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Preliminaries

Given σ ∈ Sn let

Descents of σ = Des(σ) = {i |σ(i) > σ(i + 1)}

Major index of σ = maj(σ) =
∑

i∈Des(σ)

i

Example

If σ = 35241 ∈ S5 we have Des(σ) = {2, 4} and maj(σ) = 6.

Theorem (MacMahon)

W (q) =
∑
σ∈Sn

qmaj(σ) =
∑
σ∈Sn

qinv(σ)

=
n∏

i=1

(1 + q + q2 + · · ·+ qi ),

where inv(σ) = |{(i , j) : i < j and σ(i) > σ(j)}|.

Fabrizio Caselli Invariant theory of projective reflection groups



Preliminaries

Given σ ∈ Sn let

Descents of σ = Des(σ) = {i |σ(i) > σ(i + 1)}
Major index of σ = maj(σ) =

∑
i∈Des(σ)

i

Example

If σ = 35241 ∈ S5 we have Des(σ) = {2, 4} and maj(σ) = 6.

Theorem (MacMahon)

W (q) =
∑
σ∈Sn

qmaj(σ) =
∑
σ∈Sn

qinv(σ)

=
n∏

i=1

(1 + q + q2 + · · ·+ qi ),

where inv(σ) = |{(i , j) : i < j and σ(i) > σ(j)}|.

Fabrizio Caselli Invariant theory of projective reflection groups



Preliminaries

Given σ ∈ Sn let

Descents of σ = Des(σ) = {i |σ(i) > σ(i + 1)}
Major index of σ = maj(σ) =

∑
i∈Des(σ)

i

Example

If σ = 35241 ∈ S5 we have Des(σ) = {2, 4} and maj(σ) = 6.

Theorem (MacMahon)

W (q) =
∑
σ∈Sn

qmaj(σ) =
∑
σ∈Sn

qinv(σ)

=
n∏

i=1

(1 + q + q2 + · · ·+ qi ),

where inv(σ) = |{(i , j) : i < j and σ(i) > σ(j)}|.

Fabrizio Caselli Invariant theory of projective reflection groups



Preliminaries

Given σ ∈ Sn let

Descents of σ = Des(σ) = {i |σ(i) > σ(i + 1)}
Major index of σ = maj(σ) =

∑
i∈Des(σ)

i

Example

If σ = 35241 ∈ S5 we have Des(σ) = {2, 4} and maj(σ) = 6.

Theorem (MacMahon)

W (q) =
∑
σ∈Sn

qmaj(σ) =
∑
σ∈Sn

qinv(σ)

=
n∏

i=1

(1 + q + q2 + · · ·+ qi ),

where inv(σ) = |{(i , j) : i < j and σ(i) > σ(j)}|.
Fabrizio Caselli Invariant theory of projective reflection groups



The coinvariant algebra

The coinvariant algebra of Sn is

RSn := C[X ]/C[X ]Sn
+ ,

where

C[X ] = C[x1, . . . , xn];

C[X ]Sn
+ is the ideal generated by the symmetric polynomials

with zero constant term;

The algebra RSn is graded in N by total degree and

Theorem

We have
Hilb(RSn) = W (q).
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Fake-degree polynomials

Let µ be an irreducible representation of Sn and

f µ(q) be the polynomial whose coefficient of qk is the multiplicity
of µ in RSn

k , i.e.

f µ(q) =
∑
〈χµ, χ(RSn

k )〉qk .

7

4

2

1

6

3 5

T = • Des(T ) = {1, 3, 5, 6}
• maj(T ) = 15

• µ(T ) = (3, 2, 1, 1)

Theorem (Lusztig, Kraskiewicz-Weyman)

We have
f µ(q) =

∑
{T :µ(T )=µ}

qmaj(T )
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The 2-dimensional case

RSn ∼= CSn as Sn-modules. So

W (q) =
∑
µ`n

f µ(1)f µ(q).

The generalization

W (q, t) :=
∑
µ`n

f µ(q)f µ(t)

is again a Hilbert polynomial

Theorem (Solomon)

W (q, t) is the Hilbert polynomial of

C[X ,Y ]∆Sn/C[X ,Y ]Sn×Sn
+ .

The polynomial W (q, t) is the bimahonian distribution.
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Other interpretations

The algebra C[X ,Y ]∆Sn is a Cohen-Macauley algebra

so it is a free
module on the subalgebra C[X ,Y ]Sn×Sn . So

W (q, t) =
Hilb(C[X ,Y ]∆Sn)

Hilb(C[X ,Y ]Sn×Sn)
.

These Hilbert series can be studied using the theory of bipartite
partitions.

Theorem (Garsia-Gessel)

W (q, t) =
∑
σ∈Sn

qmaj(σ)tmaj(σ−1)
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The many faces of the bimahonian distribution

We can summarize these facts in the following sequence of
identities:

W (q, t) =
∑

{S ,T :µ(S)=µ(T )}

qmaj(S)tmaj(T )

(Lusztig, Kraskiewicz-Weyman) =
∑
µ`n

f µ(q)f µ(t)

(Solomon) = Hilb
( C[X ,Y ]∆Sn

C[X ,Y ]Sn×Sn
+

)
(Cohen-Macauley) =

Hilb(C[X ,Y ]∆Sn)

Hilb(C[X ,Y ]Sn×Sn)

(Garsia-Gessel) =
∑
σ∈Sn

qmaj(σ)tmaj(σ−1)

The equality between the first and the last line follows also
immediately from the Robinson-Schensted correspondence.

Fabrizio Caselli Invariant theory of projective reflection groups



The many faces of the bimahonian distribution

We can summarize these facts in the following sequence of
identities:

W (q, t) =
∑

{S ,T :µ(S)=µ(T )}

qmaj(S)tmaj(T )

(Lusztig, Kraskiewicz-Weyman) =
∑
µ`n

f µ(q)f µ(t)

(Solomon) = Hilb
( C[X ,Y ]∆Sn

C[X ,Y ]Sn×Sn
+

)
(Cohen-Macauley) =

Hilb(C[X ,Y ]∆Sn)

Hilb(C[X ,Y ]Sn×Sn)

(Garsia-Gessel) =
∑
σ∈Sn

qmaj(σ)tmaj(σ−1)

The equality between the first and the last line follows also
immediately from the Robinson-Schensted correspondence.

Fabrizio Caselli Invariant theory of projective reflection groups



The many faces of the bimahonian distribution

We can summarize these facts in the following sequence of
identities:

W (q, t) =
∑

{S ,T :µ(S)=µ(T )}

qmaj(S)tmaj(T )

(Lusztig, Kraskiewicz-Weyman) =
∑
µ`n

f µ(q)f µ(t)

(Solomon) = Hilb
( C[X ,Y ]∆Sn

C[X ,Y ]Sn×Sn
+

)

(Cohen-Macauley) =
Hilb(C[X ,Y ]∆Sn)

Hilb(C[X ,Y ]Sn×Sn)

(Garsia-Gessel) =
∑
σ∈Sn

qmaj(σ)tmaj(σ−1)

The equality between the first and the last line follows also
immediately from the Robinson-Schensted correspondence.

Fabrizio Caselli Invariant theory of projective reflection groups



The many faces of the bimahonian distribution

We can summarize these facts in the following sequence of
identities:

W (q, t) =
∑

{S ,T :µ(S)=µ(T )}

qmaj(S)tmaj(T )

(Lusztig, Kraskiewicz-Weyman) =
∑
µ`n

f µ(q)f µ(t)

(Solomon) = Hilb
( C[X ,Y ]∆Sn

C[X ,Y ]Sn×Sn
+

)
(Cohen-Macauley) =

Hilb(C[X ,Y ]∆Sn)

Hilb(C[X ,Y ]Sn×Sn)

(Garsia-Gessel) =
∑
σ∈Sn

qmaj(σ)tmaj(σ−1)

The equality between the first and the last line follows also
immediately from the Robinson-Schensted correspondence.

Fabrizio Caselli Invariant theory of projective reflection groups



The many faces of the bimahonian distribution

We can summarize these facts in the following sequence of
identities:

W (q, t) =
∑

{S ,T :µ(S)=µ(T )}

qmaj(S)tmaj(T )

(Lusztig, Kraskiewicz-Weyman) =
∑
µ`n

f µ(q)f µ(t)

(Solomon) = Hilb
( C[X ,Y ]∆Sn

C[X ,Y ]Sn×Sn
+

)
(Cohen-Macauley) =

Hilb(C[X ,Y ]∆Sn)

Hilb(C[X ,Y ]Sn×Sn)

(Garsia-Gessel) =
∑
σ∈Sn

qmaj(σ)tmaj(σ−1)

The equality between the first and the last line follows also
immediately from the Robinson-Schensted correspondence.

Fabrizio Caselli Invariant theory of projective reflection groups



The many faces of the bimahonian distribution

We can summarize these facts in the following sequence of
identities:

W (q, t) =
∑

{S ,T :µ(S)=µ(T )}

qmaj(S)tmaj(T )

(Lusztig, Kraskiewicz-Weyman) =
∑
µ`n

f µ(q)f µ(t)

(Solomon) = Hilb
( C[X ,Y ]∆Sn

C[X ,Y ]Sn×Sn
+

)
(Cohen-Macauley) =

Hilb(C[X ,Y ]∆Sn)

Hilb(C[X ,Y ]Sn×Sn)

(Garsia-Gessel) =
∑
σ∈Sn

qmaj(σ)tmaj(σ−1)

The equality between the first and the last line follows also
immediately from the Robinson-Schensted correspondence.

Fabrizio Caselli Invariant theory of projective reflection groups



The Robinson-Schensted correspondence

Let σ = 31542. Then

σ
RS7→

 1 2

3 4

5

,

1 3

2 4

5



Theorem (Robinson-Schensted correspondence)

The correspondence σ
RS7→ [P(σ),Q(σ)] is a bijection between Sn

and pairs of tableaux having the same shape and

Des(σ) = Des(Q(σ));

Des(σ−1) = Des(P(σ)).
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Multimahonian distributions

How to generalize to the 3-dimensional case?

Use Kronecker coefficients!

gλ,µ,ν :=
1

n!

∑
σ∈Sn

χλ(σ)χµ(σ)χν(σ).

Theorem (Solomon)

We have

Hilb
(C[X ,Y ,Z ]∆Sn

C[X ,Y ,Z ]S
×3
n

+

)
=
∑
λ,µ,ν

gλ,µ,ν f λ(q1)f µ(q2)f ν(q3).

Here X ,Y ,Z stand for three n-tuples of variables
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Descents representations

How to refine to multivariate degrees?

Use descent representations!

Theorem (Solomon, Adin-Brenti-Roichman)

We have
RSn

k
∼=
⊕
λ`k

Rλ,

as Sn-modules, by means of a canonical isomorphism.

We say that Rλ is the component of RSn of multidegree λ

Hilb(RSn)(q1, . . . , qn) =
∑
λ

(dim Rλ)qλ1
1 · · · q

λn
n .

Extending this we can also decompose the algebra

C[X ,Y ,Z ]∆Sn/C[X ,Y ,Z ]S
×3
n

+

in homogeneous components whose degrees are triples of partitions
with at most n parts.
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Hilb(RSn)(q1, . . . , qn) =
∑
λ

(dim Rλ)qλ1
1 · · · q

λn
n .

Extending this we can also decompose the algebra

C[X ,Y ,Z ]∆Sn/C[X ,Y ,Z ]S
×3
n

+

in homogeneous components whose degrees are triples of partitions
with at most n parts.
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Refined fake-degree polynomials

Therefore the Hilbert series will depend on 3 n-tuples of variables
Q1,Q2,Q3, where Qi = (qi ,1, . . . , qi ,n).

Let f µ(q1, . . . , qn) be the polynomial whose coefficient of
qλ1

1 · · · qλn
n is the multiplicity of the representation µ in Rλ.

Theorem

We have

Hilb
(C[X ,Y ,Z ]∆Sn

C[X ,Y ,Z ]S
×3
n

+

)
(Q1,Q2,Q3) =

∑
λ,µ,ν

gλ,µ,ν f λ(Q1)f µ(Q2)f ν(Q3).
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Refined fake-degree polynomials

For X a permutation or a tableau we let

(λ(X ))i = |Des(X ) ∩ {i , . . . , n}|

so λ(X ) ` maj(X )

Theorem (Adin-Brenti-Roichman)

We have
f µ(q1, . . . , qn) =

∑
{T :µ(T )=µ}

Qλ(T ).
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Partition-degree on polynomials

And from the point of view of permutations?

C[X ] is multigraded by exponent partition

deg(x3
1 x5

2 x4
3 ) = (5, 4, 3).

The algebra of polynomials in 3n variables C[X ,Y ,Z ] is
multigraded by triples of partitions.
The action of S×3

n respects this grading and

Theorem

We have

Hilb(C[X ,Y ,Z ]∆Sn)(Q1,Q2,Q3)

Hilb(C[X ,Y ,Z ]S
×3
n )(Q1,Q2,Q3)

=
∑

σ1σ2σ3=1

Q
λ(σ1)
1 Q

λ(σ2)
2 Q

λ(σ3)
3
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Refined multimahonian distribution

So similarly to the case of the total degree we have

W (Q1,Q2,Q3) =
∑

T1,T2,T3

gµ(T1),µ(T2),µ(T3)Q
λ(T1)
1 Q

λ(T2)
2 Q

λ(T3)
3

=
∑
λ,µ,ν

gλ,µ,ν f λ(Q1)f µ(Q2)f ν(Q3)

= Hilb
( C[X ,Y ,Z ]∆Sn

(C[X ,Y ,Z ]S
×3
n

+ )

)
(Q1,Q2,Q3)

=
Hilb(C[X ,Y ,Z ]∆Sn)(Q1,Q2,Q3)

Hilb(C[X ,Y ,Z ]S
×3
n )(Q1,Q2,Q3)

=
∑

σ1σ2σ3=1

Q
λ(σ1)
1 Q

λ(σ2)
2 Q

λ(σ3)
3
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The generalized Robison-Schensted correspondence

Corollary

There is a map RS that associates to every triple of permutations
whose product is the identity a triple of standard tableaux of size n
such that:

|RS−1(T1,T2,T3)| = gµ(T1),µ(T2),µ(T3);

If (σ1, σ2, σ3) 7→ (T1,T2,T3) then Des(Ti ) = Des(σi ) ∀i .

The Kronecker coefficients are uniquely determined by this!

Corollary

Let g̃λ,µ,ν ∈ N for all triples of partitions λ, µ, ν of n. If φ is a map
that associate to every triple of permutations whose product is the
identity a triple of standard tableaux such that

|φ−1(T1,T2,T3)| = g̃µ(T1),µ(T2),µ(T3);

If (σ1, σ2, σ3) 7→ (T1,T2,T3) then Des(Ti ) = Des(σi ) ∀i .

Then g̃λ,µ,ν = gλ,µ,ν .
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A combinatorial algorithm

Using the previous corollary one can easily define a combinatorial
algorithm for the computation of the Kronecker coefficients.

The recursion step expresses a generic gλ,µ,ν in terms of

the number of triples of permutations (σ1, σ2, σ3) such that
σ1σ2σ3 = 1 and Des(σ1) = {λ1, λ1 + λ2, . . .} and similarly for
the descent sets of σ2 and σ3;

Some Kronecker coefficients gλ′,µ′,ν′ where λ′ B λ, µ′ B µ and
ν ′ B ν, where B denotes dominance order on partitions.

This algorithm is certainly less efficient than the one shown by
Derksen based on the Murnagham-Nakajama rule... but maybe
one can improve it.
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From symmetric to complex reflection groups

Vic Reiner observed that one can reobtain (in a non trivial way) all
the interpretations of the refined multimahonian distribution using
the Stanley-Reisner ring of the baricentric subdivision of an
n − 1-dimensional complex instead of the coinvariant algebras,
these being isomorphic.

These are no longer isomorphic for other Weyl groups and the
Stanley-Reisner ring is not defined at all for complex reflection
groups.

That’s why I was convinced that my approach is better...
...and I was led to introduce projective complex reflection groups.
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Complex reflection groups

Complex reflection groups are subgroups of GL(n,C) generated by
reflections, i.e. elements of finite order that fix a hyperplane
pointwise.

Example

G (r , n), the group of n × n monomial matrices whose non-zero
entries are r -th roots of 1.

0 0 −1 0
0 1 0 0
0 0 0 i
−i 0 0 0

 ∈ G (4, 4)

Example

G (r , p, n), the elements in G (r , n) whose permanent is a r/p-th
root of unity. The matrix above is an element in G (4, 2, 4).
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Projective reflection groups

Let Cq be the cyclic group of scalar matrices generated by e
2πi
q I .

Definition

If Cq ⊂ G (r , p, n) we define the projective reflection group
G (r , p, q, n) = G (r , p, n)/Cq.

Definition

If G = G (r , p, q, n) we say that the group G ∗ = G (r , q, p, n) is the
dual of G .

We observe that if G is a complex reflection group then G ∗ is not
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The duality

We will see many occurrences of the following relationship

Combinatorics
of G

↔ Invariant theory
of G ∗

Example

If G = G (r , 1, 1, n) then G ∗ = G . This holds in particular for
Sn = G (1, 1, 1, n) and Bn = G (2, 1, 1, n).

If G = Dn = G (2, 2, 1, n), then G ∗ = G (2, 1, 2, n) = Bn/±I
and it turns out that the combinatorics of Bn/±I describes
the invariant theory of Dn, and viceversa.
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The combinatorics

g =


0 0 −i 0
0 0 0 1
i 0 0 0
0 −1 0 0

 =


0 0 ζ3

4 0
0 0 0 ζ0

4

ζ1
4 0 0 0
0 ζ2

4 0 0

 ,
where ζr = e

2πi
r ∈ G (r , p, q, n).

We let z(g) = (3, 0, 1, 2), the color vector of g .
Let g ∈ G (r , p, q, n) and σ = |g | be its projection in Sn. Let

HDes(g) := {i ∈ [n − 1] : zi (g) = zi+1(g) and σi > σi+1}
hi (g) := #{j ≥ i : j ∈ HDes(g)}

ki (g) :=

{
[zn]r/q if i = n
ki+1 + [zi − zi+1]r if i ∈ [n − 1].
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The projective flag-major index

Letting λi (g) := r · hi (g) + ki (g) then the sequence

λ(g) := (λ1(g), . . . , λn(g))

is a partition.

If p = q = 1 we have |λ(g)| = fmaj(g), the flag-major index
defined by Adin and Roichman so we define

fmaj(g) := |λ(g)|

for all groups G (r , p, q, n).
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The coinvariant algebra

G = G (r , p, q, n) naturally acts on Sq[X ], the q-th Veronese
subalgebra of C[X ] := C[x1, . . . , xn], i.e. the subalgebra generated
in degree q.

The coinvariant algebra is

RG := Sq[X ]/I G
+ .

Theorem (C)

RG affords the regular representation of G .

If g ∈ G we consider the monomial

ag := x
λ1(g)
σ(1) · · · x

λn(g)
σ(n) , (where σ = |g |)

Generalizing Garsia-Stanton, Adin-Brenti-Roichman,
Bagno-Biagioli

Theorem (C)

The set of monomial {ag : g ∈ G ∗} is a linear basis for RG .
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The irreducible representations

Fer(r , p, n) = r -tuples of Ferrers diagrams (λ(0), . . . , λ(r−1))
having a total of n cells and

∑
i i |λ(i)| ≡ 0 mod p.

ST(r , p, n) = standard tableaux with shape in Fer(r , p, n).

Example [
, ,

5

1 4 2 8 6 7

3 9

]
∈ ST(3, 1, 9)

Cq acts on both Fer(r , p, n) and ST(r , p, n).
Denote by Fer(r , p, q, n) and ST(r , p, q, n) the quotient sets.

Theorem

The irreducible representations of G (r , p, q, n) are naturally
parametrized by pairs (µ, ρ), where µ ∈ Fer(r , q, p, n) and
ρ ∈ (Cp)µ, the stabilizer of any element in the class µ.
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The descent representations

Let G = G (r , p, q, n).

Theorem (C)

RG
k
∼=
⊕
λ`k

RG
λ

as G -modules and {ag : g ∈ G ∗ and λ(g) = λ} is a basis of RG
λ .

If T ∈ ST(r , p, q, n)

HDes(T ) = {i : i is above and in the same tableau of i +1};
zi (T ) = j if i appears in the (j + 1)-th tableau of T .
hi (T ), ki (T ), λ(T ) are defined as for elements in G (r , p, q, n).

Theorem

If µ ∈ Fer(r , q, p, n) the multiplicity of the representation (µ, ρ) in
RG
λ is equal to

|{T ∈ ST(r , q, p, n) : µ(T ) = µ and λ(T ) = λ}|.

Fabrizio Caselli Invariant theory of projective reflection groups



The descent representations

Let G = G (r , p, q, n).

Theorem (C)

RG
k
∼=
⊕
λ`k

RG
λ

as G -modules and {ag : g ∈ G ∗ and λ(g) = λ} is a basis of RG
λ .

If T ∈ ST(r , p, q, n)

HDes(T ) = {i : i is above and in the same tableau of i +1};
zi (T ) = j if i appears in the (j + 1)-th tableau of T .
hi (T ), ki (T ), λ(T ) are defined as for elements in G (r , p, q, n).

Theorem

If µ ∈ Fer(r , q, p, n) the multiplicity of the representation (µ, ρ) in
RG
λ is equal to

|{T ∈ ST(r , q, p, n) : µ(T ) = µ and λ(T ) = λ}|.

Fabrizio Caselli Invariant theory of projective reflection groups



The descent representations

Let G = G (r , p, q, n).

Theorem (C)

RG
k
∼=
⊕
λ`k

RG
λ

as G -modules and {ag : g ∈ G ∗ and λ(g) = λ} is a basis of RG
λ .

If T ∈ ST(r , p, q, n)

HDes(T ) = {i : i is above and in the same tableau of i +1};
zi (T ) = j if i appears in the (j + 1)-th tableau of T .
hi (T ), ki (T ), λ(T ) are defined as for elements in G (r , p, q, n).

Theorem

If µ ∈ Fer(r , q, p, n) the multiplicity of the representation (µ, ρ) in
RG
λ is equal to

|{T ∈ ST(r , q, p, n) : µ(T ) = µ and λ(T ) = λ}|.

Fabrizio Caselli Invariant theory of projective reflection groups



The descent representations

Let G = G (r , p, q, n).

Theorem (C)

RG
k
∼=
⊕
λ`k

RG
λ

as G -modules and {ag : g ∈ G ∗ and λ(g) = λ} is a basis of RG
λ .

If T ∈ ST(r , p, q, n)

HDes(T ) = {i : i is above and in the same tableau of i +1};

zi (T ) = j if i appears in the (j + 1)-th tableau of T .
hi (T ), ki (T ), λ(T ) are defined as for elements in G (r , p, q, n).

Theorem

If µ ∈ Fer(r , q, p, n) the multiplicity of the representation (µ, ρ) in
RG
λ is equal to

|{T ∈ ST(r , q, p, n) : µ(T ) = µ and λ(T ) = λ}|.

Fabrizio Caselli Invariant theory of projective reflection groups



The descent representations

Let G = G (r , p, q, n).

Theorem (C)

RG
k
∼=
⊕
λ`k

RG
λ

as G -modules and {ag : g ∈ G ∗ and λ(g) = λ} is a basis of RG
λ .

If T ∈ ST(r , p, q, n)

HDes(T ) = {i : i is above and in the same tableau of i +1};
zi (T ) = j if i appears in the (j + 1)-th tableau of T .

hi (T ), ki (T ), λ(T ) are defined as for elements in G (r , p, q, n).

Theorem

If µ ∈ Fer(r , q, p, n) the multiplicity of the representation (µ, ρ) in
RG
λ is equal to

|{T ∈ ST(r , q, p, n) : µ(T ) = µ and λ(T ) = λ}|.

Fabrizio Caselli Invariant theory of projective reflection groups



The descent representations

Let G = G (r , p, q, n).

Theorem (C)

RG
k
∼=
⊕
λ`k

RG
λ

as G -modules and {ag : g ∈ G ∗ and λ(g) = λ} is a basis of RG
λ .

If T ∈ ST(r , p, q, n)

HDes(T ) = {i : i is above and in the same tableau of i +1};
zi (T ) = j if i appears in the (j + 1)-th tableau of T .
hi (T ), ki (T ), λ(T ) are defined as for elements in G (r , p, q, n).

Theorem

If µ ∈ Fer(r , q, p, n) the multiplicity of the representation (µ, ρ) in
RG
λ is equal to

|{T ∈ ST(r , q, p, n) : µ(T ) = µ and λ(T ) = λ}|.

Fabrizio Caselli Invariant theory of projective reflection groups



The descent representations

Let G = G (r , p, q, n).

Theorem (C)

RG
k
∼=
⊕
λ`k

RG
λ

as G -modules and {ag : g ∈ G ∗ and λ(g) = λ} is a basis of RG
λ .

If T ∈ ST(r , p, q, n)

HDes(T ) = {i : i is above and in the same tableau of i +1};
zi (T ) = j if i appears in the (j + 1)-th tableau of T .
hi (T ), ki (T ), λ(T ) are defined as for elements in G (r , p, q, n).

Theorem

If µ ∈ Fer(r , q, p, n) the multiplicity of the representation (µ, ρ) in
RG
λ is equal to

|{T ∈ ST(r , q, p, n) : µ(T ) = µ and λ(T ) = λ}|.
Fabrizio Caselli Invariant theory of projective reflection groups



Tensorial and diagonal action

Consider the algebra Sq[X ,Y ] := Sq[X ]⊗ Sq[Y ] in 2n variables.
We consider the natural action of G × G and of its diagonal
subgroup ∆G on Sq[X ,Y ].

We let

ag (X ,Y ) =
1

|G |
∑

h∈∆G

h(x
λ1(g)
1 · · · xλn(g)

n y
λ1(g−1)
σ(1) · · · yλn(g−1)

σ(n) )

Main theorem

Let G = G (r , p, q, n). The set {ag (X ,Y ) : g ∈ G ∗} is a basis for
Sq[X ,Y ]∆G as Sq[X ,Y ]G×G -module.

This result was known in type A and B only (Garsia-Gessel,
F.Bergeron-Lamontagne, F.Bergeron-Biagioli).
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Tensorial and diagonal action

Consider the algebra Sq[X ,Y ] := Sq[X ]⊗ Sq[Y ] in 2n variables.
We consider the natural action of G × G and of its diagonal
subgroup ∆G on Sq[X ,Y ].
We let
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Mahonian distributions

If we consider the Hilbert series with respect to the bipartition
degree we have

Corollary

We have

Hilb(Sq[X ,Y ]∆G )

Hilb(Sq[X ,Y ]G×G )
(Q,T ) =

∑
g∈G∗

Qλ(g)Tλ(g−1),

where Qλ := qλ1
1 · · · qλn

n and similarly for T .

and its unrefined version

Hilb(Sq[X ,Y ]∆G )

Hilb(Sq[X ,Y ]G×G )
(q, t) =

∑
g∈G∗

qfmaj(g)t fmaj(g−1).
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Kronecker coefficients

Let f φ(Q) be the polynomial whose coefficient of Qλ is the
multiplicity of the irreducible representation φ of G in RG

λ .

Theorem (C)

Hilb(Sq[X ,Y ,Z ]G
×3

)

Hilb(Sq[X ,Y ,Z ]∆G )
=

∑
φ1,φ2,φ3

gφ1,φ2,φ3f φ1(Q1)f φ2(Q2)f φ3(Q3)

Corollary

∑
g1g2g3=1

Q
λ(g1)
1 Q

λ(g2)
2 Q

λ(g3)
3 =

∑
T1,T2,T3

gµ(T1),µ(T2),µ(T3)Q
λ(T1)
1 Q

λ(T2)
2 Q

λ(T3)
3 .

where gµ1,µ2,µ3 =
∑

ρ1,ρ2,ρ3
g(µ1,ρ1),(µ2,ρ2),(µ3,ρ3).
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A problem of Barcelo-Reiner-Stanton

If σ ∈ Gal(Q[ζr ],Q) then σ ∈ Aut(G ), where G = G (r , p, q, n).

∆σG = {(g , σg) : g ∈ G} ⊆ G × G .

Theorem

Gσ(Q,T ) := Hilb

(
Sq[X ,Y ]∆

σG

I G×G
+

)
(Q,T ) =

∑
φ∈Irr(G)

f σφ(Q)f φ̄(T ).

Corollary

Gσ(Q,T ) =
∑

g∈G∗

Qλ(σg)Tλ(g−1).

The unrefined version of the previous corollary

Gσ(q, t) =
∑

g∈G∗

qfmaj(σg)t fmaj(g−1)

is a solution of a problem posed by Barcelo, Reiner and Stanton.
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