# Invariant theory of projective reflection groups, and their Kronecker coefficients 

FABRIZIO CASELLI

November 23, 2009


ALMA MATER STUDIORUM UNIVERSITȦ DI BOLOGNA

## Preliminaries

Given $\sigma \in S_{n}$ let

$$
\text { Descents of } \sigma=\operatorname{Des}(\sigma)=\{i \mid \sigma(i)>\sigma(i+1)\}
$$

## Preliminaries

Given $\sigma \in S_{n}$ let

$$
\begin{aligned}
\text { Descents of } \sigma & =\operatorname{Des}(\sigma)=\{i \mid \sigma(i)>\sigma(i+1)\} \\
\text { Major index of } \sigma & =\operatorname{maj}(\sigma)=\sum_{i \in \operatorname{Des}(\sigma)} i
\end{aligned}
$$

## Preliminaries

Given $\sigma \in S_{n}$ let

$$
\begin{aligned}
\text { Descents of } \sigma & =\operatorname{Des}(\sigma)=\{i \mid \sigma(i)>\sigma(i+1)\} \\
\text { Major index of } \sigma & =\operatorname{maj}(\sigma)=\sum_{i \in \operatorname{Des}(\sigma)} i
\end{aligned}
$$

## Example

If $\sigma=35241 \in S_{5}$ we have $\operatorname{Des}(\sigma)=\{2,4\}$ and $\operatorname{maj}(\sigma)=6$.

## Preliminaries

Given $\sigma \in S_{n}$ let

$$
\begin{aligned}
\text { Descents of } \sigma & =\operatorname{Des}(\sigma)=\{i \mid \sigma(i)>\sigma(i+1)\} \\
\text { Major index of } \sigma & =\operatorname{maj}(\sigma)=\sum_{i \in \operatorname{Des}(\sigma)} i
\end{aligned}
$$

## Example

If $\sigma=35241 \in S_{5}$ we have $\operatorname{Des}(\sigma)=\{2,4\}$ and $\operatorname{maj}(\sigma)=6$.

## Theorem (MacMahon)

$$
\begin{aligned}
W(q) & =\sum_{\sigma \in S_{n}} q^{\operatorname{maj}(\sigma)}=\sum_{\sigma \in S_{n}} q^{\operatorname{inv}(\sigma)} \\
& =\prod_{i=1}^{n}\left(1+q+q^{2}+\cdots+q^{i}\right)
\end{aligned}
$$

where $\operatorname{inv}(\sigma)=\mid\{(i, j): i<j$ and $\sigma(i)>\sigma(j)\} \mid$.

The coinvariant algebra

The coinvariant algebra of $S_{n}$ is

$$
R^{S_{n}}:=\mathbb{C}[X] / \mathbb{C}[X]_{+}^{S_{n}},
$$

The coinvariant algebra

The coinvariant algebra of $S_{n}$ is

$$
R^{S_{n}}:=\mathbb{C}[X] / \mathbb{C}[X]_{+}^{S_{n}},
$$

where

$$
\text { - } \mathbb{C}[X]=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]
$$

The coinvariant algebra of $S_{n}$ is

$$
R^{S_{n}}:=\mathbb{C}[X] / \mathbb{C}[X]_{+}^{S_{n}},
$$

where

- $\mathbb{C}[X]=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$;
- $\mathbb{C}[X]_{+}^{S_{n}}$ is the ideal generated by the symmetric polynomials with zero constant term;

The coinvariant algebra of $S_{n}$ is

$$
R^{S_{n}}:=\mathbb{C}[X] / \mathbb{C}[X]_{+}^{S_{n}},
$$

where

- $\mathbb{C}[X]=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$;
- $\mathbb{C}[X]_{+}^{S_{n}}$ is the ideal generated by the symmetric polynomials with zero constant term;

The algebra $R^{S_{n}}$ is graded in $\mathbb{N}$ by total degree and

The coinvariant algebra

The coinvariant algebra of $S_{n}$ is

$$
R^{S_{n}}:=\mathbb{C}[X] / \mathbb{C}[X]_{+}^{S_{n}},
$$

where

- $\mathbb{C}[X]=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$;
- $\mathbb{C}[X]_{+}^{S_{n}}$ is the ideal generated by the symmetric polynomials with zero constant term;

The algebra $R^{S_{n}}$ is graded in $\mathbb{N}$ by total degree and

## Theorem

We have

$$
\operatorname{Hilb}\left(R^{S_{n}}\right)=W(q)
$$

## Fake-degree polynomials

Let $\mu$ be an irreducible representation of $S_{n}$ and

Let $\mu$ be an irreducible representation of $S_{n}$ and $f^{\mu}(q)$ be the polynomial whose coefficient of $q^{k}$ is the multiplicity of $\mu$ in $R_{k}^{S_{n}}$, i.e.

$$
f^{\mu}(q)=\sum\left\langle\chi^{\mu}, \chi\left(R_{k}^{S_{n}}\right)\right\rangle q^{k} .
$$

Let $\mu$ be an irreducible representation of $S_{n}$ and $f^{\mu}(q)$ be the polynomial whose coefficient of $q^{k}$ is the multiplicity of $\mu$ in $R_{k}^{S_{n}}$, i.e.

$$
\begin{gathered}
f^{\mu}(q)=\sum\left\langle\chi^{\mu}, \chi\left(R_{k}^{S_{n}}\right)\right\rangle q^{k} . \\
T=\begin{array}{|l|l|l|}
\hline 1 & 3 & 5 \\
\hline 2 & 6 & \\
\hline 4 & & \\
\hline 7 & &
\end{array}
\end{gathered}
$$

Let $\mu$ be an irreducible representation of $S_{n}$ and $f^{\mu}(q)$ be the polynomial whose coefficient of $q^{k}$ is the multiplicity of $\mu$ in $R_{k}^{S_{n}}$, i.e.

$$
\begin{gathered}
f^{\mu}(q)=\sum\left\langle\chi^{\mu}, \chi\left(R_{k}^{S_{n}}\right)\right\rangle q^{k} \\
T=\begin{array}{|l|l|l|}
\hline 1 & 3 & 5 \\
\hline 2 & 6 & \\
\hline 4 & & \bullet \operatorname{Des}(T)=\{1,3,5,6\} \\
\hline 7 & \bullet \operatorname{maj}(T)=15
\end{array} \\
\hline
\end{gathered}
$$

Let $\mu$ be an irreducible representation of $S_{n}$ and $f^{\mu}(q)$ be the polynomial whose coefficient of $q^{k}$ is the multiplicity of $\mu$ in $R_{k}^{S_{n}}$, i.e.

$$
\left.\begin{array}{c}
f^{\mu}(q)=\sum\left\langle\chi^{\mu}, \chi\left(R_{k}^{S_{n}}\right)\right\rangle q^{k} \\
T=\begin{array}{|l|l|l|}
\hline 1 & 3 & 5
\end{array} \\
\hline 2 \\
\hline 4 \\
\hline 7 \\
\hline 7
\end{array} \quad \begin{array}{l}
\bullet \operatorname{Des}(T)=\{1,3,5,6\} \\
\end{array} \quad \begin{array}{l}
\bullet \operatorname{maj}(T)=15
\end{array}\right\}
$$

## Fake-degree polynomials

Let $\mu$ be an irreducible representation of $S_{n}$ and $f^{\mu}(q)$ be the polynomial whose coefficient of $q^{k}$ is the multiplicity of $\mu$ in $R_{k}^{S_{n}}$, i.e.

$$
\begin{gathered}
f^{\mu}(q)=\sum\left\langle\chi^{\mu}, \chi\left(R_{k}^{S_{n}}\right)\right\rangle q^{k} \\
T=\begin{array}{|l|l|l|}
\hline 1 & 3 & 5
\end{array} \\
\hline 2 \\
\hline 4 \\
\hline 7
\end{gathered} \quad \begin{aligned}
& \bullet \operatorname{Des}(T)=\{1,3,5,6\} \\
& \hline 7
\end{aligned}
$$

## Theorem (Lusztig, Kraskiewicz-Weyman)

We have

$$
f^{\mu}(q)=\sum_{\{T: \mu(T)=\mu\}} q^{\operatorname{maj}(T)}
$$

The 2-dimensional case

$$
R^{S_{n}} \cong \mathbb{C} S_{n} \text { as } S_{n} \text {-modules. So }
$$

The 2-dimensional case

## $R^{S_{n}} \cong \mathbb{C} S_{n}$ as $S_{n}$-modules. So

$$
W(q)=\sum_{\mu \vdash n} f^{\mu}(1) f^{\mu}(q)
$$

The 2-dimensional case
$R^{S_{n}} \cong \mathbb{C} S_{n}$ as $S_{n}$-modules. So

$$
W(q)=\sum_{\mu \vdash n} f^{\mu}(1) f^{\mu}(q)
$$

The generalization

$$
W(q, t):=\sum_{\mu \vdash n} f^{\mu}(q) f^{\mu}(t)
$$

is again a Hilbert polynomial

The 2-dimensional case
$R^{S_{n}} \cong \mathbb{C} S_{n}$ as $S_{n}$-modules. So

$$
W(q)=\sum_{\mu \vdash n} f^{\mu}(1) f^{\mu}(q)
$$

The generalization

$$
W(q, t):=\sum_{\mu \vdash n} f^{\mu}(q) f^{\mu}(t)
$$

is again a Hilbert polynomial

## Theorem (Solomon)

$W(q, t)$ is the Hilbert polynomial of

$$
\mathbb{C}[X, Y]^{\Delta S_{n}} / \mathbb{C}[X, Y]_{+}^{S_{n} \times S_{n}}
$$

The 2-dimensional case
$R^{S_{n}} \cong \mathbb{C} S_{n}$ as $S_{n}$-modules. So

$$
W(q)=\sum_{\mu \vdash n} f^{\mu}(1) f^{\mu}(q)
$$

The generalization

$$
W(q, t):=\sum_{\mu \vdash n} f^{\mu}(q) f^{\mu}(t)
$$

is again a Hilbert polynomial

## Theorem (Solomon)

$W(q, t)$ is the Hilbert polynomial of

$$
\mathbb{C}[X, Y]^{\Delta S_{n}} / \mathbb{C}[X, Y]_{+}^{S_{n} \times S_{n}}
$$

The polynomial $W(q, t)$ is the bimahonian distribution.

## Other interpretations

The algebra $\mathbb{C}[X, Y]^{\Delta S_{n}}$ is a Cohen-Macauley algebra

## Other interpretations

The algebra $\mathbb{C}[X, Y]^{\Delta S_{n}}$ is a Cohen-Macauley algebra so it is a free module on the subalgebra $\mathbb{C}[X, Y]^{S_{n} \times S_{n}}$.

## Other interpretations

The algebra $\mathbb{C}[X, Y]^{\Delta S_{n}}$ is a Cohen-Macauley algebra so it is a free module on the subalgebra $\mathbb{C}[X, Y]^{S_{n} \times S_{n}}$. So

$$
W(q, t)=\frac{\operatorname{Hilb}\left(\mathbb{C}[X, Y]^{\Delta S_{n}}\right)}{\operatorname{Hilb}\left(\mathbb{C}[X, Y]^{S_{n} \times S_{n}}\right)}
$$

## Other interpretations

The algebra $\mathbb{C}[X, Y]^{\Delta S_{n}}$ is a Cohen-Macauley algebra so it is a free module on the subalgebra $\mathbb{C}[X, Y]^{S_{n} \times S_{n}}$. So

$$
W(q, t)=\frac{\operatorname{Hilb}\left(\mathbb{C}[X, Y]^{\Delta S_{n}}\right)}{\operatorname{Hilb}\left(\mathbb{C}[X, Y]^{S_{n} \times S_{n}}\right)}
$$

These Hilbert series can be studied using the theory of bipartite partitions.

## Other interpretations

The algebra $\mathbb{C}[X, Y]^{\Delta S_{n}}$ is a Cohen-Macauley algebra so it is a free module on the subalgebra $\mathbb{C}[X, Y]^{S_{n} \times S_{n}}$. So

$$
W(q, t)=\frac{\operatorname{Hilb}\left(\mathbb{C}[X, Y]^{\Delta S_{n}}\right)}{\operatorname{Hilb}\left(\mathbb{C}[X, Y]^{S_{n} \times S_{n}}\right)}
$$

These Hilbert series can be studied using the theory of bipartite partitions.

## Theorem (Garsia-Gessel)

$$
W(q, t)=\sum_{\sigma \in S_{n}} q^{\operatorname{maj}(\sigma)} t^{\operatorname{maj}\left(\sigma^{-1}\right)}
$$

We can summarize these facts in the following sequence of identities:

$$
W(q, t)=\sum_{\{S, T: \mu(S)=\mu(T)\}} q^{\operatorname{maj}(S)} t^{\operatorname{maj}(T)}
$$

We can summarize these facts in the following sequence of identities:

$$
\begin{aligned}
W(q, t) & =\sum_{\{S, T: \mu(S)=\mu(T)\}} q^{\operatorname{maj}(S)} t^{\operatorname{maj}(T)} \\
\text { (Lusztig, Kraskiewicz-Weyman) } & =\sum_{\mu \vdash n} f^{\mu}(q) f^{\mu}(t)
\end{aligned}
$$

The many faces of the bimahonian distribution
We can summarize these facts in the following sequence of identities:

$$
\begin{aligned}
W(q, t) & =\sum_{\{S, T: \mu(S)=\mu(T)\}} q^{\operatorname{maj}(S)} t^{\operatorname{maj}(T)} \\
\text { (Lusztig, Kraskiewicz-Weyman) } & =\sum_{\mu \vdash n} f^{\mu}(q) f^{\mu}(t) \\
\text { (Solomon) } & =\operatorname{Hilb}\left(\frac{\mathbb{C}[X, Y]^{\Delta S_{n}}}{\mathbb{C}[X, Y]_{+}^{S_{n} \times S_{n}}}\right)
\end{aligned}
$$

The many faces of the bimahonian distribution
We can summarize these facts in the following sequence of identities:

$$
\begin{aligned}
W(q, t) & =\sum_{\{S, T: \mu(S)=\mu(T)\}} q^{\operatorname{maj}(S)} t^{\operatorname{maj}(T)} \\
\text { (Lusztig, Kraskiewicz-Weyman) } & =\sum_{\mu \vdash n} f^{\mu}(q) f^{\mu}(t) \\
\text { (Solomon) } & =\operatorname{Hilb}\left(\frac{\mathbb{C}[X, Y]^{\Delta S_{n}}}{\mathbb{C}[X, Y]_{+}^{S_{n} \times S_{n}}}\right) \\
\text { (Cohen-Macauley) } & =\frac{\operatorname{Hilb}\left(\mathbb{C}[X, Y]^{\Delta S_{n}}\right)}{\operatorname{Hilb}\left(\mathbb{C}[X, Y]^{S_{n} \times S_{n}}\right)}
\end{aligned}
$$

The many faces of the bimahonian distribution
We can summarize these facts in the following sequence of identities:

$$
\begin{aligned}
W(q, t) & =\sum_{\{S, T: \mu(S)=\mu(T)\}} q^{\operatorname{maj}(S)} t^{\operatorname{maj}(T)} \\
\text { (Lusztig, Kraskiewicz-Weyman) } & =\sum_{\mu \vdash n} f^{\mu}(q) f^{\mu}(t) \\
\text { (Solomon) } & =\operatorname{Hilb}\left(\frac{\mathbb{C}[X, Y]^{\Delta S_{n}}}{\mathbb{C}[X, Y]_{+}^{S_{n} \times S_{n}}}\right) \\
\text { (Cohen-Macauley) } & =\frac{\operatorname{Hilb}\left(\mathbb{C}[X, Y]^{\Delta S_{n}}\right)}{\operatorname{Hilb}\left(\mathbb{C}[X, Y]_{n} \times S_{n}\right)} \\
\text { (Garsia-Gessel) } & =\sum_{\sigma \in S_{n}} q^{\operatorname{maj}(\sigma)} t^{\operatorname{maj}\left(\sigma^{-1}\right)}
\end{aligned}
$$

## The many faces of the bimahonian distribution

We can summarize these facts in the following sequence of identities:

$$
\begin{aligned}
W(q, t) & =\sum_{\{S, T: \mu(S)=\mu(T)\}} q^{\operatorname{maj}(S)} t^{\operatorname{maj}(T)} \\
\text { (Lusztig, Kraskiewicz-Weyman) } & =\sum_{\mu \vdash n} f^{\mu}(q) f^{\mu}(t) \\
\text { (Solomon) } & =\operatorname{Hilb}\left(\frac{\mathbb{C}[X, Y]^{\Delta S_{n}}}{\mathbb{C}[X, Y]_{+}^{S_{n} \times S_{n}}}\right) \\
\text { (Cohen-Macauley) } & =\frac{\operatorname{Hilb}\left(\mathbb{C}[X, Y]^{\Delta S_{n}}\right)}{\operatorname{Hilb}\left(\mathbb{C}[X, Y]_{n} \times S_{n}\right)} \\
\text { (Garsia-Gessel) } & =\sum_{\sigma \in S_{n}} q^{\operatorname{maj}(\sigma)} t^{\operatorname{maj}\left(\sigma^{-1}\right)}
\end{aligned}
$$

The equality between the first and the last line follows also immediately from the Robinson-Schensted correspondence.

The Robinson-Schensted correspondence

Let $\sigma=31542$. Then


The Robinson-Schensted correspondence

Let $\sigma=31542$. Then


## Theorem (Robinson-Schensted correspondence)

The correspondence $\sigma \stackrel{R S}{\mapsto}[P(\sigma), Q(\sigma)]$ is a bijection between $S_{n}$ and pairs of tableaux having the same shape

The Robinson-Schensted correspondence

Let $\sigma=31542$. Then


## Theorem (Robinson-Schensted correspondence)

The correspondence $\sigma \stackrel{R S}{\mapsto}[P(\sigma), Q(\sigma)]$ is a bijection between $S_{n}$ and pairs of tableaux having the same shape and

- $\operatorname{Des}(\sigma)=\operatorname{Des}(Q(\sigma))$;

The Robinson-Schensted correspondence

Let $\sigma=31542$. Then


## Theorem (Robinson-Schensted correspondence)

The correspondence $\sigma \stackrel{R S}{\mapsto}[P(\sigma), Q(\sigma)]$ is a bijection between $S_{n}$ and pairs of tableaux having the same shape and

- $\operatorname{Des}(\sigma)=\operatorname{Des}(Q(\sigma))$;
- $\operatorname{Des}\left(\sigma^{-1}\right)=\operatorname{Des}(P(\sigma))$.

$$
W(q, t)=\sum_{\{S, T: \mu(S)=\mu(T)\}} q^{\operatorname{maj}(S)} t^{\operatorname{maj}(T)}
$$

(Lusztig, Kraskiewicz-Weyman) $=\sum_{\mu} f^{\mu}(q) f^{\mu}(t)$

$$
(\text { Solomon })=\operatorname{Hilb}\left(\frac{\mathbb{C}[X, Y]^{\Delta S_{n}}}{\mathbb{C}[X, Y]_{+}^{S_{n} \times S_{n}}}\right)
$$

$$
(\text { Cohen-Macauley })=\frac{\operatorname{Hilb}\left(\mathbb{C}[X, Y]^{\Delta S_{n}}\right)}{\operatorname{Hilb}\left(\mathbb{C}[X, Y]^{S_{n} \times S_{n}}\right)}
$$

$$
(\text { Garsia-Gessel })=\sum_{\sigma \in S_{n}} q^{\operatorname{maj}(\sigma)} t^{\operatorname{maj}\left(\sigma^{-1}\right)}
$$

## Multimahonian distributions

How to generalize to the 3-dimensional case?

## Multimahonian distributions

How to generalize to the 3-dimensional case?
Use Kronecker coefficients!

$$
g_{\lambda, \mu, \nu}:=\frac{1}{n!} \sum_{\sigma \in S_{n}} \chi^{\lambda}(\sigma) \chi^{\mu}(\sigma) \chi^{\nu}(\sigma)
$$

## Multimahonian distributions

How to generalize to the 3-dimensional case?
Use Kronecker coefficients!

$$
g_{\lambda, \mu, \nu}:=\frac{1}{n!} \sum_{\sigma \in S_{n}} \chi^{\lambda}(\sigma) \chi^{\mu}(\sigma) \chi^{\nu}(\sigma)
$$

## Theorem (Solomon)

We have

$$
\operatorname{Hilb}\left(\frac{\mathbb{C}[X, Y, Z]^{\Delta S_{n}}}{\mathbb{C}[X, Y, Z]_{+}^{S_{n}^{\times_{3}}}}\right)=\sum_{\lambda, \mu, \nu} g_{\lambda, \mu, \nu} f^{\lambda}\left(q_{1}\right) f^{\mu}\left(q_{2}\right) f^{\nu}\left(q_{3}\right)
$$

Here $X, Y, Z$ stand for three $n$-tuples of variables

## Descents representations

How to refine to multivariate degrees?

## Descents representations

How to refine to multivariate degrees?
Use descent representations!

## Descents representations

How to refine to multivariate degrees?
Use descent representations!
Theorem (Solomon, Adin-Brenti-Roichman)
We have

$$
R_{k}^{S_{n}} \cong \bigoplus_{\lambda \vdash k} R_{\lambda},
$$

as $S_{n}$-modules, by means of a canonical isomorphism.

## Descents representations

How to refine to multivariate degrees?
Use descent representations!
Theorem (Solomon, Adin-Brenti-Roichman)
We have

$$
R_{k}^{S_{n}} \cong \bigoplus_{\lambda \vdash k} R_{\lambda},
$$

as $S_{n}$-modules, by means of a canonical isomorphism.
We say that $R_{\lambda}$ is the component of $R^{S_{n}}$ of multidegree $\lambda$

## Descents representations

How to refine to multivariate degrees?
Use descent representations!

## Theorem (Solomon, Adin-Brenti-Roichman)

We have

$$
R_{k}^{S_{n}} \cong \bigoplus_{\lambda \vdash k} R_{\lambda},
$$

as $S_{n}$-modules, by means of a canonical isomorphism.
We say that $R_{\lambda}$ is the component of $R^{S_{n}}$ of multidegree $\lambda$

$$
\operatorname{Hilb}\left(R^{S_{n}}\right)\left(q_{1}, \ldots, q_{n}\right)=\sum_{\lambda}\left(\operatorname{dim} R_{\lambda}\right) q_{1}^{\lambda_{1}} \cdots q_{n}^{\lambda_{n}}
$$

## Descents representations

How to refine to multivariate degrees?
Use descent representations!

## Theorem (Solomon, Adin-Brenti-Roichman)

We have

$$
R_{k}^{S_{n}} \cong \bigoplus_{\lambda \vdash k} R_{\lambda},
$$

as $S_{n}$-modules, by means of a canonical isomorphism.
We say that $R_{\lambda}$ is the component of $R^{S_{n}}$ of multidegree $\lambda$

$$
\operatorname{Hilb}\left(R^{S_{n}}\right)\left(q_{1}, \ldots, q_{n}\right)=\sum_{\lambda}\left(\operatorname{dim} R_{\lambda}\right) q_{1}^{\lambda_{1}} \cdots q_{n}^{\lambda_{n}}
$$

Extending this we can also decompose the algebra

$$
\mathbb{C}[X, Y, Z]^{\Delta S_{n}} / \mathbb{C}[X, Y, Z]_{+}^{S_{n}^{\times 3}}
$$

in homogeneous components whose degrees are triples of partitions with at most $n$ parts.

## Refined fake-degree polynomials

Therefore the Hilbert series will depend on $3 n$-tuples of variables $Q_{1}, Q_{2}, Q_{3}$, where $Q_{i}=\left(q_{i, 1}, \ldots, q_{i, n}\right)$.

## Refined fake-degree polynomials

Therefore the Hilbert series will depend on $3 n$-tuples of variables $Q_{1}, Q_{2}, Q_{3}$, where $Q_{i}=\left(q_{i, 1}, \ldots, q_{i, n}\right)$.
Let $f^{\mu}\left(q_{1}, \ldots, q_{n}\right)$ be the polynomial whose coefficient of $q_{1}^{\lambda_{1}} \cdots q_{n}^{\lambda_{n}}$ is the multiplicity of the representation $\mu$ in $R_{\lambda}$.

## Refined fake-degree polynomials

Therefore the Hilbert series will depend on $3 n$-tuples of variables
$Q_{1}, Q_{2}, Q_{3}$, where $Q_{i}=\left(q_{i, 1}, \ldots, q_{i, n}\right)$.
Let $f^{\mu}\left(q_{1}, \ldots, q_{n}\right)$ be the polynomial whose coefficient of
$q_{1}^{\lambda_{1}} \cdots q_{n}^{\lambda_{n}}$ is the multiplicity of the representation $\mu$ in $R_{\lambda}$.

## Theorem

We have
$\operatorname{Hilb}\left(\frac{\mathbb{C}[X, Y, Z]^{\Delta S_{n}}}{\mathbb{C}[X, Y, Z]_{+}^{S_{n}^{\times 3}}}\right)\left(Q_{1}, Q_{2}, Q_{3}\right)=\sum_{\lambda, \mu, \nu} g_{\lambda, \mu, \nu} f^{\lambda}\left(Q_{1}\right) f^{\mu}\left(Q_{2}\right) f^{\nu}\left(Q_{3}\right)$.

## Refined fake-degree polynomials

For $X$ a permutation or a tableau we let

$$
(\lambda(X))_{i}=|\operatorname{Des}(X) \cap\{i, \ldots, n\}|
$$

## Refined fake-degree polynomials

For $X$ a permutation or a tableau we let

$$
(\lambda(X))_{i}=|\operatorname{Des}(X) \cap\{i, \ldots, n\}| \text { so } \lambda(X) \vdash \operatorname{maj}(X)
$$

## Refined fake-degree polynomials

For $X$ a permutation or a tableau we let

$$
(\lambda(X))_{i}=|\operatorname{Des}(X) \cap\{i, \ldots, n\}| \text { so } \lambda(X) \vdash \operatorname{maj}(X)
$$

## Theorem (Adin-Brenti-Roichman)

We have

$$
f^{\mu}\left(q_{1}, \ldots, q_{n}\right)=\sum_{\{T: \mu(T)=\mu\}} Q^{\lambda(T)} .
$$

## Partition-degree on polynomials

And from the point of view of permutations?

## Partition-degree on polynomials

And from the point of view of permutations?
$\mathbb{C}[X]$ is multigraded by exponent partition

## Partition-degree on polynomials

And from the point of view of permutations?
$\mathbb{C}[X]$ is multigraded by exponent partition

$$
\operatorname{deg}\left(x_{1}^{3} x_{2}^{5} x_{3}^{4}\right)=(5,4,3)
$$

## Partition-degree on polynomials

And from the point of view of permutations?
$\mathbb{C}[X]$ is multigraded by exponent partition

$$
\operatorname{deg}\left(x_{1}^{3} x_{2}^{5} x_{3}^{4}\right)=(5,4,3) .
$$

The algebra of polynomials in $3 n$ variables $\mathbb{C}[X, Y, Z]$ is multigraded by triples of partitions.

## Partition-degree on polynomials

And from the point of view of permutations?
$\mathbb{C}[X]$ is multigraded by exponent partition

$$
\operatorname{deg}\left(x_{1}^{3} x_{2}^{5} x_{3}^{4}\right)=(5,4,3)
$$

The algebra of polynomials in $3 n$ variables $\mathbb{C}[X, Y, Z]$ is multigraded by triples of partitions.
The action of $S_{n}^{\times 3}$ respects this grading and

## Partition-degree on polynomials

And from the point of view of permutations?
$\mathbb{C}[X]$ is multigraded by exponent partition

$$
\operatorname{deg}\left(x_{1}^{3} x_{2}^{5} x_{3}^{4}\right)=(5,4,3)
$$

The algebra of polynomials in $3 n$ variables $\mathbb{C}[X, Y, Z]$ is multigraded by triples of partitions.
The action of $S_{n}^{\times 3}$ respects this grading and

## Theorem

We have
$\frac{\operatorname{Hilb}\left(\mathbb{C}[X, Y, Z]^{\Delta S_{n}}\right)\left(Q_{1}, Q_{2}, Q_{3}\right)}{\operatorname{Hilb}\left(\mathbb{C}[X, Y, Z]^{S_{n}^{3}}\right)\left(Q_{1}, Q_{2}, Q_{3}\right)}=\sum_{\sigma_{1} \sigma_{2} \sigma_{3}=1} Q_{1}^{\lambda\left(\sigma_{1}\right)} Q_{2}^{\lambda\left(\sigma_{2}\right)} Q_{3}^{\lambda\left(\sigma_{3}\right)}$

## Refined multimahonian distribution

So similarly to the case of the total degree we have

$$
\begin{aligned}
W\left(Q_{1}, Q_{2}, Q_{3}\right) & =\sum_{T_{1}, T_{2}, T_{3}} g_{\mu\left(T_{1}\right), \mu\left(T_{2}\right), \mu\left(T_{3}\right)} Q_{1}^{\lambda\left(T_{1}\right)} Q_{2}^{\lambda\left(T_{2}\right)} Q_{3}^{\lambda\left(T_{3}\right)} \\
& =\sum_{\lambda, \mu, \nu} g_{\lambda, \mu, \nu} f^{\lambda}\left(Q_{1}\right) f^{\mu}\left(Q_{2}\right) f^{\nu}\left(Q_{3}\right) \\
& =\operatorname{Hilb}\left(\frac{\mathbb{C}[X, Y, Z]^{\Delta S_{n}}}{\left(\mathbb{C}[X, Y, Z]_{+}^{S_{n}^{\times 3}}\right)}\right)\left(Q_{1}, Q_{2}, Q_{3}\right) \\
& =\frac{\operatorname{Hilb}\left(\mathbb{C}[X, Y, Z]^{\Delta S_{n}}\right)\left(Q_{1}, Q_{2}, Q_{3}\right)}{\operatorname{Hilb}\left(\mathbb{C}[X, Y, Z]_{n}^{S_{n}^{\times 3}}\right)\left(Q_{1}, Q_{2}, Q_{3}\right)} \\
& =\sum_{\sigma_{1} \sigma_{2} \sigma_{3}=1} Q_{1}^{\lambda\left(\sigma_{1}\right)} Q_{2}^{\lambda\left(\sigma_{2}\right)} Q_{3}^{\lambda\left(\sigma_{3}\right)}
\end{aligned}
$$

# The generalized Robison-Schensted correspondence 

## Corollary

There is a map RS that associates to every triple of permutations whose product is the identity a triple of standard tableaux of size $n$ such that:

- $\left|\operatorname{RS}^{-1}\left(T_{1}, T_{2}, T_{3}\right)\right|=g_{\mu\left(T_{1}\right), \mu\left(T_{2}\right), \mu\left(T_{3}\right)} ;$
- If $\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right) \mapsto\left(T_{1}, T_{2}, T_{3}\right)$ then $\operatorname{Des}\left(T_{i}\right)=\operatorname{Des}\left(\sigma_{i}\right) \forall i$.


## The generalized Robison-Schensted correspondence

## Corollary

There is a map RS that associates to every triple of permutations whose product is the identity a triple of standard tableaux of size $n$ such that:

- $\left|\operatorname{RS}^{-1}\left(T_{1}, T_{2}, T_{3}\right)\right|=g_{\mu\left(T_{1}\right), \mu\left(T_{2}\right), \mu\left(T_{3}\right)} ;$
- If $\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right) \mapsto\left(T_{1}, T_{2}, T_{3}\right)$ then $\operatorname{Des}\left(T_{i}\right)=\operatorname{Des}\left(\sigma_{i}\right) \forall i$.

The Kronecker coefficients are uniquely determined by this!

## The generalized Robison-Schensted correspondence

## Corollary

There is a map RS that associates to every triple of permutations whose product is the identity a triple of standard tableaux of size $n$ such that:

- $\left|\operatorname{RS}^{-1}\left(T_{1}, T_{2}, T_{3}\right)\right|=g_{\mu\left(T_{1}\right), \mu\left(T_{2}\right), \mu\left(T_{3}\right)} ;$
- If $\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right) \mapsto\left(T_{1}, T_{2}, T_{3}\right)$ then $\operatorname{Des}\left(T_{i}\right)=\operatorname{Des}\left(\sigma_{i}\right) \forall i$.

The Kronecker coefficients are uniquely determined by this!
Corollary
Let $\tilde{g}_{\lambda, \mu, \nu} \in \mathbb{N}$ for all triples of partitions $\lambda, \mu, \nu$ of $n$.

## The generalized Robison-Schensted correspondence

## Corollary

There is a map RS that associates to every triple of permutations whose product is the identity a triple of standard tableaux of size $n$ such that:

- $\left|\operatorname{RS}^{-1}\left(T_{1}, T_{2}, T_{3}\right)\right|=g_{\mu\left(T_{1}\right), \mu\left(T_{2}\right), \mu\left(T_{3}\right)} ;$
- If $\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right) \mapsto\left(T_{1}, T_{2}, T_{3}\right)$ then $\operatorname{Des}\left(T_{i}\right)=\operatorname{Des}\left(\sigma_{i}\right) \forall i$.

The Kronecker coefficients are uniquely determined by this!

## Corollary

Let $\tilde{g}_{\lambda, \mu, \nu} \in \mathbb{N}$ for all triples of partitions $\lambda, \mu, \nu$ of $n$. If $\phi$ is a map that associate to every triple of permutations whose product is the identity a triple of standard tableaux such that

## The generalized Robison-Schensted correspondence

## Corollary

There is a map RS that associates to every triple of permutations whose product is the identity a triple of standard tableaux of size $n$ such that:

- $\left|\operatorname{RS}^{-1}\left(T_{1}, T_{2}, T_{3}\right)\right|=g_{\mu\left(T_{1}\right), \mu\left(T_{2}\right), \mu\left(T_{3}\right)} ;$
- If $\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right) \mapsto\left(T_{1}, T_{2}, T_{3}\right)$ then $\operatorname{Des}\left(T_{i}\right)=\operatorname{Des}\left(\sigma_{i}\right) \forall i$.

The Kronecker coefficients are uniquely determined by this!

## Corollary

Let $\tilde{g}_{\lambda, \mu, \nu} \in \mathbb{N}$ for all triples of partitions $\lambda, \mu, \nu$ of $n$. If $\phi$ is a map that associate to every triple of permutations whose product is the identity a triple of standard tableaux such that

$$
\text { - }\left|\phi^{-1}\left(T_{1}, T_{2}, T_{3}\right)\right|=\tilde{g}_{\mu\left(T_{1}\right), \mu\left(T_{2}\right), \mu\left(T_{3}\right)} \text {; }
$$

## The generalized Robison-Schensted correspondence

## Corollary

There is a map RS that associates to every triple of permutations whose product is the identity a triple of standard tableaux of size $n$ such that:

- $\left|\operatorname{RS}^{-1}\left(T_{1}, T_{2}, T_{3}\right)\right|=g_{\mu\left(T_{1}\right), \mu\left(T_{2}\right), \mu\left(T_{3}\right)} ;$
- If $\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right) \mapsto\left(T_{1}, T_{2}, T_{3}\right)$ then $\operatorname{Des}\left(T_{i}\right)=\operatorname{Des}\left(\sigma_{i}\right) \forall i$.

The Kronecker coefficients are uniquely determined by this!

## Corollary

Let $\tilde{g}_{\lambda, \mu, \nu} \in \mathbb{N}$ for all triples of partitions $\lambda, \mu, \nu$ of $n$. If $\phi$ is a map that associate to every triple of permutations whose product is the identity a triple of standard tableaux such that

- $\left|\phi^{-1}\left(T_{1}, T_{2}, T_{3}\right)\right|=\tilde{g}_{\mu\left(T_{1}\right), \mu\left(T_{2}\right), \mu\left(T_{3}\right)}$;
- If $\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right) \mapsto\left(T_{1}, T_{2}, T_{3}\right)$ then $\operatorname{Des}\left(T_{i}\right)=\operatorname{Des}\left(\sigma_{i}\right) \forall i$.


## The generalized Robison-Schensted correspondence

## Corollary

There is a map RS that associates to every triple of permutations whose product is the identity a triple of standard tableaux of size $n$ such that:

- $\left|\operatorname{RS}^{-1}\left(T_{1}, T_{2}, T_{3}\right)\right|=g_{\mu\left(T_{1}\right), \mu\left(T_{2}\right), \mu\left(T_{3}\right)} ;$
- If $\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right) \mapsto\left(T_{1}, T_{2}, T_{3}\right)$ then $\operatorname{Des}\left(T_{i}\right)=\operatorname{Des}\left(\sigma_{i}\right) \forall i$.

The Kronecker coefficients are uniquely determined by this!

## Corollary

Let $\tilde{g}_{\lambda, \mu, \nu} \in \mathbb{N}$ for all triples of partitions $\lambda, \mu, \nu$ of $n$. If $\phi$ is a map that associate to every triple of permutations whose product is the identity a triple of standard tableaux such that

- $\left|\phi^{-1}\left(T_{1}, T_{2}, T_{3}\right)\right|=\tilde{g}_{\mu\left(T_{1}\right), \mu\left(T_{2}\right), \mu\left(T_{3}\right)}$;
- If $\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right) \mapsto\left(T_{1}, T_{2}, T_{3}\right)$ then $\operatorname{Des}\left(T_{i}\right)=\operatorname{Des}\left(\sigma_{i}\right) \forall i$.

Then $\tilde{g}_{\lambda, \mu, \nu}=g_{\lambda, \mu, \nu}$.

## A combinatorial algorithm

Using the previous corollary one can easily define a combinatorial algorithm for the computation of the Kronecker coefficients.

## A combinatorial algorithm

Using the previous corollary one can easily define a combinatorial algorithm for the computation of the Kronecker coefficients.

The recursion step expresses a generic $g_{\lambda, \mu, \nu}$ in terms of

## A combinatorial algorithm

Using the previous corollary one can easily define a combinatorial algorithm for the computation of the Kronecker coefficients.

The recursion step expresses a generic $g_{\lambda, \mu, \nu}$ in terms of

- the number of triples of permutations $\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ such that $\sigma_{1} \sigma_{2} \sigma_{3}=1$ and $\operatorname{Des}\left(\sigma_{1}\right)=\left\{\lambda_{1}, \lambda_{1}+\lambda_{2}, \ldots\right\}$ and similarly for the descent sets of $\sigma_{2}$ and $\sigma_{3}$;


## A combinatorial algorithm

Using the previous corollary one can easily define a combinatorial algorithm for the computation of the Kronecker coefficients.

The recursion step expresses a generic $g_{\lambda, \mu, \nu}$ in terms of

- the number of triples of permutations $\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ such that $\sigma_{1} \sigma_{2} \sigma_{3}=1$ and $\operatorname{Des}\left(\sigma_{1}\right)=\left\{\lambda_{1}, \lambda_{1}+\lambda_{2}, \ldots\right\}$ and similarly for the descent sets of $\sigma_{2}$ and $\sigma_{3}$;
- Some Kronecker coefficients $g_{\lambda^{\prime}, \mu^{\prime}, \nu^{\prime}}$ where $\lambda^{\prime} \triangleright \lambda, \mu^{\prime} \triangleright \mu$ and $\nu^{\prime} \triangleright \nu$, where $\triangleright$ denotes dominance order on partitions.


## A combinatorial algorithm

Using the previous corollary one can easily define a combinatorial algorithm for the computation of the Kronecker coefficients.

The recursion step expresses a generic $g_{\lambda, \mu, \nu}$ in terms of

- the number of triples of permutations $\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ such that $\sigma_{1} \sigma_{2} \sigma_{3}=1$ and $\operatorname{Des}\left(\sigma_{1}\right)=\left\{\lambda_{1}, \lambda_{1}+\lambda_{2}, \ldots\right\}$ and similarly for the descent sets of $\sigma_{2}$ and $\sigma_{3}$;
- Some Kronecker coefficients $g_{\lambda^{\prime}, \mu^{\prime}, \nu^{\prime}}$ where $\lambda^{\prime} \triangleright \lambda, \mu^{\prime} \triangleright \mu$ and $\nu^{\prime} \triangleright \nu$, where $\triangleright$ denotes dominance order on partitions.
This algorithm is certainly less efficient than the one shown by Derksen based on the Murnagham-Nakajama rule...


## A combinatorial algorithm

Using the previous corollary one can easily define a combinatorial algorithm for the computation of the Kronecker coefficients.

The recursion step expresses a generic $g_{\lambda, \mu, \nu}$ in terms of

- the number of triples of permutations $\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ such that $\sigma_{1} \sigma_{2} \sigma_{3}=1$ and $\operatorname{Des}\left(\sigma_{1}\right)=\left\{\lambda_{1}, \lambda_{1}+\lambda_{2}, \ldots\right\}$ and similarly for the descent sets of $\sigma_{2}$ and $\sigma_{3}$;
- Some Kronecker coefficients $g_{\lambda^{\prime}, \mu^{\prime}, \nu^{\prime}}$ where $\lambda^{\prime} \triangleright \lambda, \mu^{\prime} \triangleright \mu$ and $\nu^{\prime} \triangleright \nu$, where $\triangleright$ denotes dominance order on partitions.
This algorithm is certainly less efficient than the one shown by Derksen based on the Murnagham-Nakajama rule... but maybe one can improve it.

Vic Reiner observed that one can reobtain (in a non trivial way) all the interpretations of the refined multimahonian distribution using the Stanley-Reisner ring of the baricentric subdivision of an $n$-1-dimensional complex instead of the coinvariant algebras, these being isomorphic.

## From symmetric to complex reflection groups

Vic Reiner observed that one can reobtain (in a non trivial way) all the interpretations of the refined multimahonian distribution using the Stanley-Reisner ring of the baricentric subdivision of an $n$ - 1-dimensional complex instead of the coinvariant algebras, these being isomorphic.

These are no longer isomorphic for other Weyl groups

## From symmetric to complex reflection groups

Vic Reiner observed that one can reobtain (in a non trivial way) all the interpretations of the refined multimahonian distribution using the Stanley-Reisner ring of the baricentric subdivision of an $n$ - 1-dimensional complex instead of the coinvariant algebras, these being isomorphic.

These are no longer isomorphic for other Weyl groups and the Stanley-Reisner ring is not defined at all for complex reflection groups.

## From symmetric to complex reflection groups

Vic Reiner observed that one can reobtain (in a non trivial way) all the interpretations of the refined multimahonian distribution using the Stanley-Reisner ring of the baricentric subdivision of an $n$-1-dimensional complex instead of the coinvariant algebras, these being isomorphic.

These are no longer isomorphic for other Weyl groups and the Stanley-Reisner ring is not defined at all for complex reflection groups.

That's why I was convinced that my approach is better...

## From symmetric to complex reflection groups

Vic Reiner observed that one can reobtain (in a non trivial way) all the interpretations of the refined multimahonian distribution using the Stanley-Reisner ring of the baricentric subdivision of an $n$-1-dimensional complex instead of the coinvariant algebras, these being isomorphic.

These are no longer isomorphic for other Weyl groups and the Stanley-Reisner ring is not defined at all for complex reflection groups.

That's why I was convinced that my approach is better... ...and I was led to introduce projective complex reflection groups.

## Complex reflection groups

Complex reflection groups are subgroups of $G L(n, \mathbb{C})$ generated by reflections, i.e. elements of finite order that fix a hyperplane pointwise.

## Complex reflection groups

Complex reflection groups are subgroups of $G L(n, \mathbb{C})$ generated by reflections, i.e. elements of finite order that fix a hyperplane pointwise.

## Example

$G(r, n)$, the group of $n \times n$ monomial matrices whose non-zero entries are $r$-th roots of 1 .

$$
\left[\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & i \\
-i & 0 & 0 & 0
\end{array}\right] \in G(4,4)
$$

## Complex reflection groups

Complex reflection groups are subgroups of $G L(n, \mathbb{C})$ generated by reflections, i.e. elements of finite order that fix a hyperplane pointwise.

## Example

$G(r, n)$, the group of $n \times n$ monomial matrices whose non-zero entries are $r$-th roots of 1 .

$$
\left[\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & i \\
-i & 0 & 0 & 0
\end{array}\right] \in G(4,4)
$$

## Example

$G(r, p, n)$, the elements in $G(r, n)$ whose permanent is a $r / p$-th root of unity. The matrix above is an element in $G(4,2,4)$.

## Projective reflection groups

Let $C_{q}$ be the cyclic group of scalar matrices generated by $e^{\frac{2 \pi i}{q}} l$.

## Projective reflection groups

Let $C_{q}$ be the cyclic group of scalar matrices generated by $e^{\frac{2 \pi i}{q}} I$.

## Definition

If $C_{q} \subset G(r, p, n)$ we define the projective reflection group $G(r, p, q, n)=G(r, p, n) / C_{q}$.

## Projective reflection groups

Let $C_{q}$ be the cyclic group of scalar matrices generated by $e^{\frac{2 \pi i}{q}} /$.

## Definition

If $C_{q} \subset G(r, p, n)$ we define the projective reflection group $G(r, p, q, n)=G(r, p, n) / C_{q}$.

## Definition

If $G=G(r, p, q, n)$ we say that the group $G^{*}=G(r, q, p, n)$ is the dual of $G$.

## Projective reflection groups

Let $C_{q}$ be the cyclic group of scalar matrices generated by $e^{\frac{2 \pi i}{q}} /$.

## Definition

If $C_{q} \subset G(r, p, n)$ we define the projective reflection group $G(r, p, q, n)=G(r, p, n) / C_{q}$.

## Definition

If $G=G(r, p, q, n)$ we say that the group $G^{*}=G(r, q, p, n)$ is the dual of $G$.

We observe that if $G$ is a complex reflection group then $G^{*}$ is not in general.

We will see many occurrences of the following relationship
Combinatorics

of $G$$\leftrightarrow$\begin{tabular}{|c|}

\hline | Invariant theory |
| :---: |
| of $G^{*}$ | <br>

\hline
\end{tabular}

## The duality

We will see many occurrences of the following relationship

$$
\begin{gathered}
\text { Combinatorics } \\
\text { of } G
\end{gathered} \leftrightarrow \begin{array}{|c}
\text { Invariant theory } \\
\text { of } G^{*}
\end{array}
$$

## Example

- If $G=G(r, 1,1, n)$ then $G^{*}=G$. This holds in particular for $S_{n}=G(1,1,1, n)$ and $B_{n}=G(2,1,1, n)$.


## The duality

We will see many occurrences of the following relationship

$$
\begin{gathered}
\text { Combinatorics } \\
\text { of } G
\end{gathered} \leftrightarrow \begin{gathered}
\text { Invariant theory } \\
\text { of } G^{*}
\end{gathered}
$$

## Example

- If $G=G(r, 1,1, n)$ then $G^{*}=G$. This holds in particular for $S_{n}=G(1,1,1, n)$ and $B_{n}=G(2,1,1, n)$.
- If $G=D_{n}=G(2,2,1, n)$,


## The duality

We will see many occurrences of the following relationship

$$
\begin{gathered}
\text { Combinatorics } \\
\text { of } G
\end{gathered} \leftrightarrow \begin{gathered}
\text { Invariant theory } \\
\text { of } G^{*}
\end{gathered}
$$

## Example

- If $G=G(r, 1,1, n)$ then $G^{*}=G$. This holds in particular for $S_{n}=G(1,1,1, n)$ and $B_{n}=G(2,1,1, n)$.
- If $G=D_{n}=G(2,2,1, n)$, then $G^{*}=G(2,1,2, n)=B_{n} / \pm I$

We will see many occurrences of the following relationship

> Combinatorics of $G$$\leftrightarrow$| $\begin{array}{c}\text { Invariant theory } \\ \text { of } G^{*}\end{array}$ |
| :---: |

## Example

- If $G=G(r, 1,1, n)$ then $G^{*}=G$. This holds in particular for $S_{n}=G(1,1,1, n)$ and $B_{n}=G(2,1,1, n)$.
- If $G=D_{n}=G(2,2,1, n)$, then $G^{*}=G(2,1,2, n)=B_{n} / \pm I$ and it turns out that the combinatorics of $B_{n} / \pm /$ describes the invariant theory of $D_{n}$, and viceversa.

The combinatorics

$$
g=\left[\begin{array}{cccc}
0 & 0 & -i & 0 \\
0 & 0 & 0 & 1 \\
i & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & \zeta_{4}^{3} & 0 \\
0 & 0 & 0 & \zeta_{4}^{0} \\
\zeta_{4}^{1} & 0 & 0 & 0 \\
0 & \zeta_{4}^{2} & 0 & 0
\end{array}\right],
$$

where $\zeta_{r}=e^{\frac{2 \pi i}{r}} \in G(r, p, q, n)$.

$$
g=\left[\begin{array}{cccc}
0 & 0 & -i & 0 \\
0 & 0 & 0 & 1 \\
i & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & \zeta_{4}^{3} & 0 \\
0 & 0 & 0 & \zeta_{4}^{0} \\
\zeta_{4}^{1} & 0 & 0 & 0 \\
0 & \zeta_{4}^{2} & 0 & 0
\end{array}\right],
$$

where $\zeta_{r}=e^{\frac{2 \pi i}{r}} \in G(r, p, q, n)$.
We let $z(g)=(3,0,1,2)$, the color vector of $g$.
Let $g \in G(r, p, q, n)$ and $\sigma=|g|$ be its projection in $S_{n}$. Let

$$
\operatorname{HDes}(g):=\left\{i \in[n-1]: z_{i}(g)=z_{i+1}(g) \text { and } \sigma_{i}>\sigma_{i+1}\right\}
$$

$$
g=\left[\begin{array}{cccc}
0 & 0 & -i & 0 \\
0 & 0 & 0 & 1 \\
i & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & \zeta_{4}^{3} & 0 \\
0 & 0 & 0 & \zeta_{4}^{0} \\
\zeta_{4}^{1} & 0 & 0 & 0 \\
0 & \zeta_{4}^{2} & 0 & 0
\end{array}\right],
$$

where $\zeta_{r}=e^{\frac{2 \pi i}{r}} \in G(r, p, q, n)$.
We let $z(g)=(3,0,1,2)$, the color vector of $g$.
Let $g \in G(r, p, q, n)$ and $\sigma=|g|$ be its projection in $S_{n}$. Let

$$
\begin{aligned}
\operatorname{HDes}(g) & :=\left\{i \in[n-1]: z_{i}(g)=z_{i+1}(g) \text { and } \sigma_{i}>\sigma_{i+1}\right\} \\
h_{i}(g) & :=\#\{j \geq i: j \in \operatorname{HDes}(g)\}
\end{aligned}
$$

$$
g=\left[\begin{array}{cccc}
0 & 0 & -i & 0 \\
0 & 0 & 0 & 1 \\
i & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & \zeta_{4}^{3} & 0 \\
0 & 0 & 0 & \zeta_{4}^{0} \\
\zeta_{4}^{1} & 0 & 0 & 0 \\
0 & \zeta_{4}^{2} & 0 & 0
\end{array}\right],
$$

where $\zeta_{r}=e^{\frac{2 \pi i}{r}} \in G(r, p, q, n)$.
We let $z(g)=(3,0,1,2)$, the color vector of $g$.
Let $g \in G(r, p, q, n)$ and $\sigma=|g|$ be its projection in $S_{n}$. Let

$$
\begin{aligned}
\operatorname{HDes}(g) & :=\left\{i \in[n-1]: z_{i}(g)=z_{i+1}(g) \text { and } \sigma_{i}>\sigma_{i+1}\right\} \\
h_{i}(g) & :=\#\{j \geq i: j \in \operatorname{HDes}(g)\} \\
k_{i}(g) & := \begin{cases}{\left[z_{n}\right]_{r / q}} & \text { if } i=n \\
k_{i+1}+\left[z_{i}-z_{i+1}\right]_{r} & \text { if } i \in[n-1] .\end{cases}
\end{aligned}
$$

The projective flag-major index

Letting $\lambda_{i}(g):=r \cdot h_{i}(g)+k_{i}(g)$ then the sequence

$$
\lambda(g):=\left(\lambda_{1}(g), \ldots, \lambda_{n}(g)\right)
$$

is a partition.

The projective flag-major index

Letting $\lambda_{i}(g):=r \cdot h_{i}(g)+k_{i}(g)$ then the sequence

$$
\lambda(g):=\left(\lambda_{1}(g), \ldots, \lambda_{n}(g)\right)
$$

is a partition.
If $p=q=1$ we have $|\lambda(g)|=\mathrm{fmaj}(g)$, the flag-major index defined by Adin and Roichman

The projective flag-major index

Letting $\lambda_{i}(g):=r \cdot h_{i}(g)+k_{i}(g)$ then the sequence

$$
\lambda(g):=\left(\lambda_{1}(g), \ldots, \lambda_{n}(g)\right)
$$

is a partition.
If $p=q=1$ we have $|\lambda(g)|=\operatorname{fmaj}(g)$, the flag-major index defined by Adin and Roichman so we define

$$
\operatorname{fmaj}(g):=|\lambda(g)|
$$

for all groups $G(r, p, q, n)$.
$G=G(r, p, q, n)$ naturally acts on $S_{q}[X]$, the $q$-th Veronese subalgebra of $\mathbb{C}[X]:=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, i.e. the subalgebra generated in degree $q$.
$G=G(r, p, q, n)$ naturally acts on $S_{q}[X]$, the $q$-th Veronese subalgebra of $\mathbb{C}[X]:=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, i.e. the subalgebra generated in degree $q$.
The coinvariant algebra is

$$
R^{G}:=S_{q}[X] / I_{+}^{G}
$$

The coinvariant algebra
$G=G(r, p, q, n)$ naturally acts on $S_{q}[X]$, the $q$-th Veronese subalgebra of $\mathbb{C}[X]:=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, i.e. the subalgebra generated in degree $q$.
The coinvariant algebra is

$$
R^{G}:=S_{q}[X] / I_{+}^{G}
$$

## Theorem (C)

$R^{G}$ affords the regular representation of $G$.

The coinvariant algebra
$G=G(r, p, q, n)$ naturally acts on $S_{q}[X]$, the $q$-th Veronese subalgebra of $\mathbb{C}[X]:=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, i.e. the subalgebra generated in degree $q$.
The coinvariant algebra is

$$
R^{G}:=S_{q}[X] / I_{+}^{G} .
$$

## Theorem (C)

$R^{G}$ affords the regular representation of $G$.
If $g \in G$ we consider the monomial

$$
a_{g}:=x_{\sigma(1)}^{\lambda_{1}(g)} \cdots x_{\sigma(n)}^{\lambda_{n}(g)},(\text { where } \sigma=|g|)
$$

## The coinvariant algebra

$G=G(r, p, q, n)$ naturally acts on $S_{q}[X]$, the $q$-th Veronese subalgebra of $\mathbb{C}[X]:=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, i.e. the subalgebra generated in degree $q$.
The coinvariant algebra is

$$
R^{G}:=S_{q}[X] / I_{+}^{G}
$$

## Theorem (C)

$R^{G}$ affords the regular representation of $G$.
If $g \in G$ we consider the monomial

$$
a_{g}:=x_{\sigma(1)}^{\lambda_{1}(g)} \cdots x_{\sigma(n)}^{\lambda_{n}(g)},(\text { where } \sigma=|g|)
$$

Generalizing Garsia-Stanton, Adin-Brenti-Roichman, Bagno-Biagioli

## The coinvariant algebra

$G=G(r, p, q, n)$ naturally acts on $S_{q}[X]$, the $q$-th Veronese subalgebra of $\mathbb{C}[X]:=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, i.e. the subalgebra generated in degree $q$.
The coinvariant algebra is

$$
R^{G}:=S_{q}[X] / I_{+}^{G} .
$$

## Theorem (C)

$R^{G}$ affords the regular representation of $G$.
If $g \in G$ we consider the monomial

$$
a_{g}:=x_{\sigma(1)}^{\lambda_{1}(g)} \cdots x_{\sigma(n)}^{\lambda_{n}(g)},(\text { where } \sigma=|g|)
$$

Generalizing Garsia-Stanton, Adin-Brenti-Roichman, Bagno-Biagioli

## Theorem (C)

The set of monomial $\left\{a_{g}: g \in G^{*}\right\}$ is a linear basis for $R^{G}$.

The irreducible representations
$\operatorname{Fer}(r, p, n)=r$-tuples of Ferrers diagrams $\left(\lambda^{(0)}, \ldots, \lambda^{(r-1)}\right)$ having a total of $n$ cells and $\sum_{i} i\left|\lambda^{(i)}\right| \equiv 0 \bmod p$.

The irreducible representations
$\operatorname{Fer}(r, p, n)=r$-tuples of Ferrers diagrams $\left(\lambda^{(0)}, \ldots, \lambda^{(r-1)}\right)$ having a total of $n$ cells and $\sum_{i} i\left|\lambda^{(i)}\right| \equiv 0 \bmod p$. $\mathrm{ST}(r, p, n)=$ standard tableaux with shape in $\operatorname{Fer}(r, p, n)$.

## Example

$$
\left[\begin{array}{l|l|}
\hline 1 & 4 \\
\hline 5 & ,
\end{array}, \begin{array}{|l|l|}
\hline 2 & 8 \\
\hline 3 & 9 \\
\hline
\end{array}, \quad \begin{array}{|l|l}
\hline 6 & 7 \\
\hline
\end{array}\right] \in \operatorname{ST}(3,1,9)
$$

## The irreducible representations

$\operatorname{Fer}(r, p, n)=r$-tuples of Ferrers diagrams $\left(\lambda^{(0)}, \ldots, \lambda^{(r-1)}\right)$ having a total of $n$ cells and $\sum_{i} i\left|\lambda^{(i)}\right| \equiv 0 \bmod p$. $\mathrm{ST}(r, p, n)=$ standard tableaux with shape in $\operatorname{Fer}(r, p, n)$.

## Example


$C_{q}$ acts on both $\operatorname{Fer}(r, p, n)$ and $\operatorname{ST}(r, p, n)$.

## The irreducible representations

$\operatorname{Fer}(r, p, n)=r$-tuples of Ferrers diagrams $\left(\lambda^{(0)}, \ldots, \lambda^{(r-1)}\right)$ having a total of $n$ cells and $\sum_{i} i\left|\lambda^{(i)}\right| \equiv 0 \bmod p$. $\mathrm{ST}(r, p, n)=$ standard tableaux with shape in $\operatorname{Fer}(r, p, n)$.

## Example


$C_{q}$ acts on both $\operatorname{Fer}(r, p, n)$ and $\operatorname{ST}(r, p, n)$. Denote by $\operatorname{Fer}(r, p, q, n)$ and $\operatorname{ST}(r, p, q, n)$ the quotient sets.

## The irreducible representations

$\operatorname{Fer}(r, p, n)=r$-tuples of Ferrers diagrams $\left(\lambda^{(0)}, \ldots, \lambda^{(r-1)}\right)$ having a total of $n$ cells and $\sum_{i} i\left|\lambda^{(i)}\right| \equiv 0 \bmod p$. $\mathrm{ST}(r, p, n)=$ standard tableaux with shape in $\operatorname{Fer}(r, p, n)$.

## Example


$C_{q}$ acts on both $\operatorname{Fer}(r, p, n)$ and $\operatorname{ST}(r, p, n)$.
Denote by $\operatorname{Fer}(r, p, q, n)$ and $\operatorname{ST}(r, p, q, n)$ the quotient sets.

## Theorem

The irreducible representations of $G(r, p, q, n)$ are naturally parametrized by pairs $(\mu, \rho)$, where $\mu \in \operatorname{Fer}(r, q, p, n)$ and $\rho \in\left(C_{p}\right)_{\mu}$, the stabilizer of any element in the class $\mu$.

The descent representations
Let $G=G(r, p, q, n)$.

The descent representations
Let $G=G(r, p, q, n)$.
Theorem (C)

$$
R_{k}^{G} \cong \bigoplus_{\lambda \vdash k} R_{\lambda}^{G}
$$

as $G$-modules and $\left\{a_{g}: g \in G^{*}\right.$ and $\left.\lambda(g)=\lambda\right\}$ is a basis of $R_{\lambda}^{G}$.

The descent representations
Let $G=G(r, p, q, n)$.
Theorem (C)

$$
R_{k}^{G} \cong \bigoplus_{\lambda \vdash k} R_{\lambda}^{G}
$$

as $G$-modules and $\left\{a_{g}: g \in G^{*}\right.$ and $\left.\lambda(g)=\lambda\right\}$ is a basis of $R_{\lambda}^{G}$.
If $T \in \operatorname{ST}(r, p, q, n)$

The descent representations
Let $G=G(r, p, q, n)$.

## Theorem (C)

$$
R_{k}^{G} \cong \bigoplus_{\lambda \vdash k} R_{\lambda}^{G}
$$

as $G$-modules and $\left\{a_{g}: g \in G^{*}\right.$ and $\left.\lambda(g)=\lambda\right\}$ is a basis of $R_{\lambda}^{G}$.
If $T \in \operatorname{ST}(r, p, q, n)$

- $\operatorname{HDes}(T)=\{i: i$ is above and in the same tableau of $i+1\}$;

The descent representations
Let $G=G(r, p, q, n)$.

## Theorem (C)

$$
R_{k}^{G} \cong \bigoplus_{\lambda \vdash k} R_{\lambda}^{G}
$$

as $G$-modules and $\left\{a_{g}: g \in G^{*}\right.$ and $\left.\lambda(g)=\lambda\right\}$ is a basis of $R_{\lambda}^{G}$.
If $T \in \operatorname{ST}(r, p, q, n)$

- $\operatorname{HDes}(T)=\{i: i$ is above and in the same tableau of $i+1\}$;
- $z_{i}(T)=j$ if $i$ appears in the $(j+1)$-th tableau of $T$.

The descent representations
Let $G=G(r, p, q, n)$.

## Theorem (C)

$$
R_{k}^{G} \cong \bigoplus_{\lambda \vdash k} R_{\lambda}^{G}
$$

as $G$-modules and $\left\{a_{g}: g \in G^{*}\right.$ and $\left.\lambda(g)=\lambda\right\}$ is a basis of $R_{\lambda}^{G}$.
If $T \in \operatorname{ST}(r, p, q, n)$

- $\operatorname{HDes}(T)=\{i: i$ is above and in the same tableau of $i+1\}$;
- $z_{i}(T)=j$ if $i$ appears in the $(j+1)$-th tableau of $T$.
- $h_{i}(T), k_{i}(T), \lambda(T)$ are defined as for elements in $G(r, p, q, n)$.


## The descent representations

Let $G=G(r, p, q, n)$.

## Theorem (C)

$$
R_{k}^{G} \cong \bigoplus_{\lambda \vdash k} R_{\lambda}^{G}
$$

as $G$-modules and $\left\{a_{g}: g \in G^{*}\right.$ and $\left.\lambda(g)=\lambda\right\}$ is a basis of $R_{\lambda}^{G}$.
If $T \in \operatorname{ST}(r, p, q, n)$

- $\operatorname{HDes}(T)=\{i: i$ is above and in the same tableau of $i+1\}$;
- $z_{i}(T)=j$ if $i$ appears in the $(j+1)$-th tableau of $T$.
- $h_{i}(T), k_{i}(T), \lambda(T)$ are defined as for elements in $G(r, p, q, n)$.


## Theorem

If $\mu \in \operatorname{Fer}(r, q, p, n)$ the multiplicity of the representation $(\mu, \rho)$ in $R_{\lambda}^{G}$ is equal to

$$
\mid\{T \in \operatorname{ST}(r, q, p, n): \mu(T)=\mu \text { and } \lambda(T)=\lambda\} \mid
$$

## Tensorial and diagonal action

Consider the algebra $S_{q}[X, Y]:=S_{q}[X] \otimes S_{q}[Y]$ in $2 n$ variables. We consider the natural action of $G \times G$ and of its diagonal subgroup $\Delta G$ on $S_{q}[X, Y]$.

## Tensorial and diagonal action

Consider the algebra $S_{q}[X, Y]:=S_{q}[X] \otimes S_{q}[Y]$ in $2 n$ variables. We consider the natural action of $G \times G$ and of its diagonal subgroup $\Delta G$ on $S_{q}[X, Y]$.
We let

$$
a_{g}(X, Y)=\frac{1}{|G|} \sum_{h \in \Delta G} h\left(x_{1}^{\lambda_{1}(g)} \cdots x_{n}^{\lambda_{n}(g)} y_{\sigma(1)}^{\lambda_{1}\left(g^{-1}\right)} \cdots y_{\sigma(n)}^{\lambda_{n}\left(g^{-1}\right)}\right)
$$

## Tensorial and diagonal action

Consider the algebra $S_{q}[X, Y]:=S_{q}[X] \otimes S_{q}[Y]$ in $2 n$ variables. We consider the natural action of $G \times G$ and of its diagonal subgroup $\Delta G$ on $S_{q}[X, Y]$.
We let

$$
a_{g}(X, Y)=\frac{1}{|G|} \sum_{h \in \Delta G} h\left(x_{1}^{\lambda_{1}(g)} \cdots x_{n}^{\lambda_{n}(g)} y_{\sigma(1)}^{\lambda_{1}\left(g^{-1}\right)} \cdots y_{\sigma(n)}^{\lambda_{n}\left(g^{-1}\right)}\right)
$$

## Main theorem

Let $G=G(r, p, q, n)$. The set $\left\{a_{g}(X, Y): g \in G^{*}\right\}$ is a basis for $S_{q}[X, Y]^{\Delta G}$ as $S_{q}[X, Y]^{G \times G}$-module.

## Tensorial and diagonal action

Consider the algebra $S_{q}[X, Y]:=S_{q}[X] \otimes S_{q}[Y]$ in $2 n$ variables. We consider the natural action of $G \times G$ and of its diagonal subgroup $\Delta G$ on $S_{q}[X, Y]$.
We let

$$
a_{g}(X, Y)=\frac{1}{|G|} \sum_{n \in \Delta G} h\left(x_{1}^{\lambda_{1}(g)} \cdots x_{n}^{\lambda_{n}(g)} y_{\sigma(1)}^{\lambda_{1}\left(g^{-1}\right)} \cdots y_{\sigma(n)}^{\lambda_{n}\left(g^{-1}\right)}\right)
$$

## Main theorem

Let $G=G(r, p, q, n)$. The set $\left\{a_{g}(X, Y): g \in G^{*}\right\}$ is a basis for $S_{q}[X, Y]^{\Delta G}$ as $S_{q}[X, Y]^{G \times G}$-module.

This result was known in type A and B only (Garsia-Gessel, F.Bergeron-Lamontagne, F.Bergeron-Biagioli).

## Mahonian distributions

If we consider the Hilbert series with respect to the bipartition degree we have

Corollary
We have

$$
\frac{\operatorname{Hilb}\left(S_{q}[X, Y]^{\Delta G}\right)}{\operatorname{Hilb}\left(S_{q}[X, Y]^{G \times G}\right)}(Q, T)=\sum_{g \in G^{*}} Q^{\lambda(g)} T^{\lambda\left(g^{-1}\right)}
$$

where $Q^{\lambda}:=q_{1}^{\lambda_{1}} \cdots q_{n}^{\lambda_{n}}$ and similarly for $T$.

## Mahonian distributions

If we consider the Hilbert series with respect to the bipartition degree we have

Corollary
We have

$$
\frac{\operatorname{Hilb}\left(S_{q}[X, Y]^{\Delta G}\right)}{\operatorname{Hilb}\left(S_{q}[X, Y]^{G \times G}\right)}(Q, T)=\sum_{g \in G^{*}} Q^{\lambda(g)} T^{\lambda\left(g^{-1}\right)}
$$

where $Q^{\lambda}:=q_{1}^{\lambda_{1}} \cdots q_{n}^{\lambda_{n}}$ and similarly for $T$.
and its unrefined version

$$
\frac{\operatorname{Hilb}\left(S_{q}[X, Y]^{\Delta G}\right)}{\operatorname{Hilb}\left(S_{q}[X, Y]^{G \times G}\right)}(q, t)=\sum_{g \in G^{*}} q^{\mathrm{fmaj}(g)} t^{\mathrm{fmaj}\left(g^{-1}\right)}
$$

## Kronecker coefficients

Let $f^{\phi}(Q)$ be the polynomial whose coefficient of $Q^{\lambda}$ is the multiplicity of the irreducible representation $\phi$ of $G$ in $R_{\lambda}^{G}$.

## Theorem (C)

$$
\frac{\operatorname{Hilb}\left(S_{q}[X, Y, Z]^{G^{\times 3}}\right)}{\operatorname{Hilb}\left(S_{q}[X, Y, Z]^{\Delta G}\right)}=\sum_{\phi_{1}, \phi_{2}, \phi_{3}} g_{\phi_{1}, \phi_{2}, \phi_{3}} f^{\phi_{1}}\left(Q_{1}\right) f^{\phi_{2}}\left(Q_{2}\right) f^{\phi_{3}}\left(Q_{3}\right)
$$

## Corollary

$$
\begin{aligned}
& \quad \sum_{g_{1} g_{2} g_{3}=1} Q_{1}^{\lambda\left(g_{1}\right)} Q_{2}^{\lambda\left(g_{2}\right)} Q_{3}^{\lambda\left(g_{3}\right)}=\sum_{T_{1}, T_{2}, T_{3}} g_{\mu\left(T_{1}\right), \mu\left(T_{2}\right), \mu\left(T_{3}\right)} Q_{1}^{\lambda\left(T_{1}\right)} Q_{2}^{\lambda\left(T_{2}\right)} Q_{3}^{\lambda\left(T_{3}\right)} \\
& \text { where } g_{\mu_{1}, \mu_{2}, \mu_{3}}=\sum_{\rho_{1}, \rho_{2}, \rho_{3}} g_{\left(\mu_{1}, \rho_{1}\right),\left(\mu_{2}, \rho_{2}\right),\left(\mu_{3}, \rho_{3}\right) .}
\end{aligned}
$$

## A problem of Barcelo-Reiner-Stanton

If $\sigma \in \operatorname{Gal}\left(\mathbb{Q}\left[\zeta_{r}\right], \mathbb{Q}\right)$ then $\sigma \in \operatorname{Aut}(G)$, where $G=G(r, p, q, n)$.

## A problem of Barcelo-Reiner-Stanton

If $\sigma \in \operatorname{Gal}\left(\mathbb{Q}\left[\zeta_{r}\right], \mathbb{Q}\right)$ then $\sigma \in \operatorname{Aut}(G)$, where $G=G(r, p, q, n)$. $\Delta^{\sigma} G=\{(g, \sigma g): g \in G\} \subseteq G \times G$.

## Theorem

$$
G^{\sigma}(Q, T):=\operatorname{Hilb}\left(\frac{S_{q}[X, Y]^{\Delta^{\sigma} G}}{I_{+}^{G \times G}}\right)(Q, T)=\sum_{\phi \in \operatorname{Irr}(G)} f^{\sigma \phi}(Q) f^{\bar{\phi}}(T)
$$

## A problem of Barcelo-Reiner-Stanton

If $\sigma \in \operatorname{Gal}\left(\mathbb{Q}\left[\zeta_{r}\right], \mathbb{Q}\right)$ then $\sigma \in \operatorname{Aut}(G)$, where $G=G(r, p, q, n)$.
$\Delta^{\sigma} G=\{(g, \sigma g): g \in G\} \subseteq G \times G$.

## Theorem

$$
G^{\sigma}(Q, T):=\operatorname{Hilb}\left(\frac{S_{q}[X, Y]^{\Delta^{\sigma} G}}{I_{+}^{G \times G}}\right)(Q, T)=\sum_{\phi \in \operatorname{Irr}(G)} f^{\sigma \phi}(Q) f^{\bar{\phi}}(T)
$$

Corollary

$$
G^{\sigma}(Q, T)=\sum_{g \in G^{*}} Q^{\lambda(\sigma g)} T^{\lambda\left(g^{-1}\right)}
$$

## A problem of Barcelo-Reiner-Stanton

If $\sigma \in \operatorname{Gal}\left(\mathbb{Q}\left[\zeta_{r}\right], \mathbb{Q}\right)$ then $\sigma \in \operatorname{Aut}(G)$, where $G=G(r, p, q, n)$.
$\Delta^{\sigma} G=\{(g, \sigma g): g \in G\} \subseteq G \times G$.

## Theorem

$$
G^{\sigma}(Q, T):=\operatorname{Hilb}\left(\frac{S_{q}[X, Y]^{\Delta^{\sigma} G}}{I_{+}^{G \times G}}\right)(Q, T)=\sum_{\phi \in \operatorname{Irr}(G)} f^{\sigma \phi}(Q) f^{\bar{\phi}}(T)
$$

## Corollary

$$
G^{\sigma}(Q, T)=\sum_{g \in G^{*}} Q^{\lambda(\sigma g)} T^{\lambda\left(g^{-1}\right)}
$$

The unrefined version of the previous corollary

$$
G^{\sigma}(q, t)=\sum_{g \in G^{*}} q^{\mathrm{fmaj}(\sigma g)} t^{\mathrm{fmaj}\left(g^{-1}\right)}
$$

is a solution of a problem posed by Barcelo, Reiner and Stanton.

