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Yeast metabolism produces compounds derived from tryptophan, which are found
in fermented beverages, such as wine and beer. In particular, melatonin and
serotonin, may be relevant due to their bioactivity in humans. Indeed, the former is
a neurohormone related to circadian rhythms, which also has a putative protective
effect against degenerative diseases. Moreover, serotonin is a neurotransmitter itself,
in addition to being a precursor of melatonin synthesis. This paper summarizes
data reported on fermented beverages, to evaluate dietary intake. Additionally, the
article reviews observed effects of yeast amino acid metabolites on the prevention of
neurodegenerative diseases (Alzheimer’s and Parkinson’s) and angiogenesis, focusing
on evidence of the molecular mechanism involved and identification of molecular targets.
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ORIGIN, OCCURRENCE, AND DIETARY INTAKE

The presence of bioactive compounds in fermented beverages has long been observed and they have
been studied with great interest. A large body of research has focused on polyphenols, in particular,
since these bioactive compounds are already present in plants and released into fermented
products. Yeast also transforms certain other molecules into biologically active compounds.
Among these, the case of amino acid tryptophan is of interest, since it is the precursor of at least
three biologically active compounds: melatonin, serotonin, and tryptophol (Mas et al., 2014).

Tryptophol is an alcohol produced by the Ehrlich pathway and it has long been detected in
appreciable concentrations in wines and beers in the mg/L range (Bartolomé et al., 2000; Monagas
et al., 2007). Therefore, its occurrence in beverages is widely recognized. Moreover, tryptophol has
also been indicated as a quorum sensing molecule for yeast (Sprague and Winans, 2006).

Just a few years ago, melatonin was detected in wines in much lower levels: within the ng/L
range. Not only was it evidenced in wines, but also in other fermented foods, as summarized in
Table 1. Furthermore, Rodriguez-Naranjo et al. (2011) highlighted that melatonin was produced
after alcoholic fermentation, pinpointing the role Saccharomyces plays. Indeed, different strains
synthetized melatonin at different levels (Rodriguez-Naranjo et al., 2012).

The synthetic pathway of melatonin in yeast is not completely elucidated, yet it seems the
formation of serotonin might be an intermediate in the pathway (Mas et al., 2014). In addition,
serotonin has been detected at mg/L levels in red wine following malolactic fermentation (Wang
et al., 2014). Further research is required to explore the roles of yeast and bacteria in the occurrence
of these bioactive compounds in fermented products.
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One of the characteristics of bioactive compounds is the
minimal concentration required for them to act. The reported
concentrations in wine and beer would mean that someone
consuming these beverages would obtain a low daily intake
of these compounds. According to WHO, the daily intake
of ethanol should not exceed 30 g and 20 g for men and
women, respectively. That is to say that daily intake for a man
of a wine can provide up to 0.00005–0.13 mg of melatonin.
In a comprehensive review summarizing the results of human
intervention studies, Harpsøe et al. (2015) concluded that the
bioavailability of melatonin was 15%. In our example, its
bioavailable concentration should result in 1.5–4000 pg/mL
of melatonin in blood. Physiological values for day plasma
melatonin are very low, accounting for several pg/mL (5–
10 pg/mL in human plasma) (de Almeida et al., 2011). Thus,
pg/mL in plasma might be expected after dietetic intake of
wine or beer, considering the values displayed in Table 1.
Indeed, Maldonado et al. (2009) determined an increase in the
concentration of plasmatic melatonin after the ingestion of a
moderate dose of beer (330 mL for women volunteers, 660 mL
for men). To the best of our knowledge, there is no published data
on the bioavailability of serotonin after food or beverage intake.

BIOLOGICAL EFFECTS AND
PREVENTION OF CHRONIC DISEASES

Literature on the biological effects of these compounds is
extensive and encompasses circadian rhythm, antioxidant
properties, and reproductive function. Due to the length of

this mini-review, we will focus on more recent findings on the
prevention of the most prevalent degenerative diseases, such as
cancer, and cardiovascular and neurodegenerative diseases.

IMPLICATIONS FOR CANCER AND
CARDIOVASCULAR DISEASE: THE ROLE
OF ANGIOGENESIS

Angiogenesis, which consists of the formation of new blood
vessels from pre-existing ones, is crucial for organ growth during
embryonic development and after birth. However, in adulthood,
angiogenesis plays an essential role in the pathogenesis of
diverse chronic diseases, such as cancer and cardiovascular
disease, involving the progression and development of the tumor,
and development and destabilization of atherosclerotic plaques
(Celletti et al., 2001; Bergers and Benjamin, 2003).

Angiogenesis occurs when there is an imbalance between
pro-angiogenic (e.g., vascular endothelial growth factor (VEGF),
basic fibroblast growth factor, alfa tumor necrotic factor, etc.)
and anti-angiogenic (e.g., angiostatin and endostatin) factors.
VEGF is the most active endogenous pro-angiogenic factor in
humans (Giles, 2001; Dulak, 2005; Cebe-Suarez et al., 2006; Cook
and Figg, 2010). It exerts its angiogenic effect by stimulating
VEGF receptor 2 (VEGFR-2), which is critical for promoting the
proliferation and differentiation of endothelial cells (Giles, 2001;
Ferrara and Kerbel, 2005). It has been demonstrated that VEGF
promotes atherosclerotic plaque progression (Celletti et al., 2001;
Khurana et al., 2005) and tumor angiogenesis (Senger et al.,
1993). Indeed, VEGF is a target for drug therapies that aim to

TABLE 1 | Concentration of melatonin and other tryptophan metabolites in fermented products.

Compound Concentration Reference

Food

Melatonin Probiotic yogurt 126.7 ± 9.00 pg/g or pg/mL Kocadağli et al. (2014)

Kefir (fermented milk drink) n.d pg/g or pg/mL

Black olive (naturally fermented) 5.3 ± 0.10 pg/g or pg/mL

Bread (crumb) 341.7 ± 29.30 pg/g or pg/mL

Bread (crust) 138.1 ± 23.20 pg/g or pg/mL

Beer 94.5 ± 6.70 pg/g or pg/mL

Wine

Alaban, Sangiovese, Trebbiano (Italy) 0.6−0.4 ng/mL Mercolini et al., 2012

Chardonnay, Malbec, Cabernet Sauvignon (Argentina) 0.16−0.32 Stege et al., 2010

Gropello, Merlot (Italy) 8.1−5.2 Vitalini et al., 2013

Cabernet Saivignon, Merlot, Syrah, Tempranillo, Tintilla de Rota,
Petit Verdot, Prieto Picudo, and Palomino fino (Spain)

5.1−420 Rodriguez-Naranjo et al., 2011

Fermented orange beverage 20.0 ± 2.02 ng/mL Fernández-Pachón et al., 2014

Red wine 4.88−9.15 mg/L Monagas et al., 2007

Fermented lentils 2.70+0.25 mg/g dry material Bartolomé et al., 2000

Tryptophol Whole-wheat bread − Jiang and Peterson, 2013

Beer 0.242 ± 0.200 mg/L Bartolomé et al., 2000

Serotonin Beer 3.5−24.2 mg/L Kirschbaum et al., 1999

Wine 2.94−5.93 mg/L Wang et al., 2014

1.93 ± 0.043 mg/L Manfroi et al., 2009

5.5 ng/mL Mandrioli et al., 2011
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inhibit VEGF signaling (Ferrara and Kerbel, 2005). Anti-VEGF
antibodies, aptamers and small molecule VEGFR tyrosine kinase
inhibitors have been developed and given regulatory approval for
the treatment of colon, lung, breast, kidney, and liver cancer, in
addition to neovascular age-related macular degeneration (Giles,
2001; Ferrara and Kerbel, 2005). However, serious side effects,
such as hypertension, have been reported with prolonged use of
anti-VEGF therapies (Zhu et al., 2007; Wu et al., 2008; Kappers
et al., 2010). The use of natural products in reducing VEGF-
induced angiogenesis may prove to be more beneficial than the
current anti-VEGF drugs available (Moyle et al., 2015).

Melatonin has been associated with a decline in VEGF
secretion levels in the serum of advanced cancer patients
(Lissoni et al., 2001), in addition to markedly reducing
the expression of VEGF in HUVEC and culture cancer
cells at 1 μM and 1 mM (Dai et al., 2008; Cui et al.,
2012; Álvarez-García et al., 2013; Gonçalves et al., 2014).
Melatonin has also been proven to reduce endothelial cell
proliferation, invasion, migration, and tube formation, through
downregulation of VEGF at 1 mM (Álvarez-García et al.,
2013). The possible cell signaling pathway when melatonin
inhibits HUVEC proliferation has been related to the following
pathway: melatonin receptors/ERK/PI3K/Akt/PKC/NF-kB (Cui
et al., 2008). Additionally, Sohn et al. (2015) have recently
demonstrated that melatonin (1 mM) upregulates miRNA3195
and miRNA374b, whose overexpression synergistically reduced
VEGF production in hypoxic PC-3 prostate cancer cells,
indicating the important role of miRNA3195 and miRNA374b in
melatonin induced antiangiogenic activity. Melatonin (40mg/kg)
has also shown an antitumor effect on mammary tumor growth
inmice after 21 days of treatment; the mice displayed significantly
smaller tumor volume and tumor regression (Jardim-Perassi
et al., 2014). Additionally, in the same study, a lower expression
of VEGFR2 was observed in the melatonin-treated tumors
compared to the vehicle-treated tumors. More research is
consequently needed to focus on determining the molecular
mechanism by which melatonin exerts its angiogenic effect and
the molecular target involved.

NEURODEGENERATIVE DISEASES

Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the
most common human neurodegenerative diseases. In both cases,
their incidence increases with age. The aggregation of proteins
that results in different fibrillar structures is responsible for
these disorders. Specifically, they are owing to the abnormal
pathological assembly of amyloid- beta (Aβ), tau and α- synuclein
(αS).

Indeed, several studies have demonstrated that protofibrils
and oligomers of αS and Aβ are more neurotoxic than fibrils
(Pike et al., 1993; Lashuel et al., 2002; Volles and Lansbury, 2003;
Outeiro et al., 2008).

This review focus on the evidence of certain bioactives
which can present in fermented products. However, to give a
fair balance, alcohol effects on neurodegeneration have to be
highlighted as it is a major component formed by yeast in

alcoholic beverages. It is well-Known that alcohol intake crosses
the BBB (Blood–Brain Barrier) easily producing the excessive
release of neurotransmitters, oxidative stress and inflammatory
response which turns out in neurotoxicity and finally cell death.
(Persidsky and Potula, 2014).

ALZHEIMER’S DISEASE

Alzheimer’s disease is a progressive and irreversible
neurodegenerative disorder characterized by loss of memory
and cognition, abstract thinking, and personality alteration.
The etiology of AD is unknown in more than 90% of cases.
In the pathogenesis of AD there are two principal hallmarks:
neurofibrillary tangles (NFTs) and amyloid plaques. NFT are
formed by the intracellular accumulation of phosphorylated
tau protein and amyloid plaques, by extracellular accumulation
of amyloid β peptides (Hardy and Selkoe, 2002). The amyloid
beta peptide is formed via cleavage of the amyloid precursor
protein (APP). In the non-amyloidogenic pathway (normal
state), APP is cleaved by α-secretase, to generate sAPP (soluble
N- terminal fragment), which is neuroprotective as it is involved
in the enhancement of synaptogenesis, neurite outgrowth, and
neuronal survival. Conversely, in the disease state, APP is cleaved
by β and γ secretase, resulting in insoluble beta amyloid peptide,
which has high potential for assembly and formation of toxic
aggregates (Gandy, 2005).

Several mechanisms have been proposed to explain βA
neurotoxicity, such as oxidative stress and loss of endogenous
antioxidants (Behl et al., 1994; Abramov and Duchen, 2005;
Hamel et al., 2008); mitochondrial damage, depolarization, and
mitochondrial permeability transition pore opening (Moreira
et al., 2001, 2010; Abramov et al., 2004, 2007); destabilization
of intracellular calcium homeostasis in neurons (Bezprozvanny
and Mattson, 2008); glial cells (Abramov et al., 2003, 2004), and
neuroinflammation (McNaull et al., 2010).

Levels of melatonin and its precursors (serotonin and
tryptophan) are significantly decreased in elderly AD individuals
and are associated with the emergence of AD (Zhou et al., 2003;
Greilberger et al., 2010). A growing body of evidence supports
the protective role of melatonin in several molecular mechanisms
implicated in the development of AD.

Among these mechanisms, the most significant one is that
melatonin prevents amyloid aggregation and overproduction.
This neurohormone has a great affinity for Aβ peptide,
preventing amyloid fibril formation (Masilamoni et al., 2008),
as determined by circular dichroism (CD) spectroscopy,
electron microscopy, nuclear magnetic resonance (NMR)
and electrospray ionization-mass spectrometry (ESI-MS). In
particular, a hydrophobic interaction has been observed between
melatonin and Aβ, specifically on the 29–40 residues of the
Aβ segment (Skribanek et al., 2001). Additionally, melatonin
has inhibitory effects on the formation of secondary β-sheet
structures through the disruption of the histidine (His+) and
aspartate (Asp−) salt bridges in Aβ peptide that promote fibril
dissolution (Fraser et al., 1991; Huang et al., 1997; Pappolla et al.,
1998).
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Melatonin presents a great capacity to regulate the synthesis
and maturation of APP at different levels by: decreasing its
mRNA encoding β-APP (Song and Lahiri, 1997; Lahiri, 1999);
blocking cAMP production, which is involved in activating the
APP gene promoter, (Husson et al., 2002); and inactivating GSK-
3, which promotes α-secretase mediated cleavage of APP, favoring
the non-amyloidogenic pathway (McArthur et al., 1997; Zhu
et al., 2001; Hoppe et al., 2010). In vivo studies with transgenic
mice over-expressing APP (in 9–10 months they develop senile
plaques) and fed with 0.5 mg/mL of melatonin in their drinking
water (3 mL/day) found a reduction in important markers of the
disease, including Aβ levels in the brain, and that some animals
survived (Matsubara et al., 2003). The amount given to rodents
are within the pharmacological dose and out of the range of the
dose that can be achieved with moderate consumption of wine.
Therefore it cannot be concluded that these effect will be observed
in humans after wine intake. Further research is required to
obtain the evidence at dietary doses.

Furthermore, melatonin exhibits a protective effect on the
cholinergic system. In AD patients, a dramatic decrease of
acetylcholine has been observed (Francis et al., 1999), which was
related to a decrease in enzyme choline acetyltransferase (ChAT)
activity and an increase in acetylcholinesterase (AChE) activity
(Bieschke et al., 2005). Indeed, AChE inhibitors increase the
synaptic levels of acetylcholine, which is why they are used as a
treatment for mild to moderate AD. In vivo administration of
melatonin in rats (50 mg/kg body weight) has led to significantly
reduced AChE activity, with maintenance of calcium levels
under conditions of oxidative stress (Masilamoni et al., 2008).
Regarding ChAT, melatonin increased its activity, after 4 months
of melatonin administration in rats (Feng et al., 2004).

Finally, melatonin reduces Aβ-induced oxidative stress related
to reactive oxygen species (ROS) and proinflamatory cytokines,
such as IL6 and IL1-β in in vivo studies (Masilamoni et al., 2008).
As a result of these effects, melatonin protects brain neurons from
damage and death by increasing viability in hippocampal neurons
and glial cells following treatment with Aβ1–40, Aβ25–40, and
Aβ1–28. Moreover, melatonin prevents the death of murine N2a
neuroblastoma and PC12 cells by using Aβ25–35 (Pappolla et al.,
1997; Ionov et al., 2011).

There is scarce literature available in relation to the activity
of other tryptophan metabolites, with indole 3-acetic acid and
tryptophol being the only bioactive molecules reported so far.
Morshedi et al. (2007) proved the inhibitory effect of these
indole derivatives on the amyloid fibrillation of hen egg-
white lysozyme, which is another model for exploring the
amyloidogenic mechanism.

PARKINSON’S DISEASE

Parkinson’s disease is the second most common
neurodegenerative disorder. Its diagnosis is based on motor
abnormalities, such as resting tremor, bradykinesia, and rigidity
(Duvoisin, 1992). Indeed, patients present other non-motor
symptoms, such as depression, anxiety, and sleep disorders
(Jenner et al., 2013). Only 10% of patients have a genetic basis,

with 90% being considered sporadic cases. PD is characterized
by the degeneration of the subcortical structure of the brain.
Specifically, there are significant losses of dopaminergic neurons
in the substantia nigra pars compacta (SNpc; Forno, 1996),
although other cell populations are also susceptible to the
neurodegeneration process.

α-Synuclein (αS) is a 140 amino acid and a highly abundant
neuronal protein. It is found as a soluble cytoplasmatic protein
associated with synaptic vesicles (Iwai et al., 1995). It is thought
that it plays a role in neurotransmission and cognitive function.
Although its physiological function is uncertain, the pathology is
associated with the accumulation of αS aggregates, which are the
main component of Lewy bodies (LBs; Spillantini et al., 1997).
LBs are spherical inclusions formed by αS aggregate (99%) and
other proteins.

Despite the main risk factor being aging, other possible risk
factors include mutation in the SNCA (alpha-synuclein gene)
and exposure to environmental toxins. The latter are also linked
to metabolic abnormalities involving neurotransmitter systems
(dopamine, serotonin, GABA, and glutamate), fatty acids, such
as arachidonic acid-cascade, oxidative stress and mitochondrial
function (Henchcliffe and Beal, 2008; Quinones and Kaddurah-
Daouk, 2009; Kaidanovich-Beilin et al., 2012; Lei and Powers,
2013).

Furthermore, several studies suggest that αS oligomers and
protofibrils are an important factor in neurotoxicity in PD.
αS protofibrils cause membrane permeabilization, which alters
cellular homeostasis and may activate an apoptotic process
(Volles and Lansbury, 2003). Indeed, there is evidence to support
the capacity of αS to inhibit proteosomal activity, which would
prevent elimination of misfolded proteins (Giasson and Lee,
2003).

Substantial evidence also suggests that a significant factor in
dopaminergic neuronal loss in the PD brain are ROS, which result
from dopamine metabolism, low glutathione concentration and
high levels of iron and calcium in the SNpc (Jenner and Olanow,
2006). Additionally, the brain contains high concentrations of
polyunsaturated fatty acids, which, under oxidative stress, result
in lipid peroxidation and generation of toxic products (Liu et al.,
2008).

No treatment is currently available for the prevention or cure
of PD. However, a combination of L-DOPA and antioxidants
has been recommended to reduce the rate of progression of the
disease, due to the decrease in dopamine levels and significant
increase of oxidative stress commonly concomitant to this type
of disorder (Zhu et al., 2004).

Concerning the role of melatonin in PD, several works
have reported different mechanisms of action. Lin et al.
(2007) demonstrated that melatonin attenuates arsenite-induced
apoptosis by reducing aggregated αS levels in rat brains, by means
of Western blot analysis. Additionally, Ishido (2007) showed that
melatonin inhibits αS assembly, using immunostaining in rat
pheochromocytoma cells.

It is also important to highlight that melatonin dose-
dependently inhibits all steps of the αS assembly process.
Ono et al. (2012) observed a reduction in the number of
fibrils and the corresponding increase of the number of
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short fibrils and amorphous aggregates (25–250 μM) using
electron microscopy and thioflavin S experiments. Indeed,
melatonin presents a significant destabilization effect (also dose-
dependently), suggesting a decrease in beta-sheet levels. In the
same study, the authors performed experiments with primary
cultures of mesencephalon and neostriatum with MTT: (3-
(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) a
colorimetric assay for assessing cell metabolic activity. The results
showed that melatonin reduced the toxic effects of αS after
pretreatment (2–6 days) with an increase in cell viability of
between 56 and 97%.

In addition to this, it is well known that melatonin exhibits
antioxidant properties (Reiter et al., 1997; Kotler et al., 1998).
Cellular injury cause by αS-mediated perturbation of cellular
redox reactions is an important mechanism proposed for PD
(George et al., 2009). Melatonin has been suggested as a
potential therapeutic agent in diseases where oxidative stress
is thought to be a major pathogenic factor. Mayo et al.
(1998) observed that this hormone was an effective free
radical scavenger and that it prevented apoptosis in neuronal
cells. Moreover, in vitro studies on MPTD-induced (1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine) PD in mice have shown
that melatonin protects against excitotoxicity by reducing the
autoxidation of dopamine. The administration of melatonin leads

to normalization of complex I activity and oxidative status in
mitochondria (Escames et al., 2010).

In conclusion, and based on the preceding evidence,we should
consider that melatonin presents strong inhibitory effects on
protofibril formation and peptide oligomerization.
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