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Abstract The �-Depth ANT Explorer (�-DANTE) algo-

rithm applied to a multiple objective optimization problem

is presented in this paper. This method is a hybridization of

the ant colony optimization algorithm with a depth search

procedure, putting together an oriented/limited depth

search. A particular design of the pheromone set of rules is

suggested for these kinds of optimization problems, which

are an adaptation of the single objective case. Six versions

with incremental features are presented as an evolutive

path, beginning in a single colony approach, where no

depth search is applied, to the final �-DANTE. Versions are

compared among themselves in a set of instances of the

multiple objective Traveling Salesman Problem. Finally,

our best version of �-DANTE is compared with several

established heuristics in the field showing some promising

results.
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1 Introduction

Nowadays, decision processes relies, more than ever, on

results produced by special skilled techniques to approxi-

mate solutions for complex problems. Among these there is

a class where a trade-off between several objectives is

required. They are known as multi-objective optimization

(MOO) problems. To understand the intrinsic behavior and

relations between objectives, the assistance of the Pareto

principle is required (Deb 2001).

In this article, an ant colony optimization algorithm

(ACO) for the multi-objective optimization problems is

adapted in a suitable way to solve the multiple objective

Traveling Salesman Problem (MOTSP). It includes a lim-

ited depth search in order to improve the performance of the

method and is tested on several instances of the MOTSP.

This combinatorial problem, as well as the majority of the

MOO problems (see for example the Multiple Objective

Minimum Spanning Trees problem case in (Camerini et al.

1980, 1983; Hamacher and Ruhe 1994) are classified as

NP-complete and NP-# (Ehrgott and Gandibleux 2004;

Garey and Johnson 1990).

Some examples of methods developed to solve MOO

problems focus on the transformation of the problem from

the multi into a single objective problem, aiming at the use

of the optimization techniques developed for the later case.

Some examples are the Weighted Sum, the �-Constraint,

and the Weighted Metric methods (Miettinen 1999).

However, those methods have some important weaknesses,

as the eventuality of the subsequent single objective opti-

mization problem has not an efficient algorithm to solve it

(Knowles and Corne 2001) (which is exactly the case of the

MOTSP), or the impossibility to return efficient solutions

in a concave region of the Pareto front and, therefore, the

incapability of assuring a well-distributed/representative
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set of solutions (Deb 2001; Hamacher and Ruhe 1994).

Other problems can occur like the possible non-optimality

of the solutions returned by the �-Constraint method

(Miettinen 1999).

Tailored with particular insight in nature phenomena

there is a set of methods which are recognized as approx-

imation methods or meta-heuristics. Most of these methods

were first introduced to solve single objective optimization

problems (Aarts and Lenstra 1997), but, due to their

characteristics, they were more or less straightforwardly

adapted to the multiple objective case. These methods

abstractly describe an optimization concept characterized

by a set of common optimization steps to be performed

independently of the problem, making them generally

applicable and flexible. In general, those meta-heuristics

only require a set of feasible solutions, a weight function, a

neighborhood operator, and an efficient method to explore

that neighborhood. Some of these meta-heuristics are the

well-known Tabu Search (TS) (Glover and Laguna 1997),

Simulated Annealing (SA) (Kirkpatrick et al. 1983),

Genetic Algorithms (GA) (Parmee 2001), and the Swarm

Intelligence (SI) algorithms (Dorigo and Stützle 2004).

We are mainly focused on ACO algorithms which is an

important subclass of the SI algorithms. ACO algorithms

are based on the behavior of the ants colonies, and, as in

other meta-heuristics, it is possible to use different char-

acteristics according to the problem to be solved. For

instance, we can consider single/multiple colonies, single/

multiple pheromone matrices, elitist and non-elitist pher-

omone updating rules, and updating rules that allow (or

not) ants to update pheromone trails of other colonies

(Garcı́a-Martı́nez et al. 2004, 2007). The SI class of algo-

rithms are known to produce good approximations, within

limited computational requirements. However, they usually

need a large amount of computational time or resources to

be competitive, specially when an earlier obtained solution

needs to be improved (Dorigo et al. 1999).

Those circumstances make the use of hybrid algorithms a

possible solution to refine the results obtained with SI

methods (Dorigo and Stützle 2004; Paquete and Stützle

2006). For instance, Reimann and Laumanns (2004)

reported the study of an hybrid ACO algorithm for the

Capacitated Minimum Spanning Tree problem. In this case,

an ACO technique is applied in a first phase, which is fol-

lowed by Prim’s algorithm applied to clusters of nodes that

were formerly computed. Blum (2005b) developed the

Beam–ACO, which is a combination of a beam search

heuristic with an ACO algorithm. In the Beam–ACO, the

basic solution construction mechanism of standard ACO

algorithms is replaced by a new one where each artificial ant

performs a probabilistic beam search. Reimann et al. (2004)

presented a Savings based Ant System for the Vehicle

Routing Problem, where ‘‘ants’’ construct a solution which

is improved by a local search. This local search used swap

movements followed by a 2-opt algorithm.

This paper presents the DANTE and �-DANTE algo-

rithms. These algorithms appear as an effort to provide a

powerful way of further exploiting the solutions built by an

ACO algorithm. In DANTE all solutions enter in a limited

depth search phase which is oriented by the pheromone

trails. On the other hand, in �-DANTE, only solutions that

improve the approximation set or that are considered

‘‘attractive’’ enter the same depth search phase. More

precisely, whenever a solution is inserted into the

approximation set or satisfies an � distance to the approx-

imation set criterion, an oriented limited depth search is

performed using the pheromone values to guide that search.

These actions are an attempt to improve the exploitation of

the search space, by conducting depth search to the more

promising areas which, at the same time, positively affects

its exploration.

Furthermore, the proposed pheromone updating strategy

tries to avoid some noisy trails, that are present when all

computed solutions are used in the updating rules. This is

achieved by restricting the solutions that will contribute to

the pheromone trails in each update to some subset of the

approximation set. This strategy comes in the direction of

the BS (best-so-far solution) update rule (Blum 2005a).

As already mentioned, the MOTSP was used to test our

implementation of the �-DANTE method. For the MOTSP

problem there is a set of studies which is based on the

mentioned meta-heuristics, as in the ACO algorithm

(Garcı́a-Martı́nez et al. 2004), in the GA (Jaszkiewicz

2002; Murata 1997), in the SA algorithm (Ulungu et al.

1999), or in the Pareto Local Searches (Paquete and Stützle

2003), which per se produces a base line for our methods.

We must notice that this paper is presented in a build-up

way, as we depart from a basic version and, through con-

secutive improvements, end up with the final �-DANTE.

More precisely, six versions are studied. The first three

versions are general ACO methods: starting from a single

colony method (Version 0), which passes to a multiple

equal behavior colony version (Version 1), evolving to a

multiple with distinct behavior colony version (Version 2).

The remaining versions are hybridizations of the ACO

algorithm with a depth search procedure, that come out as

attempts to properly exploit the search space of the prob-

lems in study. Therefore, Versions 3 and 4 (DANTE and

DANTE II) are first presented and significantly improve

the previous results. �-DANTE finishes our proposal of a

limited oriented depth search method.

As an outline of this paper, some preliminaries and

common features, among all versions, are given in the next

section. The developments of the procedures are detailed in

Sects. 3 and 4. A set of experimental results, including

MOTSP instances with more than two objectives, are
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resumed in the fifth section and in the next one some

comparisons with other methods in the field are presented

and discussed. This contribution ends with some consid-

erations and some possible evolution for this investigation.

2 Preliminaries and algorithms common features

This section is devoted to present the fundamental defini-

tions for the remaining paper. The section starts with the

basic formulation of the MOO problems, and a brief

overview of the ACO meta-heuristic applied to these

problems. The common features of the proposed methods

are presented in the remaining section.

2.1 Multiple objective optimization problems

The MOO problems are characterized by the existence of

several objectives to be optimized. Commonly, these

objectives are incompatible in the sense that to improve

one of them, it is necessary to worsen at least one of the

others (Deb 2001; Miettinen 1999; Romero 1993). Without

lost of generality, MOO problems can be formalized as

min
X2S
WðXÞ; ð1Þ

where WðXÞ ¼ ðw1ðXÞ;w2ðXÞ; . . .;wnðXÞÞ is a vector

objective function where all components, wi; are to be

minimized over the feasible set, S:
The Pareto (or efficiency) order relation will be used to

compare solutions. In this case, a solution X is said to

dominate another solution Y, X � Y ; when X is not worse

than Y for all objectives and there is at least one on which it

is strictly better, that is,

8i2f1;2;...;ng : wiðXÞ�wiðYÞ
9j2f1;2;...;ng : wjðXÞ\wjðYÞ:

�
ð2Þ

A solution X weakly dominates a solution Y, X � Y ; if X is

not worse than Y for all objectives, that is,

8i2f1;2;...;ng:wiðXÞ�wiðYÞ: The solution of the MOO prob-

lem, called Pareto (or efficient) set, is the set of the non

dominated solutions (also called Pareto solutions, optimal

solutions, or efficient solutions).

Pragmatically, a meta-heuristic returns an approxima-

tion to the Pareto set, in the sense that it does not neces-

sarily compute all solutions or all solutions are Pareto

solutions. With the objective of comparing the performance

of MOO meta-heuristics, several metrics were developed

(Zitzler et al. 2000, 2003). In this paper we will use the C

(set coverage), S (hyper-volume ratio), R1, and R3 metrics

(see Appendix A for a brief description of these metrics).

In the remainder of the article, we will also consider that

all problems can be formalized as networks in the form

N ¼ ðV; E;ZÞ; where V is the set of nodes, E is the set of

edges, and Z : E ! ðRþÞm such that

ZðeÞ ¼ ðz1ðeÞ; z2ðeÞ; . . .; zmðeÞÞ

is a function that associates to each edge a m-weight vector.

2.2 Multiple Objective Ant Colony Algorithms

Ant colony optimization algorithms are meta-heuristics

based on the collective behavior of the majority of the ant

colonies (Dorigo and Stützle 2004). In those colonies, ants

use pheromones to communicate between them, which

includes information about paths to known resources,

perilous situations, or some other kind of information

(Johnson 2001).

ACO algorithms mimic those behaviors using a set of

agents that compute new solutions based on artificial

pheromone trails left by the previous agents. Technically,

these pheromone trails are numerical values reflecting the

best solutions found so far.

ACO algorithms have a background of success solving

many multiple objective optimization problems (Garcı́a-

Martı́nez et al. 2004).

The general process can be described as follows. For

each cycle, a set of solutions based on the pheromone

matrices are computed. These solutions are then evaluated

and used to update the approximation set and the phero-

mone matrices. The overall procedure is supported by the

positive and negative feedbacks generated by pheromone-

updating strategies, which is the base of most of the ACO

algorithms. Algorithm 1 sketches a general ACO.

Despite the general good performance of the ACO

algorithms, along with the majority of the meta-heuristics,

these methods have certain difficulties to achieve optimum

solutions, although they return near optima (Dorigo et al.

1999). As an attempt to improve the methods efficiency,

hybridizations is nowadays considered to be a fundamental

aspect of high performing algorithms, as pointed out by

Blum (2005a). Blum and Roli (2003) distinguish three
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different taxonomies for hybridization: (1) the case where

components from one meta-heuristic are included into

another one; (2) the case where a cooperative search

between systems is performed, based on an information

exchange; and (3) the case where there is an integration of

approximate and systematic (or complete) methods. An in-

depth analysis is reported by Talbi (2002) where a com-

plementary taxonomy for the hybrid meta-heuristics is

presented.

Therefore, solutions with good objective values should

not be simply evaluated and discarded. For several evolu-

tionary algorithmic implementations, it is common to use

hybrid algorithms that apply local optimizers to the solu-

tions obtained by the constructive algorithms. This algo-

rithmic technique allows the further exploration of the

achieved solutions, as for example the 2-opt or 3-opt for

the Traveling Salesman Problem (Dorigo and Stützle 2004;

Paquete and Stützle 2006), the SOP-3-exchange for the

Sequential Ordering Problem (Gambardella and Dorigo

2000), or the Iterated Local Search for the Bin Packing

Problem (Levine and Ducatelle 2004).

A different approach for the traditional methods of local

search, in order to improve the computational performance,

could be centered in the exploration of the neighborhood of

the more promising solutions, avoiding exploratory com-

putations that probably would not improve the approxi-

mation set. This exploration should also be supported by

the known information related to the problem and not just

mechanical and non oriented exploration of the neighbors.

One alternative found in the literature is the Beam-ACO

(Blum et al. 2006; Blum 2005b) which, as already referred,

merges a beam search with an ant colony strategy,

obtaining an oriented/stochastic beam search.

2.3 Common features to all versions

Our proposal of a new stochastic depth search method will

be presented in the next sections. The proposed methods

are based on the available information, namely pheromone

trails, to guide the limited depth search. The objective is to

lead the exploration and the exploitation of the search

space using the maintained information. Six versions will

be presented, justifying as much as possible the evolution

from one version into the other. The experimental meth-

odology and the remaining common features are explained

in the next paragraphs.

2.3.1 Updating the approximation set

The update of the approximation set is made in the clas-

sical way. Given a solution S and the approximation set P;
the update procedure inserts S into P iff S is not dominated

by any solution of P: Solutions in P which are dominated

by S are removed. Furthermore, the merge of two

approximation sets, P1 ] P2; is the result of keeping the

non-dominated elements of P1 [ P2:

2.3.2 Pheromone trails update

When referring to the pheromone matrices, two main

approaches were previously considered: the use of a single

pheromone matrix, and the use of m matrices each one

related to one of the weights (Garcı́a-Martı́nez et al. 2007).

In this article m matrices were considered, which is

equivalent to assigning a m-pheromone vector to each edge

e. The colony’s pheromone-vector update is made

according to formula

sðeÞ ¼ qsðeÞ þ DðeÞ; e 2 E; ð3Þ

where sðeÞ ¼ ðs1ðeÞ; s2ðeÞ; . . .; smðeÞÞ is the m-pheromone

vector associated to edge e;q 2 ½0; 1� is called the persis-

tence factor (1� q is the evaporation factor). The smaller

the value of q; the smaller the quantity of information, used

in one cycle, transmitted to the following cycle; DðeÞ ¼
D1ðeÞ;D2ðeÞ; . . .;DmðeÞð Þ is the reinforcement pheromone

vector associated to edge e and is computed using the

elements of the approximation set, P; along with formula

DkðeÞ ¼
X
T2P

Q

wkðTÞ
; k ¼ 1; 2; . . .;m ð4Þ

where Q is a value with the same magnitude of the solu-

tions. For example, if the weights are balanced, Q can be

set as the minimum value between all objectives; P is the

colony’s approximation set (further details about this set

are given in the next section).

2.3.3 Transition rule

For all versions the order in which the nodes are chosen to

belong to the Hamiltonian cycle is made pseudo randomly.

This selection is made according to the pheromone trails

and a local greedy heuristic that gives preference to the

‘‘nearest’’ nodes.

The choice of the edges to be included in the Hamilto-

nian cycle is made as follows. If the agent is on node s and

TN is the set of nodes already included in the path that is

being constructed, then an edge est is chosen to integrate

the path (and consequently node t is added) according to

est ¼
arg maxest0 2As

Qm
k¼1 skðest0 Þak gkðest0 Þbk

if q� q0

e if q [ q0;

8<
: ð5Þ

where s is the previously inserted node; t is the node

selected to be inserted in the path; As ¼ fest0 2 E : t0 62
TNg is the set of feasible edges with nodes adjacent to s;
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skðeÞ is the pheromone value associated to the k weight in

edge e; gkðeÞ ¼ 1
zkðeÞ implements the local greedy heuristic,

where zkðeÞ is the k-weight of edge e; ak is an algorithm

parameter associated with the relevance of k-pheromone

trail. Indirectly, this value is associated with the relevance

of the k-weight since each pheromone trail is associated to

a weight; bk is an algorithm parameter associated to the

local heuristic that favors edges with lower k-weight; e 2
As is an edge pseudo randomly chosen with probability

pðeÞ ¼
Qm

k¼1 skðeÞakgkðeÞbkP
f2As

Qm
k¼1 skðf Þakgkðf Þbk

; ð6Þ

q is a uniform random value in [0, 1]; and q0 2 ½0; 1� is a

parameter that favors the exploration of the search space

(for smaller values of q0) or the exploitation of that same

search space (for larger values of q0).

2.4 Test problem: multiple objective Traveling

Salesman Problem

A set of instances of the MOTSP were used to test the

proposed methods. The MOTSP Problem requires the

computation of the ‘‘cheapest’’ Hamiltonian cycles

according to the Pareto principles. This choice is justified

by the availability of well known sets of problems and

respective solutions or approximations. In particular we

have used the bi-objective kroAB50 problem1 to test the

upgrade features introduced from version to version. To

compare the best performing variants a broader set of

instances will be presented in a subsequent section.

2.5 Computational environment and performance

metrics

The methods compared in this contribution were imple-

mented in C??, compiled using gcc 4.3.3, and run on

Ubuntu 7.10 over a 3.0 GHz computer with 1 GB of RAM.

To compare and test the performance of the proposed

methods, five metrics were selected: ðj � jÞ cardinality of the

approximation set, C (coverage), S (hyper-volume ratio),

R1R; and R3R (see Appendix A). The C metric is used to

compare two sets, calculating the percentage of elements of

one set which are weakly dominated by elements of the

other, or vice versa. The hyper-volume ratio calculates the

percentage of hyper-volume obtained with a certain

method, when compared with the hyper-volume of a ref-

erence set. This metric allows us to measure the diversity

of the approximation and its proximity to the reference set.

The other two metrics, R1R and R3R, use utility functions to

measure the quality of the solutions when compared with a

reference set. We recall that using P0 as the reference set,

the objective is to obtain Sð� 1Þ values as close as possible

to 1, R1rð� 0:5Þ as close as possible to 0.5 and R3Rð� 0Þ
as close as possible to 0.

Furthermore, we have used the non-dominated elements

of the union of all runs and versions variants described in

the document (after 1,800 s of computation time) as a

reference set, P0: We should also notice that P0 has 847

elements and its hyper-volume is equal to 4.876.026.455

for the (anti-)reference solution (90.000, 90.000).2

Table 1 collects the remaining common parameters.3

Parameters which are not common are to be presented with

the correspondent versions. Since it is impossible to place

in this paper all combinations of the parameters over large

sets of values, the strategy was to establish constant suit-

able values for some of them, while varying others.

3 An initial approach to multiple objective ant colony

optimization algorithms

The next sections present the six proposed methods. It

starts with a base multi-objective approach and builds-up

new methods, through successive improvements, until the

final proposal.

Table 1 Global parameter values for all test variants

Parameter Obs.

Ants per cycle 10

Cycles per colony 50 See next sections

q 0.1 Eq. 3

Q 15,000 Eq. 4

q0 0.75 Eq. 5

Maximum time 300 s Time used for the

comparisons (unless

stated otherwise)

Number of runs 25

1 The used problems are combinations of the single objective

problems with the same prefix (kro) available at the TSPLib. Files are

truncated to obtain the 50 node instances, and pairwise combined to

obtain the multiple objectives (Jaszkiewicz 2002).

2 We notice that comparing P0 with non-dominated subset of the

union of the results obtained with five runs for each of the Multiple

Objective Genetic Local Search (MOGLS), Multiple Objective

Simulated Annealing (MOSA), and MOSA-like MOGLS algorithms

(Jaszkiewicz 2002, 2006; Ishibuchi and Murata 1998) [results

available at (Jaszkiewicz 2006)],P00; the C metric value were equal

to CðP00;P0Þ ¼ 0:34829 and CðP0;P00Þ ¼ 0:99517.
3 The total run time was 1,800 s although for the comparisons, and

unless stated otherwise, we consider the 300 s computation time. The

objective of using the 1,800 s running time was to obtain a more

accurate approximation set to serve as a reference set.
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3.1 Version 0: base version

For the base version, Version 0, the general single colony

MOACO that was presented in Sect. 2 is considered as

follows. Furthermore, a classical constructive process was

used to build each TSP cycle. This construction can be

described as follows:

1. Initially each agent is placed at random in one of the

network nodes;

2. Then, while there are unvisited nodes, each of those

agents builds a path by the successive addition of

nodes from the ones that were not yet visited, and are

adjacent to the one that was last inserted. The selection

of the nodes is made pseudo-randomly using Eq. 5;

3. The cycle is closed by the addition of the edge defined

by the first and last nodes inserted in the path.

The weight of a cycle is obtained by the sum of all edges

weights, that is:

WðPÞ ¼
X
e2P

ZðeÞ ¼
X
e2P

ðz1ðeÞ; z2ðeÞ; . . .; zmðeÞÞ ð7Þ

3.1.1 A first set of results

With the parameter values summarized in Table 2, four

variants were considered to test Version 0. Table 3

presents the statistical results for the number of non-

dominated solutions (cardinality of the approximation

set), S;R1R; and R3R metrics. Through the observation

of the metric values, we can conclude that this version

variants have a low performance. When compared with

the reference set values, the highest value for the S
metric is obtained for variant A.1 with 0.8601, corre-

sponding to 86.01% of the hyper-volume of P0: Analo-

gous conclusions can be derived from the R1R and R3R

values, with values far from the objective 0.5 and 0,

respectively.

Figure 1 sketches typical objective fronts for each of the

variants and for the reference set, P0: It is observable that

the variants fronts, compared with P0; do not achieve the

proximity and diversity required in an multi-objective

approximation. In the next section we will present a first

modification with the objective of improving both diversity

and proximity objectives.

3.2 Version 1: multi colony approach

We will first compare the single colony with a multi colony

algorithm. In the multi colony case, several colonies

cooperate in finding good solutions. This cooperation is

achieved by the exchange of information at certain times

(Middendorf et al. 2002).

In Version 1 each of the colonies follows the same steps

as the colonies described for Version 0. In the next para-

graphs, the differences from Version 0 to Version 1 are

explained.

Table 2 Parameter values for the tested variants of Versions 0

Variant Colonies a b

A.1 1 1.0 1.0

A.2 1 5.0 1.0

A.3 1 5.0 5.0

A.4 1 1.0 5.0

A all variants of this version

Table 3 Version 0 statistics (mean and standard deviation) for the

metrics: |P|, S;R1R; and R3R

A.1 A.2 A.3 A.4

|P|

Mean 1.427e102 4.252e?01 6.872e?01 1.266e?02

SD 2.510e?01 1.139e?01 2.351e?01 4.371e?01

S
Mean 8.601e-01 7.505e-01 7.679e-01 8.173e-01

SD 1.434e-02 1.468e-02 4.760e-02 7.676e-02

R1R

Mean 9.984e-01 1.000e?00 1.000e?00 9.992e-01

SD 6.308e-03 0.000e?00 0.000e?00 2.797e-03

R3R

Mean -5.141e103 -9.957e?03 -8.782e?03 -5.805e?03

SD 1.565e?03 1.132e?03 2.416e?03 4.271e?03

Best mean value for each case is shown in bold type

20000

30000

40000

50000

60000

70000

20000 30000 40000 50000 60000 70000 80000

w
2

w1

P0
A.1
A.2
A.3
A.4

Fig. 1 Example of fronts obtained with the variants of Version 0.

Variants could be ordered with relation to their proximity to the

reference set as A.1, A.4, A.3, and A.2
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3.2.1 Information exchange between the colonies

In the multi-colony versions (Version 1 and following) an

exchange of information is mandatory. To do this, at each

predefined number of colony cycles, the approximation sets

of the N ? 1 colonies, CPi ði ¼ 0; 1; . . .;NÞ; are merged into

a global one,

P ¼ CP0 ] CP1 ] � � � ] CPN : ð8Þ

Then the colonies approximation sets are reinitialized

with elements of the global approximation set which is split

among several colonies, considering the following process:

• Lexicographically sort P ¼ fS1; S2; . . .; SjPjg;
• Colony’s 0 approximation set, CP0 ; is reinitialized with

the first
jPj
N

j k
elements of the lexicographically sorted

P: Colony 1 approximation set, CP1 ; is reinitialized with

the first
jPj
N

j k
elements of the lexicographically sorted

P � CP0 : Analogous, Colony 2 approximation set, CP2 ; is

reinitialized with the first
jPj
N

j k
elements of the

lexicographically sorted P � ðCP0 [ CP1 Þ: The process

is repeated until CPN ; which receives the remaining

elements.

The objective is to let each colony explore small regions

of the search space. This is achieved by using the splitting

strategy in conjunction with the pheromone updating for-

mula that uses the colonies approximation sets, CPi ; to

reinitialize the pheromone matrices (Sect. 2.3.2). This

procedure is often classified as greedy, in the sense that it

only uses the best elements so far, that is, elements of the

approximation set.

Furthermore, the splitting of the elements of the

approximation set is also motivated by the fact that often

the number of elements in that set becomes very large. The

observation of the pheromone matrices showed that, if

the solutions in the approximation set were all used, then

the pheromone-based selection becomes ‘‘noisy’’. In the

next sections, we will also notice that this splitting strategy

agrees with the settings of the a and b parameters.

The splitting of the approximation set, combined with

the pheromone update strategy, is particularly adapted to

the multiple objective problems. Firstly because it is sup-

posed that each edge has associated an m-pheromone

vector, where each component represents the worthy of that

edge in the construction of good solutions, considering a

particular weight. Secondly because the approximation set

serves as a database of the knowledge acquired by the ants.

Nevertheless, it is easy to derive a similar strategy for the

single objective case, by providing a list of the best-known

solutions.

Algorithm 2 systematizes the multiple colony process.

3.2.2 Comparing Version 0 with Version 1

Table 4 summarizes the combination of parameter values

used by the tested variants of Version 1.

The mean and standard deviation statistics for

jPj;S;R1R, and R3R, are collected in Table 5. Comparing

the variants from Version 1, we can observe that the best

results were obtained from variants M.1 and M.5. Variant

M.1 used 25 colonies against the 50 of M.5, which does not

allow us to conclude whichever is the best number of

colonies. However, we can observe that the worst cases of

the 50 colonies (M.6 and M.7) are slightly better than the

worst cases obtained with 25 colonies. Common is the fact

that the a ’s are equal to 1 and the b’s to 1 or 5. R1R is

Table 4 Parameter values for the tested variants of Versions 1

Variant Colonies a b

M.1 25 1.0 1.0

M.2 25 5.0 1.0

M.3 25 1.0 5.0

M.4 25 5.0 5.0

M.5 50 1.0 5.0

M.6 50 5.0 5.0

M.7 50 5.0 1.0

M.8 50 1.0 1.0

M all variants of this version
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totally inconclusive (except for M.1, they are equal to 1 for

all variants), showing that the results obtained with variants

M.1–M.8 are not close enough to the reference set. R3R

also doesn’t allow us to retrieve significant conclusions

with all values in the order of �103: The cardinality of the

approximations sets returned by the variants with a = 5 are

the lowest, letting us conclude that in those cases, the

required exploration of the search space was not achieved.

Compared against the results obtained by Version 0, we

can observe that a very slight improvement was achieved,

but which cannot be considered sufficient.

Table 6 shows the values of the non-parametric Mann–

Whitney paired test (see Appendix B) (Demšar 2006;

Garcı́a et al. 2008, 2009), considering the S metric results

for the independent samples. For the null hypothesis we

have considered H0: ‘‘The distribution of SðViÞ � SðVjÞ is

symmetric about 0’’ against the one-side alternative

hypothesis H1: ‘‘SðViÞ is shifted to the right of SðVjÞ ’’,

where Vi is the variant represented in row i and Vj the one

in column j.4 Compared among the variants of Version 0,

we can conclude that A.1 is statistically better than the

other three variants and A.4 is better than the other two.

Statistically comparing Versions 0 and 1 (see Table 6),

we can observe that variants A.1 and A.4 are better than

M.2, M.4, M.6, and M.7. Except for A.1, M.3, and M.5,

variant M.1 (from version 1 with 25 colonies) is better than

all the others. Except for M.1 and M.3, variant M.5 (with

50 colonies) is better than all the others. Variants M.1, M.3,

and M.5 (all from Version 1) are not worse than any of the

others. Since the statistic results do not allow us to retain a

value for the number of colonies, we will keep both (25 and

50 colonies) in the next versions experiments.

Figure 2 sketches typical fronts obtained from each of

the variants (M.1–M.8) against P0: It is observable that the

approximation sets do not present an acceptable quality yet

(spread and proximity to the reference set), which justifies

the adoption of alternative strategies to be introduced in the

next versions.

3.3 Version 2: multiple colonies with different

behaviors

This section describes the modifications made between

Version 1 and 2. In Version, 2 the behavior of the colonies

is different since each colony, i, has different aðiÞ ¼
ðaðiÞ1 ; a

ðiÞ
2 ; . . .; aðiÞm Þ and bðiÞ ¼ ðbðiÞ1 ; b

ðiÞ
2 ; . . .; bðiÞm Þ parameter

values. This is made by setting a maximum value for the a
’s, amax; and for the b ’s, bmax: Then the parameters of

colonyiði ¼ 0; 1; . . .;NÞ are set as:

aðiÞk ¼ hðiÞk 	 amax

k ¼ 1; 2; . . .;m

bðiÞk ¼ hðiÞk 	 bmax

8<
: ð9Þ

where, for k ¼ 1; 2; . . .;m;

hðiÞk ¼ max 0; 1� m� 1

N
i� ðk � 1Þ

����
����

� �
: ð10Þ

Figure 3 sketches two examples for the h ’s values when

(a) N ¼ 30 and m ¼ 2 weights; and (b) N ¼ 60 and m ¼ 5

weights. For instance, in the presented examples, the h ’s of

Table 5 Version 1 statistics (mean and standard deviation) for the metrics: |P|, S;R1R; and R3R

M.1 M.2 M.3 M.4 M.5 M.6 M.7 M.8

|P|

Mean 1.009e102 3.836e?01 7.016e?01 4.100e?01 7.080e?01 6.360e?01 4.420e?01 7.448e?01

SD 4.002e?01 5.773e?00 4.113e?01 5.679e?00 1.027e?01 7.708e?00 6.825e?00 1.045e?01

S
Mean 8.736e-01 7.522e-01 8.563e-01 7.506e-01 8.673e-01 7.854e-01 7.744e-01 8.591e-01

SD 3.631e-02 1.228e-02 5.216e-02 1.901e-02 1.417e-02 1.309e-02 7.023e-03 1.048e-02

R1R

Mean 9.998e-01 1.000e?00 1.000e?00 1.000e?00 1.000e?00 1.000e?00 1.000e?00 1.000e?00

SD 1.010e-03 0.000e?00 0.000e?00 0.000e?00 0.000e?00 0.000e?00 0.000e?00 0.000e?00

R3R

Mean -4.320e?03 -8.702e?03 -3.557e103 -7.388e?03 -4.231e?03 -6.797e?03 -8.435e?03 -5.046e?03

SD 1.049e?03 7.469e?02 1.092e?03 1.251e?03 7.381e?02 7.096e?02 6.399e?02 1.068e?03

Best mean value for each case is shown in bold type

4 In Table 6, the intersection of row i with column j presents the

value of p and the confidence interval at 95% for the Mann–Whitney

paired test. When p is small (\0.05) we use symbol � to indicate that

we should reject the null hypothesis, that is, we can reject the idea that

the observed differences are a coincidence and conclude that the

populations have different medians (in our case, SðViÞ is shifted to the

right of SðVjÞ). If p is large, marked with symbol N; the data does not

allow us to conclude that the medians are different, which is not the

same as to say that they are equal. For instance, row 1 column 2 has

p = 0.00 and the confidence interval ð0:1;1Þ: In this case, since p is

small the null hypothesis should be rejected, accepting that SðV1Þ is

shifted to the right of SðV2Þ: This fact is corroborated by the

confidence interval. We can conclude that statistically V1 has a larger

S value than V2.
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colony ten are equal to (0.67,0.33) and to (0.33,0.67,0,0,0)

for m ¼ 2 and m ¼ 5; respectively.

The h values, and consequently those of the a’s and b’s,

are intrinsically related with the methodology used to

exchange the information between the colonies, as seen in

Sect. 3.2.1. For example, the first colony receives the

solutions with lower first weights and higher a1 and b1

values, having preference for solutions in the same objec-

tive area (analogous deductions can be made for the other

values).

3.3.1 Comparing Version 2 with the previous best variants

In this section, the best previous variants (M.1 and M.5)

will be compared with the ones from Version 2 (parameter

values are summarized in Table 7).

Table 8 presents the fundamental statistics for the

values of the metrics (jPj;S;R1R; and R3R) for Version 2

variants. It is observable that: variant 2M.7 (amax ¼
bmax ¼ 1 and 50 colonies) obtained the best mean value

for the S metric, followed by 2M.4 and 2M.2. Referring

to the mean value of metric R1 the best variant was 2M.2

with parameters amax ¼ bmax ¼ 1 and 25 colonies. How-

ever, the best mean value for metric R3 was obtained for

variant 2M.8 with amax ¼ 5;bmax ¼ 1 and 50 colonies.

The values of R3 do not allow us to discard the cases

where amax ¼ 5:

The comparison with the best variants of Versions 0 and

1 allows us to conclude that all metrics values were in

general significantly improved. For example, the value of

Table 6 Mann–Whitney test (or Wilcoxon rank sum test) results comparing Versions 0 and 1. A.1–A.4 are variants from Version 0 and M.1–

M.8 are from Version 1 (separated by the horizontal/vertical lines)

A.1 O 0.00 O 0.00 O 0.00 N 0.92 O 0.00 N 0.09 O 0.00 N 0.96 O 0.00 O 0.00 N 0.21

(0.10;?) (0.08;?) (0.01;?) (-0.02;?) (0.10;?) (-0.01;?) (0.10;?) (-0.01;?) (0.07;?) (0.08;?) (-0.00;?)

N 1.00 A.2 N 1.00 N 1.00 N 1.00 N 0.59 N 1.00 N 0.60 N 1.00 N 1.00 N 1.00 N 1.00

(-0.12;?) (-0.03;?) (-0.10;?) (-0.13;?) (-0.01;?) (-0.12;?) (-0.01;?) (-0.12;?) (-0.04;?) (-0.03;?) (-0.11;?)

N 1.00 O 0.00 A.3 N 1.00 N 1.00 O 0.00 N 1.00 O 0.00 N 1.00 N 0.99 N 0.61 N 1.00

(-0.09;?) (0.02;?) (-0.07;?) (-0.11;?) (0.01;?) (-0.11;?) (0.01;?) (-0.10;?) (-0.02;?) (-0.01;?) (-0.09;?)

N 1.00 O 0.00 O 0.00 A.4 N 1.00 O 0.00 N 0.92 O 0.00 N 1.00 O 0.00 O 0.00 N 1.00

(-0.04;?) (0.06;?) (0.04;?) (-0.06;?) (0.06;?) (-0.06;?) (0.06;?) (-0.05;?) (0.03;?) (0.04;?) (-0.04;?)

N 0.08 O 0.00 O 0.00 O 0.00 M.1 O 0.00 N 0.06 O 0.00 N 0.40 O 0.00 O 0.00 O 0.03

(-0.00;?) (0.11;?) (0.08;?) (0.02;?) (0.11;?) (-0.00;?) (0.11;?) (-0.01;?) (0.07;?) (0.09;?) (0.00;?)

N 1.00 N 0.42 N 1.00 N 1.00 N 1.00 M.2 N 1.00 N 0.42 N 1.00 N 1.00 N 1.00 N 1.00

(-0.12;?) (-0.01;?) (-0.03;?) (-0.10;?) (-0.13;?) (-0.11;?) (-0.01;?) (-0.12;?) (-0.04;?) (-0.03;?) (-0.11;?)

N 0.92 O 0.00 O 0.00 N 0.08 N 0.94 O 0.00 M.3 O 0.00 N 0.94 O 0.00 O 0.00 N 0.94

(-0.04;?) (0.07;?) (0.05;?) (-0.00;?) (-0.04;?) (0.07;?) (0.07;?) (-0.04;?) (0.04;?) (0.05;?) (-0.03;?)

N 1.00 N 0.41 N 1.00 N 1.00 N 1.00 N 0.59 N 1.00 M.4 N 1.00 N 1.00 N 1.00 N 1.00

(-0.12;?) (-0.01;?) (-0.03;?) (-0.10;?) (-0.13;?) (-0.01;?) (-0.12;?) (-0.12;?) (-0.04;?) (-0.03;?) (-0.12;?)

O 0.04 O 0.00 O 0.00 O 0.00 N 0.61 O 0.00 N 0.06 O 0.00 M.5 O 0.00 O 0.00 O 0.00

(0.00;?) (0.11;?) (0.09;?) (0.02;?) (-0.02;?) (0.11;?) (-0.01;?) (0.11;?) (0.08;?) (0.09;?) (0.00;?)

N 1.00 O 0.00 O 0.02 N 1.00 N 1.00 O 0.00 N 1.00 O 0.00 N 1.00 M.6 O 0.00 N 1.00

(-0.08;?) (0.03;?) (0.00;?) (-0.06;?) (-0.10;?) (0.03;?) (-0.09;?) (0.03;?) (-0.09;?) (0.01;?) (-0.08;?)

N 1.00 O 0.00 N 0.39 N 1.00 N 1.00 O 0.00 N 1.00 O 0.00 N 1.00 N 1.00 M.7 N 1.00

(-0.09;?) (0.02;?) (-0.01;?) (-0.07;?) (-0.11;?) (0.02;?) (-0.09;?) (0.02;?) (-0.10;?) (-0.02;?) (-0.09;?)

N 0.80 O 0.00 O 0.00 O 0.00 N 0.98 O 0.00 N 0.06 O 0.00 N 1.00 O 0.00 O 0.00 M.8

(-0.01;?) (0.10;?) (0.08;?) (0.01;?) (-0.02;?) (0.10;?) (-0.01;?) (0.10;?) (-0.02;?) (0.07;?) (0.08;?)

For each pair of variants the Mann–Whitney test p value, the confidence interval, and the symbology OjN indicating that we should reject the null hypothesis, or the

data does not allow us to conclude that the medians are different, respectively, are presented
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Fig. 2 Example of fronts obtained with the variants of Version 1. The

closest variant to the reference set is M.1, followed by M.3, M.5, and

M.8
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the hyper-volume ratio mean in Version 2 is 0.9307 for the

worst case, against the best 0.8736 value obtained by the

previous versions. Similarly, the higher mean for the car-

dinality of the approximation set in the previous versions

was 100.9, which is less than the smallest of the mean

values, obtained for variant 2M.6 (109.2).

Table 9 shows the results for the Mann–Whitney test

comparing the variants from Version 2 against themselves

and against the best performing variants from the previous

versions. According to the values presented in the first two

rows and columns of the table, for the S metric, the vari-

ants of Version 2 are significantly better than those of the

previous versions, that is, statistically the median hyper-

volume of Version 2 (all cases) is higher than median of the

previously best variants (M.1 and M.5). Referring to Ver-

sion 2, the median of the S metric for variants 2M.2, 2M.4,

and 2M.7 is significantly larger than for the other ones.

Between these last three variants, 2M.4 and 2M.7 have a

better performance than 2M.2.

Examples of fronts obtained from each variant of Ver-

sion 2 are sketched in Fig. 4. The sketched approximations

allow us to observe that the cases with higher spread are

obtained for variant 2M.1, 2M.3, 2M.6, and 2M.8, with

amax ¼ 5: It is also observable that, the approximation sets

are closer to the reference set and larger spread and diversity

were obtained, corroborating the observed metrics values.
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Fig. 3 Example of h values for a N = 30 and m = 2 weights; and b N = 60 and m = 5 weights

Table 7 Parameter values for the tested variants of Versions 2

Variant Colonies amax bmax

2M.1 25 5.0 5.0

2M.2 25 1.0 5.0

2M.3 25 5.0 1.0

2M.4 25 1.0 1.0

2M.5 50 1.0 5.0

2M.6 50 5.0 5.0

2M.7 50 1.0 1.0

2M.8 50 5.0 1.0

2M all variants of this version

Table 8 Version 2 statistics (mean and standard deviation) for the metrics: |P|, S;R1R; and R3R

2M.1 2M.2 2M.3 2M.4 2M.5 2M.6 2M.7 2M.8

|P|

Mean 2.550e?02 3.560e?02 1.485e?02 3.571e102 1.601e?02 1.092e?02 2.227e?02 1.423e?02

SD 3.861e?01 3.894e?01 1.328e?01 5.068e?01 5.327e?01 2.564e?01 2.781e?01 9.793e?00

S
Mean 9.733e-01 9.762e-01 9.389e-01 9.789e-01 9.657e-01 9.307e-01 9.805e-01 9.334e-01

SD 3.252e-03 4.132e-03 3.358e-03 4.294e-03 8.492e-03 1.222e-02 2.669e-03 3.213e-03

R1R

Mean 9.952e-01 9.388e-01 9.988e-01 9.711e-01 9.877e-01 9.994e-01 9.964e-01 9.990e-01

SD 5.919e-03 3.185e-02 2.640e-03 2.380e-02 1.459e-02 1.675e-03 6.763e-03 2.062e-03

R3R

Mean -2.950e?02 -1.629e?03 -1.971e?02 -1.358e?03 -1.271e?03 -2.832e?02 -6.198e?02 -1.164e102

SD 1.589e?02 4.588e?02 7.107e?01 3.718e?02 5.110e?02 1.655e?02 3.213e?02 5.717e?01

Best mean value for each case is shown in bold type
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Although the results significantly improved the ones

from the previous versions, the next section will be devoted

to the introduction of an hybridization which aims to

explore the best solutions. The objective is to use them in

the exploitation of their neighborhood, avoiding to rebuild

all solutions from the beginning.

4 The ant colony stochastic depth search exploration

This section presents our proposal of an ant colony sto-

chastic depth search exploration. As we will see, the

introduction of new features will significantly improve the

previous results.

4.1 Version 3: DANTE

A rudimentary version of an ant colony algorithm builds a

solution, evaluates it, performs the pheromone-updating

process, and discards it (recall Algorithms 1 and 2). This

strategy does not allow a proper local exploration, over-

looking the computational effort that was necessary to

produce those solutions.

The Depth ANT Explorer (DANTE) process was devel-

oped with the objective of further exploiting the constructed

solutions. The method is characterized by a restricted depth

search based on the pheromone vectors. In other words, a

depth search procedure, limited in the number of branches,

in the depth level, and/or in the available computational

allowance, is performed by each ant (Fig. 5). The depth of

the search depends on the solution entering into the

approximation set. Further details are given below.

The steps to build a solution were already described for

Version 0. As seen, it is a constructive procedure in the

sense that, edges are added into the cycle in a given order

Table 9 Mann–Whitney test (or Wilcoxon rank sum test) results comparing Versions 2 against the previous best variants

M.1 N 0.40 N 1.00 N 1.00 N 1.00 N 1.00 N 1.00 N 1.00 N 1.00 N 1.00

(-0.01;?) (-0.11;?) (-0.11;?) (-0.08;?) (-0.12;?) (-0.11;?) (-0.07;?) (-0.12;?) (-0.07;?)

N 0.61 M.5 N 1.00 N 1.00 N 1.00 N 1.00 N 1.00 N 1.00 N 1.00 N 1.00

(-0.02;?) (-0.11;?) (-0.11;?) (-0.07;?) (-0.11;?) (-0.10;?) (-0.07;?) (-0.12;?) (-0.07;?)

O 0.00 O 0.00 2M.1 N 0.99 O 0.00 N 1.00 O 0.00 O 0.00 N 1.00 O 0.00

(0.10;?) (0.10;?) (-0.00;?) (0.03;?) (-0.01;?) (0.00;?) (0.04;?) (-0.01;?) (0.04;?)

O 0.00 O 0.00 O 0.01 2M.2 O 0.00 N 0.98 O 0.00 O 0.00 N 1.00 O 0.00

(0.10;?) (0.10;?) (0.00;?) (0.04;?) (-0.00; ?) (0.01;?) (0.04;?) (-0.01;?) (0.04;?)

O 0.00 O 0.00 N 1.00 N 1.00 2M.3 N 1.00 N 1.00 O 0.01 N 1.00 O 0.00

(0.06;1) (0.07;?) (-0.04;?) (-0.04;?) (-0.04;?) (-0.03;?) (0.00;?) (-0.04;?) (0.00;?)

O 0.00 O 0.00 O 0.00 O 0.02 O 0.00 2M.4 O 0.00 O 0.00 N 0.84 O 0.00

(0.10;?) (0.11;?) (0.00;?) (0.00;?) (0.04;?) (0.01;?) (0.04;?) (-0.00;?) (0.04;?)

O 0.00 O 0.00 N 1.00 N 1.00 O 0.00 N 1.00 2M.5 O 0.00 N 1.00 O 0.00

(0.08;?) (0.09;?) (-0.01;?) (-0.01;?) (0.03;?) (-0.01;?) (0.03;?) (-0.02;?) (0.03;?)

O 0.00 O 0.00 N 1.00 N 1.00 N 0.99 N 1.00 N 1.00 2M.6 N 1.00 N 0.68

(0.05;?) (0.06;?) (-0.05;?) (-0.05;?) (-0.01;?) (-0.05;?) (-0.04;?) (-0.06;?) (-0.01;?)

O 0.00 O 0.00 O 0.00 O 0.00 O 0.00 N 0.16 O 0.00 O 0.00 2M.7 O 0.00

(0.10;?) (0.11;?) (0.01;?) (0.00;?) (0.04;?) (-0.00;?) (0.01;?) (0.04;?) (0.05;?)

O 0.00 O 0.00 N 1.00 N 1.00 N 1.00 N 1.00 N 1.00 N 0.32 N 1.00 2M.8

(0.06;?) (0.06;?) (-0.04;?) (-0.04;?) (-0.01;?) (-0.05;?) (-0.04;?) (-0.00;?) (-0.05;?)

Variants M.1 and M.5 are from Version 1 (the previously best ones) and 2M.1–2M.8 are from Version 2 (the versions variants are separated by

horizontal/vertical lines). For each pair of variants the Mann–Whitney test p value, the confidence interval, and the symbology �|m indicating

that we should reject the null hypothesis, or the data does not allow us to conclude that the medians are different, respectively, are presented
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Fig. 4 Example of fronts obtained with Version 2. The closest

variants to the reference set are 2M.4, 2M.5, and 2M.7. Variants

2M.1, 2M.3, 2M.6, and 2M.8 (all with amax = 5) are far from the

reference set in the central region, but present larger diversity
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until a solution, S; is attained. To better understand the

process, imagine a search tree where S is a path from the

root (level 0) to one leaf (level n; the number of edges in the

path). Then DANTE procedure can be described as follows:

Step 1. Build a solution using the constructive

procedure.

Step 2. If solution S does not improve the approximation

set then allow M search branches from level d (algorithm

parameter) into level n and 0 for the remaining levels:

branchesl ¼ M if d� l\n
branchesl ¼ 0 if 0� l\d;

�
ð11Þ

Step 3. If solution S is inserted into the approximation

set P; then allow M search branches from level D

(algorithm parameter) into level n and 0 for the

remaining levels:

branchesl ¼ M if D� l\n
branchesl ¼ 0 if 0� l\D

�
: ð12Þ

Step 4. From solution S; and from reverse order of its

construction, remove edges until reaching a level, l;where

new branches are allowed ðbranchesl [ 0Þ or l ¼ 0:

Step 5. If there are available branches ðl [ 0Þ then

decrease the number of available branches at level

lðbranchesl � 1Þ and go to Step 6. If there are no

available branches at any level ðbranchesl ¼ 0; l ¼
0; 1; . . .; nÞ then stop the process.

Step 6. Use the same constructive procedure that was

used to build S (as described in Sect. 3.1), to rebuild the

solution starting from the path obtained after last step.

Step 7. Try to insert the new solution into the approx-

imation set. If the new solution is inserted into the

approximation set then go to Step 3. Otherwise, go to

Step 4.

Another difference is the introduction of a taboo list

such that the first edge inserted into the solution to be

rebuild in Step 3 of Version 3, has not been used in pre-

vious rebuilds at that same level of the search tree. This

taboo list is reinitialized every time that the rebuilding of

the solution is started from a different level of the one of

the last rebuild.

The introduction of the taboo list was motivated by the

fact that, for the same depth search phase, a large per-

centage of solutions was repeated by each ant. Therefore,

the introduction of the taboo list forces a larger exploitation

of the search space, by obligating the algorithm to find

other solutions than the previous ones.

Algorithm 3 presents a high-level description of

DANTE’s method.

4.1.1 Comparing DANTE with previous versions

In this section DANTE is compared with the best per-

forming variants of the earlier versions. The tested variants

parameter values are presented in Table 10, where jTlj is

the size of the taboo list. Statistical values for the used

metrics are collected in Table 11, and the Mann–Whitney

test values in Table 12.

The analysis of the results allow us to make some

observations:

• The best S mean values were obtained with variants

D.5 and D.6, both with 50 colonies and amax equal to 1;

The Mann–Whitney statistical test corroborates the fact

that D.5 and D.6 are the best variants.

Fig. 5 Limited depth search. s1, s2,..., sn are the constructed

solutions and l1, l2,... are the depth search levels
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• From the previous versions, the best mean value for S
was obtained for 2M.7 which is only better than D.3,

D.7 and D.8 (all with amax ¼ 5).

• The second best variants, according to the Mann–

Whitney test, are D.1 and D.2, which are still better

than the best performing variants from the earlier

versions.

• Variant D.2 (with 25 colonies, amax ¼ 1; and bmax ¼ 5)

obtained the best values for jPj and R1R;
• The best R3R value was obtained with variant D.7 (with

amax ¼ 5 and bmax ¼ 1).

According to the Mann–Whitney test we can accept

that variants D.5 and D.6 (from DANTE version) have a

higher S median value, compared to all the previous ones.

Since we could not discard cases where amax ¼ 5; it was

decided to consider the combination of the best per-

forming parameters variants, as we will see in the next

version.

Figure 6 sketches typical fronts for the DANTE’s vari-

ants. The sketched approximations allow us to observe that

variants D.3, D.4, and D.7 (all with amax ¼ 5) are the ones

with higher diversity, and the closest variants to the ref-

erence set are D.2, D.5, and D.6.

4.2 Version 4: DANTE II

Version 4 can be considered as a subversion of DANTE. For

this version two modifications were introduced:

• First two types of colonies were considered: (a)

colonies that behave (i.e., have amax and bmax param-

eters defined) as the ones described in Sect. 3.3, and (b)

colonies where the a0max and b0max parameters are

defined in the reverse way, that is, a0max ¼ bmax and

b
0

max ¼ amax: This strategy is justified by the observa-

tion that, according to different metrics, in some cases

it was better to have larger a’s, while for other it was

better to have larger b ’s.

• Second we decided to limit the maximum number of

solutions that each ant can build within the depth search

procedure. This modification tries to limit the increased

computation required by the use of the two types of

colonies. It was observed that, for the experimented

time, some variants produced a rather small number of

cycles, which leads to a poor information exchange

between the colonies.

4.2.1 Comparing Version 4 (DANTE II) with the previous

ones

To test the proposed changes amax was set equal to 5 and

bmax to 1 for the first type of colonies and the reverse

(a0max ¼ 1 and b0max ¼ 5) for second set of colonies. The

remaining parameter values are summarized in Table 13,

where NS is the maximum number of solutions which an

ant is allowed to build, and ‘‘Colonies’’ is the number of

colonies for each of the two types.

Table 10 Parameter values for the DANTE variants

Variant Colonies amax bmax D d M |Tl|

D.1 25 1 1 30 40 5 10

D.2 25 1 5 30 40 5 10

D.3 25 5 1 30 40 5 10

D.4 25 5 5 30 40 5 10

D.5 50 1 1 30 40 5 10

D.6 50 1 5 30 40 5 10

D.7 50 5 1 30 40 5 10

D.8 50 5 5 30 40 5 10

D all variants of this version

Table 11 Version 3 (DANTE) statistics (mean and standard deviation) for the metrics: |P|, S;R1R; and R3R

D.1 D.2 D.3 D.4 D.5 D.6 D.7 D.8

|P|

Mean 4.935e?02 5.833e102 2.224e?02 3.563e?02 3.877e?02 4.911e?02 2.072e?02 2.906e?02

SD 3.943e?01 3.199e?01 1.783e?01 3.279e?01 3.458e?01 3.506e?01 1.441e?01 2.341e?01

S
Mean 9.889e-01 9.879e-01 9.632e-01 9.867e-01 9.906e-01 9.900e-01 9.583e-01 9.796e-01

SD 1.915e-03 2.297e-03 5.009e-03 3.001e-03 2.062e-03 1.957e-03 4.600e-03 3.892e-03

R1R

Mean 8.766e-01 7.343e-01 9.853e-01 9.255e-01 9.422e-01 8.335e-01 9.883e-01 9.648e-01

SD 3.982e-02 2.941e-02 3.835e-03 1.936e-02 2.378e-02 2.729e-02 4.051e-03 1.076e-02

R3R

Mean -3.664e?02 -5.869e?02 -6.078e?00 -1.280e?01 -2.273e?02 -4.479e?02 -4.096e100 -5.532e?00

SD 1.418e?02 2.179e?02 1.664e?01 1.831e?01 1.503e?02 1.946e?02 5.076e?00 9.078e?00

Best mean value for each case is shown in bold type

e-DANTE 161

123



From the analysis of the results (Tables 14 and 15) some

conclusions can be made:

• Referring to value of the S metric, the best variant was

2D.3 with a mean value equal to 0.9960, which is better

than the previous best values. This variant used 25

colonies and NS ¼ 10:

• Furthermore, variants 2D.1, 2D.3, and 2D.4, have a

better hyper-volume ratio mean than any of the

previous versions (the best value was 0.9906 for D.5).

• The best R1R and R3R values were obtained by variants

2D.3 and 2D.1, respectively. For both cases, these

values are better than those observed in the earlier

versions.

• Statistically speaking, the Mann–Whitney test allow us

to conclude that variants D.5 and D.6 (the variants with

better performance for the previous versions) have a

median S value smaller than that of 2D.1, 2D.3, and

2D.4.

• Up to now, variant 2D.3 was the best variant overall.

The global analysis of the results allow us to conclude

that the introduced changes were beneficial for the

algorithm performance. A final improvement will be

presented in the next section. This final change includes

a more selective criterion to enter the oriented depth

search, allowing only the best performing solutions to do

so.

4.3 Version 5: �-DANTE

The insertion of a solution into the approximation set was

the criterion used in DANTE to apply the depth-search

phase into the deepest level. Furthermore, the depth search

is applied even to the worst solution, although up to a

higher level (level d —Eq. 11). Those rules equally exploit

solutions which:

Table 12 Mann–Whitney test (or Wilcoxon rank sum test) results comparing Version 3 (DANTE) against the previous best variants (the versions

variants are separated by horizontal/vertical lines)

2M.4 N 0.84 N 1.00 N 1.00 O 0.00 N 1.00 N 1.00 N 1.00 O 0.00 N 0.64

(-0.00;?) (-0.01;?) (-0.01;?) (0.01;?) (-0.01;?) (-0.01;?) (-0.01;?) (0.02;?) (-0.00;?)

N 0.16 2M.7 N 1.00 N 1.00 O 0.00 N 1.00 N 1.00 N 1.00 O 0.00 N 0.19

(-0.00;?) (-0.01;?) (-0.01;?) (0.02;?) (-0.01;?) (-0.01;?) (-0.01;?) (0.02;?) (-0.00;?)

O 0.00 O 0.00 D.1 N 0.14 O 0.00 O 0.00 N 1.00 N 0.98 O 0.00 O 0.00

(0.01;?) (0.01;?) (-0.00;?) (0.02;?) (0.00;?) (-0.00;?) (-0.00;?) (0.03;?) (0.01;?)

O 0.00 O 0.00 N 0.87 D.2 O 0.00 O 0.05 N 1.00 N 1.00 O 0.00 O 0.00

(0.01;?) (0.01;?) (-0.00;?) (0.02;?) (0.00;?) (-0.00;?) (-0.00;?) (0.03;?) (0.01;?)

N 1.00 N 1.00 N 1.00 N 1.00 D.3 N 1.00 N 1.00 N 1.00 O 0.00 N 1.00

(-0.02;?) (-0.02;?) (-0.03;?) (-0.03;?) (-0.03;?) (-0.03;?) (-0.03;?) (0.00;?) (-0.02;?)

O 0.00 O 0.00 N 1.00 N 0.95 O 0.00 D.4 N 1.00 N 1.00 O 0.00 O 0.00

(0.01;?) (0.00;?) (-0.00;?) (-0.00;?) (0.02;?) (-0.01;?) (-0.00;?) (0.03;?) (0.01;?)

O 0.00 O 0.00 O 0.00 O 0.00 O 0.00 O 0.00 D.5 N 0.20 O 0.00 O 0.00

(0.01;?) (0.01;?) (0.00;?) (0.00;?) (0.03;?) (0.00;?) (-0.00;?) (0.03;?) (0.01;?)

O 0.00 O 0.00 O 0.02 O 0.00 O 0.00 O 0.00 N 0.81 D.6 O 0.00 O 0.00

(0.01;?) (0.01;?) (0.00;?) (0.00;?) (0.03;?) (0.00;?) (-0.00;?) (0.03;?) (0.01;?)

N 1.00 N 1.00 N 1.00 N 1.00 N 1.00 N 1.00 N 1.00 N 1.00 D.7 N 1.00

(-0.02;?) (-0.02;?) (-0.03;?) (-0.03;?) (-0.01;?) (-0.03;?) (-0.03;?) (-0.03;?) (-0.02;?)

N 0.36 N 0.81 N 1.00 N 1.00 O 0.00 N 1.00 N 1.00 N 1.00 O 0.00 D.8

(-0.00;?) (-0.00;?) (-0.01;?) (-0.01;?) (0.01;?) (-0.01;?) (-0.01;?) (-0.01;?) (0.02;?)

For each pair of variants the Mann–Whitney test p value, the confidence interval, and the symbology �|m indicating that we should reject the null

hypothesis, or the data does not allow us to conclude that the medians are different, respectively, are presented
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Fig. 6 Typical fronts from the DANTE’s variants. Variants with

higher diversity are D.3, D.4, and D.7 (all with amax = 5). The closest

variants to the reference set are D.2, D.5, and D.6
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• Have objective values equal to elements of the

approximation set—solutions possibly built in a differ-

ent order, or simply distinct solutions but with the same

weights;

• Are very near to the approximation set front—solutions

which are almost as good as the ones in the approx-

imation set (Fig. 7); and

• Are very far from the best known solutions—these

solutions obtain the same attention as those which are

‘‘very near to belong’’ to the approximation set.

Based on the described ideas, Version 5 introduces a

final improvement:

• If a built solution improves the approximation set or its

distance to that set is not superior to an � criterion

parameter, then the restricted depth search method is

applied. In the former case the depth search is applied

up to level D, while in the latter it is applied up to level

d.

• Solutions which do not satisfy any of the previous

criteria are discarded.

The new parameter, �; is introduced with the objective

of having a more accurate control of the exploration versus

exploitation phases. Larger values of � will imply a more

extensive exploitation of the search space, since the depth

search is applied to a superior number of solutions. On the

other hand, smaller values of this parameter implement the

exploration of the search space, since only the best fitting

solutions serve as base to the depth search procedure,

allowing the allocation of more computational resources to

the seeking of new promising areas.

Based on the � range value, this version was called

�-DANTE. Putting it all together the �-DANTE process can

be summarized as follows.

In �-DANTE at each iteration a colony receives a set of

approximations (see Sect. 3.2.1). That set of approxima-

tions is used to initialize the pheromone matrices and the

Table 13 Parameter values for the DANTE variants

Variant Colonies D d M |Tl| NS

2D.1 25 30 40 5 10 ?

2D.2 50 30 40 5 10 ?

2D.3 25 30 40 5 10 50

2D.4 50 30 40 5 10 50

2D all variants of this version

Table 14 Version 4 (DANTE II) statistics (mean and standard devi-

ation) for the metrics: |P|, S;R1R; and R3R

2D.1 2D.2 2D.3 2D.4

|P|

Mean 3.208e?02 2.473e?02 5.215e102 3.379e?02

SD 2.688e?01 1.626e?01 4.550e?01 5.130e?01

S
Mean 9.937e-01 9.873e-01 9.960e-01 9.928e-01

SD 8.280e-04 1.318e-03 7.179e-04 1.909e-03

R1R

Mean 9.669e-01 9.962e-01 8.461e-01 9.622e-01

SD 1.656e-02 3.934e-03 3.031e-02 2.436e-02

R3R

Mean -1.954e101 -2.447e?01 -6.576e?01 -3.777e?01

SD 1.961e?01 2.837e?01 4.568e?01 3.364e?01

Best mean value for each case is shown in bold type

Table 15 Mann–Whitney test (or Wilcoxon rank sum test) results

comparing DANTE II against the previous best variants (separated by

the horizontal/vertical lines)

D.5 N 0.20 N 1.00 O 0.00 N 1.00 N 1.00

(0.00;?) (0.00;?) (0.00;?) (- 0.01;?) (0.00;?)

N 0.81 D.6 N 1.00 O 0.00 N 1.00 N 1.00

(0.00;?) (0.00;?) (0.00;?) (- 0.01;?) (0.00;?)

O 0.00 O 0.00 2D.1 O 0.00 N 1.00 O 0.02

(0.00;?) (0.00;?) (0.01;?) (0.00;?) (0.00;?)

N 1.00 N 1.00 N 1.00 2D.2 N 1.00 N 1.00

(0.00;?) (0.00;?) (- 0.01;?) (- 0.01;?) (- 0.01;?)

O 0.00 O 0.00 O 0.00 O 0.00 2D.3 O 0.00

(0.00;?) (0.01;?) (0.00;?) (0.01;?) (0.00;?)

O 0.00 O 0.00 N 0.98 O 0.00 N 1.00 2D.4

(0.00;?) (0.00;?) (0.00;?) (0.00;?) (0.00;?)

For each pair of variants the Mann–Whitney test p value, the confidence

interval, and the symbology OjN indicating that we should reject the null

hypothesis, or the data does not allow us to conclude that the medians are

different, respectively, are presented
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Fig. 7 Points near approximation set front (p1 is near an element of

the approximation set, p2 and p3 are near the approximation front, and

p4 is on the approximation front)
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colonies approximation base. Then each agent builds a

solution using the pheromone trails and other heuristics.

The fitness of the computed solution, S, is compared with

the fitness of the elements of the colony’s approximation

set, CPi : If the solution is ‘‘far’’ from the approximation set

then it is discarded. Otherwise, according to the quality of

these solutions, a limited depth search is made up to two

possible levels:

Level D: If S improves CPi ; that is, S is not dominated by

any element of CPi ð9= T2CPi : T � SÞ; or

Level d: If S is weakly dominated by some element T of

CPi but its relative distance to the approximation set front

is smaller than �; which includes the case where the

weight vector of S is equal to the weight vector of some

solution in CPi that is, ðWðTÞ ¼ WðSÞÞ:

Algorithm 4 presents a high-level description of the �-

DANTE method.

4.3.1 Comparing �-DANTE with the best performing

variants

In this section we compare �-DANTE with the best variants

of the previous versions. Table 16 presents the parameter

values for the new versions. The values of the a ’s and b ’s

were set as in DANTE II , that is, amax ¼ 5 and bmax ¼ 1

for the first set of colonies and amax ¼ 1 and bmax ¼ 5 for

second set of colonies. A series of experiments were done

varying the � over a set of values (f0; 0:01; 0:1g). A value

for � which gives good general performance was found to

be 0.01.

Table 17 summarizes the statistics for the cardinality,

S;R1R; and R3R metrics. Table 18 completes the study with

the Mann–Whitney test results. From the analysis of those

tables some conclusions can be made:

• Except for R3R;�D.1 is the best variant among the

�DANTE ones. This variant has 50 colonies (25 of each

type) and does not limit the number of solutions to be

built by each ant ðNS ¼ 1Þ:
• Again except for R3R;�D.2 was the second best variant.

�D.2 has 100 colonies (50 for each type) and it does not

also limit the number of solutions to be built by each ant.

• Statistically, the Mann–Whitney test allows us to infer

that �D.1 was the best variant (referring to S mean

value). Furthermore, the same statistical test allows us

to say that �D.2 was better than �D.3, which was better

than �D.4. Comparing with the previous version, �D.1

improves all variants and �D.2 is only comparable to

2D.3.

An overall analysis of the results is made in the next

section, where we will use the C coverage metric to

compare the best performing variants (with respect to the

previously used metric).

Table 16 Parameter values for the �-DANTE variants

Variant Colonies D d M |Tl| � NS

�D.1 25 30 40 5 10 0.01 ?

eD.2 50 30 40 5 10 0.01 ?

�D.3 25 30 40 5 10 0.01 50

�D.4 50 30 40 5 10 0.01 50

�D all variants of this version

Table 17 Version 5 (�-DANTE) statistics (mean and standard devi-

ation) for the metrics: |P|, S;R1R; and R3R

�D.1 �D.2 �D.3 �D.4

|P|

Mean 5.911e102 4.446e?02 3.143e?02 2.340e?02

SD 3.910e?01 3.655e?01 3.108e?01 2.031e?01

S
Mean 9.964e-01 9.957e-01 9.931e-01 9.861e-01

SD 1.069e-03 7.603e-04 1.256e-03 1.157e-03

R1R

Mean 7.962e-01 9.085e-01 9.766e-01 9.943e-01

SD 3.665e-02 2.737e-02 1.514e-02 4.684e-03

R3R

Mean -7.025e?01 -2.434e?01 -2.353e101 -3.458e?01

SD 6.290e?01 2.443e?01 2.951e?01 4.334e?01

Best mean value for each case is shown in bold type
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4.4 Overall analysis

In summary, six ACO versions were presented in Sects. 3

and 4. Ranging from Version 0, which can be seen as a

classical multiple objective ACO, to our final version, that

presents a limited stochastic depth search, �-DANTE. Fig-

ure 8 shows a diagram with the proposed evolution

between the different versions.

In the remaining of this section, the best performing

variants of versions DANTE (I and II) and �-DANTE (D.2,

D.5, D.7, 2D.1, 2D.3, �D.1, and �D.3), in at least one of the

studied metrics (S;R1; and R3), will be compared using the

C-coverage metric (Appendix A). We notice that the best

variants of DANTE II and �-DANTE (2D.1, 2D.3, �D.1,

and �D.3) used the smallest number of colonies ð50 ¼
2	 25Þ: This case will be explored in the next section with

the introduction of complementary tests with a smaller

number of colonies.

Figure 9 sketches the beanplots5 of the C coverage

metric distribution, used to compare the best performing

variants among themselves, according to the explained

criterion for running times of 300 and 1,800 s (Table 19

summarizes the mean and standard deviation statistics). For

example, in Fig. 9 the image in the intersection of row 1

with column 2 represents the beanplot for the C distribution

of D.2 against D.5, that is, the percentage of elements of

D.5 which are weakly dominated by elements of D.2. The

intersection of row 2 with column 1 presents the reverse

percentage, that is, the percentage of elements of D.2

which are dominated by elements of D.5. Similar obser-

vations can be made for Table 19.

Table 18 Mann–Whitney test (or Wilcoxon rank sum test) results comparing �-DANTE against the previous best variants

2D.1 O 0.00 N 1.00 O 0.02 N 1.00 N 1.00 N 0.07 O 0.00

(0.01;?) (- 0.00;?) (0.00;?) (- 0.00;?) (- 0.00;?) (- 0.00;?) (0.01;?)

N 1.00 2D.2 N 1.00 N 1.00 N 1.00 N 1.00 N 1.00 O 0.00

(- 0.01;?) (- 0.01;?) (- 0.01;?) (- 0.01;?) (- 0.01;?) (- 0.01;?) (0.00;?)

O 0.00 O 0.00 2D.3 O 0.00 N 0.97 N 0.15 O 0.00 O 0.00

(0.00;?) (0.01;?) (0.00;?) (- 0.00;?) (- 0.00;?) (0.00;?) (0.01;?)

N 0.98 O 0.00 N 1.00 2D.4 N 1.00 N 1.00 N 0.75 O 0.00

(� 0.00;?) (0.00;?) (- 0.00;?) (- 0.00;?) (- 0.00;?) (- 0.00;?) (0.01;?)

O 0.00 O 0.00 O 0.04 O 0.00 � D.1 O 0.00 O 0.00 O 0.00

(0.00;?) (0.01;?) (0.00;?) (0.00;?) (0.00;?) (0.00;?) (0.01;?)

O 0.00 O 0.00 N 0.85 O 0.00 N 1.00 �D.2 O 0.00 O 0.00

(0.00;?) (0.01;?) (- 0.00;?) (0.00;?) (- 0.00;?) (0.00;?) (0.01;?)

N 0.93 O 0.00 N 1.00 N 0.26 N 1.00 N 1.00 �D.3 O 0.00

(- 0.00;?) (0.01;?) (- 0.00;?) (- 0.00;?) (- 0.00;?) (- 0.00;?) (0.01;?)

N 1.00 N 1.00 N 1.00 N 1.00 N 1.00 N 1.00 N 1.00 �D.4

(- 0.01;?) (- 0.00;?) (- 0.01;?) (- 0.01;?) (- 0.01;?) (- 0.01;?) (- 0.01;?)

2D.1–2D.4 are variants from DANTE II and �D.1–�D.4 from �-DANTE (separated by the horizontal/vertical lines). For each pair of variants the

Mann–Whitney test p value, the confidence interval, and the symbology OjN indicating that we should reject the null hypothesis, or the data does

not allow us to conclude that the medians are different, respectively, are presented

Fig. 8 Diagram of the versions evolution and their main

characteristics

5 A beanplot (Kampstra 2008) combines an 1d-scatter plot and a

density trace, being an alternative to boxplots. In a beanplot, the

individual observations are shown as small (white color) lines in a

one-dimensional scatter plot. Next to that, the estimated density of the

distributions is visible and the average is shown (black color region).
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Fig. 9 Beanplots for the C
metric values, comparing the

best performing variants (after

300 and 1,800 s)
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Recalling that these results are from a single problem, some

conclusions can be made from the analysis of the results:

• The best variants were D.2, 2D.3, and �D.1. Each one

from one of the versions: DANTE, DANTE II , and

�-DANTE. A common point is the fact that they all have

the smaller number of colonies: 25 for DANTE and 50

for DANTE II and �-DANTE (from DANTE II it was

decided to use two types of colonies).

• The worst variants were D.7, �D.3, and 2D.1. D.7 (from

DANTE) is worse than all the others, and �D.3 (�-

DANTE) was only better than D.7. 2D.1 (DANTE II)

was better than D.7 and �D.3, but worse than all the

others. Again, the variants belong to distinct versions of

the proposed methods.

For 300 s run time, D.2 was slightly better than 2D.3

and �D.1. Although the insertion of the taboo list intended

to implement a larger exploration, it was observed that the

number of iterations, namely in �D.1, was small (about 5).

If we analyze the C metric for 1,800 s, the results are

slightly different:

• D.7 (DANTE) remains as the worst variant overall.

• All variants, except for D.7, have a more alike

behavior. Nevertheless, D.5 (DANTE) is slightly worse

than the remaining ones.

• 2D.1 (DANTE II) was better than all the others, that is,

the percentage of elements of the other variants

dominated by the elements of 2D.1 is larger than

the reverse percentage ðCð2D:1; Þ[ Cð ; 2D:1ÞÞ:

Nevertheless, the differences from �D.1 and �D.3 (both

from �-DANTE) are as small as 2% (0.87–0.85).

For the 1,800 s the best variants were from versions

DANTE II and �-DANTE. This seems to indicate that,

given enough computational resources, the use of two types

of colonies produces a better exploration/exploitation of

the search space.

The results of the comparison of C metric values against

the reference set are also collected in Table 19 and Fig. 9.

Important is the fact that between 72 and 75% of the

solutions obtained by variants 2D.1 (DANTE II), 2D.3

(DANTE II), �D.1 (�-DANTE), and �D.3 (�-DANTE) belong

to the reference set.

In conclusion, a great evolution of the solutions quality

is attained from the final versions when compared with the

first classical algorithmic solutions (which we can consider

as Versions 0 to 2). The metrics reported these evolutions

which were corroborated by the applied statistical tests.

Nevertheless, the study presented in this section was made

for a single problem instance. Therefore, the next section

will be dedicated to the comparison of the best performing

of the proposed methods over a larger set of instances,

including some with higher dimensions.

5 Complementary experimental results

To complete the study, this section presents the compari-

sons between the best performing variants proposed in the

Table 19 C metric statistics (mean and standard deviation) comparing the best performing variants between them (after 300 and 1,800 s) and

against the reference set

After 300 s

D.2 0.83 (0.08) 0.60 (0.05) 0.77 (0.05) 0.72 (0.06) 0.72 (0.09) 0.78 (0.05)

0.18 (0.07) D.5 0.64 (0.05) 0.58 (0.10) 0.27 (0.09) 0.23 (0.08) 0.79 (0.05)

0.02 (0.01) 0.07 (0.02) D.7 0.17 (0.03) 0.09 (0.02) 0.08 (0.01) 0.27 (0.03)

0.08 (0.04) 0.27 (0.08) 0.76 (0.08) 2D.1 0.17 (0.05) 0.14 (0.06) 0.85(0.08)

0.41 (0.09) 0.73 (0.09) 0.82 (0.05) 0.81 (0.06) 2D.3 0.54 (0.10) 0.91 (0.04)

0.53 (0.13) 0.76 (0.09) 0.83 (0.09) 0.83 (0.09) 0.70 (0.11) �D.1 0.92 (0.05)

0.02 (0.01) 0.06 (0.02) 0.64 (0.07) 0.13 (0.05) 0.05 (0.02) 0.04 (0.01) �D.3

After 1,800 s

D.2 0.90 (0.05) 0.56 (0.04) 0.78 (0.07) 0.78 (0.09) 0.78 (0.09) 0.75 (0.08)

0.77 (0.08) D.5 0.61 (0.04) 0.69 (0.08) 0.69 (0.08) 0.68 (0.07) 0.68 (0.05)

0.03 (0.01) 0.05 (0.01) D.7 0.11 (0.01) 0.10 (0.01) 0.09 (0.01) 0.13 (0.01)

0.86 (0.05) 0.90 (0.05) 0.87 (0.03) 2D.1 0.88 (0.07) 0.87 (0.06) 0.87 (0.06)

0.83 (0.08) 0.86 (0.09) 0.80 (0.03) 0.83 (0.07) 2D.3 0.87 (0.07) 0.82 (0.07)

0.85 (0.10) 0.86 (0.09) 0.80 (0.05) 0.85 (0.07) 0.90 (0.08) �D.1 0.83 (0.07)

0.81 (0.06) 0.87 (0.05) 0.92 (0.03) 0.85 (0.04) 0.84 (0.03) 0.83 (0.05) �D.3

After 1,800 s compared with P0

D.2 D.5 D.7 2D.1 2D.3 �D.1 �D.3

0.68 (0.08) 0.56 (0.05) 0.13 (0.01) 0.75 (0.05) 0.72 (0.06) 0.74 (0.07) 0.73 (0.04)
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previous section. To compare between the best performing

methods proposed in the previous section, a total of six

additional problems were tested: three with two objectives

(kroAC50, kroAD50, and kroAE50), one with three objec-

tives (kroABC50), one with four objectives (kroABCD50),

and one with 100 nodes and two objectives (kroAB100).

For each problem, the selected methods were run 25 times

with common parameter values summarized in Table 20.

5.1 Problems with 50 nodes and 2 objectives

Table 21 summarizes the parameter values used to test the

50 nodes and two objective cases (kroAC50, kroAD50, and

kroAE50). Besides the number of colonies studied in the

previous sections, extra variants with 10 colonies were also

experimented. As already mentioned, this decision was

motivated by observation that small number of colonies

seem to provide better results. As we will see, this number

of colonies also provides good approximations although the

best case was obtained with variant �D.c with 50 ð2	 25Þ
colonies.

The statistics (mean and standard deviation) for the

cardinality and hyper-volume ratio are collected in

Table 22, where, for each of the three problem instances,

the non dominated elements of the union of all runs were

used as reference sets. From the analysis of the values some

conclusions can be made: variant �D.c obtained the best

hyper-volume for the three problems with over 99% of the

hyper-volume of reference. �D.c is an �-DANTE variant

with 50 colonies (25 for each of the types—see Sects. 4.2,

4.3) and NS ¼ 50 as the limit for the number of solutions

built by each ant. Comparing �D.c with �D.d, where the

difference is the imposed limit to the number of solutions,

a significant improvement of the hyper-volume can

be observed. This improvement is more obvious when

comparing the 100 (2 9 50) colonies variants among

themselves (e.g., �D.a vs. �D.b and �D.e vs. �D.f). Refer-

ring to the cardinality of the approximation set obtained by

each of the variants, �D.c obtained the larger mean value

for kroAC50 and kroAD50, being the second best for the

other problem. As already observed in the previous sec-

tions, there seems to be a correlation between the cardi-

nality and the hyper-volume ratio/coverage metric, as we

will see in the remaining section.

The previous observations are corroborated by the

Mann–Whitney test shown in Table 23.6 According to the

tests, �D.c was significantly better than the remaining

variants. For kroAC50 and kroAD50, variants 2D.b

(DANTE) and �D.b (�-DANTE) were the second best vari-

ants. Those two variants used 20 ð2	 10Þ colonies and

NS ¼ 1: For the kroAE50 case, the second best variants

were 2D.a (DANTE II) and �D.a (�-DANTE), both with 20

colonies and NS ¼ 50:

Table 20 Common parameter values for the complementary exper-

imental setup

Number of nodes and dimension

50 and m = 2 50 and m [ 2 100 and m = 2

Ants per cycle 10

Number of cycles 50

q 0.1

q0 0.75

M 5

D 30 80

d 40 90

Size of taboo list 10

Maximum run time 300 s 1,800 s

Table 21 Parameter values for the complementary study variants

Variant

(previously)

Colonies a b � Version NS

D.a (-) 10 1 1 – DANTE -

D.b (-) 10 1 5 – DANTE -

D.c (D.1) 25 1 1 – DANTE -

D.d (D.2) 25 1 5 – DANTE -

D.e (D.5) 50 1 1 – DANTE -

D.f (D.6) 50 1 5 – DANTE -

2D.a (-) 10 5 1 – DANTE
II

50

2D.b (-) 10 5 1 – DANTE
II

?

2D.c (2D.3) 25 5 1 – DANTE
II

50

2D.d (2D.1) 25 5 1 – DANTE
II

?

2D.e (2D.4) 50 5 1 – DANTE
II

50

2D.f (2D.30) 50 5 1 – DANTE
II

?

�D.a (-) 10 5 1 0.01 �-DANTE 50

�D.b (-) 10 5 1 0.01 �-DANTE ?

�D.c (�D.3) 25 5 1 0.01 �-DANTE 50

�D.d (�D.1) 25 5 1 0.01 �-DANTE ?

�D.e (�D.4) 50 5 1 0.01 �-DANTE 50

�D.f (�D.2) 50 5 1 0.01 �-DANTE ?

In parentheses is the variant identification previously used, when

applicable

6 For the sake of clarity, only the best eleven variants are presented,

which correspond to those with hyper-volume ratio larger than 0.99.

We should notice that these variants were the same for every problem

instance (kroAC50, kroAD50, and kroAE50).
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Comparing the �-DANTE variants with the remainder

(the horizontal and vertical lines in the table do the sepa-

ration), in the majority of the cases the Mann–Whitney test

return p values smaller than 0.05, which allow to reject the

null hypothesis, accepting that the median of the hyper-

volume ratio should be larger for �-DANTE variants than

Table 22 kroAC50, kroAD50, and kroAE50 statistics (mean ans standard deviation) for the cardinality and S metric

kroAC50

|P|

D.a D.b D.c D.d D.e D.f 2D.a 2D.b 2D.c

Mean 5.050e?02 5.118e?02 5.562e?02 5.142e?02 4.943e?02 4.010e?02 5.258e?02 4.706e?02 4.558e?02

SD 4.869e?01 4.029e?01 1.692e?01 3.416e?01 2.660e?01 3.039e?01 2.880e?01 2.798e?01 2.524e?01

2D.d 2D.e 2D.f �D.a �D.b �D.c �D.d �D.e �D.f

Mean 2.582e?02 3.200e?02 1.799e?02 5.586e?02 4.998e?02 5.693e?02 3.155e?02 4.788e?02 1.818e?02

SD 4.857e?01 3.480e?01 1.402e?01 2.350e?01 2.437e?01 2.186e?01 3.107e?01 2.561e?01 1.158e?01

S
D.a D.b D.c D.d D.e D.f 2D.a 2D.b 2D.c

Mean 9.881e-01 9.898e-01 9.935e-01 9.926e-01 9.933e-01 9.914e-01 9.952e-01 9.957e-01 9.949e-01

SD 5.467e-03 3.093e-03 1.346e-03 1.891e-03 1.700e-03 2.463e-03 1.471e-03 1.199e-03 1.118e-03

2D.d 2D.e 2D.f �D.a �D.b �D.c �D.d �D.e �D.f

Mean 9.822e-01 9.838e-01 9.551e-01 9.948e-01 9.958e-01 9.972e-01 9.895e-01 9.951e-01 9.542e-01

SD 4.642e-03 3.704e-03 3.955e-03 1.242e-03 1.170e-03 6.476e-04 1.964e-03 1.123e-03 3.563e-03

kroAD50

|P|

D.a D.b D.c D.d D.e D.f 2D.a 2D.b 2D.c

Mean 3.903e?02 4.001e?02 3.937e?02 3.758e?02 3.465e?02 3.054e?02 3.825e?02 3.474e?02 3.152e?02

SD 2.125e?01 1.836e?01 1.513e?01 1.762e?01 1.486e?01 2.024e?01 2.290e?01 2.318e?01 1.771e?01

2D.d 2D.e 2D.f �D.a �D.b �D.c �D.d �D.e �D.f

Mean 2.429e?02 2.483e?02 1.751e?02 4.283e?02 3.706e?02 4.058e?02 2.548e?02 3.284e?02 1.696e?02

SD 2.266e?01 1.598e?01 1.777e?01 2.162e?01 2.258e?01 2.108e?01 1.311e?01 1.896e?01 1.686e?01

S
D.a D.b D.c D.d D.e D.f 2D.a 2D.b 2D.c

Mean 9.828e-01 9.862e-01 9.890e-01 9.900e-01 9.914e-01 9.899e-01 9.945e-01 9.960e-01 9.935e-01

SD 4.556e-03 4.565e-03 3.925e-03 3.175e-03 1.905e-03 2.024e-03 1.120e-03 1.014e-03 1.417e-03

2D.d 2D.e 2D.f �D.a �D.b �D.c �D.d �D.e �D.f

Mean 9.854e-01 9.827e-01 9.549e-01 9.950e-01 9.965e-01 9.972e-01 9.878e-01 9.938e-01 9.530e-01

SD 6.057e-03 3.130e-03 3.962e-03 1.411e-03 9.995e-04 1.129e-03 2.263e-03 1.237e-03 4.261e-03

kroAE50

|P|

D.a D.b D.c D.d D.e D.f 2D.a 2D.b 2D.c

Mean 3.850e?02 3.851e?02 4.296e?02 3.846e?02 3.953e?02 3.098e?02 4.408e?02 3.631e?02 3.630e?02

SD 2.632e?01 2.883e?01 2.600e?01 1.924e?01 2.765e?01 2.262e?01 1.809e?01 2.079e?01 2.509e?01

2D.d 2D.e 2D.f �D.a �D.b �D.c �D.d �D.e �D.f

Mean 2.372e?02 2.719e?02 2.016e?02 4.696e?02 3.896e?02 4.816e?02 2.648e?02 3.932e?02 1.968e?02

SD 1.923e?01 2.096e?01 1.071e?01 1.629e?01 1.973e?01 1.441e?01 1.857e?01 2.281e?01 1.546e?01

S
D.a D.b D.c D.d D.e D.f 2D.a 2D.b 2D.c

Mean 9.827e-01 9.834e-01 9.928e-01 9.903e-01 9.952e-01 9.921e-01 9.973e-01 9.961e-01 9.957e-01

SD 6.475e-03 5.964e-03 2.501e-03 2.527e-03 1.222e-03 2.389e-03 8.958e-04 8.922e-04 1.206e-03

2D.d 2D.e 2D.f �D.a �D.b �D.c �D.d �D.e �D.f

Mean 9.814e-01 9.854e-01 9.591e-01 9.978e-01 9.970e-01 9.987e-01 9.888e-01 9.968e-01 9.585e-01

SD 2.999e-03 3.478e-03 3.726e-03 6.764e-04 6.112e-04 2.650e-04 4.313e-03 6.617e-04 3.070e-03
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Table 23 Mann–Whitney test results for the 11 best variants (the ones with hyper-volume ratio larger than 0.99) over kroAC50, kroAD50, and

kroAE50 problems

kroAC50

D.c N 0.08 N 0.33 O 0.00 N 1.00 N 1.00 N 1.00 N 1.00 N 1.00 N 1.00 N 1.00

(- 0.0;?) (- 0.0;?) (0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?)

N 0.93 D.d N 0.80 O 0.04 N 1.00 N 1.00 N 1.00 N 1.00 N 1.00 N 1.00 N 1.00

(- 0.0;?) (- 0.0;?) (0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?)

N 0.68 N 0.21 D.e O 0.01 N 1.00 N 1.00 N 1.00 N 1.00 N 1.00 N 1.00 N 1.00

(�0:0;1) (- 0.0;?) (0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?)

N 1.00 N 0.96 N 0.99 D.f N 1.00 N 1.00 N 1.00 N 1.00 N 1.00 N 1.00 N 1.00

(- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?)

O 0.00 O 0.00 O 0.00 O 0.00 2D.a N 0.88 N 0.22 N 0.14 N 0.93 N 1.00 N 0.39

(0.0;1) (0.0;?) (0.0;?) (0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?)

O 0.00 O 0.00 O 0.00 O 0.00 N 0.12 2D.b O 0.01 O 0.01 N 0.70 N 1.00 O 0.04

(0.0;?) (0.0;?) (0.0;?) (0.0;?) (- 0.0;?) (0.0;?) (0.0;?) (- 0.0;?) (- 0.0;?) (0.0;?)

O 0.00 O 0.00 O 0.00 O 0.00 N 0.79 N 0.99 2D.c N 0.42 N 1.00 N 1.00 N 0.74

(0.0;?) (0.0;?) (0.0;?) (0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?)

O 0.00 O 0.00 O 0.00 O 0.00 N 0.86 N 0.99 N 0.58 � D.a N 1.00 N 1.00 N 0.80

(0.0;?) (0.0;?) (0.0;?) (0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?)

O 0.00 O 0.00 O 0.00 O 0.00 N 0.07 N 0.30 O 0.00 O 0.00 � D.b N 1.00 O 0.01

(0.0;?) (0.0;?) (0.0;?) (0.0;?) (- 0.0;?) (- 0.0;?) (0.0;?) (0.0;?) (- 0.0;?) (0.0;?)

O 0.00 O 0.00 O 0.00 O 0.00 O 0.00 O 0.00 O 0.00 O 0.00 O 0.00 �D.c O 0.00

(0.0;?) (0.0;?) (0.0;?) (0.0;?) (0.0;?) (0.0;?) (0.0;?) (0.0;?) (0.0;?) (0.0;?)

O 0.00 O 0.00 O 0.00 O 0.00 N 0.62 N 0.96 N 0.26 N 0.20 N 0.99 N 1.00 � D.e

(0.0;?) (0.0;?) (0.0;?) (0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?)

kroAD50

D.c N 0.76 N 0.99 N 0.72 N 1.00 N 1.00 N 1.00 N 1.00 N 1.00 N 1.00 N 1.00

(- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?)

N 0.24 D.d N 0.95 N 0.32 N 1.00 N 1.00 N 1.00 N 1.00 N 1.00 N 1.00 N 1.00

(�0:0;1) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?)

O 0.01 N 0.05 D.e O 0.01 N 1.00 N 1.00 N 1.00 N 1.00 N 1.00 N 1.00 N 1.00

(0.0;1) (- 0.0;?) (0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?)

N 0.28 N 0.69 N 0.99 D.f N 1.00 N 1.00 N 1.00 N 1.00 N 1.00 N 1.00 N 1.00

(- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?)

O 0.00 O 0.00 O 0.00 O 0.00 2D.a N 1.00 O 0.00 N 0.92 N 1.00 N 1.00 O 0.04

(0.0;?) (0.0;?) (0.0;?) (0.0;?) (- 0.0;?) (0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (0.0;?)

O 0.00 O 0.00 O 0.00 O 0.00 O 0.00 2D.b O 0.00 O 0.00 N 0.97 N 1.00 O 0.00

(0.0;?) (0.0;?) (0.0;?) (0.0;?) (0.0;?) (0.0;?) (0.0;?) (- 0.0;?) (- 0.0;?) (0.0;?)

O 0.00 O 0.00 O 0.00 O 0.00 N 1.00 N 1.00 2D.c N 1.00 N 1.00 N 1.00 N 0.84

(0.0;?) (0.0;?) (0.0;?) (0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?)

O 0.00 O 0.00 O 0.00 O 0.00 N 0.08 N 1.00 O 0.00 � D.a N 1.00 N 1.00 O 0.00

(0.0;?) (0.0;?) (0.0;?) (0.0;?) (- 0.0;?) (- 0.0;?) (0.0;?) (- 0.0;?) (- 0.0;?) (0.0;?)

O 0.00 O 0.00 O 0.00 O 0.00 O 0.00 O 0.04 O 0.00 O 0.00 �D.b N 0.99 O 0.00

(0.0;?) (0.0;?) (0.0;?) (0.0;?) (0.0;?) (0.0;?) (0.0;?) (0.0;?) (- 0.0;?) (0.0;?)

O 0.00 O 0.00 O 0.00 O 0.00 O 0.00 O 0.00 O 0.00 O 0.00 O 0.01 � D.c O 0.00

(0.0;?) (0.0;?) (0.0;?) (0.0;?) (0.0;?) (0.0;?) (0.0;?) (0.0;?) (0.0;?) (0.0;?)

O 0.00 O 0.00 O 0.00 O 0.00 N 0.96 N 1.00 N 0.17 N 1.00 N 1.00 N 1.00 �D.e

(0.0;?) (0.0;?) (0.0;?) (0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?)

kroAE50

D.c O 0.00 N 1.00 N 0.19 N 1.00 N 1.00 N 1.00 N 1.00 N 1.00 N 1.00 N 1.00

(0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?)
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for the others. The major exception is �D.e (100 colonies)

which was not in general significantly better than the

DANTE and DANTE II variants.

Referring to the limit for the number of solutions that an

ant can build, NS; 7 of the 11 selected variants used NS ¼
50: Although the best variant was �D.c with 50 (2	 25)

colonies, the second best variant used the smallest number

of colonies (10 and 20 for the DANTE and DANTE II

cases, respectively).

The beanplots with the distribution of the coverage

metric (C) for the three instances are sketched in Fig. 10.

For example, the rectangle in the intersection of row 1 with

column 2 presents three beanplots (one for each of the

kroAC50, kroAD50, and kroAE50 instances) for the C

distribution of D.a against D.b, that is, the percentage of

elements of D.b which are dominated by elements of D.a.

The intersection of row 2 with column 1 presents the

reverse distribution of percentages, that is, the percentages

of elements of D.b which are dominated by elements of

D.a. The observation of these beanplots completes the

analysis, and emphasizes the previous observations, that is,

�D.a, �D.b, and �D.c (both �-DANTE) are among the best

variants. The worst variants were 2D.f (DANTE) and �D.f

(�-DANTE), both with 50 colonies and NS ¼ 1: Compared

with the remaining cases, 2D.f and �D.f obtained a very

small cardinality, which is associated with the small

number of cycles completed in the available time. This

small number of cycles does not allow a proper exchange

of information between the colonies leading to a smaller

exploitation of the search space.

5.2 Problems with more than 50 nodes

or more than 2 objectives

The results for the kroABC50 (three objectives), kro-

ABCD50 (four objectives), and kroAB100 are presented in

this section. To simplify the analysis, the presented results

are for three variants: VACO;VDANTE and V��DANTE: The

common parameter values were already presented in

Table 20. The remaining parameter values were set

according with the best variants of Version 2, DANTE, and

�-DANTE, that is:

VACO and VDANTE : 50 colonies and amax ¼ bmax ¼ 1:

V��DANTE : 25 colonies, amax ¼ 5;bmax ¼ 1;NS equal to

the number of nodes of the network (50 or 100), and

� ¼ 0:01:

Table 24 presents the C coverage metric statistics (mean

and standard deviation), comparing the three variants over

the three problems in analysis. The V��DANTE was the best

variant for all problems. For example, for kroAB100 more

than 97% of the solutions obtained by VACO and VDANTE

are weakly dominated by solutions of V��DANTE: Although

not so evident, the same superiority is maintained for

Table 23 continued

N 1.00 D.d N 1.00 N 0.99 N 1.00 N 1.00 N 1.00 N 1.00 N 1.00 N 1.00 N 1.00

(- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?)

O 0.00 O 0.00 D.e O 0.00 N 1.00 N 1.00 N 0.94 N 1.00 N 1.00 N 1.00 N 1.00

(0.0;?) (0.0;?) (0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?)

N 0.82 O 0.01 N 1.00 D.f N 1.00 N 1.00 N 1.00 N 1.00 N 1.00 N 1.00 N 1.00

(- 0.0;?) (0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?)

O 0.00 O 0.00 O 0.00 O 0.00 2D.a O 0.00 O 0.00 N 0.94 O 0.01 N 1.00 O 0.00

(0.0;?) (0.0;?) (0.0;?) (0.0;?) (0.0;?) (0.0;?) (- 0.0;?) (0.0;?) (- 0.0;?) (0.0;?)

O 0.00 O 0.00 O 0.00 O 0.00 N 1.00 2D.b N 0.11 N 1.00 N 1.00 N 1.00 N 1.00

(0.0;?) (0.0;?) (0.0;?) (0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?)

O 0.00 O 0.00 N 0.06 O 0.00 N 1.00 N 0.90 2D.c N 1.00 N 1.00 N 1.00 N 1.00

(0.0;?) (0.0;?) (- 0.0;?) (0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?)

O 0.00 O 0.00 O 0.00 O 0.00 N 0.06 O 0.00 O 0.00 � D.a O 0.00 N 1.00 O 0.00

(0.0;?) (0.0;?) (0.0;?) (0.0;?) (- 0.0;?) (0.0;?) (0.0;?) (0.0;?) (- 0.0;?) (0.0;?)

O 0.00 O 0.00 O 0.00 O 0.00 N 0.99 O 0.00 O 0.00 N 1.00 �D.b N 1.00 N 0.28

(0.0;?) (0.0;?) (0.0;?) (0.0;?) (- 0.0;?) (0.0;?) (0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?)

O 0.00 O 0.00 O 0.00 O 0.00 O 0.00 O 0.00 O 0.00 O 0.00 O 0.00 �D.c O 0.00

(0.0;?) (0.0;?) (0.0;?) (0.0;?) (0.0;?) (0.0;?) (0.0;?) (0.0;?) (0.0;?) (0.0;?)

O 0.00 O 0.00 O 0.00 O 0.00 N 1.00 O 0.00 O 0.00 N 1.00 N 0.73 N 1.00 �D.e

(0.0;?) (0.0;?) (0.0;?) (0.0;?) (- 0.0;?) (0.0;?) (0.0;?) (- 0.0;?) (- 0.0;?) (- 0.0;?)

The horizontal/vertical lines delimit the �-DANTE variants from the others. For each pair of variants the Mann–Whitney test p value, the

confidence interval, and the symbology OjN indicating that we should reject the null hypothesis, or the data does not allow us to conclude that the

medians are different, respectively, are presented
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kroABC50 and kroABCD50, where at most 32.1% of the

solutions obtained by V��DANTE are weakly dominated by

solutions of the other two variants.

This study would not be complete without the compar-

ison between the proposed method and other state-of-the-

art algorithms, which will be made in the next section.
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Fig. 10 C metric values

beanplots for kroAC50,

kroAD50, and kroAE50. The

rectangle in the intersection of

row i with column j presents

three beanplots (one for each of

the kroAC50, kroAD50, and

kroAE50 instances) for the C
distribution of variant i against

variant j, that is, the percentage

of elements returned by variant j
which are weakly dominated by

elements returned by variant i
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6 Comparing with other heuristics

In the previous sections, it was concluded that, for the

studied variants, 2M.7 (Sect. 3.3) was the best performing

variant not using an explicit local search, while �D.37

(Sect. 4.3) was the best among the ones using the DANTE’s

oriented depth search. However, no conclusive deduction

could have been made about the quality of the proposed

methods when compared with other heuristics, and in

particular with other MOACO algorithms. Therefore, this

section will be dedicated to the comparison of those two

variants with three known heuristics, namely:

• Multiple Ant Colony System (MACS) (Barán and

Schaerer 2003). MACS is an adaptation of the Multiple

Ant Colony System for Vehicle Routing Problem with

Time Windows (MACS-VRPTW) (Gambardella et al.

1999). In (Garcı́a-Martı́nez et al. 2007), MACS was

compared against eight other MOACO algorithms and

the authors selected it as the one with the best overall

performance covering a set of MOTSP instances.

• Non-dominated Sorting Genetic Algorithm II (NSGA-

II) (Deb et al. 2000). NSGA-II is one of the most

popular multiple objective evolutionary algorithms that

uses an elitist approach (Deb 2001). Its fitness assign-

ment scheme consists in sorting the population in

different fronts using the non-domination order rela-

tion. Then, to form the next generation, the algorithm

combines the current population and its offspring

generated with the standard bimodal crossover and

polynomial operators. Finally, the best individuals in

terms of non-dominance and diversity are chosen. In

our case, the selection of NSGA-II follows the same

line of reasoning used in (Garcı́a-Martı́nez et al. 2007).

• Memetic-Pareto Archived Evolution Strategy (M-

PAES) (Knowles and Corne 2000b). M-PAES is based

on (1 ? 1)-PAES which is a local search MOO

algorithm (Knowles and Corne 2000a), but uses a

population of solutions and periodically employs

crossover to recombine the distinct local optima found

using the (1 ? 1)-PAES procedure. Algorithm 5

describes our adaptation of the (1 ? 1)-PAES to the

MOTSP problem, where the mutation of the solutions is

achieved through the swapping of two randomly chosen

elements of the cycle. The selection of MPAES

algorithm is based in the fact that, as we will see

below, the (1 ? 1)-PAES was the local search proce-

dure used to hybridize MACS and 2M.7. Therefore, it

seems interesting to have a comparison of the studied

methods with one of the state-of-the-art methods that

uses (1 ? 1)-PAES.

As already suggested, the (1 ? 1)-PAES local search

procedure was used to obtain two hybrid methods:

MACS ? PAES and 2M.7 ? PAES. In both cases,

(1 ? 1)-PAES (Algorithm 5) was applied to each solution

generated by MACS and 2M.7, respectively. This will

allows us to compare the �-DANTE with other two

MOACO algorithms complemented with a local search.

To compare the performance of the the seven methods

(MACS, MACS ? PAES, NSGA-II, MPAES, 2M.7,

Table 24 C metric statistics (mean and standard deviation) for kro-

AB100, kroABC50, kroABCD50

kroAB100

VACO 0.164 (0.12) 0.008 (0.01)

0.699 (0.19) VDANTE 0.016 (0.03)

0.977 (0.04) 0.973 (0.06) V��DANTE

kroABC50

VACO 0.628 (0.12) 0.314 (0.08)

0.283 (0.11) VDANTE 0.275 (0.08)

0.576 (0.06) 0.660 (0.06) V��DANTE

kroABCD50

VACO 0.888 (0.03) 0.321 (0.06)

0.055 (0.03) VDANTE 0.144 (0.05)

0.609 (0.05) 0.833 (0.04) V��DANTE

7 Although �D.1 was considered the best variant in Sect. 4.3, �D.3


�Dc was the best performing variant for a broader set of instances

(see Sect. 5).
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2M.7 ? PAES, �D.3), four instances of the MOTSP (kro-

AB50, kroAC50, kroAD50, and kroAB100) were consid-

ered. The parameter values for 2M.7 and �D.3 were

presented in Tables 7 and 16, respectively. The remaining

parameter values are presented in Table 25. As in the

previous sections, all methods were implemented in C??,

compiled using gcc 4.3.3, and run on Ubuntu 7.10 over a

3.0 GHz computer with 1 GB of RAM.

Table 26 summarizes the statistics for the cardinality

and S metrics, and Table 27 complements these statistics

by presenting the Mann–Whitney test results. From the

analysis of those tables some conclusions can be made:

• Overall tested instances, the best mean hyper-volume

was obtained by �-DANTE.

• Except for kroAB100 instance, NSGA-II and MPAES

were the second best methods referring to the hyper-

volume metric. For the kroAB100 instance, MACS and

MACS ? PAES were better than NSGA-II and

MPAES.

• Except for kroAC50 instance, the largest cardinality

was obtained by MPAES.

• Except for kroAB50 instance, 2M.7 was the method

with smallest mean hyper-volume and was among the

worst methods referring to cardinality.

• In general, the use of the (1 ? 1)-PAES local search,

both in MACS and in 2M.7, improved the results

obtained without the local search. The biggest excep-

tion was 2M.7 ? PAES for kroAB50 instance, were the

results obtained with 2M.7 ? PAES were significantly

worst.

• The Mann–Whitney test results corroborate the fact that

�-DANTE was the best method when it refers to the

hyper-volume metric. In general, for the 50 nodes

instances, the same test shows that MPAES and NSGA-

II where the second best methods. For the 100 nodes

instance, MACS ? PAES was the second best method.

Except for kroAB50, 2M.7 was statistically worst than

all the other methods.

To complete our study, Table 28 shows the C coverage

metric statistics (mean and standard deviation). The cor-

responding beanplots, with the distribution of the coverage

metric, are sketched in Fig. 11. From the analysis of the

coverage values, some conclusions can be made (over/for

the studied instances):

• The �-DANTE method, �D.3, obtains the best coverage

values overall instances. The worst value is obtained

when compared with MPAES in instance kroAB50,

where a mean of 25% of the solutions of �D.3 are

weakly dominated by solutions of MPAES, against the

66% of solutions of MPAES weakly dominated by the

ones of �D.3.

• NSGA-II an MPAES are in general better than MACS,

MACS ? PAES, 2M.7, and 2M.7 ? PAES.

• The comparison of 2M.7 with 2M.7 ? PAES is not

conclusive and problem dependent. Furthermore, from

the analysis of the beanplots, it is observable that the

percentage of weakly dominated elements returned by

2M.7 ? PAES has a large spread. A possible reason for

the non improvement of the results, might be an

excessive intensity of the local search, which will

consume resources necessary to do the exploration of

the search space.

• The use of the local search in MACS ? PAES has

improved the results obtained with MACS.

• Comparing 2M.7 against MACS and MACS ? PAES,

we can observe that, except for kroAB50, the latest

methods have better coverage results. Comparing

2M.7 ? PAES against MACS and MACS ? PAES

does not show an improvement of the results (they are

even worsen for kroAB50).

Figures 12 and 13 sketch typical objective fronts for

each of the methods over the four instances in analysis.

Table 25 Parameter values for the MACS, PAES, NSGA-II, and

MPAES methods

Value Observations

Problems kroAB50

kroAC50

kroAD50

kroAB100

Anti-reference solution (9e4, 9e4) 50 nodes instances

(1.8e5, 1.8e5) 100 nodes instances

Maximum run time 300 s 50 nodes instances

1,800 s 100 nodes instances

Number of runs 25

Ants per cycle 20 MACS,

MACS ? PAES

a 1

b 2

q 0.2

q0 0.98

Population size 100 NSGA-II, MPAES,

(1 ? 1)-PAES

Crossover probability 0.8

Mutation probability 0.1

(1 ? 1)-PAES maximum

number of: fails and moves

50 50 nodes instances

100 100 nodes instances
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7 Conclusions and future work

This paper presents a hybrid meta-heuristic called �-Depth

ANT Explorer (�-DANTE) that uses an efficient and dif-

ferent local search technique, adapted to a pheromone-

oriented procedure. In each one of the �-DANTE cycles, sets

of solutions are computed using a first mandatory and a

second elective phases:

• In the first phase a solution is generated based on a

constructive procedure that shapes each solution by

successively adding selected components. This proce-

dure uses (multiple) pheromone trails and heuristics to

enhance the quality of the solutions.

• The second phase is triggered when a solution is within

an � range of the approximation set (the collection of

the best performing solutions), or is not dominated by

any solution in this set. The same (multiple) pheromone

trails and heuristics used in the first phase, are used here

to guide a limited/oriented depth search method,

including the more promising components into the

solutions under construction.

It is common to use greedy pheromone update strate-

gies in ACO algorithms, that is, to adopt procedures

where only the best performing solutions are used to

update the pheromone trails. For the multiple objective

case, one possible procedure uses all the elements of the

approximation set in this update. However, the cardinality

of this set is usually very large, which introduces ‘‘noisy’’

pheromone trails and consequently reduces the perfor-

mance of the algorithm. Therefore, a complementary

pheromone update strategy, that uses as a base the ele-

ments of the approximation set, has also been proposed.

The proposed update strategy uses only smaller subsets of

the approximation set, based on its selective partition,

which successively favors the exploration of small parts

of the search space.

Table 26 Statistics (mean ans standard deviation) for the cardinality and S metric of the seven methods (MACS, MACS ? PAES, NSGA-II,

MPAES, 2M.7, 2M.7 ? PAES, �D.3) over four instances of the MOTSP (kroAB50, kroAC50, kroAD50, and kroAB100)

MACS MACS ? PAES NSGA-II MPAES 2M.7 2M.7 ? PAES �D.3

kroAB50

|P|

Mean 9.644e?01 2.022e?02 1.230e?02 6.324e102 2.227e?02 8.136e?01 3.143e?02

SD 8.761e?00 1.550e?01 9.855e?00 9.130e?01 2.781e?01 1.030e?01 3.108e?01

S
Mean 9.513e-01 9.663e-01 9.737e-01 9.700e-01 9.804e-01 8.711e-01 9.931e-01

SD 4.590e-03 4.775e-03 4.254e-03 1.633e-02 2.794e-03 1.443e-02 1.409e-03

kroAC50

|P|

Mean 1.082e?02 2.263e?02 1.043e?02 5.201e?02 7.236e?01 7.424e?01 5.696e102

SD 1.064e?01 2.877e?01 1.019e?01 6.893e?01 7.222e?00 8.368e?00 2.163e?01

S
Mean 9.408e-01 9.552e-01 9.696e-01 9.704e-01 8.644e-01 8.627e-01 9.976e-01

SD 3.545e-03 3.654e-03 5.705e-03 1.318e-02 1.635e-02 1.108e-02 6.363e-04

kroAD50

|P|

Mean 9.712e?01 2.081e?02 1.086e?02 4.407e102 6.984e?01 8.604e?01 4.061e?02

SD 6.616e?00 1.648e?01 9.019e?00 3.574e?01 9.797e?00 1.196e?01 2.122e?01

S
Mean 9.364e-01 9.538e-01 9.694e-01 9.741e-01 8.378e-01 8.480e-01 9.978e-01

SD 4.233e-03 3.077e-03 4.089e-03 1.095e-02 1.307e-02 1.104e-02 8.382e-04

kroAB100

|P|

Mean 1.147e?02 2.884e?02 7.256e?01 1.168e103 7.724e?01 9.292e?01 1.107e?03

SD 7.481e?00 2.122e?01 8.322e?00 1.516e?02 9.148e?00 1.629e?01 8.669e?01

S
Mean 9.228e-01 9.362e-01 9.089e-01 9.244e-01 7.505e-01 7.881e-01 9.945e-01

SD 3.366e-03 2.464e-03 4.147e-03 1.188e-02 1.496e-02 1.851e-02 1.194e-03

Best mean value for each case is shown in bold type
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Versions of DANTE (I and II), also proposed in this

contribution, and �-DANTE were implemented and applied

to a set of instances of the MOTSP. We verified that the

methods converge towards the reference front, obtaining

good results. Furthermore, both methods significantly

improve the results obtained with the MOACO. This fact

was corroborated by the use of reference metrics: coverage,

hyper-volume, R1, and R3 (Fig. 14).

Variants of our best performing MOACO without local

search and �-DANTE (2M.7 and �D.3, respectively) were

then compared with other heuristics (MACS, NSGA-II, and

MPAES) over four instances of the MOTSP. It was con-

cluded that, for that set of instances, �-DANTE was the best

performing method overall. Furthermore, �-DANTE was

compared with other two MOACO with local search

(MACS ? PAES and 2M.7 ? PAES). Again, under the

same conditions, �-DANTE was much better then the other

MOACO with local search.

The main idea of this contribution was (1) to do the

analysis of the reliability, accuracy and versatility of the

DANTE’s and �-DANTE’s methods, and (2) to prove that

both methods can be used as a high performance tool in

optimization problems, namely in problems for which their

intrinsic complexity is recognized.

In general, from the analysis of the developed work, a

set of future researches can derive. Although the promising

results obtained by DANTE and �-DANTE, its effective

application is significantly limited by the size of the

problems. Therefore, the inclusion in the search process of

other optimization strategies (e.g., the parallelization of the

process) and heuristics, should be thought as a way to solve

larger instances, to further improve the quality of the

solutions, and to accelerate the search procedure. Likewise,

the pheromone-updating step is fundamental in the search

procedure, which implies that further improvements and

possible alternatives should be thought. Another line of

development is the application of these methods to other

Table 27 Mann–Whitney test results for the seven methods (MACS,

MACS ? PAES, NSGA-II, MPAES, 2M.7, 2M.7 ? PAES, �D.3)

over four instances of the MOTSP (kroAB50, kroAC50, kroAD50,

and kroAB100)

kroAB50

MACS N 1.00 N 1.00 N 1.00 N 1.00 O 0.00 N 1.00

(.0;?) (.0;?) (.0;?) (.0;?) (0.1;?) (.0;?)

O 0.00 MACS N 1.00 N 0.97 N 1.00 O 0.00 N 1.00

(.0;?) ?PAES (.0;?) (.0;?) (.0;?) (0.1;?) (.0;?)

O 0.00 O 0.00 NSGA-II N 0.18 N 1.00 O 0.00 N 1.00

(.0;?) (.0;?) (.0;?) (.0;?) (0.1;?) (.0;?)

O 0.00 O 0.04 N 0.82 MPAES N 1.00 O 0.00 N 1.00

(.0;?) (.0;?) (.0;?) (.0;?) (0.1;?) (.0;?)

O 0.00 O 0.00 O 0.00 O 0.00 2M.7 O 0.00 N 1.00

(.0;?) (.0;?) (.0;?) (.0;?) (0.1;?) (.0;?)

N 1.00 N 1.00 N 1.00 N 1.00 N 1.00 2M.7? N 1.00

(- .1;?) (- .1;?) (- .1;?) (- .1;?) (- .1;?) PAES (- .1;?)

O 0.00 O 0.00 O 0.00 O 0.00 O 0.00 O 0.00 � D.3

(.0;?) (.0;?) (.0;?) (.0;?) (.0;?) (0.1;?)

kroAC50

MACS N 1.00 N 1.00 N 1.00 O 0.00 O 0.00 N 1.00

(.0;?) (.0;?) (.0;?) (0.1;?) (0.1;?) (- .1;?)

O 0.00 MACS N 1.00 N 1.00 O 0.00 O 0.00 N 1.00

(.0;?) ?PAES (.0;?) (.0;?) (0.1;?) (0.1;?) (.0;?)

O 0.00 O 0.00 NSGA-II N 0.67 O 0.00 O 0.00 N 1.00

(.0;?) (.0;?) (.0;?) (0.1;?) (0.1;?) (.0;?)

O 0.00 O 0.00 N 0.34 MPAES O 0.00 O 0.00 N 1.00

(.0;?) (.0;?) (.0;?) (0.1;?) (0.1;?) (.0;?)

N 1.00 N 1.00 N 1.00 N 1.00 2M.7 N 0.26 N 1.00

(- .1;?) (- .1;?) (- .1;?) (- .1;?) (.0;?) (- .1;?)

N 1.00 N 1.00 N 1.00 N 1.00 N 0.74 2M.7? N 1.00

(- .1;?) (- .1;?) (- .1;?) (- .1;?) (.0;?) PAES (- .1;?)

O 0.00 O 0.00 O 0.00 O 0.00 O 0.00 O 0.00 �D.3

(0.1;?) (.0;?) (.0;?) (.0;?) (0.1;?) (0.1;?)

kroAD50

MACS N 1.00 N 1.00 N 1.00 O 0.00 O 0.00 N 1.00

(.0;?) (.0;?) (.0;?) (0.1;?) (0.1;?) (- .1;?)

O 0.00 MACS N 1.00 N 1.00 O 0.00 O 0.00 N 1.00

(.0;?) ?PAES (.0;?) (.0;?) (0.1;?) (0.1;?) (.0;?)

O 0.00 O 0.00 NSGA-II N 1.00 O 0.00 O 0.00 N 1.00

(.0;?) (.0;?) (.0;?) (0.1;?) (0.1;?) (.0;?)

O 0.00 O 0.00 O 0.00 MPAES O 0.00 O 0.00 N 1.00

(.0;?) (.0;?) (.0;?) (0.1;?) (0.1;?) (.0;?)

N 1.00 N 1.00 N 1.00 N 1.00 2M.7 N 0.99 N 1.00

(- .1;?) (- .1;?) (- .1;?) (- .1;?) (.0;?) (- .2;?)

N 1.00 N 1.00 N 1.00 N 1.00 O 0.01 2M.7? N 1.00

(�:1;1) (- .1;?) (- .1;?) (- .1;?) (.0;?) PAES (- .2;?)

O 0.00 O 0.00 O 0.00 O 0.00 O 0.00 O 0.00 �D.3

(0.1;?) (.0;?) (.0;?) (.0;?) (0.2;?) (0.1;?)

kroAB100

MACS N 1.00 O 0.00 N 0.62 O 0.00 O 0.00 N 1.00

(.0;?) (.0;?) (.0;?) (0.2;?) (0.1;?) (- .1;?)

O 0.00 MACS O 0.00 O 0.00 O 0.00 O 0.00 N 1.00

(.0;?) ?PAES (.0;?) (.0;?) (0.2;?) (0.1;?) (- .1;?)

N 1.00 N 1.00 NSGA-II N 1.00 O 0.00 O 0.00 N 1.00

Table 27 continued

(.0;1) (.0;?) (.0;?) (0.2;?) (0.1;?) (- .1;?)

N 0.39 N 1.00 O 0.00 MPAES O 0.00 O 0.00 N 1.00

(.0;?) (.0;?) (.0;?) (0.2;?) (0.1;?) (- .1;?)

N 1.00 N 1.00 N 1.00 N 1.00 2M.7 N 1.00 N 1.00

(- .2;?) (- .2;?) (- .2;?) (- .2;?) (.0;?) (- .3;?)

N 1.00 N 1.00 N 1.00 N 1.00 O 0.00 2M.7? N 1.00

(- .1;?) (- .2;?) (- .1;?) (- .1;?) (.0;?) PAES (- .2;?)

O 0.00 O 0.00 O 0.00 O 0.00 O 0.00 O 0.00 �D.3

(0.1;?) (0.1;?) (0.1;?) (0.1;?) (0.2;?) (0.2;?)

For each pair of variants the Mann–Whitney test p value, the confidence

interval, and the symbology OjN indicating that we should reject the null

hypothesis, or the data does not allow us to conclude that the medians are

different, respectively, are presented
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practical problems, namely problems where ACO algo-

rithms have proven difficulties to successfully exploit the

search space. Finally, we would like to do a more profound

analysis of the influence of the � parameter value in the

performance of the �-DANTE algorithm, as well as present

alternative approaches (e.g., dynamically adapt � to the

problems instances and optimization phases).
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Appendix A: Performance metrics

In (Zitzler et al. 2002, 2003) it is shown that there is no

combination of unary quality measures that, in general, can

indicate that an approximation P is better than an

approximation Q: Nevertheless, these quality indicators are

widely used namely as combinations of several of them.

These combinations should be based on the distinct char-

acteristics of each one of those operators, and should

measure the quality of the methods in some desirable

aspects (Bui et al. 2001; Deb 2001):

Table 28 C metric statistics (mean and standard deviation) comparing seven methods (MACS, MACS ? PAES, NSGA-II, MPAES, 2M.7,

2M.7 ? PAES, �D.3) over four instances of the MOTSP (kroAB50, kroAC50, kroAD50, and kroAB100)

kroAB50

MACS 0.14 (0.09) 0.07 (0.05) 0.10 (0.12) 0.01 (0.02) 0.49 (0.23) 0.00 (0.00)

0.80 (0.11) MACS ? PAES 0.20 (0.07) 0.24 (0.18) 0.04 (0.04) 0.67 (0.19) 0.01 (0.02)

0.80 (0.10) 0.59 (0.12) NSGA-II 0.42 (0.26) 0.26 (0.08) 0.90 (0.13) 0.15 (0.06)

0.82 (0.17) 0.68 (0.20) 0.47 (0.24) MPAES 0.36 (0.23) 0.90 (0.17) 0.25 (0.19)

0.97 (0.04) 0.89 (0.05) 0.47 (0.09) 0.51 (0.23) 2M.7 0.96 (0.08) 0.21 (0.13)

0.20 (0.10) 0.13 (0.09) 0.04 (0.05) 0.06 (0.10) 0.01 (0.02) 2M.7 ? PAES 0.00 (0.00)

1.00 (0.00) 0.98 (0.03) 0.65 (0.11) 0.66 (0.22) 0.67 (0.16) 0.99 (0.01) �D.3

kroAC50

MACS 0.14 (0.08) 0.11 (0.06) 0.14 (0.10) 0.24 (0.17) 0.39 (0.17) 0.00 (0.00)

0.79 (0.08) MACS ? PAES 0.21 (0.07) 0.26 (0.10) 0.38 (0.21) 0.54 (0.18) 0.02 (0.03)

0.70 (0.11) 0.52 (0.11) NSGA-II 0.34 (0.24) 0.96 (0.05) 0.99 (0.02) 0.01 (0.02)

0.77 (0.12) 0.61 (0.16) 0.59 (0.25) MPAES 0.97 (0.05) 0.99 (0.02) 0.09 (0.12)

0.30 (0.09) 0.24 (0.09) 0.02 (0.03) 0.01 (0.04) 2M.7 0.64 (0.21) 0.00 (0.00)

0.23 (0.08) 0.17 (0.07) 0.00 (0.01) 0.00 (0.02) 0.26 (0.19) 2M.7 ? PAES 0.00 (0.00)

1.00 (0.01) 0.99 (0.02) 0.96 (0.05) 0.93 (0.07) 1.00 (0.00) 1.00 (0.00) �D.3

kroAD50

MACS 0.10 (0.06) 0.09 (0.05) 0.09 (0.07) 0.27 (0.07) 0.32 (0.14) 0.00 (0.00)

0.84 (0.06) MACS ? PAES 0.23 (0.06) 0.18 (0.12) 0.48 (0.25) 0.53 (0.17) 0.00 (0.00)

0.78 (0.05) 0.58 (0.06) NSGA-II 0.30 (0.22) 1.00 (0.00) 1.00 (0.00) 0.02 (0.02)

0.84 (0.07) 0.72 (0.12) 0.60 (0.22) MPAES 1.00 (0.01) 1.00 (0.00) 0.08 (0.08)

0.26 (0.15) 0.17 (0.25) -0.00 (0.00) 0.00 (0.01) 2M.7 0.46 (0.30) 0.00 (0.00)

0.27 (0.14) 0.18 (0.17) -0.00 (0.00) -0.00 (0.00) 0.47 (0.30) 2M.7 ? PAES 0.00 (0.00)

1.00 (0.00) 0.99 (0.00) 0.95 (0.02) 0.91 (0.08) 1.00 (0.00) 1.00 (0.00) �D.3

kroAB100

MACS 0.08 (0.06) 0.37 (0.06) 0.20 (0.09) 0.88 (0.18) 0.37 (0.20) 0.00 (0.00)

0.88 (0.07) MACS ? PAES 0.53 (0.10) 0.27 (0.09) 0.98 (0.06) 0.75 (0.24) 0.00 (0.00)

0.46 (0.07) 0.33 (0.08) NSGA-II 0.09 (0.07) 0.98 (0.06) 0.87 (0.16) 0.00 (0.00)

0.63 (0.11) 0.59 (0.09) 0.86 (0.09) MPAES 1.00 (0.00) 0.99 (0.03) 0.00 (0.00)

0.04 (0.05) 0.00 (0.01) 0.00 (0.02) 0.00 (0.00) 2M.7 0.06 (0.09) 0.00 (0.00)

0.21 (0.08) 0.08 (0.08) 0.06 (0.08) 0.01 (0.02) 0.85 (0.14) 2M.7 ? PAES 0.00 (0.00)

1.00 (0.00) 0.99 (0.02) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) �D.3
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MACS

MACS + PAES

NSGA − II

MPAES

2M.7

2M.7 + PAES

εD.3

Fig. 11 C metric values

beanplots comparing seven

methods (MACS,

MACS ? PAES, NSGA-II,

MPAES, 2M.7, 2M.7 ? PAES,

�D.3) over four instances of the

MOTSP (kroAB50, kroAC50,

kroAD50, and kroAB100). The

rectangle in the intersection of

row i with column j presents

four beanplots (one for each of

the kroAB50, kroAC50,

kroAD50, and kroAB100

instances) for the C distribution

of variant i against variant j, that

is, the percentage of elements

returned by variant j which are

weakly dominated by elements

returned by variant i
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Fig. 12 Typical fronts from the seven methods (MACS, MAC-

S ? PAES, NSGA-II, MPAES, 2M.7, 2M.7 ? PAES, �D.3) over two

instances of the MOTSP (kroAB50 and kroAC50). For all instances,

the closest method to the reference set �D.3
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Fig. 13 Typical fronts from the seven methods (MACS, MAC-

S ? PAES, NSGA-II, MPAES, 2M.7, 2M.7 ? PAES, �D.3) over two

instances of the MOTSP (kroAD50 and kroAB100). For all instances,

the closest method to the reference set �D.3
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• Be as near as possible to the real Pareto front;

• Have spread solutions all along the Pareto front; and

• Be uniformly distributed.

In the next sections four of those metrics are defined: C,

S, R1, and R3.

C-set coverage metric

The set coverage metric (Zitzler et al. 2000; Zitzler and

Thiele 1999; Deb 2001; Knowles 2002) is computed by

C : X2 ! ½0; 1�

ðP;QÞ 7! fq 2 Q : ð9p 2 P : p � qÞgj j
jQj ;

ð13Þ

where X is the set off all approximation sets, and P and Q
are two approximation sets. This metric calculates the

proportion of elements in Q that are weakly dominated by

at least one element in P:
If CðP;QÞ ¼ 0 then none of the elements of Q is

weakly dominated. On the other hand, if CðP;QÞ ¼ 1 then

all elements of Q are weakly dominated by at least one of

the elements in P: However, this metric cannot determine

how much an approximation outperforms another if one of

the sets completely dominates the other. Since CðP;QÞ þ
CðQ;PÞ is not necessarily equal to 1, both indicators

should be considered.

Hyper-volume and S-metric

The hyper-volume metric calculates the hyper-volume of

the objective space dominated by an approximation set and

an anti-ideal solution (Zitzler 1999). The anti-ideal solution

is computed as an objective vector such that its components

are the maximum possible value in each objective. If it is

not possible to determine the exact anti-ideal solution it

should be used one outside the feasible objective space,

such that the rectangle defined by the ideal and anti-ideal

solution encloses the entire space. However it should be

noticed that the use of different points can lead to different

results as exampled by Knowles and Corne (2002).

Since the hyper-volume depends on the magnitude of

the values, the objectives should be normalized. Alterna-

tively, the normalization can somehow be avoided by

computing the hyper-volume ratio, that we will simply call

S-metric, which defined as

S : X! R
þ

Q 7! HVðQÞ
HVðP�Þ;

ð14Þ

where Q is an approximation set, P� is the Pareto set (or a

reference set), and HVðXÞ is the hyper-volume of the

region defined by the elements of X and the anti-ideal

solution.

This metric has the advantage of measuring both

diversity and proximity since values closer to 1 indicate

that the approximation set is near to the Pareto set and/or

has a higher distribution, all along the Pareto front.

R1 and R3 metrics

This section describes two metrics based on utility func-

tions (Jaszkiewicz 2001; Zitzler et al. 2003). As the name

suggest, the comparison indicators based in utility func-

tions employ usefulness functions to compute a value that

indicates the worth of the approximation set through that

function. Usually, the utility function is a parametric cor-

respondence, and an overall value, for the indicator, can be

computed by combining the results when those parameters

change in some set.

R1

The R1 metric is defined as

R1ðP1;P2;U; pÞ ¼
Z

u2U

CðP1;P2; uÞpðuÞ du; ð15Þ

where P1 and P2 are two approximation sets, U is a set of

utility functions, u : Rm ! R; which map each

approximation to an utility measure, p(u) is the

probability of the utility u, and

CðP1;P2; uÞ ¼
1 if u�ðP1Þ\u�ðP2Þ
1
2

if u�ðP1Þ ¼ u�ðP2Þ
0 if u�ðP1Þ[ u�ðP2Þ

8<
: ; ð16Þ

with

Fig. 14 S-metric values from variants A.1 to �D.4 (KroAB50)
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u�ðPÞ ¼ min
q2P

uðqÞ:

The R1 metric measures the probability that an

approximation set is better than another over the family

of utility functions U. To define U, we can use a family of

Tchebycheff utility function defined as

ukðq; rÞ ¼ max
j¼1;2;...;m

fkjðqj � rjÞg;

where k ¼ ðk1; k2; . . .; kmÞ is a weight vector, q is a

solution for which we want to measure the utility and r is a

reference point. Therefore, in formula (15), U is set as

U ¼ ukðq; rÞ : k ¼ ðk1; k2; . . .; kmÞ 2�0; 1½m^
Xm

i¼1

ki ¼ 1

( )
:

If R1ðP1;P2;U; pÞ[ 1
2

then, according to this measure,

P1 is better than P2 and it will be not worse if

R1ðP1;P2;U; pÞ� 1
2
:

R1R is defined considering one of the sets as a reference

set. For example, if Pr is the reference set,

R1RðP1;U; pÞ ¼ R1ðPr;P1;U; pÞ and, therefore, near val-

ues of R1RðP1;U; pÞ to 0.5 indicates that more probably P1

is a good approximation.

R3

The R3 metric is defined as

R3ðP1;P2;U; pÞ ¼
Z

u2U

u�ðP1Þ � u�ðP2Þ
u�ðP1Þ

pðuÞ du; ð17Þ

where P1;P2;U, u*, and p are defined as for Eq. (15).

The R3 metric measures the expected proportion of

superiority of one set over another.

Similarly to the two previous cases, provided a reference

set it is possible to define

R3RðP1;U; pÞ ¼ R3ðPr;P1;U; pÞ;

and if R3R is a value near to 0 then P1 is expected to be a

good approximation.

In practice, the computation of formulas (15) and (17)

can be approximated by replacing the integrals by a Rie-

mann sum over UK, where

UK ¼ ukðq; rÞ : k ¼ ðk1; k2; . . .; kmÞ^
(

ki 2
1

k
;
2

k
; . . .;

k � 1

k

� �
^
Xm

i¼1

ki ¼ 1

)
; ð18Þ

for some large k, that is, those metric values can be

approximated by

R1ðP1;P2; r;UK; pÞ ¼
X

uk;r2UK

CðP1;P2; uk;r; rÞpðuk;rÞ

and

R3ðP1;P2; r;UK; pÞ ¼
X

uk;r2UK

u�k;rðP1Þ � u�k;rðP2Þ
u�k;rðP1Þ

pðuk;rÞ:

Appendix B: Statistical inference

The experimental analysis of an algorithm or algorithms

performance is a necessary task to infer about its quality. In

some cases, the objective is to decide if a given method is

better than another for a given set of problems (since, as the

‘‘no-free-lunch’’ theorem suggests, it is not possible to find

an algorithm which is better in every aspect for every

problem than all the other algorithms). This leads to the

utilization of statistical inference which, given adequate

samples, allows to support or reject certain hypothesis.

Details about the use of statistical test in the study of results

obtained with meta-heuristics can be found in (Demšar

2006; Garcı́a et al. 2008, 2009; Garcı́a and Herrera 2008).

In particular, in this paper the Mann–Whitney test is used

(summarized below).

Mann–Whitney test

The Mann–Whitney test or Wilcoxon rank-sum test (Mann

and Whitney 1947) is a nonparametric test to compare non

paired groups.

The computation of the Mann–Whitney test starts by

ordering the samples from the smaller to their greatest

values. To the smallest value is assigned rank one, to the

second smallest value is assigned rank two, and so on until

the nth value which is ranked with n. In the case of ties, a

mean value of the ranks is assigned equal for all those

values. Then the ranks from each group are added. The test

tries to answer the question: ‘‘If the two populations have

the same median, which are the chances that a random

sampling from the populations would return in a rank sum

which is as least as the one observed by the experiment?’’.

To answer this question, the rank sum is used to obtain a

p value from an appropriated table. If p is small we can

reject the idea that the obtained difference is a coincidence

and conclude that the populations have distinct medians. If

p is large, the data does not allow us to conclude that the

medians are different, which is not the same to say that

they are equal.

Before applying the Mann–Whitney test we should

verify some premises, as for example: the observed values
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are independent, the observations are not paired (if not,

think of applying the Wilcoxon signed-rank test), we really

want to compare medians, and the samples don’t come

from Gaussian populations (for which other, more power-

ful, test can be applied).
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Paquete L, Stützle T (2003) A two-phase local search for the

biobjective traveling salesman problem. In: Fonseca C, Fleming

e-DANTE 181

123

http://dx.doi.org/10.1007/11839088
http://dx.doi.org/10.1007/978-3-540-87656-4_3
http://www-idss.cs.put.poznan.pl/~jaszkiewicz/motsp
http://www-idss.cs.put.poznan.pl/~jaszkiewicz/motsp
http://dx.doi.org/10.1109/CEC.2002.1007013


P, Zitzler E, Deb K, Thiele L (eds) Second International

Conference on evolutionary multi-Criterion optimization, EMO

2003, vol 2632. Faro, Portugal, pp 479–493
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