Invariant theory of projective reflection groups, and their Kronecker coefficients

FABRIZIO CASELLI

November 23, 2009

ALMA MATER STUDIORUM Università di Bologna

4 3 b

Given $\sigma \in S_n$ let

Descents of σ = Des $(\sigma) = \{i | \sigma(i) > \sigma(i+1)\}$

æ

伺 と く ヨ と く ヨ と

Given $\sigma \in S_n$ let

Descents of
$$\sigma$$
 = Des (σ) = { $i | \sigma(i) > \sigma(i+1)$ }
Major index of σ = maj (σ) = $\sum_{i \in \text{Des}(\sigma)} i$

回 と く ヨ と く ヨ と

æ

Given $\sigma \in S_n$ let Descents of σ = Des $(\sigma) = \{i | \sigma(i) > \sigma(i+1)\}$ Major index of σ = maj $(\sigma) = \sum_{i \in Des(\sigma)} i$

Example

If $\sigma = 35241 \in S_5$ we have $\mathsf{Des}(\sigma) = \{2, 4\}$ and $\mathsf{maj}(\sigma) = 6$.

伺 ト く ヨ ト く ヨ ト

Given $\sigma \in S_n$ let Descents of σ = Des $(\sigma) = \{i | \sigma(i) > \sigma(i+1)\}$ Major index of σ = maj $(\sigma) = \sum_{i \in Des(\sigma)} i$

Example

If $\sigma = 35241 \in S_5$ we have $\mathsf{Des}(\sigma) = \{2, 4\}$ and $\mathsf{maj}(\sigma) = 6$.

Theorem (MacMahon)

$$egin{array}{rcl} \mathcal{W}(q) &=& \displaystyle\sum_{\sigma\in\mathcal{S}_n}q^{\mathrm{maj}(\sigma)} = \displaystyle\sum_{\sigma\in\mathcal{S}_n}q^{\mathrm{inv}(\sigma)} \ &=& \displaystyle\prod_{i=1}^n(1+q+q^2+\cdots+q^i), \end{array}$$

where $inv(\sigma) = |\{(i,j) : i < j \text{ and } \sigma(i) > \sigma(j)\}|.$

200

The coinvariant algebra

The coinvariant algebra of S_n is

$$\mathbf{R}^{S_n} := \mathbb{C}[X]/\mathbb{C}[X]^{S_n}_+$$

э

The coinvariant algebra

The coinvariant algebra of S_n is

$$\mathbf{R}^{\mathbf{S}_n} := \mathbb{C}[X]/\mathbb{C}[X]^{\mathbf{S}_n}_+,$$

where

•
$$\mathbb{C}[X] = \mathbb{C}[x_1, \ldots, x_n];$$

(문) (문) (문)

The coinvariant algebra of S_n is

$$\mathsf{R}^{S_n} := \mathbb{C}[X]/\mathbb{C}[X]^{S_n}_+,$$

where

- $\mathbb{C}[X] = \mathbb{C}[x_1, \ldots, x_n];$
- C[X]^{S_n}₊ is the ideal generated by the symmetric polynomials with zero constant term;

The coinvariant algebra of S_n is

$$\mathsf{R}^{S_n} := \mathbb{C}[X]/\mathbb{C}[X]^{S_n}_+,$$

where

- $\mathbb{C}[X] = \mathbb{C}[x_1, \ldots, x_n];$
- C[X]^{S_n}₊ is the ideal generated by the symmetric polynomials with zero constant term;

The algebra R^{S_n} is graded in \mathbb{N} by total degree and

The coinvariant algebra of S_n is

$$\mathsf{R}^{S_n} := \mathbb{C}[X]/\mathbb{C}[X]^{S_n}_+,$$

where

- $\mathbb{C}[X] = \mathbb{C}[x_1, \ldots, x_n];$
- C[X]^{S_n}₊ is the ideal generated by the symmetric polynomials with zero constant term;

The algebra R^{S_n} is graded in \mathbb{N} by total degree and

Theorem

We have

$$\mathrm{Hilb}(R^{S_n})=W(q).$$

Let μ be an irreducible representation of S_n and

Let μ be an irreducible representation of S_n and $f^{\mu}(q)$ be the polynomial whose coefficient of q^k is the multiplicity of μ in $R_k^{S_n}$, i.e.

$$f^{\mu}(q) = \sum \langle \chi^{\mu}, \chi(R_k^{S_n}) \rangle q^k.$$

Let μ be an irreducible representation of S_n and $f^{\mu}(q)$ be the polynomial whose coefficient of q^k is the multiplicity of μ in $R_k^{S_n}$, i.e.

$$f^{\mu}(q) = \sum \langle \chi^{\mu}, \chi(R_k^{S_n}) \rangle q^k.$$

•
$$Des(T) = \{1, 3, 5, 6\}$$

Let μ be an irreducible representation of S_n and $f^{\mu}(q)$ be the polynomial whose coefficient of q^k is the multiplicity of μ in $R_k^{S_n}$, i.e.

$$f^{\mu}(q) = \sum \langle \chi^{\mu}, \chi(R_k^{S_n}) \rangle q^k.$$

• $\text{Des}(T) = \{1, 3, 5, 6\}$

Let μ be an irreducible representation of S_n and $f^{\mu}(q)$ be the polynomial whose coefficient of q^k is the multiplicity of μ in $R_k^{S_n}$, i.e.

$$f^{\mu}(q) = \sum \langle \chi^{\mu}, \chi(R_k^{S_n}) \rangle q^k.$$

• $Des(T) = \{1, 3, 5, 6\}$

• maj(
$$T$$
) = 15

•
$$\mu(T) = (3, 2, 1, 1)$$

Let μ be an irreducible representation of S_n and $f^{\mu}(q)$ be the polynomial whose coefficient of q^k is the multiplicity of μ in $R_k^{S_n}$, i.e.

$$f^{\mu}(q) = \sum \langle \chi^{\mu}, \chi(R_k^{S_n}) \rangle q^k.$$

Theorem (Lusztig, Kraskiewicz-Weyman)

We have

$$f^{\mu}(q) = \sum_{\{\mathcal{T}: \mu(\mathcal{T}) = \mu\}} q^{\mathrm{maj}(\mathcal{T})}$$

 $R^{S_n} \cong \mathbb{C}S_n$ as S_n -modules. So

 $R^{S_n} \cong \mathbb{C}S_n$ as S_n -modules. So

$$W(q) = \sum_{\mudash n} f^\mu(1) f^\mu(q).$$

 $R^{S_n} \cong \mathbb{C}S_n$ as S_n -modules. So

$$W(q) = \sum_{\mu \vdash n} f^{\mu}(1) f^{\mu}(q).$$

The generalization

$$W(q,t) := \sum_{\mu \vdash n} f^{\mu}(q) f^{\mu}(t)$$

is again a Hilbert polynomial

 $R^{S_n} \cong \mathbb{C}S_n$ as S_n -modules. So

$$W(q) = \sum_{\mu \vdash n} f^{\mu}(1) f^{\mu}(q).$$

The generalization

$$W(q,t) := \sum_{\mu \vdash n} f^{\mu}(q) f^{\mu}(t)$$

is again a Hilbert polynomial

Theorem (Solomon)

W(q,t) is the Hilbert polynomial of

$$\mathbb{C}[X,Y]^{\Delta S_n}/\mathbb{C}[X,Y]^{S_n\times S_n}_+.$$

 $R^{S_n} \cong \mathbb{C}S_n$ as S_n -modules. So

$$\mathcal{W}(q) = \sum_{\mudash n} f^\mu(1) f^\mu(q).$$

The generalization

$${\mathcal W}(q,t) := \sum_{\mu \vdash n} f^\mu(q) f^\mu(t)$$

is again a Hilbert polynomial

Theorem (Solomon)

W(q,t) is the Hilbert polynomial of

$$\mathbb{C}[X,Y]^{\Delta S_n}/\mathbb{C}[X,Y]^{S_n\times S_n}_+.$$

The polynomial W(q, t) is the bimahonian distribution.

Other interpretations

The algebra $\mathbb{C}[X, Y]^{\Delta S_n}$ is a Cohen-Macauley algebra

< ∃ >

The algebra $\mathbb{C}[X, Y]^{\Delta S_n}$ is a Cohen-Macauley algebra so it is a free module on the subalgebra $\mathbb{C}[X, Y]^{S_n \times S_n}$.

Other interpretations

The algebra $\mathbb{C}[X, Y]^{\Delta S_n}$ is a Cohen-Macauley algebra so it is a free module on the subalgebra $\mathbb{C}[X, Y]^{S_n \times S_n}$. So

$$W(q,t) = rac{\mathrm{Hilb}(\mathbb{C}[X,Y]^{\Delta S_n})}{\mathrm{Hilb}(\mathbb{C}[X,Y]^{S_n imes S_n})}.$$

The algebra $\mathbb{C}[X, Y]^{\Delta S_n}$ is a Cohen-Macauley algebra so it is a free module on the subalgebra $\mathbb{C}[X, Y]^{S_n \times S_n}$. So

$$W(q,t) = rac{\mathrm{Hilb}(\mathbb{C}[X,Y]^{\Delta S_n})}{\mathrm{Hilb}(\mathbb{C}[X,Y]^{S_n imes S_n})}.$$

These Hilbert series can be studied using the theory of bipartite partitions.

The algebra $\mathbb{C}[X, Y]^{\Delta S_n}$ is a Cohen-Macauley algebra so it is a free module on the subalgebra $\mathbb{C}[X, Y]^{S_n \times S_n}$. So

$$W(q,t) = rac{\mathrm{Hilb}(\mathbb{C}[X,Y]^{\Delta S_n})}{\mathrm{Hilb}(\mathbb{C}[X,Y]^{S_n imes S_n})}.$$

These Hilbert series can be studied using the theory of bipartite partitions.

Theorem (Garsia-Gessel)

$$W(q,t) = \sum_{\sigma \in S_n} q^{\operatorname{maj}(\sigma)} t^{\operatorname{maj}(\sigma^{-1})}$$

同 ト イ ヨ ト イ ヨ ト

$$W(q,t) = \sum_{\{S,T:\mu(S)=\mu(T)\}} q^{\operatorname{maj}(S)} t^{\operatorname{maj}(T)}$$

$$W(q, t) = \sum_{\{S, T: \mu(S) = \mu(T)\}} q^{\operatorname{maj}(S)} t^{\operatorname{maj}(T)}$$
(Lusztig, Kraskiewicz-Weyman) =
$$\sum_{\mu \vdash n} f^{\mu}(q) f^{\mu}(t)$$

$$\begin{split} W(q,t) &= \sum_{\{S,T:\mu(S)=\mu(T)\}} q^{\operatorname{maj}(S)} t^{\operatorname{maj}(T)} \\ (\text{Lusztig, Kraskiewicz-Weyman}) &= \sum_{\mu\vdash n} f^{\mu}(q) f^{\mu}(t) \\ (\text{Solomon}) &= \operatorname{Hilb} \Big(\frac{\mathbb{C}[X,Y]^{\Delta S_n}}{\mathbb{C}[X,Y]^{S_n \times S_n}} \Big) \end{split}$$

$$\begin{split} W(q,t) &= \sum_{\{S,T:\mu(S)=\mu(T)\}} q^{\operatorname{maj}(S)} t^{\operatorname{maj}(T)} \\ (\text{Lusztig, Kraskiewicz-Weyman}) &= \sum_{\mu\vdash n} f^{\mu}(q) f^{\mu}(t) \\ (\text{Solomon}) &= \operatorname{Hilb} \Big(\frac{\mathbb{C}[X,Y]^{\Delta S_n}}{\mathbb{C}[X,Y]_+^{S_n \times S_n}} \Big) \\ (\text{Cohen-Macauley}) &= \frac{\operatorname{Hilb} (\mathbb{C}[X,Y]^{\Delta S_n})}{\operatorname{Hilb} (\mathbb{C}[X,Y]^{S_n \times S_n})} \end{split}$$

We can summarize these facts in the following sequence of identities:

$$\begin{split} W(q,t) &= \sum_{\{S,T:\mu(S)=\mu(T)\}} q^{\operatorname{maj}(S)} t^{\operatorname{maj}(T)} \\ (\text{Lusztig, Kraskiewicz-Weyman}) &= \sum_{\mu\vdash n} f^{\mu}(q) f^{\mu}(t) \\ (\text{Solomon}) &= \operatorname{Hilb} \Big(\frac{\mathbb{C}[X,Y]^{\Delta S_n}}{\mathbb{C}[X,Y]_+^{S_n \times S_n}} \Big) \\ (\text{Cohen-Macauley}) &= \frac{\operatorname{Hilb}(\mathbb{C}[X,Y]^{\Delta S_n})}{\operatorname{Hilb}(\mathbb{C}[X,Y]^{S_n \times S_n})} \\ (\text{Garsia-Gessel}) &= \sum_{\sigma \in S_n} q^{\operatorname{maj}(\sigma)} t^{\operatorname{maj}(\sigma^{-1})} \end{split}$$

∃ → < ∃ →</p>

We can summarize these facts in the following sequence of identities:

$$\begin{split} W(q,t) &= \sum_{\{S,T:\mu(S)=\mu(T)\}} q^{\operatorname{maj}(S)} t^{\operatorname{maj}(T)} \\ (\text{Lusztig, Kraskiewicz-Weyman}) &= \sum_{\mu\vdash n} f^{\mu}(q) f^{\mu}(t) \\ (\text{Solomon}) &= \operatorname{Hilb} \Big(\frac{\mathbb{C}[X,Y]^{\Delta S_n}}{\mathbb{C}[X,Y]_+^{S_n \times S_n}} \Big) \\ (\text{Cohen-Macauley}) &= \frac{\operatorname{Hilb}(\mathbb{C}[X,Y]^{\Delta S_n})}{\operatorname{Hilb}(\mathbb{C}[X,Y]^{S_n \times S_n})} \\ (\text{Garsia-Gessel}) &= \sum_{\sigma \in S_n} q^{\operatorname{maj}(\sigma)} t^{\operatorname{maj}(\sigma^{-1})} \end{split}$$

The equality between the first and the last line follows also immediately from the Robinson-Schensted correspondence.

Let $\sigma = 31542$. Then

Let $\sigma = 31542$. Then

Theorem (Robinson-Schensted correspondence)

The correspondence $\sigma \stackrel{RS}{\mapsto} [P(\sigma), Q(\sigma)]$ is a bijection between S_n and pairs of tableaux having the same shape

Let $\sigma = 31542$. Then

Theorem (Robinson-Schensted correspondence)

The correspondence $\sigma \stackrel{RS}{\mapsto} [P(\sigma), Q(\sigma)]$ is a bijection between S_n and pairs of tableaux having the same shape and

•
$$Des(\sigma) = Des(Q(\sigma));$$

Let $\sigma = 31542$. Then

Theorem (Robinson-Schensted correspondence)

The correspondence $\sigma \stackrel{RS}{\mapsto} [P(\sigma), Q(\sigma)]$ is a bijection between S_n and pairs of tableaux having the same shape and

•
$$Des(\sigma) = Des(Q(\sigma));$$

•
$$\operatorname{Des}(\sigma^{-1}) = \operatorname{Des}(P(\sigma)).$$
The many faces of the bimahonian distribution

$$W(q, t) = \sum_{\{S, T: \mu(S) = \mu(T)\}} q^{\operatorname{maj}(S)} t^{\operatorname{maj}(T)}$$
(Lusztig, Kraskiewicz-Weyman) =
$$\sum_{\mu} f^{\mu}(q) f^{\mu}(t)$$
(Solomon) =
$$\operatorname{Hilb}\left(\frac{\mathbb{C}[X, Y]^{\Delta S_n}}{\mathbb{C}[X, Y]_+^{S_n \times S_n}}\right)$$
(Cohen-Macauley) =
$$\frac{\operatorname{Hilb}(\mathbb{C}[X, Y]^{\Delta S_n})}{\operatorname{Hilb}(\mathbb{C}[X, Y]^{S_n \times S_n})}$$
(Garsia-Gessel) =
$$\sum_{\sigma \in S_n} q^{\operatorname{maj}(\sigma)} t^{\operatorname{maj}(\sigma^{-1})}$$

∃ ► < ∃ ►</p>

э

How to generalize to the 3-dimensional case?

∃ >

How to generalize to the 3-dimensional case? Use Kronecker coefficients!

$$g_{\lambda,\mu,
u} := rac{1}{n!} \sum_{\sigma \in S_n} \chi^{\lambda}(\sigma) \chi^{\mu}(\sigma) \chi^{
u}(\sigma).$$

3 N

How to generalize to the 3-dimensional case? Use Kronecker coefficients!

$$g_{\lambda,\mu,
u} := rac{1}{n!} \sum_{\sigma \in \mathcal{S}_n} \chi^{\lambda}(\sigma) \chi^{\mu}(\sigma) \chi^{
u}(\sigma).$$

Theorem (Solomon)

We have

$$\operatorname{Hilb}\left(\frac{\mathbb{C}[X,Y,Z]^{\Delta S_n}}{\mathbb{C}[X,Y,Z]_+^{S_n^{\times 3}}}\right) = \sum_{\lambda,\mu,\nu} g_{\lambda,\mu,\nu} f^{\lambda}(q_1) f^{\mu}(q_2) f^{\nu}(q_3).$$

Here X, Y, Z stand for three *n*-tuples of variables

直 ト イヨ ト イヨ ト

How to refine to multivariate degrees?

.⊒ . ►

How to refine to multivariate degrees? Use descent representations!

∃ >

How to refine to multivariate degrees? Use descent representations!

Theorem (Solomon, Adin-Brenti-Roichman)

We have

$$R_k^{S_n}\cong \bigoplus_{\lambda\vdash k} R_\lambda,$$

as S_n -modules, by means of a canonical isomorphism.

How to refine to multivariate degrees? Use descent representations!

Theorem (Solomon, Adin-Brenti-Roichman)

We have

$$R_k^{S_n}\cong \bigoplus_{\lambda\vdash k} R_\lambda,$$

as S_n -modules, by means of a canonical isomorphism.

We say that R_{λ} is the component of R^{S_n} of multidegree λ

How to refine to multivariate degrees? Use descent representations!

Theorem (Solomon, Adin-Brenti-Roichman)

We have

$$\mathsf{R}_k^{S_n}\cong \bigoplus_{\lambda\vdash k} \mathsf{R}_{\lambda},$$

as S_n -modules, by means of a canonical isomorphism.

We say that R_{λ} is the component of R^{S_n} of multidegree λ Hilb $(R^{S_n})(q_1, \ldots, q_n) = \sum_{i} (\dim R_{\lambda}) q_1^{\lambda_1} \cdots q_n^{\lambda_n}.$

How to refine to multivariate degrees? Use descent representations!

Theorem (Solomon, Adin-Brenti-Roichman)

We have

$$R_k^{S_n}\cong \bigoplus_{\lambda\vdash k} R_\lambda,$$

as S_n -modules, by means of a canonical isomorphism.

We say that R_{λ} is the component of R^{S_n} of multidegree λ

$$\operatorname{Hilb}(R^{S_n})(q_1,\ldots,q_n)=\sum_{\lambda}(\dim R_{\lambda})q_1^{\lambda_1}\cdots q_n^{\lambda_n}.$$

Extending this we can also decompose the algebra

$$\mathbb{C}[X,Y,Z]^{\Delta S_n}/\mathbb{C}[X,Y,Z]_+^{S_n^{\times 3}}$$

in homogeneous components whose degrees are triples of partitions with at most n parts.

Therefore the Hilbert series will depend on 3 *n*-tuples of variables Q_1, Q_2, Q_3 , where $Q_i = (q_{i,1}, \ldots, q_{i,n})$.

A B + A B +

Therefore the Hilbert series will depend on 3 *n*-tuples of variables Q_1, Q_2, Q_3 , where $Q_i = (q_{i,1}, \ldots, q_{i,n})$. Let $f^{\mu}(q_1, \ldots, q_n)$ be the polynomial whose coefficient of $q_1^{\lambda_1} \cdots q_n^{\lambda_n}$ is the multiplicity of the representation μ in R_{λ} . Therefore the Hilbert series will depend on 3 *n*-tuples of variables Q_1, Q_2, Q_3 , where $Q_i = (q_{i,1}, \ldots, q_{i,n})$. Let $f^{\mu}(q_1, \ldots, q_n)$ be the polynomial whose coefficient of $q_1^{\lambda_1} \cdots q_n^{\lambda_n}$ is the multiplicity of the representation μ in R_{λ} .

Theorem

We have

$$\operatorname{Hilb}\Big(\frac{\mathbb{C}[X,Y,Z]^{\Delta S_n}}{\mathbb{C}[X,Y,Z]_+^{S_n^{\times 3}}}\Big)(Q_1,Q_2,Q_3) = \sum_{\lambda,\mu,\nu} g_{\lambda,\mu,\nu} f^{\lambda}(Q_1) f^{\mu}(Q_2) f^{\nu}(Q_3)$$

For X a permutation or a tableau we let

 $(\lambda(X))_i = |\mathrm{Des}(X) \cap \{i, \ldots, n\}|$

3 N

For X a permutation or a tableau we let

$$(\lambda(X))_i = |\text{Des}(X) \cap \{i, \ldots, n\}| \text{ so } \lambda(X) \vdash \text{maj}(X)$$

For X a permutation or a tableau we let

$$(\lambda(X))_i = |\text{Des}(X) \cap \{i, \dots, n\}| \text{ so } \lambda(X) \vdash \text{maj}(X)$$

Theorem (Adin-Brenti-Roichman)

We have

$$f^{\mu}(q_1,\ldots,q_n)=\sum_{\{T:\mu(T)=\mu\}}Q^{\lambda(T)}.$$

Partition-degree on polynomials

And from the point of view of permutations?

(B) (B) (B)

Partition-degree on polynomials

And from the point of view of permutations? $\mathbb{C}[X]$ is multigraded by exponent partition

3 N

Partition-degree on polynomials

And from the point of view of permutations? $\mathbb{C}[X]$ is multigraded by exponent partition

$$\deg(x_1^3x_2^5x_3^4)=(5,4,3).$$

3 N

And from the point of view of permutations? $\mathbb{C}[X]$ is multigraded by exponent partition

$$\deg(x_1^3x_2^5x_3^4)=(5,4,3).$$

The algebra of polynomials in 3n variables $\mathbb{C}[X, Y, Z]$ is multigraded by triples of partitions.

And from the point of view of permutations? $\mathbb{C}[X]$ is multigraded by exponent partition

$$\deg(x_1^3x_2^5x_3^4) = (5, 4, 3).$$

The algebra of polynomials in 3n variables $\mathbb{C}[X, Y, Z]$ is multigraded by triples of partitions. The action of $S_n^{\times 3}$ respects this grading and And from the point of view of permutations? $\mathbb{C}[X]$ is multigraded by exponent partition

$$\deg(x_1^3x_2^5x_3^4)=(5,4,3).$$

The algebra of polynomials in 3n variables $\mathbb{C}[X, Y, Z]$ is multigraded by triples of partitions. The action of $S_n^{\times 3}$ respects this grading and

Theorem

We have

$$\frac{\operatorname{Hilb}(\mathbb{C}[X,Y,Z]^{\Delta S_n})(Q_1,Q_2,Q_3)}{\operatorname{Hilb}(\mathbb{C}[X,Y,Z]^{S_n^{\times 3}})(Q_1,Q_2,Q_3)} = \sum_{\sigma_1 \sigma_2 \sigma_3 = 1} Q_1^{\lambda(\sigma_1)} Q_2^{\lambda(\sigma_2)} Q_3^{\lambda(\sigma_3)}$$

Refined multimahonian distribution

So similarly to the case of the total degree we have

$$\begin{split} W(Q_1, Q_2, Q_3) &= \sum_{T_1, T_2, T_3} g_{\mu(T_1), \mu(T_2), \mu(T_3)} Q_1^{\lambda(T_1)} Q_2^{\lambda(T_2)} Q_3^{\lambda(T_3)} \\ &= \sum_{\lambda, \mu, \nu} g_{\lambda, \mu, \nu} f^{\lambda}(Q_1) f^{\mu}(Q_2) f^{\nu}(Q_3) \\ &= \operatorname{Hilb} \Big(\frac{\mathbb{C}[X, Y, Z]^{\Delta S_n}}{(\mathbb{C}[X, Y, Z]_+^{S_n^{\times 3}})} \Big) (Q_1, Q_2, Q_3) \\ &= \frac{\operatorname{Hilb}(\mathbb{C}[X, Y, Z]^{\Delta S_n}) (Q_1, Q_2, Q_3)}{\operatorname{Hilb}(\mathbb{C}[X, Y, Z]^{S_n^{\times 3}}) (Q_1, Q_2, Q_3)} \\ &= \sum_{\sigma_1 \sigma_2 \sigma_3 = 1} Q_1^{\lambda(\sigma_1)} Q_2^{\lambda(\sigma_2)} Q_3^{\lambda(\sigma_3)} \end{split}$$

글 🖌 🖌 글 🕨

э

Corollary

There is a map RS that associates to every triple of permutations whose product is the identity a triple of standard tableaux of size n such that:

- $|\mathrm{RS}^{-1}(T_1, T_2, T_3)| = g_{\mu(T_1), \mu(T_2), \mu(T_3)};$
- If $(\sigma_1, \sigma_2, \sigma_3) \mapsto (T_1, T_2, T_3)$ then $\operatorname{Des}(T_i) = \operatorname{Des}(\sigma_i) \ \forall i$.

Corollary

There is a map RS that associates to every triple of permutations whose product is the identity a triple of standard tableaux of size n such that:

- $|\mathrm{RS}^{-1}(T_1, T_2, T_3)| = g_{\mu(T_1), \mu(T_2), \mu(T_3)};$
- If $(\sigma_1, \sigma_2, \sigma_3) \mapsto (T_1, T_2, T_3)$ then $\operatorname{Des}(T_i) = \operatorname{Des}(\sigma_i) \ \forall i$.

The Kronecker coefficients are uniquely determined by this!

Corollary

There is a map RS that associates to every triple of permutations whose product is the identity a triple of standard tableaux of size n such that:

- $|\mathrm{RS}^{-1}(T_1, T_2, T_3)| = g_{\mu(T_1), \mu(T_2), \mu(T_3)};$
- If $(\sigma_1, \sigma_2, \sigma_3) \mapsto (T_1, T_2, T_3)$ then $\operatorname{Des}(T_i) = \operatorname{Des}(\sigma_i) \ \forall i$.

The Kronecker coefficients are uniquely determined by this!

Corollary

Let $\tilde{g}_{\lambda,\mu,\nu} \in \mathbb{N}$ for all triples of partitions λ, μ, ν of n.

Corollary

There is a map RS that associates to every triple of permutations whose product is the identity a triple of standard tableaux of size n such that:

- $|\mathrm{RS}^{-1}(T_1, T_2, T_3)| = g_{\mu(T_1), \mu(T_2), \mu(T_3)};$
- If $(\sigma_1, \sigma_2, \sigma_3) \mapsto (T_1, T_2, T_3)$ then $\operatorname{Des}(T_i) = \operatorname{Des}(\sigma_i) \ \forall i$.

The Kronecker coefficients are uniquely determined by this!

Corollary

Let $\tilde{g}_{\lambda,\mu,\nu} \in \mathbb{N}$ for all triples of partitions λ, μ, ν of n. If ϕ is a map that associate to every triple of permutations whose product is the identity a triple of standard tableaux such that

Corollary

There is a map RS that associates to every triple of permutations whose product is the identity a triple of standard tableaux of size n such that:

- $|\mathrm{RS}^{-1}(T_1, T_2, T_3)| = g_{\mu(T_1), \mu(T_2), \mu(T_3)};$
- If $(\sigma_1, \sigma_2, \sigma_3) \mapsto (T_1, T_2, T_3)$ then $\operatorname{Des}(T_i) = \operatorname{Des}(\sigma_i) \ \forall i$.

The Kronecker coefficients are uniquely determined by this!

Corollary

Let $\tilde{g}_{\lambda,\mu,\nu} \in \mathbb{N}$ for all triples of partitions λ, μ, ν of n. If ϕ is a map that associate to every triple of permutations whose product is the identity a triple of standard tableaux such that

•
$$|\phi^{-1}(T_1, T_2, T_3)| = \tilde{g}_{\mu(T_1), \mu(T_2), \mu(T_3)};$$

Corollary

There is a map RS that associates to every triple of permutations whose product is the identity a triple of standard tableaux of size n such that:

- $|\mathrm{RS}^{-1}(T_1, T_2, T_3)| = g_{\mu(T_1), \mu(T_2), \mu(T_3)};$
- If $(\sigma_1, \sigma_2, \sigma_3) \mapsto (T_1, T_2, T_3)$ then $\operatorname{Des}(T_i) = \operatorname{Des}(\sigma_i) \ \forall i$.

The Kronecker coefficients are uniquely determined by this!

Corollary

Let $\tilde{g}_{\lambda,\mu,\nu} \in \mathbb{N}$ for all triples of partitions λ, μ, ν of n. If ϕ is a map that associate to every triple of permutations whose product is the identity a triple of standard tableaux such that

•
$$|\phi^{-1}(T_1, T_2, T_3)| = \tilde{g}_{\mu(T_1), \mu(T_2), \mu(T_3)};$$

• If $(\sigma_1, \sigma_2, \sigma_3) \mapsto (T_1, T_2, T_3)$ then $\operatorname{Des}(T_i) = \operatorname{Des}(\sigma_i) \ \forall i$.

Corollary

There is a map RS that associates to every triple of permutations whose product is the identity a triple of standard tableaux of size n such that:

- $|\mathrm{RS}^{-1}(T_1, T_2, T_3)| = g_{\mu(T_1), \mu(T_2), \mu(T_3)};$
- If $(\sigma_1, \sigma_2, \sigma_3) \mapsto (T_1, T_2, T_3)$ then $\operatorname{Des}(T_i) = \operatorname{Des}(\sigma_i) \ \forall i$.

The Kronecker coefficients are uniquely determined by this!

Corollary

Let $\tilde{g}_{\lambda,\mu,\nu} \in \mathbb{N}$ for all triples of partitions λ, μ, ν of n. If ϕ is a map that associate to every triple of permutations whose product is the identity a triple of standard tableaux such that

•
$$|\phi^{-1}(T_1, T_2, T_3)| = \tilde{g}_{\mu(T_1), \mu(T_2), \mu(T_3)};$$

• If $(\sigma_1, \sigma_2, \sigma_3) \mapsto (T_1, T_2, T_3)$ then $\operatorname{Des}(T_i) = \operatorname{Des}(\sigma_i) \ \forall i$.

Then $\tilde{g}_{\lambda,\mu,\nu} = g_{\lambda,\mu,\nu}$.

4 B K 4 B K

The recursion step expresses a generic $g_{\lambda,\mu,\nu}$ in terms of

The recursion step expresses a generic $g_{\lambda,\mu,\nu}$ in terms of

• the number of triples of permutations $(\sigma_1, \sigma_2, \sigma_3)$ such that $\sigma_1 \sigma_2 \sigma_3 = 1$ and $\text{Des}(\sigma_1) = \{\lambda_1, \lambda_1 + \lambda_2, \ldots\}$ and similarly for the descent sets of σ_2 and σ_3 ;

The recursion step expresses a generic $g_{\lambda,\mu,\nu}$ in terms of

- the number of triples of permutations $(\sigma_1, \sigma_2, \sigma_3)$ such that $\sigma_1 \sigma_2 \sigma_3 = 1$ and $\text{Des}(\sigma_1) = \{\lambda_1, \lambda_1 + \lambda_2, \ldots\}$ and similarly for the descent sets of σ_2 and σ_3 ;
- Some Kronecker coefficients $g_{\lambda',\mu',\nu'}$ where $\lambda' \rhd \lambda$, $\mu' \rhd \mu$ and $\nu' \rhd \nu$, where \rhd denotes dominance order on partitions.

The recursion step expresses a generic $g_{\lambda,\mu,\nu}$ in terms of

- the number of triples of permutations $(\sigma_1, \sigma_2, \sigma_3)$ such that $\sigma_1 \sigma_2 \sigma_3 = 1$ and $\text{Des}(\sigma_1) = \{\lambda_1, \lambda_1 + \lambda_2, \ldots\}$ and similarly for the descent sets of σ_2 and σ_3 ;
- Some Kronecker coefficients $g_{\lambda',\mu',\nu'}$ where $\lambda' \rhd \lambda$, $\mu' \rhd \mu$ and $\nu' \rhd \nu$, where \rhd denotes dominance order on partitions.

This algorithm is certainly less efficient than the one shown by Derksen based on the Murnagham-Nakajama rule...

The recursion step expresses a generic $g_{\lambda,\mu,\nu}$ in terms of

- the number of triples of permutations $(\sigma_1, \sigma_2, \sigma_3)$ such that $\sigma_1 \sigma_2 \sigma_3 = 1$ and $\text{Des}(\sigma_1) = \{\lambda_1, \lambda_1 + \lambda_2, \ldots\}$ and similarly for the descent sets of σ_2 and σ_3 ;
- Some Kronecker coefficients $g_{\lambda',\mu',\nu'}$ where $\lambda' \rhd \lambda$, $\mu' \rhd \mu$ and $\nu' \rhd \nu$, where \rhd denotes dominance order on partitions.

This algorithm is certainly less efficient than the one shown by Derksen based on the Murnagham-Nakajama rule... but maybe one can improve it.

Image: A Image: A
These are no longer isomorphic for other Weyl groups

These are no longer isomorphic for other Weyl groups and the Stanley-Reisner ring is not defined at all for complex reflection groups.

These are no longer isomorphic for other Weyl groups and the Stanley-Reisner ring is not defined at all for complex reflection groups.

That's why I was convinced that my approach is better...

These are no longer isomorphic for other Weyl groups and the Stanley-Reisner ring is not defined at all for complex reflection groups.

That's why I was convinced that my approach is better... ...and I was led to introduce projective complex reflection groups.

Complex reflection groups

Complex reflection groups are subgroups of $GL(n, \mathbb{C})$ generated by reflections, i.e. elements of finite order that fix a hyperplane pointwise.

Complex reflection groups

Complex reflection groups are subgroups of $GL(n, \mathbb{C})$ generated by reflections, i.e. elements of finite order that fix a hyperplane pointwise.

Example

G(r, n), the group of $n \times n$ monomial matrices whose non-zero entries are *r*-th roots of 1.

$$\begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & i \\ -i & 0 & 0 & 0 \end{bmatrix} \in G(4,4)$$

Complex reflection groups

Complex reflection groups are subgroups of $GL(n, \mathbb{C})$ generated by reflections, i.e. elements of finite order that fix a hyperplane pointwise.

Example

G(r, n), the group of $n \times n$ monomial matrices whose non-zero entries are *r*-th roots of 1.

$$\begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & i \\ -i & 0 & 0 & 0 \end{bmatrix} \in G(4,4)$$

Example

G(r, p, n), the elements in G(r, n) whose permanent is a r/p-th root of unity. The matrix above is an element in G(4, 2, 4).

< 回 > < 回 > < 回 >

Definition

If $C_q \subset G(r, p, n)$ we define the projective reflection group $G(r, p, q, n) = G(r, p, n)/C_q$.

- 4 E 6 4 E 6

Definition

If $C_q \subset G(r, p, n)$ we define the projective reflection group $G(r, p, q, n) = G(r, p, n)/C_q$.

Definition

If G = G(r, p, q, n) we say that the group $G^* = G(r, q, p, n)$ is the dual of G.

Definition

If $C_q \subset G(r, p, n)$ we define the projective reflection group $G(r, p, q, n) = G(r, p, n)/C_q$.

Definition

If G = G(r, p, q, n) we say that the group $G^* = G(r, q, p, n)$ is the dual of G.

We observe that if G is a complex reflection group then G^* is not in general.

$$\begin{array}{c|c} \textbf{Combinatorics} \\ \textbf{of } G \end{array} \longleftrightarrow \begin{array}{c} \textbf{Invariant theory} \\ \textbf{of } G^* \end{array}$$

Example

• If G = G(r, 1, 1, n) then $G^* = G$. This holds in particular for $S_n = G(1, 1, 1, n)$ and $B_n = G(2, 1, 1, n)$.

- - E > - E >

$$\begin{array}{c|c} \textbf{Combinatorics} \\ \textbf{of } G \end{array} \longleftrightarrow \begin{array}{c} \textbf{Invariant theory} \\ \textbf{of } G^* \end{array}$$

Example

- If G = G(r, 1, 1, n) then $G^* = G$. This holds in particular for $S_n = G(1, 1, 1, n)$ and $B_n = G(2, 1, 1, n)$.
- If $G = D_n = G(2, 2, 1, n)$,

• • = • • = •

$$\begin{array}{c|c} \textbf{Combinatorics} \\ \textbf{of} \ G \end{array} \longleftrightarrow \begin{array}{c} \textbf{Invariant theory} \\ \textbf{of} \ G^* \end{array}$$

Example

- If G = G(r, 1, 1, n) then $G^* = G$. This holds in particular for $S_n = G(1, 1, 1, n)$ and $B_n = G(2, 1, 1, n)$.
- If $G = D_n = G(2, 2, 1, n)$, then $G^* = G(2, 1, 2, n) = B_n / \pm I$

• • = • • = •

$$\begin{array}{c|c} \textbf{Combinatorics} \\ \textbf{of} \ G \end{array} \longleftrightarrow \begin{array}{c} \textbf{Invariant theory} \\ \textbf{of} \ G^* \end{array}$$

Example

- If G = G(r, 1, 1, n) then $G^* = G$. This holds in particular for $S_n = G(1, 1, 1, n)$ and $B_n = G(2, 1, 1, n)$.
- If $G = D_n = G(2, 2, 1, n)$, then $G^* = G(2, 1, 2, n) = B_n/\pm I$ and it turns out that the combinatorics of $B_n/\pm I$ describes the invariant theory of D_n , and viceversa.

$$g = \begin{bmatrix} 0 & 0 & -i & 0 \\ 0 & 0 & 0 & 1 \\ i & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & \zeta_4^3 & 0 \\ 0 & 0 & 0 & \zeta_4^0 \\ \zeta_4^1 & 0 & 0 & 0 \\ 0 & \zeta_4^2 & 0 & 0 \end{bmatrix},$$

where $\zeta_r = e^{\frac{2\pi i}{r}} \in G(r, p, q, n).$

æ

<> E ► < E</p>

$$g = \begin{bmatrix} 0 & 0 & -i & 0 \\ 0 & 0 & 0 & 1 \\ i & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & \zeta_4^3 & 0 \\ 0 & 0 & 0 & \zeta_4^0 \\ \zeta_4^1 & 0 & 0 & 0 \\ 0 & \zeta_4^2 & 0 & 0 \end{bmatrix},$$

where $\zeta_r = e^{\frac{2\pi i}{r}} \in G(r, p, q, n).$
We let $z(g) = (3, 0, 1, 2)$, the color vector of g .
Let $g \in G(r, p, q, n)$ and $\sigma = |g|$ be its projection in S_n . Let
HDes $(g) := \{i \in [n-1] : z_i(g) = z_{i+1}(g) \text{ and } \sigma_i > \sigma_{i+1}\}$

< ≥ > <

æ

$$g = \begin{bmatrix} 0 & 0 & -i & 0 \\ 0 & 0 & 0 & 1 \\ i & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & \zeta_4^3 & 0 \\ 0 & 0 & 0 & \zeta_4^0 \\ \zeta_4^1 & 0 & 0 & 0 \\ 0 & \zeta_4^2 & 0 & 0 \end{bmatrix},$$

where $\zeta_r = e^{\frac{2\pi i}{r}} \in G(r, p, q, n).$
We let $z(g) = (3, 0, 1, 2)$, the color vector of g .
Let $g \in G(r, p, q, n)$ and $\sigma = |g|$ be its projection in S_n . Let
HDes $(g) := \{i \in [n-1] : z_i(g) = z_{i+1}(g) \text{ and } \sigma_i > \sigma_{i+1}\}$
 $h_i(g) := \#\{j \ge i : j \in \text{HDes}(g)\}$

< ≥ > <

æ

$$g = \begin{bmatrix} 0 & 0 & -i & 0 \\ 0 & 0 & 0 & 1 \\ i & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & \zeta_4^3 & 0 \\ 0 & 0 & 0 & \zeta_4^0 \\ \zeta_4^1 & 0 & 0 & 0 \\ 0 & \zeta_4^2 & 0 & 0 \end{bmatrix},$$

where $\zeta_r = e^{\frac{2\pi i}{r}} \in G(r, p, q, n).$
We let $z(g) = (3, 0, 1, 2)$, the color vector of g .
Let $g \in G(r, p, q, n)$ and $\sigma = |g|$ be its projection in S_n . Let
HDes $(g) := \{i \in [n-1] : z_i(g) = z_{i+1}(g) \text{ and } \sigma_i > \sigma_{i+1}\}$

$$\begin{array}{lll} h_i(g) &:= & \#\{j \ge i : j \in \mathrm{HDes}(g)\} \\ k_i(g) &:= & \left\{ \begin{array}{ll} [z_n]_{r/q} & \mathrm{if} \ i = n \\ k_{i+1} + [z_i - z_{i+1}]_r & \mathrm{if} \ i \in [n-1]. \end{array} \right. \end{array}$$

æ

∃ >

Letting $\lambda_i(g) := r \cdot h_i(g) + k_i(g)$ then the sequence

$$\lambda(g) := (\lambda_1(g), \ldots, \lambda_n(g))$$

is a partition.

A B + A B +

э

Letting $\lambda_i(g) := r \cdot h_i(g) + k_i(g)$ then the sequence

$$\lambda(g) := (\lambda_1(g), \ldots, \lambda_n(g))$$

is a partition.

If p = q = 1 we have $|\lambda(g)| = \operatorname{fmaj}(g)$, the flag-major index defined by Adin and Roichman

- 4 E 6 4 E 6

Letting $\lambda_i(g) := r \cdot h_i(g) + k_i(g)$ then the sequence

$$\lambda(g) := (\lambda_1(g), \ldots, \lambda_n(g))$$

is a partition.

If p = q = 1 we have $|\lambda(g)| = \operatorname{fmaj}(g)$, the flag-major index defined by Adin and Roichman so we define

 $\operatorname{fmaj}(g) := |\lambda(g)|$

for all groups G(r, p, q, n).

G = G(r, p, q, n) naturally acts on $S_q[X]$, the *q*-th Veronese subalgebra of $\mathbb{C}[X] := \mathbb{C}[x_1, \ldots, x_n]$, i.e. the subalgebra generated in degree *q*.

G = G(r, p, q, n) naturally acts on $S_q[X]$, the *q*-th Veronese subalgebra of $\mathbb{C}[X] := \mathbb{C}[x_1, \ldots, x_n]$, i.e. the subalgebra generated in degree *q*.

The coinvariant algebra is

$$\mathbf{R}^{\mathbf{G}} := S_q[X]/I_+^{\mathbf{G}}.$$

G = G(r, p, q, n) naturally acts on $S_q[X]$, the *q*-th Veronese subalgebra of $\mathbb{C}[X] := \mathbb{C}[x_1, \ldots, x_n]$, i.e. the subalgebra generated in degree *q*. The coinvariant algebra is

 $\mathbf{R}^{\mathsf{G}} := S_{\mathfrak{a}}[X]/I_{\perp}^{\mathsf{G}}.$

Theorem (C)

 R^{G} affords the regular representation of G.

G = G(r, p, q, n) naturally acts on $S_q[X]$, the *q*-th Veronese subalgebra of $\mathbb{C}[X] := \mathbb{C}[x_1, \ldots, x_n]$, i.e. the subalgebra generated in degree *q*. The coinvariant algebra is

 $\mathbf{R}^{\mathbf{G}} := S_{\mathbf{g}}[\mathbf{X}]/I_{+}^{\mathbf{G}}.$

Theorem (C)

 R^G affords the regular representation of G.

If $g \in G$ we consider the monomial

$$a_g := x_{\sigma(1)}^{\lambda_1(g)} \cdots x_{\sigma(n)}^{\lambda_n(g)}, ext{ (where } \sigma = |g|)$$

G = G(r, p, q, n) naturally acts on $S_q[X]$, the *q*-th Veronese subalgebra of $\mathbb{C}[X] := \mathbb{C}[x_1, \ldots, x_n]$, i.e. the subalgebra generated in degree *q*.

The coinvariant algebra is

$$\mathbf{R}^{\mathbf{G}} := S_q[X]/I_+^{\mathbf{G}}.$$

Theorem (C)

 R^G affords the regular representation of G.

If $g \in G$ we consider the monomial

$$a_g := x_{\sigma(1)}^{\lambda_1(g)} \cdots x_{\sigma(n)}^{\lambda_n(g)}, \text{ (where } \sigma = |g|)$$

Generalizing Garsia-Stanton, Adin-Brenti-Roichman, Bagno-Biagioli

G = G(r, p, q, n) naturally acts on $S_q[X]$, the *q*-th Veronese subalgebra of $\mathbb{C}[X] := \mathbb{C}[x_1, \ldots, x_n]$, i.e. the subalgebra generated in degree *q*.

The coinvariant algebra is

$$\mathbf{R}^{\mathbf{G}} := S_q[X]/I_+^{\mathbf{G}}.$$

Theorem (C)

 R^G affords the regular representation of G.

If $g \in G$ we consider the monomial

$$a_g := x_{\sigma(1)}^{\lambda_1(g)} \cdots x_{\sigma(n)}^{\lambda_n(g)}, \text{ (where } \sigma = |g|)$$

Generalizing Garsia-Stanton, Adin-Brenti-Roichman, Bagno-Biagioli

Theorem (C)

The set of monomial $\{a_g : g \in G^*\}$ is a linear basis for R^G .

Fer(r, p, n) = r-tuples of Ferrers diagrams $(\lambda^{(0)}, \dots, \lambda^{(r-1)})$ having a total of n cells and $\sum_i i |\lambda^{(i)}| \equiv 0 \mod p$.

Fer(r, p, n) = r-tuples of Ferrers diagrams $(\lambda^{(0)}, \dots, \lambda^{(r-1)})$ having a total of *n* cells and $\sum_i i |\lambda^{(i)}| \equiv 0 \mod p$. ST(r, p, n) = standard tableaux with shape in Fer(r, p, n).

Fer(r, p, n) = r-tuples of Ferrers diagrams $(\lambda^{(0)}, \ldots, \lambda^{(r-1)})$ having a total of *n* cells and $\sum_i i |\lambda^{(i)}| \equiv 0 \mod p$. ST(r, p, n) = standard tableaux with shape in Fer(r, p, n).

 C_q acts on both Fer(r, p, n) and ST(r, p, n).

Fer(r, p, n) = r-tuples of Ferrers diagrams $(\lambda^{(0)}, \dots, \lambda^{(r-1)})$ having a total of *n* cells and $\sum_i i |\lambda^{(i)}| \equiv 0 \mod p$. ST(r, p, n) = standard tableaux with shape in Fer(r, p, n).

 C_q acts on both Fer(r, p, n) and ST(r, p, n). Denote by Fer(r, p, q, n) and ST(r, p, q, n) the quotient sets.

Fer(r, p, n) = r-tuples of Ferrers diagrams $(\lambda^{(0)}, \dots, \lambda^{(r-1)})$ having a total of n cells and $\sum_i i |\lambda^{(i)}| \equiv 0 \mod p$. ST(r, p, n) = standard tableaux with shape in Fer(r, p, n).

 C_q acts on both Fer(r, p, n) and ST(r, p, n). Denote by Fer(r, p, q, n) and ST(r, p, q, n) the quotient sets.

Theorem

The irreducible representations of G(r, p, q, n) are naturally parametrized by pairs (μ, ρ) , where $\mu \in \text{Fer}(r, q, p, n)$ and $\rho \in (C_p)_{\mu}$, the stabilizer of any element in the class μ .

The descent representations

Let G = G(r, p, q, n).

-

э
Let
$$G = G(r, p, q, n)$$
.

Theorem (C)

$$R_k^G \cong \bigoplus_{\lambda \vdash k} R_\lambda^G$$

as G-modules and $\{a_g : g \in G^* \text{ and } \lambda(g) = \lambda\}$ is a basis of R^{G}_{λ} .

Let
$$G = G(r, p, q, n)$$
.

Theorem (C)

$$R_k^G \cong \bigoplus_{\lambda \vdash k} R_\lambda^G$$

as G-modules and $\{a_g : g \in G^* \text{ and } \lambda(g) = \lambda\}$ is a basis of R^{G}_{λ} .

If $T \in ST(r, p, q, n)$

Let
$$G = G(r, p, q, n)$$
.

Theorem (C)

$$R_k^G \cong \bigoplus_{\lambda \vdash k} R_\lambda^G$$

as G-modules and $\{a_g : g \in G^* \text{ and } \lambda(g) = \lambda\}$ is a basis of R^{G}_{λ} .

If $T \in ST(r, p, q, n)$ • HDes $(T) = \{i : i \text{ is above and in the same tableau of } i+1\};$

Let
$$G = G(r, p, q, n)$$
.

Theorem (C)

$$R_k^G \cong \bigoplus_{\lambda \vdash k} R_\lambda^G$$

as G-modules and $\{a_g : g \in G^* \text{ and } \lambda(g) = \lambda\}$ is a basis of R^G_{λ} .

If $T \in ST(r, p, q, n)$

- HDes $(T) = \{i : i \text{ is above and in the same tableau of } i+1\};$
- $z_i(T) = j$ if *i* appears in the (j + 1)-th tableau of *T*.

Let
$$G = G(r, p, q, n)$$
.

Theorem (C)

$$R_k^G \cong \bigoplus_{\lambda \vdash k} R_\lambda^G$$

as G-modules and $\{a_g : g \in G^* \text{ and } \lambda(g) = \lambda\}$ is a basis of R^{G}_{λ} .

If $T \in ST(r, p, q, n)$

- HDes $(T) = \{i : i \text{ is above and in the same tableau of } i+1\};$
- $z_i(T) = j$ if *i* appears in the (j + 1)-th tableau of *T*.
- $h_i(T), k_i(T), \lambda(T)$ are defined as for elements in G(r, p, q, n).

Let
$$G = G(r, p, q, n)$$
.

Theorem (C)

$$R_k^G \cong \bigoplus_{\lambda \vdash k} R_\lambda^G$$

as G-modules and $\{a_g : g \in G^* \text{ and } \lambda(g) = \lambda\}$ is a basis of R^{G}_{λ} .

If $T \in ST(r, p, q, n)$

- HDes $(T) = \{i : i \text{ is above and in the same tableau of } i+1\};$
- $z_i(T) = j$ if *i* appears in the (j + 1)-th tableau of *T*.
- $h_i(T), k_i(T), \lambda(T)$ are defined as for elements in G(r, p, q, n).

Theorem

If $\mu \in Fer(r, q, p, n)$ the multiplicity of the representation (μ, ρ) in R_{λ}^{G} is equal to

$$\{T \in \mathrm{ST}(r, q, p, n) : \mu(T) = \mu \text{ and } \lambda(T) = \lambda\}$$

Consider the algebra $S_q[X, Y] := S_q[X] \otimes S_q[Y]$ in 2*n* variables. We consider the natural action of $G \times G$ and of its diagonal subgroup ΔG on $S_q[X, Y]$.

Tensorial and diagonal action

Consider the algebra $S_q[X, Y] := S_q[X] \otimes S_q[Y]$ in 2*n* variables. We consider the natural action of $G \times G$ and of its diagonal subgroup ΔG on $S_q[X, Y]$. We let

$$a_{g}(X, Y) = \frac{1}{|G|} \sum_{h \in \Delta G} h(x_{1}^{\lambda_{1}(g)} \cdots x_{n}^{\lambda_{n}(g)} y_{\sigma(1)}^{\lambda_{1}(g^{-1})} \cdots y_{\sigma(n)}^{\lambda_{n}(g^{-1})})$$

• = • •

Tensorial and diagonal action

Consider the algebra $S_q[X, Y] := S_q[X] \otimes S_q[Y]$ in 2n variables. We consider the natural action of $G \times G$ and of its diagonal subgroup ΔG on $S_q[X, Y]$. We let

$$a_{g}(X,Y) = \frac{1}{|G|} \sum_{h \in \Delta G} h(x_{1}^{\lambda_{1}(g)} \cdots x_{n}^{\lambda_{n}(g)} y_{\sigma(1)}^{\lambda_{1}(g^{-1})} \cdots y_{\sigma(n)}^{\lambda_{n}(g^{-1})})$$

Main theorem

Let G = G(r, p, q, n). The set $\{a_g(X, Y) : g \in G^*\}$ is a basis for $S_q[X, Y]^{\Delta G}$ as $S_q[X, Y]^{G \times G}$ -module.

• • = • • = •

Tensorial and diagonal action

Consider the algebra $S_q[X, Y] := S_q[X] \otimes S_q[Y]$ in 2n variables. We consider the natural action of $G \times G$ and of its diagonal subgroup ΔG on $S_q[X, Y]$. We let

$$\mathsf{a}_{\mathsf{g}}(\mathsf{X},\mathsf{Y}) = \frac{1}{|\mathsf{G}|} \sum_{h \in \Delta \mathsf{G}} h(x_1^{\lambda_1(g)} \cdots x_n^{\lambda_n(g)} y_{\sigma(1)}^{\lambda_1(g^{-1})} \cdots y_{\sigma(n)}^{\lambda_n(g^{-1})})$$

Main theorem

Let G = G(r, p, q, n). The set $\{a_g(X, Y) : g \in G^*\}$ is a basis for $S_q[X, Y]^{\Delta G}$ as $S_q[X, Y]^{G \times G}$ -module.

This result was known in type A and B only (Garsia-Gessel, F.Bergeron-Lamontagne, F.Bergeron-Biagioli).

If we consider the Hilbert series with respect to the bipartition degree we have

Corollary

We have

$$\frac{\operatorname{Hilb}(S_q[X,Y]^{\Delta G})}{\operatorname{Hilb}(S_q[X,Y]^{G\times G})}(Q,T) = \sum_{g \in G^*} Q^{\lambda(g)} T^{\lambda(g^{-1})}$$

where $Q^{\lambda} := q_1^{\lambda_1} \cdots q_n^{\lambda_n}$ and similarly for T.

ゆ く き と く ゆ と

If we consider the Hilbert series with respect to the bipartition degree we have

Corollary

We have

$$\frac{\operatorname{Hilb}(S_q[X,Y]^{\Delta G})}{\operatorname{Hilb}(S_q[X,Y]^{G\times G})}(Q,T) = \sum_{g \in G^*} Q^{\lambda(g)} T^{\lambda(g^{-1})}$$

where $Q^{\lambda} := q_1^{\lambda_1} \cdots q_n^{\lambda_n}$ and similarly for T.

and its unrefined version

$$\frac{\mathrm{Hilb}(S_q[X,Y]^{\Delta G})}{\mathrm{Hilb}(S_q[X,Y]^{G\times G})}(q,t) = \sum_{g \in G^*} q^{\mathrm{fmaj}(g)} t^{\mathrm{fmaj}(g^{-1})}$$

直 と く ヨ と く ヨ と

э

Kronecker coefficients

Let $f^{\phi}(Q)$ be the polynomial whose coefficient of Q^{λ} is the multiplicity of the irreducible representation ϕ of G in R^{G}_{λ} .

Theorem (C)

$$\frac{\text{Hilb}(S_q[X, Y, Z]^{G^{\times 3}})}{\text{Hilb}(S_q[X, Y, Z]^{\Delta G})} = \sum_{\phi_1, \phi_2, \phi_3} g_{\phi_1, \phi_2, \phi_3} f^{\phi_1}(Q_1) f^{\phi_2}(Q_2) f^{\phi_3}(Q_3)$$

Corollary

$$\sum_{g_1g_2g_3=1} Q_1^{\lambda(g_1)} Q_2^{\lambda(g_2)} Q_3^{\lambda(g_3)} = \sum_{T_1, T_2, T_3} g_{\mu(T_1), \mu(T_2), \mu(T_3)} Q_1^{\lambda(T_1)} Q_2^{\lambda(T_2)} Q_3^{\lambda(T_3)}$$
where $g_{\mu_1, \mu_2, \mu_3} = \sum_{\rho_1, \rho_2, \rho_3} g_{(\mu_1, \rho_1), (\mu_2, \rho_2), (\mu_3, \rho_3)}$.

If $\sigma \in \operatorname{Gal}(\mathbb{Q}[\zeta_r],\mathbb{Q})$ then $\sigma \in \operatorname{Aut}(G)$, where G = G(r, p, q, n).

If $\sigma \in \operatorname{Gal}(\mathbb{Q}[\zeta_r], \mathbb{Q})$ then $\sigma \in \operatorname{Aut}(G)$, where G = G(r, p, q, n). $\Delta^{\sigma}G = \{(g, \sigma g) : g \in G\} \subseteq G \times G$.

Theorem

$$G^{\sigma}(Q,T) := \operatorname{Hilb}\left(\frac{S_q[X,Y]^{\Delta^{\sigma}G}}{I_+^{G\times G}}\right)(Q,T) = \sum_{\phi \in \operatorname{Irr}(G)} f^{\sigma\phi}(Q) f^{\tilde{\phi}}(T).$$

4 E b

If $\sigma \in \operatorname{Gal}(\mathbb{Q}[\zeta_r], \mathbb{Q})$ then $\sigma \in \operatorname{Aut}(G)$, where G = G(r, p, q, n). $\Delta^{\sigma}G = \{(g, \sigma g) : g \in G\} \subseteq G \times G$.

Theorem

$$G^{\sigma}(Q,T) := \operatorname{Hilb}\left(\frac{S_q[X,Y]^{\Delta^{\sigma}G}}{I_+^{G\times G}}\right)(Q,T) = \sum_{\phi \in \operatorname{Irr}(G)} f^{\sigma\phi}(Q) f^{\bar{\phi}}(T).$$

Corollary

$$G^{\sigma}(Q,T) = \sum_{g \in G^*} Q^{\lambda(\sigma g)} T^{\lambda(g^{-1})}.$$

A B > A B >

If $\sigma \in \operatorname{Gal}(\mathbb{Q}[\zeta_r], \mathbb{Q})$ then $\sigma \in \operatorname{Aut}(G)$, where G = G(r, p, q, n). $\Delta^{\sigma}G = \{(g, \sigma g) : g \in G\} \subseteq G \times G$.

Theorem

$$G^{\sigma}(Q,T) := \operatorname{Hilb}\left(\frac{S_q[X,Y]^{\Delta^{\sigma}G}}{I_+^{G\times G}}\right)(Q,T) = \sum_{\phi \in \operatorname{Irr}(G)} f^{\sigma\phi}(Q) f^{\bar{\phi}}(T).$$

Corollary

$$G^{\sigma}(Q,T) = \sum_{g \in G^*} Q^{\lambda(\sigma g)} T^{\lambda(g^{-1})}$$

The unrefined version of the previous corollary

$$G^{\sigma}(q,t) = \sum_{g \in G^*} q^{\operatorname{fmaj}(\sigma g)} t^{\operatorname{fmaj}(g^{-1})}$$

is a solution of a problem posed by Barcelo, Reiner and Stanton. = -22