ . . . P1;sðx; yÞ

P2;1ðx; yÞ P2;2ðx; yÞ . . . P2;sðx; yÞ

.

Ps;1ðx; yÞ Ps;2ðx; yÞ . . . Ps;sðx; yÞ

2
6666664

3
7777775

and ð8Þ

b ¼

TðR1; x; yÞ
TðR2; x; yÞ

. . .

TðRs; x; yÞ

2
6664

3
7775: ð9Þ
Thus, we reach our main result in this section.

Theorem 4.2. The Tutte polynomial of T ðm;nÞ is obtained in the first entry of the vector Mm � b at right hand of Eq. (7).
Note that Theorem 4.2 would be useless without Proposition 4.1 which guarantees that M has finite order and so the Tutte

polynomial of T ðm;nÞ can be evaluated in an effective way.

4.1. The implemented algorithm

The codification described in Section 3 and Theorem 4.2 allow developing the following algorithm to compute the Tutte
polynomial of T ðm;nÞ. It takes as input the value n and a graphic tile T and yields the matrix M, and the vector b appearing at
right hand of Eq. (7).

848 D. Garijo et al. / Applied Mathematics and Computation 242 (2014) 842–855
ALGORITHM TUTTE-MATRIX-COMPUTATION [To find the matrix elements to compute the Tutte polynomial of T ðm;nÞ].

Input: n; T .
Output: M;b.
Method:
‘‘M and B represent an s� s two-dimensional matrix and an s one-dimen-sional vector, respectively. Here s stands for

the number of residual graphs and it will remain unknown until the end of the algorithm’’
1. LayerModel G
2. for i n do
3. Identify the last copy of GV ;2 incorporated to LayerModel with the

subgraph GV ;1 of a new copy of G.
4. BkModel Graph induced by the edges in LayerModel coming from

a copy of GH;1.
5. Bkþ1Model Graph induced by the edges in LayerModel coming

from a copy of GH;2.
6. ResidualQueue fBkModelg
7. ordinalðBkModelÞ 1
8. NextOrdinal 2
9. while ResidualQueue – ; do
10. R extractElementðResidualQueueÞ
11. H LayerModelþ R

‘‘In this operation the isomorphic copy of Bkþ1Model of
LayerModel is identified to the isomorphic copy of BkModel
in R’’

12. Starting with the edges in R apply the recursive formula to compute
TðH; x; yÞ until the expression is solely in terms of residual graphs.

13. for each residual graph R0 in the expression for TðH; x; yÞ do
14. if R0 has neither been processed yet nor is in ResidualQueue

then
15. ResidualQueue ResidualQueue [fR0g
16. ordinalðR0Þ NextOrdinal
17. NextOrdinal NextOrdinalþ 1
18. M½ordinalðRÞ; ordinalðR0Þ� coefficient of TðR0; x; yÞ in

TðH; x; yÞ.
19. B½ordinalðrÞ� TðR; x; yÞ
20. for i 1 to ordinal� 1 do
21. for j 1 to ordinal� 1 do
22. if M½i; j� was not assigned a value then
23. M½i; j� 0
24. Return M and b.

At line 12, bridges should be identified carefully. Since only an isolated layer is considered, one bridge in it could not be a
bridge considering the layers below. To avoid this, virtual edges are added to H between the vertices in Bk which are con-
nected by paths belonging to layers L‘ with ‘ < k. Thus, an edge in H is a bridge in the whole structure if and only if it is
a bridge in H [fvirtual edgesg.

The algorithm does not need to construct the whole T ðm;nÞ, only one layer is built and stored in layerModel. At each iter-
ation of the while in step 9, one residual graph is added to the top of layerModel to find the Tutte polynomial of the resulting
graph. Variable NextOrdinal assigns to each residual graph an ordinal number to identify it and to locate the right entry in M
of every coefficient of TðH; x; yÞ. This code is improved changing line 14 by

14’. if (R0 has neither been processed yet nor appears in ResidualQueue)
and not (Isomorphic (Is isomorphic LayerModelþ R0 to
LayerModelþ R00 for a residual graph R00 that has been processed
or is in ResidualQueue?)) then

D. Garijo et al. / Applied Mathematics and Computation 242 (2014) 842–855 849
and adding the lines

17.1 else if Isomorphic ¼ true then

17.2 Change any occurrence of TðR0; x; yÞ in TðH; x; yÞ by TðR00; x; yÞ
and re-associate the coefficients.

17.3 continue

As it will be shown in the next subsection, this modification in the code can be done efficiently since the overall time
complexity of the algorithm does not change. On the other hand, these lines improve the code in the sense that the dimen-
sion of the matrix M generated by the algorithm is reduced by about half.

4.2. Complexity of the algorithm

The running time complexity of Algorithm TUTTE-MATRIX-COMPUTATION is dominated by the number of times that line 9 is
executed, and this is precisely the number of residual graphs which depends on n, and from now on, will be denoted by
sðnÞ. The exact value of sðnÞ depends upon the graphic tile and the order in which the edges are contracted-deleted. The
for at line 13 is executed at most sðnÞ times, and a dictionary is used in line 14 to verify in Oðlog sðnÞÞ time if R0 has been
processed or not. Thus, we have the following result.

Theorem 4.3. The running time complexity of Algorithm TUTTE-MATRIX-COMPUTATION is OðsðnÞ2 log sðnÞÞ.
As it was said before, the code is improved changing line 14 by 14’ and adding the lines 17.1 to 17.3. Now, we show that

this implementation can be done efficiently since the graph isomorphism problem can be solved in linear time for residual
graphs, and so the overall time complexity of the algorithm does not change.

The graph isomorphism problem (GI) consists of determining whether two given graphs are isomorphic. Its complexity is
one of the major open problems: It is easy to see that GI 2 NP, but it is unknown whether GI 2 P [NP-complete [10]. For
residual graphs, GI can be solved in linear time: for two different residual graphs Ri and Rj, we are only interested in isomor-

phisms between Ri and Rj that can be extended to isomorphisms between
P‘

k¼1Lk þ Ri and
P‘

k¼1Lk þ Rj for arbitrarily large

values of ‘. That is because in Eq. (6), the recursion is established in terms of the Tutte polynomials T
P‘

k¼1Lk þ Ri; x; y
� �

where ‘ is arbitrarily large.
Fig. 5. Possible isomorphisms between residual graphs: in (a) and (b) appear, respectively, graphs
P‘

k¼1Lk þ Ri and
P‘

k¼1Lk þ Rj for T 4; in (c) and (d) are
depicted the two possible isomorphisms f1;‘ and f2;‘ , respectively; in (e) and (f) are shown, respectively, the restrictions of f1;‘ and f2;‘ on Ri .

850 D. Garijo et al. / Applied Mathematics and Computation 242 (2014) 842–855
In Fig. 5(a) and (b), we give an example for T 4. Since ‘ is arbitrarily large, there are only two possible isomorphisms
between

P‘
k¼1Lk þ Ri and

P‘
k¼1Lk þ Rj, say f1;‘ and f2;‘, depicted in Fig. 5(c) and (d), respectively. The function f1;‘ is the identity

and f2;‘ transforms the path xi1 xi2 . . . xin into xin xin�1 . . . xi1 . Hence, we only need these two restricted functions (see Fig. 5(e) and
(f)) and so the test can be done in OðnÞ time. A similar argument is valid for any other graphic tile.

Proposition 4.4. The graph isomorphism problem can be solved in linear time for residual graphs.
4.3. The square lattice as input

In this subsection, we analyze the behavior of sðnÞ when T 4 is used as input and compare our algorithm against the
method presented by Calkin et al. in [6].

A residual graph for T 4 is an n-length path P ¼ x0; . . . ; xn embedded on the plane and oriented from x0 to xn, plus some
additional non-crossing edges lying on the left side of the path. The complete sets of residual graphs for T 4 and
n ¼ 1;2;3 are depicted in Fig. 6 where sð1Þ ¼ 2; sð2Þ ¼ 8 and sð3Þ ¼ 40.

The number sðnÞ satisfies the following recurrence inequality,
sðnÞ 6 2
Xn�1

k¼1

sðn� kÞsðkÞ;
where the factor 2 is necessary since none of the
Pn�1

k¼1sðn� kÞsðkÞ residual graphs counted in the recursion contains the edge
x0xn, and so, we should count two residual graphs. This recurrence could be solved as the Catalan numbers recurrence [24].
The result is an exponential expression on n growing faster than the Catalan numbers.

Let us denote now by saðnÞ the actual number of residual graphs generated by the algorithm. In general, saðnÞ 6 sðnÞ and
saðnÞ depends on the graphic tile as well as on the order in which the edges in H are deleted–contracted at line 12 in the
algorithm. Instead of developing the details to get an upper bound for sðnÞ, we rather present in Table 1 the experimental
values of saðnÞ, obtained with the computer program implementing Algorithm TUTTE-MATRIX-COMPUTATION when calculating
the Tutte polynomial of T 4ðn;nÞ for n ¼ 1; . . . ;10.

In this table we have also included the Catalan numbers Cn. Observe that in all the computations, saðnÞ is lower than Cnþ1.
In the column fourth of Table 1, we note that the algorithm first started improving this advantage but from n ¼ 5, it
decreased gradually. If this tendency continues, for n � 14 the situation will be reverted.

We compare now our algorithm against the method presented by Calkin et al. in [6]. There, a square transfer matrix of
size Cnþ1 is built to evaluate TðT 4ðn;nÞ; x; yÞ based on the rank polynomial. The transfer matrix works like the matrix M in our
algorithm, but its size is bigger for n 6 10, and probably for n 6 14 if the tendency observed in Table 1 is maintained. Calkin
et al. [6] report evaluations up to n ¼ 6 and our algorithm advanced 4 steps more. Further improvements over this method
are discussed in Section 5, there columns fifth and sixth of Table 1 are explained.

Similar behaviors of sðnÞ and saðnÞ are observed for the other Archimedian tilings we have worked with.
Fig. 6. Residual graphs: (a) n ¼ 1, (b) n ¼ 2, (c) n ¼ 3.

Table 1
Residual graphs yield by Algorithm TUTTE-MATRIX-COMPUTATION on T 4.

n Cnþ1 saðnÞ saðnÞ=Cnþ1 RankðMT 4 ðn; 2;1ÞÞ RankðMT 4 ðn; 2;0ÞÞ

1 2 2 1 2 1
2 5 4 0.8 4 2
3 14 10 0.71 10 3
4 42 28 0.66 28 8
5 132 93 0.70 92 18
6 429 313 0.73 310 48
7 1430 1110 0.78 1099 120
8 4862 3948 0.81 3915 315
9 16,796 14,252 0.84 14,250 –
10 58,786 51,570 0.88 51,570 –

D. Garijo et al. / Applied Mathematics and Computation 242 (2014) 842–855 851
5. Numerical results

So far we have generated symbolic expressions of Tutte polynomials, but not evaluation at some specific point. Probably,
from the statistical physics perspective, evaluations are much more relevant. In this section, we address this problem and
compare our methods and results against those in [6] where, as it was mentioned before, a similar work is presented for
the square lattice.

Tutte polynomial evaluations require arithmetic operations involving huge numbers, even for small tiling fragments.
Exact results demand the use of arbitrary precision arithmetic. To generate either symbolic expressions or numerical eval-
uations, our computer programs receive an input parameter indicating the output type. In the former option, the polynomial
is generated directly. In the last one, the specific point ðx0; y0Þ to make the evaluation must be provided, and a text file con-
taining the matrix M and vector b in Eq. (7) is generated; this file is processed by a C++ program that uses the NTL library [18]
to compute the final result. We have chosen NTL because it is well designed to manage arbitrary precision arithmetic, and it
is widely free available in platforms which are UNIX compatible.

Thus, throughout this section, M and b represent the numeric matrix and the numeric vector obtained from evaluating
Expressions (8) and (9) at a specific point ðx0; y0Þ. They are used in Eq. (7) to evaluate the Tutte polynomial at the point
ðx0; y0Þ. Sometimes we use the notations MT ðn; x0; y0Þ and bT ðn; x0; y0Þ to make clear the graphic tile T , the value of the n
parameter, and the point ðx0; y0Þ where the Tutte polynomial is being evaluated. The rest of symbols appearing undefined
in this section have the same meaning as in Section 4.

The evaluation of TðT ðm;nÞ; x; yÞ at the point ðx0; y0Þ can be performed as
TðT ðm;nÞ; x0; y0Þ ¼ p1ðMm � bÞ: ð10Þ
Here pi is the projection of the ith coordinate. The computation can be performed using either floating point arithmetic
and direct discrete exponentiation or arbitrary precision arithmetic.

5.1. Evaluations under floating point arithmetic and direct discrete exponentiation

If the computation is performed using floating point arithmetic and direct discrete exponentiation [22, page 2, 1.1.4], the
time complexity of evaluating Eq. (10) is
OðsaðnÞ2:3727 � log mÞ; ð11Þ
where the term sðnÞ2:3727 is the best known upper bound for the running time to perform a single matrix product of square
matrices (the algorithm achieving this bound is an improvement by Vassilevska [28] to the Coppersmith and Winograd
method [9]), and log m is the number of matrix multiplications required to evaluate Mm by the discrete exponentiation
method.

As an application of the Cayley–Hamilton theorem, it is also possible to evaluate Mm by computing the eigenvalues and
the characteristic polynomial of M [12, pages 194-197]. In this method, a polynomial in k, say km, is written in the form
km ¼ QðkÞ � PMðkÞ þ RðkÞ;
where PMðkÞ is the characteristic polynomial of M;QðkÞ is found by long division, and the residual polynomial RðkÞ is of
degree saðnÞ or less. Now, since PMðMÞ ¼ 0 then Mm ¼ RðMÞ. Thus, to compute Mm we only need to evaluate RðMÞ.

The residual RðMÞ can be determined by a method which first finds the eigenvalues k1; . . . ksaðnÞ of M in OðsaðnÞ2:3727Þ time,

then km
i ¼ RðkiÞ for i ¼ 1; . . . saðnÞ is a system of saðnÞ linear equations which can be solved in OðsaðnÞ2:3727Þ time to get the

coefficients of RðkÞ. The evaluation of km
i for i ¼ 1; . . . ; saðnÞ is performed using the discrete exponentiation and takes

OðsaðnÞ � log mÞ time. Finally, RðMÞ is evaluated by the Horner’s rule which is asymptotically optimal [5, Chapter 5], and needs

OðsaðnÞÞ matrix multiplications which can be performed in OðsaðnÞ � saðnÞ2:3727Þ ¼ OðsaðnÞ3:3727Þ time. Therefore, the total run-
ning time required to compute Mm by this technique is

852 D. Garijo et al. / Applied Mathematics and Computation 242 (2014) 842–855
OðsaðnÞ �maxfsaðnÞ2:3727
; log mgÞ: ð12Þ
Hence, by Expressions (11) and (12), the final running time complexity to evaluate Eq. (10) is
OðsaðnÞ �minfsaðnÞ1:3727 � log m;maxfsaðnÞ2:3727
; log mggÞ: ð13Þ
The hardest part in the above expression is saðnÞ. Nevertheless, this number can be reduced (which implies a reduction in
the dimension of the matrix M generated by the algorithm) as follows: In general, M is singular and so assume that the row
Mi is a linear combination of some other rows, say for simplicity, M1;M2; . . . ;Mk with i – 1; . . . ; k. Thus,
Mi ¼
Xk

j¼1

bjMj ð14Þ
for values b1 – 0; . . . ; bk – 0. Then, in every row M‘ with ‘ – i, we can replace (recall Eq. (5)) the entry M‘;j by M‘;j þ bjM‘;i for
j ¼ 1; . . . ; k, and drop the ith row and column of the matrix M as well as the ith element of the vector b without altering Eq.
(10). This is a minor reduction of M at i. If we represent by Mred the non-singular matrix obtained from successive minor
reductions on M until no additional minor reduction could be performed, then the following result is straightforward.

Proposition 5.1. There exist a non-singular matrix Mred and a vector bred both of size rankðMÞ such that
p1ðMm � bÞ ¼ p1ððMredÞm � bredÞ for every positive integer m.

Thus, the term saðnÞ in Expression (13) can be replaced by rankðMÞ. To illustrate the effect of minor reductions on saðnÞ, in
the columns fifth and sixth of Table 1 we show, respectively, the ranks of MT 4 ðn; 2;1Þ and MT 4 ðn; 2; 0Þ for the evaluations
performed on T 4. As we can see rankðMT 4 ðn; 2;1ÞÞ=saðnÞ � 1 independently of the value of n and so minor reductions did
not produce any improvement. On the other hand, the quotient rankðMT 4 ðn; 2;0ÞÞ=saðnÞ goes from 1 (for n ¼ 1) to
315=3948 ¼ 0:08 (for n ¼ 8), and thus, minor reductions yield smaller matrices as n is increased. The final effect of minor
reductions, in general, depends upon the graphic tile and the point where the Tutte polynomial evaluation is performed.

To obtain Mred, a base of the linear space spanned by M � x ¼ 0 must be computed. The running time is OðsaðnÞ2:3727Þ [15]
which is the time needed to solve the homogeneous system of equations. A faster heuristic, which produced acceptable
results in all our experiments, consists in making minor reductions to eliminate repeated rows in M (i.e., when k ¼ 1 in
Eq. (14)). The heuristic can be implemented in OðsaðnÞ � log saðnÞÞ time which is the time complexity needed to sort in lexi-
cographical order the rows in M. In the experiments with T 4, the sizes of the reduced matrices ðMT 4 ðn; 2; 0ÞÞred and
ðMT 4 ðn; 2;1ÞÞred were close to saðnÞ. For ðMT 4 ðn; 2;0ÞÞred with n ¼ 1; . . . ;10, the sizes were 1, 2, 4, 11, 30, 87, 254, 755, 2249
and 6757, respectively. Comparing with column sixth of Table 1, we observe that the heuristic did not found the best values
but the time complexity was lower.

5.2. Evaluations under arbitrary precision arithmetic

Now, we analyze the time complexity to obtain Tutte polynomial evaluations under arbitrary precision arithmetic. Our
results will be also useful to evaluate the limit of Expression (10) as m tends to infinity. We first recall some definitions.

Let A ¼ ðAijÞ be a square real matrix of size k. A is said to be positive (non-negative) if each entry Aij in A is greater than
(greater than or equal to) zero. A directed graph G is said to be strongly connected if for every edge ij 2 EðGÞ there exists a
directed path from i to j. Let GA be the directed graph with k vertices, and having an edge from the vertex i to the vertex j
whenever Aij > 0. The matrix A is said to be irreducible if and only if GA is strongly connected. The period of an index i is
the greatest common divisor of all natural numbers ‘ such that ðA‘Þii > 0. When A is irreducible, the period of every index
is the same and it is called the period of A [17, page 16]. If the period is equal to 1, A is aperiodic. Finally, A is primitive if
it is non-negative and its ‘th power is positive for some natural number ‘ (i.e., the same ‘ works for all pair of indexes). It
can be shown that primitive matrices are the same as irreducible aperiodic non-negative matrices [15, Theorem 8.5.3].

Theorem 5.2. The matrix MT ðn; x0; y0Þ is primitive for every pair ðx0; y0Þ with x0 P 0 and y0 P 0.
Proof. Let M ¼ MT ðn; x0; y0Þ for x0 P 0 and y0 P 0. We prove that M is non-negative, aperiodic and irreducible.
Every coefficient of Pi;jðx; yÞ in Expression (8) is non-negative since it counts the number of times that the reduced Tutte

polynomial of some residual graph appears multiplying some specific monomial xa � yb. Hence, Pi;jðx0; y0ÞP 0 and so M is
non-negative.

Consider now the graph GM whose vertices correspond to residual graphs. It is easy to check that Pi;jðx0; y0Þ > 0 if and only

if the expression for Tð
Pm

k¼1Lk þ Ri; x; yÞ contains Tð
Pm�1

k¼1 Lk þ Rj; x; yÞ (see Eq. (7)). Hence, P1;jðx0; y0Þ > 0 for every j ¼ 2; . . . ; s
and so there are paths from R1 to the rest of the vertices in GM . On the other hand, R1 always appears as a residual graph
when

Pm
k¼1Lk þ Ri is processed since R1 ¼ Bk. Therefore, there are paths from every vertex in GM to R1. In other words, GM is

strongly connected and so M is irreducible.
Since M is irreducible then the period of every index is the same. For the index i ¼ 1, M1;1 > 0 and so its period is equal to

1. Hence, M is aperiodic. Thus, the result follows. h

Table 2
Numerical evaluations of TðT 4ðn;nÞ; x; yÞ against the results in [6].

n TðT 4ðn;nÞ; 2;1Þ Calkin et al. [6] TðT 4ðn;nÞ; 2;0Þ Calkin et al. [6] TðT 4ðn;nÞ; 2;1Þ TðT 4ðn;nÞ; 2;0Þ

1 15 14 15 14
2 3102 2398 3102 2398
3 8,790,016 5,015,972 8,790,016 5,015,972
4 3.41008617. . . 1.28091434. . . 341008617408 128091434266

. . .4080000e+11 . . .2660000e+11
5 1.81075508. . . 3.99318561. . . 1810755082. . . 3993185613. . .

. . .2420676e+17 . . .3821266e+16 . . .42067552 . . .8212664
6 1.31592738. . . 1.51966368. . . 1315927389. . . 1519663682. . .

. . .9374152e+24 . . .2749935e+23 . . .3741520341.7499347493. . .

. . .13856 . . .7668
7 – – 1308775232 . . . 7059965159. . .

. . .7481758020.4554546403. . .

. . .9987036404.07807067492

. . .864
8 – – 1781359755. . . 4003910412 . . .

. . .8513208864.3439212956. . .

. . .3635627145.7992528033. . .

. . .305047963624 . . .2950062686
9 – – 2771997268. . .

. . .7144020161. . .

. . .8769518884. . .

. . .2216504904. . .

. . .4889741764
10 – – – see the text

D. Garijo et al. / Applied Mathematics and Computation 242 (2014) 842–855 853
The above result guarantees that the matrix M satisfies all the conditions of the Perron–Frobenius theorem as it is stated
in [15, Theorem 8.5.1]. This has several consequences and the most relevant for our purpose are

1. The spectral ratio qðMÞ (i.e., the supremum of the absolute value of the eigen-values of M) is a positive real number.

2. limm!1ðMmÞi;j=qðMÞ
m
6 C for every pair of indexes i; j and some positive constant real number C. Thus, for large values of

m the number of binary digits to represent the entries in Mm is Oðlog qðMÞmÞ ¼ OðmÞ. Therefore, in an arbitrary precision
arithmetic system the time complexity to evaluate Eq. (10) is the Expression (13) multiplied by m:
1 In t
lattice,
Oðm � saðnÞ �minfsaðnÞ1:3727 � log m;maxfsaðnÞ2:3727
; log mggÞ: ð15Þ
5.3. Numerical results for the square lattice

By using the results in the two previous subsections, we have evaluated the Tutte polynomial of fragments of the Archi-
median tilings whose graphic tiles have been introduced in this paper. We present now the numerical results of the evalu-
ations performed for the Tutte polynomial of T 4, and compare them with the numerical results obtained by Calkin et al. [6].1

In that paper, the evaluations were performed in a floating point arithmetic system and the values obtained at the points ð2;1Þ
(spanning forests) and ð2;0Þ (acyclic orientations) appear in the columns second and third of Table 2. In the columns fourth and
fifth appear our evaluations, performed in arbitrary precision arithmetic, and thus our results are exact. In the column fifth, for
n ¼ 10 we obtain
2342760547300874850450641239572199781439229470255122240558188
acyclic orientations.
The technique applied in [6] is quite similar to ours, they found a transfer matrix that works like our matrix M in Eq. (10),

but instead of using the deletion–contraction recurrence for the Tutte polynomial, they used the definition obtained from the
rank polynomial.

Our numerical evaluations were performed in a desktop computer with two processors Intel Core i3.2129 (3 Mb Cache,
20 Gb Ram and 3.30 GHz), and advanced 4 steps more that Calkin et al. [6] even that we did the computations in an arbitrary
precision arithmetic system. The dimension of the transfer matrix used by Calkin et al. [6] is the ðnþ 1Þth Catalan number
(see Table 1), but they did not mention the computer technology used in 2003. By assuming that the computer we use today
is ten times faster than theirs, and considering that for n ¼ 6 their matrix has dimension 429, it is not reasonable to think that
they could reach n ¼ 8, running their programs in our computer, since it requires the construction of a matrix of dimension
4862 which has 128 times more entries than their matrix for n ¼ 6. But we reached n ¼ 10; this was possible by the opti-
his and other related papers, the variables m and n denote the maximum number of vertices in paths along the two orthogonal dimensions of the square
respectively. As a consequence of the definition of graphic tile our variables m and n count edges instead of vertices.

854 D. Garijo et al. / Applied Mathematics and Computation 242 (2014) 842–855
mizations explained in this section. From the presentation given in [6], it is not evident that similar optimizations could be
done in their approach.

On the other hand, the main purpose of Calkin et al. [6] was to find asymptotic bounds on the number of spanning of
forests, f ðnÞ, and the number of acyclic orientations, aðnÞ, of T 4ðn;nÞ. They based their computations on a result similar to
Theorem 5.2 and gave the following bounds:
3:64497 6 lim
n!1

f ðnÞ1=n2
6 3:74101:

3:41358 6 lim
n!1

aðnÞ1=n2
6 3:55449:
After a careful analysis, we concluded that we were able to improve these bounds by translating their work to our
method. In fact, by working with m ¼ 7 we reproduced the above bounds. To compute the lower bounds, we had to do sev-
eral adjustments to our technique to compute the Tutte polynomial of Fan-graphs [6, Section 6] because it was necessary to
combine two types of tiles in the same graphic tile. We do not consider necessary to give all the details since the translation
between both approaches is immediate. Our final bounds are given in the following result.

Theorem 5.3
3:65166 6 lim
n!1

f ðnÞ1=n2
6 3:73635:

3:42351 6 lim
n!1

aðnÞ1=n2
6 3:5477:
Just recently, Mani [1] has found that limn!1f ðnÞ1=n2
6 3:705603, which improves our upper bound; it seems unfeasible

that our method can enhance that value. The rest of the bounds given in Theorem 5.3 are the best known for the asymptotics
of the number of spanning forests and the number of acyclic orientations of the square lattice.
6. Conclusions

We have used the deletion–contraction recurrence for the Tutte polynomial to design an algorithm to compute the
Tutte polynomial of large fragments of Archimedean tilings by squares, triangles, hexagons and combinations thereof.
These fragments have nm copies of a basic tile pattern placed in a rectangular arrangement where n 6 10 and m is arbi-
trarily large. We have also analyzed the complexity of our algorithm and some factors that might affect its performance.
Then, we have studied the problem of obtaining Tutte polynomial evaluations from the symbolic expressions generated
by the algorithm. These numerical results play an important role from the statistical physics perspective where Archi-
medean tilings are important structures as vertex model and the Tutte polynomial appears as the partition function of
the q-state Potts model.

In the particular case of the square lattice, we have enhanced the method given by Calkin el al. in [6]. Our technique is
new, but the final way to compute Tutte polynomials is similar to their approach. However, our method generates smaller
matrices at least for n 6 14 and we may do further improvements. In this way, we have made evaluations for larger square
lattices and we have improved the asymptotic bounds that they gave, obtaining the best known lower bound for the asymp-
totics of the number of spanning forests, and the lower and upper bounds for the asymptotics of the number of acyclic ori-
entations of the square lattice.

The definition of graphic tile is general enough to consider all Archimedean tilings by squares, triangles and hexagons,
including the three regular tilings, and variations such as tilings made by cubes. Certainly there are alternative definitions
that could be used to extend the possibilities, but one thing should be considered: Proposition 4.1 (or something equivalent)
should hold to guarantee that the number of residual graphs involved in Theorem 4.2 is finite.

Pearce et al. [19] have developed a general method to compute Tutte polynomials which is considered the best. It is based
on heuristics to select the next edge to be contracted or deleted, in such a way that a minimum number of isomorphic graphs
results. For fragments of tilings generated by graphic tiles, a similar best ordering of the edges must exist, in such a way that
a minimum value for saðnÞ could be guaranteed. Discovering the structure of such orderings would let us compute Tutte
polynomials of larger fragments.

Acknowledgement

The authors thank ABACUS-CINVESTAV, CONACyT grant EDOMEX-2011-C01-165873.

References

[1] A.P. Mani, On some Tutte polynomial sequences in the square lattice, J. Combin. Theory Ser. B 102 (2012) 436–453.
[2] N.L. Biggs, Algebraic Graph Theory, second ed., Cambridge Univ. Press, 1993.
[3] B. Bollobás, Modern Graph Theory, Graduate Text in Mathematics, vol. 184, Springer-Verlag, 1998.
[4] T. Brylawski, J. Oxley, The Tutte polynomial and its applications, in: N. White (ed.), Matroid Applications, Encyclopedia of Mathematics and Its

Applications, vol. 40, 1992, pp. 123–225.

http://refhub.elsevier.com/S0096-3003(14)00910-2/h0035
http://refhub.elsevier.com/S0096-3003(14)00910-2/h0040
http://refhub.elsevier.com/S0096-3003(14)00910-2/h0040
http://refhub.elsevier.com/S0096-3003(14)00910-2/h0045
http://refhub.elsevier.com/S0096-3003(14)00910-2/h0045

855
[5] P. Bürgisser, M. Clausen, M.A. Shokrollahi, Algebraic Complexity Theory, Springer-Verlag, Berlin, 1997.
[6] N. Calkin, C. Merino, S. Noble, M. Noy, Improved bounds for the number of forests and acyclic orientations in the square lattice, Electr. J. Comb. 10 (R4)

(2003) 1–18.
[7] S.C. Chang, J. Salas, R. Shrock, Exact Potts model partition functions for strips of the square lattice, J. Stat. Phys. 107 (5/6) (2002) 1207–1253.
[8] S.C. Chang, J.L. Jacobsen, J. Salas, R. Shrock, Exact Potts model partition functions for strips of the triangular lattice, J. Stat. Phys. 141 (3/4) (2004) 763–

823.
[9] D. Coppersmith, S. Winograd, Matrix multiplication via arithmetic progressions, J. Symbolic Comp. 9 (3) (1990) 251–280.

[10] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman and Company, 1979.
[11] A.J. Goodall, Graph polynomials and Tutte–Gröthendieck invariants: an application of elementary finite Fourier analysis. arXiv:0806.4848v1.
[12] C.W. Groetsch, J.T. King, Matrix Methods and Applications, Prentice Hall, 1988.
[13] B. Grünbaum, G.C. Shepard, Tilings and Patterns, W.H. Freeman and Company, 1986.
[14] G. Haggard, D.J. Pearce, G. Royle, Computing Tutte polynomials, AMC Trans. Math. Softw. 37 (3) (2010), http://dx.doi.org/10.1145/1824801.1824802

(Article 24).
[15] R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge Univ. Press, 1985.
[16] F. Jaeger, D. Vertigan, D.J.A. Welsh, On the computational complexity of the Jones and Tutte polynomials, Math. Proc. Cambridge Philos. Soc. 108 (1)

(1990) 35–53.
[17] B.P. Kitchens, Symbolic Dynamics: One-sided, Two-sided and Countable State Markov Shifts, Springer Verlag (Universitext), 1998.
[18] A Tour of NTL: summary of NTL’s main modules. http://www.shoup.net/ntl/doc/tour-modules.html.
[19] D.J. Pearce, G. Haggard, G. Royle, Edge-selection heuristics for computing Tutte polynomials, Chicago J. Theor. Comput. Sci. 2010 (2010) (Article 6).
[20] G.F. Royle, Computing the Tutte polynomial of sparse graphs, Technical Report CORR 88–35, University of Waterloo, 1988.
[21] K. Sekine, H. Imai, S. Tani, Computing the Tutte polynomial of a graph of moderate size, Lecture Notes Comput. Sci. 1004 (1995) 224–233.
[22] A. Shen, Algorithms and Programming Problems and Solutions, Birkhäuser, 1997.
[23] A.D. Sokal, The multivariate Tutte polynomial (alias Potts model) for graphs and matroids, in: Surveys in Combinatorics, Lecture Note Series, London

Mathematical Society, vol. 327, 2005, pp. 173–226.
[24] R.P. Stanley, Enumerative Combinatorics, Cambridge Studies in Advanced Mathematics 62, vol. 2, Cambridge Univ. Press, 1999.
[25] D.J.A. Welsh, Percolation and the random cluster model: combinatorial and algorithmic problems, in: M. Habib, C. McDiarmid, J. Ramírez-Alfonsín, B.

Reed (Eds.), Probabilistic Methods for Algorithmic Discrete Mathematics, 1991.
[26] D.J.A. Welsh, Complexity: Knots, Colourings and Counting, Cambridge Univ. Press, 1993.
[27] D.J.A. Welsh, C. Merino, The Potts model and the Tutte polynomial, J. Math. Phys. 41 (3) (2000) 1127–1152.
[28] V. Vassilevska, Breaking the Coppersmith–Winograd barrier, Manuscript, 2011.
[29] D. Vertigan, The computational complexity of Tutte invariants for planar graphs, SIAM J. Comput. 35 (3) (2006) 690–712.

http://refhub.elsevier.com/S0096-3003(14)00910-2/h0050
http://refhub.elsevier.com/S0096-3003(14)00910-2/h0050
http://refhub.elsevier.com/S0096-3003(14)00910-2/h0055
http://refhub.elsevier.com/S0096-3003(14)00910-2/h0055
http://refhub.elsevier.com/S0096-3003(14)00910-2/h0060
http://refhub.elsevier.com/S0096-3003(14)00910-2/h0065
http://refhub.elsevier.com/S0096-3003(14)00910-2/h0065
http://refhub.elsevier.com/S0096-3003(14)00910-2/h0070
http://refhub.elsevier.com/S0096-3003(14)00910-2/h0075
http://refhub.elsevier.com/S0096-3003(14)00910-2/h0075
http://refhub.elsevier.com/S0096-3003(14)00910-2/h0080
http://refhub.elsevier.com/S0096-3003(14)00910-2/h0080
http://refhub.elsevier.com/S0096-3003(14)00910-2/h0085
http://refhub.elsevier.com/S0096-3003(14)00910-2/h0085
http://dx.doi.org/10.1145/1824801.1824802
http://refhub.elsevier.com/S0096-3003(14)00910-2/h0095
http://refhub.elsevier.com/S0096-3003(14)00910-2/h0095
http://refhub.elsevier.com/S0096-3003(14)00910-2/h0100
http://refhub.elsevier.com/S0096-3003(14)00910-2/h0100
http://refhub.elsevier.com/S0096-3003(14)00910-2/h0105
http://refhub.elsevier.com/S0096-3003(14)00910-2/h0105
http://www.shoup.net/ntl/doc/tour-modules.html
http://refhub.elsevier.com/S0096-3003(14)00910-2/h0110
http://refhub.elsevier.com/S0096-3003(14)00910-2/h0115
http://refhub.elsevier.com/S0096-3003(14)00910-2/h0120
http://refhub.elsevier.com/S0096-3003(14)00910-2/h0120
http://refhub.elsevier.com/S0096-3003(14)00910-2/h0125
http://refhub.elsevier.com/S0096-3003(14)00910-2/h0125
http://refhub.elsevier.com/S0096-3003(14)00910-2/h0125
http://refhub.elsevier.com/S0096-3003(14)00910-2/h0130
http://refhub.elsevier.com/S0096-3003(14)00910-2/h0130
http://refhub.elsevier.com/S0096-3003(14)00910-2/h0135
http://refhub.elsevier.com/S0096-3003(14)00910-2/h0135
http://refhub.elsevier.com/S0096-3003(14)00910-2/h0140
http://refhub.elsevier.com/S0096-3003(14)00910-2/h0145

	Computing the Tutte polynomial of Archimedean tilings
	1 Introduction
	2 Preliminaries
	2.1 Archimedean tilings
	2.2 The Tutte polynomial

	3 Codifying large fragments of Archimedean tilings
	4 Computing the Tutte polynomial of ?
	4.1 The implemented algorithm
	4.2 Complexity of the algorithm
	4.3 The square lattice as input

	5 Numerical results
	5.1 Evaluations under floating point arithmetic and direct discrete exponentiation
	5.2 Evaluations under arbitrary precision arithmetic
	5.3 Numerical results for the square lattice

	6 Conclusions
	Acknowledgement
	References

