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RESUMEN DE LA TESIS
T́ıtulo: “Semilinear order property and infinite games”

Autor: Manuel José Simões Loureiro

En este trabajo se analiza la determinación de juegos de Lipschitz y Wadge, junto
con la propiedad de ordenación semilineal, estrechamente relacionada con estos jue-
gos, en el contexto de la Aritmética de segundo orden y el programa de la Matemática
inversa (Reverse Mathematics). En primer lugar, se obtienen pruebas directas, for-
malizables en la Aritmética de segundo orden, de la determinación de los juegos de
Lipschitz y Wadge para los primeros niveles de la Jerarqúıa de diferencias de Hauss-
dorf. A continuación, se determinan los axiomas de existencia suficientes para la
formalización de dichas pruebas dentro de los subsistemas clásicos de la Aritmética
de segundo orden (RCA0, WKL0, ACA0, ATR0 y Π1

1–CA0). Finalmente, en
algunos casos se muestra que dichos axiomas de existencia son óptimos, probando
que resultan ser equivalentes (sobre un subsistema débil adecuado, como RCA0 o
ACA0) a las correspondientes formalizaciones de los principios de determinación o
de ordenación semilineal. Los principales resultados obtenidos son los siguientes:

Teorema A. Sobre RCA0 son equivalentes:

(1) ACA0.
(2) (Σ0

1)2–Det∗L
(el principio de determinación para juegos de Lipschitz entre subconjuntos
del espacio de Cantor que son diferencia de dos cerrados).

(3) (Σ0
1)2–SLO

∗
L

(la propiedad de ordenación semilineal de la reducibilidad Lipschitz entre
subconjuntos del espacio de Cantor que son diferencia de dos cerrados).

Teorema B. Sobre RCA0 son equivalentes:

(1) ATR0.
(2) (Σ0

1 ∪ Π0
1)–DetL

(el principio de determinación para juegos de Lipschitz entre subconjuntos
abiertos o cerrados del espacio de Baire).

Teorema C. Sobre ACA0 son equivalentes:

(1) ATR0.
(2) ∆0

1–DetL
(el principio de determinación para juegos de Lipschitz entre subconjuntos
del espacio de Baire que son simultáneamente abiertos y cerrados).

(3) ∆0
1–SLOL

(la propiedad de ordenación semilineal de la reducibilidad Lipschitz entre
subconjuntos del espacio de Baire simultáneamente abiertos y cerrados).
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Introduction

In this thesis we analyze the determinacy of the Lipschitz and Wadge games, as well
as the tightly related semilinear ordering principle, in two di¤erent settings. Firstly, we
work in the setting of descriptive set theory and, secondly, in the setting of second order
arithmetic. Very roughly, the main goals of the present thesis are:

� to give direct proofs of the determinacy of Lipschitz and Wadge games for the �rst
levels of the Wadge hierarchy;

� to formalize these proofs in the setting of second order arithmetic in order to calibrate
the strength of Lipschitz and Wadge determinacy in terms of the (set existence) ax-
ioms needed to prove them, as a new contribution to the research program of Reverse
Mathematics; and

� to examine the relation between the semilinear ordering principle and the determi-
nacy of Lipschitz and Wadge games in the formal context of second order arithmetic,
and to search for the axioms needed to prove the equivalence between these principles.

Lipschitz and Wadge games were �rst introduced in the late 1960�s by W. W. Wadge as
a tool for studying the complexity of subsets of real numbers (Wadge had already obtained
most of his results on this topic by the end of 1972 [WWW72], but published them only
much later in his Ph. D. thesis [WWW83].) Given subsets of real numbers A and B, A is
said to be Wadge reducible to B if there is a real continuous function F such that

A = F�1 (B) .

Intuitively, the existence of F : R ! R such that x 2 A if and only if F (x) 2 B for
every x 2 R means that the problem of verifying membership in A can be reduced to the
problem of verifying membership in B and therefore we can regard A as being simpler
or at most as complex as B. It is natural to regard this reducibility relation as an order
relation. This explains the usual notation A �W B, meaning that A is Wadge reducible
to B by a continuous function. If the function which witnesses the reduction of A to B is,
in addition, Lipschitz, then the notation becomes A �L B and A is said to be Lipschitz
reducible to B. The equivalence classes of the equivalence relations induced by �W and
�L are called Wadge and Lipschitz degrees, respectively, and the preorders �W and �L
induce a partial order � on them.

iii



iv INTRODUCTION

As it is common practice in descriptive set theory, Wadge did not study the reducibility
relations �W and �L for the real line R itself. Instead, he considered the Baire space !!,
i.e. the space of all !�sequences of natural numbers endowed with the product topology
inherited from the discrete topology on !. The reason for this is that the use of R leads
to minor but annoying di¢ culties. Seen as a topological space, R is not homeomorphic to
any of its powers, and the standard decimal representation of the elements of R is badly
behaved in a sense that real numbers very closed to each other (e.g., 1 and 0:999 � � � 9)
can have completely di¤erent expansions. These di¢ culties are related to the presence of
the rational numbers among the reals, and can be avoided simply by replacing R by the
Baire space. The Baire space which is well�known to be homeomorphic to the irrationals
I. Another natural choice is to study the reducibility relation in the Cantor space 2!, i.e.,
the space of all !�sequences of 0�s and 1�s endowed with the product topology inherited
from the discrete topology on f0; 1g. Cantor space is compact and Baire space is not.
But, despite this di¤erence, both spaces are zero�dimensional Polish spaces satisfying
that elements which are very close together will have in common a large initial segment
of their respective representations.

Wadge showed that if we restrict our attention to the Baire or Cantor space, the
reducibility relations �W and �L can be naturally studied in terms of the so�calledWadge
and Lipschitz games. These games are variants of the traditional Gale�Stewart games used
in descriptive set theory.

Given A � !! (resp., 2!), the Gale�Stewart game for A, in symbols G(A), is the game
on ! (resp., f0; 1g) where player I (male) and player II (female) alternatively play natural
numbers xi and yi and player I wins just in case hx0; y0; x1; y1; x1; y2; : : : i 2 A.

Player I x0 x1 x2 : : :

Player II y0 y1 y2 : : :

In contrast, in Lipschitz and Wadge games each player builds his/her own !�sequence
and the winning condition for the game now depends on two sets. Namely, given A;B �
!! (resp., 2!), the Lipschitz game for A and B, in symbols GL(A;B), is the game on !
(resp., f0; 1g) where player I and player II alternatively play natural numbers xi and yi
and player II wins just in case hx0; x1; x2; : : : i 2 A, hy0; y1; y2; : : : i 2 B.

Player I x0 x1 x2 : : :

Player II y0 y1 y2 : : :

The Wadge game for A and B, in symbols GW (A;B), is the variant of GL(A;B)
where player II is allowed to pass (i.e., not to play) at any round, but she must play
in�nitely often otherwise she loses. The payo¤ is as before: player II wins if, and only if,
hx0; x1; x2; : : : i 2 A, hy0; y1; y2; : : : i 2 B.

Player I x0 x1 : : : xk xk+1 : : : xl : : :

Player II p p � � �p y0 p � � �p y1 : : :
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It is worth noting that despite the di¤erences in their de�nitions Lipschitz and Wadge
games can be viewed as particular Gale�Stewart games with appropriate payo¤ sets.

For each of the above mentioned games, a strategy for player I (resp. player II) is a
function from �nite sequences of natural numbers to natural numbers which assigns to
each partial run of the game player�s I (resp. player II) next move. A strategy is said to
be a winning strategy for a player if he or she wins the game as long as he or she plays
according the strategy, no matter how his or her opponent plays. Thus, saying that player
I or II wins a game means to say that he or she has a winning strategy in that game.

The key idea to relate Wadge reducibility and in�nite games is the following simple
but crucial result, which is known as Wadge�s lemma.

� (Wadge, 1972) Let A;B � !! (or 2!). Then:

1. Player II wins the game GL(A;B) i¤ A �L B.
2. Player II wins the game GW (A;B) i¤ A �W B.

3. If player I wins GL(A;B) or GW (A;B) then B �L Ac.

Where Xc stands for the complement of X. Two person in�nite games admit no draws
and only one of the players can win the game. But the fact that one of them has a
winning strategy is something that must be veri�ed: a two person in�nite game is said
to be determined if one of the players has a winning strategy. The assertion that all
Gale�Stewart games in the Baire space are determined is the content of the axiom of
determinacy (AD) from set theory:

AD = 8A � !!; G(A) is determined.

It is well known that making use of the axiom of choice (AC), one can construct
A � !! with G(A) non�determined. Thus, AD contradicts full AC. However, it is
compatible with a weaker form of choice: the axiom of dependent choices (DC).

It is important to note that Wadge was not concerned with the question of proving
the determinacy of Wadge and Lipschitz games. Instead, he assumed AD as a working
hypothesis and then obtained Wadge and Lipschitz determinacy as an immediate conse-
quence. In particular, putting together determinacy and Wadge�s lemma, he derived the
following somewhat surprising comparability property for sets of reals:

SLOL = 8A;B � !!; A �L B _ Bc �L A

SLOW = 8A;B � !!; A �W B _ Bc �W A

That is to say, assuming AD the collections of the Wadge and Lipschitz degrees are
"almost" linearly ordered. (If we identify the degree of a set with that of its complement,
the hierarchy becomes a strict linear order.) The notation SLO stands for Semi�Linear
Ordering and the subscript indicates whether we consider Wadge or Lipschitz reductions.
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Wadge soon realized the relevance of the semilinear ordering principle SLO and, start-
ing from this principle, in [WWW83] he extensively studied the structure of Wadge degrees
in the Baire space, particularly of those Wadge degrees formed by Borel sets. His method-
ology was based on a topological analysis of Wadge and Lipschitz games by using the
fundamental result due to Hausdor¤ and Kuratowski that �0

�+1 sets can be generated
by taking (possibly trans�nite) di¤erences of �0

� sets (the so�called Hausdor¤ Di¤erence
Hierarchy for �0

� sets). Very roughly, given Borel sets A and B, if we view them as mem-
bers of the di¤erence hierarchy, then the underlying topological structure gives us enough
information for constructing a winning strategy in the game GL=W (A;B). Remarkably, he
was able to prove that Borel Wadge degrees are well�founded and to calculate the exact
ordinal length of such hierarchy. After this work, many descriptive set theorists further
developed the so�called Wadge theory, including, among others, Donald A. Martin, D.
Monk, J. Steel, R. Van Wesep and A. Andretta ([Mar73], [Stee77], [VWsp77], [VWsp78],
[AA03], [AA04].) From these works, a detailed picture of the hierarchies of all (not nec-
essarily Borel) Wadge and Lipschitz degrees emerged, showing two hierarchies �ner than
the Hausdor¤ di¤erence hierarchy and much �ner than the Borel hierarchy. In fact, work-
ing in ZF+DC + AD, both the collection of all Wadge degrees and the collection of
all Lipschitz degrees are well�founded. Moreover, the hierarchy of Wadge degrees looks
like an in�nite ladder where pairs of non�self�dual Wadge degrees (i.e., degrees formed by
sets incomparable with their complements) alternate with self�dual Wadge degrees (i.e.,
degrees formed by sets Wadge equivalent to their complements), and where the levels of
countable co�nality are occupied by self-dual Wadge degrees and the levels of uncountable
co�nality are occupied by non-self-dual Wadge degrees:

� � � � �
� � � � � � � � � � � � � � �

� � � � �
" "

cof = ! cof > !

As to Lipschitz degrees, it was shown that pairs of non�self�dual Wadge degrees cor-
respond to pairs of non�self�dual Lipschitz degrees; whereas each self-dual Wadge degree
is the union of a block of !1 (!, if we consider the Cantor space) consecutive self�dual
Lipschitz degrees. Thus, the hierarchy of Lipschitz degrees looks like follows:

� � � �
�� � � � �� � � � � � � � � � � � � � � � � � � � � � �

� � � �
" "

cof = ! cof > !

Interestingly, a good portion of these results can be recovered without assuming AD.
This is due to the prominent result of Donald Martin that

� (Martin, 1975) ZF+DC proves determinacy for all Borel sets.
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In particular, it follows that ZF+DC proves the determinacy of Wadge and Lipschitz
games for Borel sets (and hence the semilinear ordering principle for Borel sets too). This is
because Wadge or Lipschitz games for Borel sets can be reexpressed as Borel Gale�Stewart
games. However, the proof of Martin�s result is well�known to require the assumption of
strong existence axioms. H. Friedman [Frd71] famously proved that Borel determinacy is
not provable in ZFC (ZF plus the axiom of choice) without the power set axiom. Indeed,
he showed that @1 many iterations of the power set are needed to prove it. He also proved
that

� (Friedman, 1971) Second order arithmetic Z2 cannot prove that all Borel Gale�
Stewart games are determined.

More recently, in [MS12], A. Montalbán and R. A. Shore established the precise bounds
for the amount of determinacy provable in second order arithmetic by showing that Gale�
Stewart determinacy for all �nite Boolean combinations of �0

3 sets is already not provable
within Z2. In contrast, by a result of A. Louveau and J. Saint Raymond [LSR87],

� (A. Louveau and Saint Raymond, 1987) Second order arithmetic Z2 does prove that
all Borel Wadge and Lipschitz games are determined.

Thus, although we can recover Borel Wadge and Lipschitz determinacy within ZF+DC
from Martin�s notorious result, we would be using a principle strictly more powerful than
needed. In addition, the exact strength of Borel Wadge and Lipschitz determinacy is not
known. Although provable in full Z2, it has not been known any natural subsystem of Z2
which su¢ ces for proving Borel Wadge and Lipschitz determinacy. A natural approach to
attack this problem then arises:

� to give direct proofs of Wadge and Lipschitz determinacy and of the semilinear or-
dering principle for Borel sets that allow us to calibrate the exact strength of those
principles in terms of subsystems of second order arithmetic.

The present thesis can be seen as a �rst step towards an answer to this question.
The material in this thesis naturally divides into two parts. In the �rst part, we work in
ZF+DC and show that Wadge�s topological analysis of games can be reinterpreted in
order to give direct proofs of Wadge and Lipschitz determinacy for the �rst levels of the
Wadge hierarchy. In the second part, and this is the bulk of the present work, we formalize
previous arguments inside second order arithmetic (so far no explicit formalization of
Wadge and Lipschitz games in second order arithmetic was available in the literature) and
obtain a number of results on the strength of such principles in terms of classical fragments
of Z2.

In what follows, we brie�y describe the tools we have used and the main results that
we have obtained in both parts.

PART I : Wadge/Lipschitz determinacy in descriptive set theory.
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As previously mentioned, in [WWW83] Wadge�s goal was not the study of determinacy
of games. Instead, he was interested in proving the existence of complete (i.e. maximal
relatively to �W ) sets for a given Wadge degree. Nonetheless, in Chapter 2 we show
that the analysis he developed, after its reinterpretation in a more combinatorial manner,
can be used to prove the determinacy of both Lipschitz and Wadge games over sets of
real numbers located in given levels of the Wadge hierarchy. Namely, we present direct,
topological proofs of Lipschitz and Wadge determinacy (and hence also of the semilinear
ordering principle) in both the Cantor and Baire spaces for the following classes (that
correspond to the �rst �ve levels of the Wadge hierarchy or, alternatively, to the �rst
three levels of Hausdor¤�s hierarchy of di¤erences):

Df0z}|{ Df1 = �
0
1z }| { Df2z }| {

f;g �0
1 ��01 Df2 �

^
Df2

�0
1 � f;; X!g (Df2 \

^
Df2)�

�
�0
1 [�01

�
fX!g �01 ��0

1

^
Df2 �Df2|{z}

^
Df0

| {z }
^
Df1 = �

0
1

| {z }
^
Df2

where

1. �0
1 = closed sets

2. �01 = open sets

3. �0
1 = clopen (i.e. both closed and open) sets

4. Df2 = di¤erences of closed sets.

5.
^
Df2 = complements of di¤erences of closed sets.

The proof ideas are based on the fact that a closed set in the Baire or Cantor space can
be characterized as the set of paths of a pruned tree. This point of departure is important
in two aspects. Firstly it allows us to develop the arguments in a more combinatorial way,
and secondly it can be recovered almost without restrictions in second order arithmetic.

Let us see how this is done according to the type of the set in Cantor and Baire spaces.
Firstly, we consider clopen sets. In both spaces clopen sets can be characterized using
well-founded trees, i.e. trees that have no path. In the Cantor space, these trees are
�nite, and to each clopen set we can associate a natural number: the maximal length of
a sequence in the tree characterizing it. In the context of Lipschitz or Wadge games, this
natural number stands for the maximum number of moves a player can make preserving the
possibility to decide whether he or she remains within or leaves the tree. In the Baire space,
trees corresponding to closed sets can be in�nitely splitting. Thus, to each well-founded
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tree describing a clopen set we associate a rank, which is a countable ordinal. Now the
possibility to decide whether a player remains within or leaves the tree stays open as long
as the rank of the sequence that he or she is enumerating is di¤erent from zero. Given two
clopen sets A and B, comparison of the associated natural numbers or countable ordinals
gives us natural criteria to decide which player will win the corresponding Lipschitz or
Wadge game, and to built a winning strategy.

Secondly, a set can be closed and not open, which implies that its boundary is non-
empty. This means that the corresponding tree characterizing it has a path with extensions
outside the tree for every initial sequence of the path. So at each stage of a enumeration of
such a path one can always decide to stay in the tree or leave it forever. In terms of games,
this means that if player II plays using this special path then she will always win the game
whenever player I plays in a closed set. Using this idea, we can show that Lipschitz and
Wadge games for closed sets are determined.

Thirdly, we have to examine di¤erences of closed sets. These sets can be viewed as
di¤erences of sets of paths of pruned trees. The study of these trees is underpinned by a
previous topological analysis of di¤erences of closed sets in terms of Hausdor¤�s residues.
The crucial step here consists in identifying the condition under which the complement of
a di¤erence of closed sets is itself a di¤erence of sets as well. This allows us to distinguish
clearly the types of di¤erences we have to deal with, particularly those involving well-
founded trees and those not involving well-founded trees. To the former we can apply
the methods described above with the appropriate adaptations. The others have to be
examined accordingly to their particular structure.

The following table summarizes the main results we have obtained. The �rst column
shows the classes to which the payo¤ sets A and B belong. The two columns on the
right refer the lemmas and propositions which prove determinacy for the corresponding
Lipschitz and Wadge games, resp., in Cantor space and in Baire space.

(A;B) Cantor Baire

�0
1 Lemma 2.2 Lemma 2.20

�0
1 Lemma 2.5 Lemma 2.22

�01 [�0
1 Lemma 2.8 Lemma 2.24

Df2 \
^
Df2 Lemma 2.10 Lemma 2.26

Df2 Lemma 2.13 Lemma 2.28

Df2 [
^
Df2 Theorem 2.18 Theorem 2.31

The results referred in the above table are set up in Sections 2 and 3 of Chapter 2. We
have only written in detail the proofs for the Lipschitz case. Wadge determinacy, which is
usually easier to prove, can be obtained from our arguments for the Lipschitz case after
suitable modi�cations. In fact, it is not hard to see that a winning strategy for player II in
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a Lipschitz game yields automatically a winning strategy for player II in the corresponding
Wadge game. Nonetheless, this does not hold for player I. There are cases where player
I wins the Lipschitz game, while player II has a winning strategy in the corresponding
Wadge game.

PART II : Wadge/Lipschitz determinacy in second order arithmetic.

Reverse mathematics is the program of discovering which set existence axioms are
needed to prove known mathematical theorems. Research in this �eld has shown that in
the setting of second order arithmetic almost all theorems of ordinary, non-set-theoretic
mathematics fall into a small number of equivalence classes with respect to provable equiv-
alence over a weak base theory, the so called "big �ve". These �ve subsystems of second
order arithmetic are RCA0, WKL0, ACA0, ATR0, and �11-CA0 and they are dis-
tinguished from one another by their increasing stronger set existence axioms: recursive
comprehension, weak König�s lemma, arithmetical comprehension, arithmetical trans�nite
recursion and �11-comprehension, respectively. The subsystem RCA0 is the weakest and
the ideal one to be used as base theory. The common procedure in reverse mathematics
consists in showing that a given mathematical theorem taken over a weak base theory
(ideally RCA0) is equivalent to the principal set existence axiom of one of the subsystems
WKL0, ACA0, ATR0, or �11-CA0 (for more information see the classical monograph
[Smp99]).

The reverse mathematics of the determinacy of Gale-Stewart games has been thor-
oughly investigated by J. R. Steel, K. Tanaka, M. O. MedSalem, and T. Nemoto ([Stee77],
[Tan90], [NMT07], [N09a], and [N09b]). After Friedman had shown that Z2 cannot prove
that all Borel Gale�Stewart games are determined, and shortly after he had laid the foun-
dations of reverse mathematics [Frd75], Steel established in his Ph. D. thesis the exact
strength of clopen and open determinacy in the Baire space (ch. I, B, of [Stee77]; see also
Theorem V.8.7 in [Smp99]):

� (J. R. Steel, 1977) The following assertions are pairwise equivalent over RCA0:

1. ATR0.

2. �01 (clopen) Gale�Stewart determinacy in the Baire space.

3. �01 (open) Gale�Stewart determinacy in the Baire space.

Historically, this is one of the �rst results in the �eld of reverse mathematics. Several
years later K. Tanaka obtained a further result([Tan90]):

� (K. Tanaka, 1990) The following assertions are pairwise equivalent over RCA0:

1. �11-CA0.

2. �01 ^ �01 (intersections of open and closed sets) Gale�Stewart determinacy in
the Baire space.
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More recently, subsystems WKL0 and ACA0 have been also fully characterized in
terms of Gale-Stewart determinacy, but this time considering in�nite games in the Cantor
space. (Let us observe that above level �03 the strength of determinacy in Cantor and
Baire space coincide, but for levels below�03 determinacy in Cantor space is strictly weaker
than determinacy in Baire space.) In what follows, Det and Det� stand for Gale-Stewart
determinacy in Baire and in Cantor space, respectively.

� (T. Nemoto, M. MedSalem, K. Tanaka, 2007) The following assertions are pairwise
equivalent over RCA0:

1. WKL0.

2. �01-Det
�.

3. �01-Det
�.

� (T. Nemoto, M. MedSalem, K. Tanaka, 2007) The following assertions are pairwise
equivalent over RCA0:

1. ACA0.

2. �01 ^�01-Det�.

Many other related results have been obtained (see Section 1 of Chapter 3 for a com-
prehensive account of the more relevant ones), providing us with a detailed picture of the
reverse mathematics of Gale-Stewart determinacy. We can say that currently we have
a very complete knowledge of the strength of Gale-Stewart determinacy, in both Cantor
and Baire spaces, from level �0

1 to a little further beyond level �
0
3. In addition, a recent

result of A. Montalbán and R.A. Shore shows that this is precisely where the bound for
Gale-Stewart determinacy in second order arithmetic stays ([MS12]):

� (A. Montalbán and R.A. Shore, 2012)

1. For each natural number k, Z2 proves determinacy for Boolean combinations
of k many �0

3 sets.

2. Z2 does not prove determinacy for all �nite Boolean combinations of �03 sets.
In particular, Z2 does not prove �04-Det.

Thus, we not only have a fairly detailed information about the strength of Gale-Stewart
determinacy in terms of subsystems of second order arithmetic, but also know the exact
amount of such determinacy provable in Z2.

In contrast, the situation for Lipschitz and Wadge games is completely di¤erent. It
is known that Lipschitz games are determined for all Borel sets in Z2 (a result of A.
Louveau and J. Saint Raymond already mentioned). But it is not known any informative
characterization of which portion of Z2 su¢ ces; and, somewhat surprisingly, there is no
detailed analysis of the strength of Lipschitz or Wadge determinacy in terms of subsystems
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of second order arithmetic. In fact, to the best of our knowledge, it does not even exist
an explicit formalization of Lipschitz or Wadge games in the language of second order
arithmetic in the literature. Also, despite its relevance in the study of Lipschitz and
Wadge degrees, the reverse mathematics of the semilinear ordering principle has not been
investigated either.

This is certainly a notable gap in our understanding of the reverse mathematics of
in�nite games in descriptive set theory, and the present thesis can be seen as a �rst step
in order to �ll this gap.

First of all, it should be noted that it is possible to recover some information on
the strength of Lipschitz and Wadge determinacy from the known results on Gale-Stewart
determinacy. This is because every Lipschitz and Wadge game can be e¤ectively (checkable
in the theory RCA0) reduced to a Gale-Stewart game. However, in the formal context
of second order arithmetic, this reduction is done at the price of a signi�cant increase of
the payo¤ set complexity. Roughly speaking, this reduction allows one to infer Lipschitz
determinacy for � sets from Gale-Stewart determinacy for � ^ (:�) sets, and Wadge
determinacy for � sets from Gale-Stewart determinacy for maxf�02;� ^ (:�)g sets. This
provides us with upper bounds on the strength of Lipschitz and Wadge determinacy for �
sets. But these bounds needn�t be, however, optimal.

This fact justi�es the methodology used in this work: to give explicit formalizations of
Lipschitz and Wadge games in second order arithmetic, and to formalize direct proofs of
Lipschitz and Wadge determinacy and the semilinear ordering principle in order to obtain
�ner results on the strength of these principles.

The formalization of Lipschitz and Wadge games in the language of Z2 will be ac-
complished in Chapter 3. We formalize not only the determinacy axioms, but also the
semilinear ordering axioms, whose reverse mathematics had not been studied so far. As a
result, we introduce a number of new principles in the language of second order arithmetic:

�-Det�L=W : Lipschitz/Wadge determinacy for � sets in the Cantor space.

�-DetL=W : Lipschitz/Wadge determinacy for � sets in the Baire space.

�-SLO�L=W : semilinear ordering principle for � sets in the Cantor space.

�-SLOL=W : semilinear ordering principle for � sets in the Baire space.

Sometimes we also need to consider Lipschitz or Wadge games in which player I�s and
player II�s payo¤ sets belong to di¤erent classes �1 and �2. We will write (�1;�2)-Det�L=W ,
(�1;�2)-DetL=W and so on to denote the corresponding theories.

Let us observe that, in order to formalize the semilinear ordering principle, we do not
use the original de�nition in terms of reducibility by continuous functions. Instead, we use
the simpler equivalent de�nition in terms of winnings strategies given in Wadge�s lemma.
But this is unessential because we also show in Chapter 3 that Wadge�s lemma itself is
provable in our base theory RCA0 (a result of independent interest).
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We have studied the strength of these principles both in Cantor space (Chapter 4) and
Baire space (Chapter 5). The following table summarizes the main results that we have
obtained. Each determinacy principle has been shown to be provable within the subsystem
of Z2 indicated in the table.

Subsystem Cantor Baire

RCA0 �01-Det
�
W

WKL0
�01-Det

�
L,

(�01;�
0
1)-Det

�
L=W , (�

0
1;�

0
1)-Det

�
L

ACA0
(�01 [�01)-Det�L=W ,�
�01
�
2
-Det�L=W

�01-DetW ,

(�01 [�01)-DetW

ATR0
�01-DetL,

(�01 [�01)�DetL
�11-CA0

�
�01
�
2
[ :

�
�01
�
2
-DetL=W

Where
�
�01
�
2
stands for the second level of the hierarchy of di¤erences and amounts

to �01 ^�01.

To each one of these results we can add the corresponding �-SLOL=W or �-SLO�L=W
principle, since it can be proved in RCA0 that the semilinear ordering principle for each
class of sets � is a consequence of determinacy for the games whose payo¤ sets belong to
that class �.

Of special interest are the results thatACA0 proves
�
�01
�
2
-Det�L=W , thatATR0 proves

�01-DetL=W and that �11-CA0 proves
�
�01
�
2
-DetL=W . These are salient examples of novel

results that cannot be derived from previously known theorems on Gale-Stewart determi-
nacy.

The following natural step is to look for reversals for Lipschitz and Wadge determi-
nacy and for semilinear ordering principle in second order arithmetic. Since Lipschitz
and Wadge determinacy is formally weaker than classical Gale-Stewart determinacy, any
reversal of this kind is a new result and of great interest. We have been able to obtain two
reversals, one for ACA0 and the other for ATR0.

Firstly, we have obtained a reversal for ACA0 in Cantor space. If we add to our
result the equivalence ACA0 �

�
�01
�
2
-Det� proved by T. Nemoto, M. MedSalem, and K.

Tanaka ([NMT07]), we have obtained that:

� (Theorem 4.41) The following assertions are pairwise equivalent over RCA0:

1. ACA0.

2.
�
�01
�
2
-Det�L.

3.
�
�01
�
2
-SLO�L.
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4.
�
�01
�
2
-Det�.

This means that within the base system RCA0 Gale-Stewart determinacy, Lipschitz
determinacy, and Lipschitz semilinear ordering principle for

�
�01
�
2
sets in Cantor space are

equivalent principles. Furthermore they all are equivalent to arithmetical comprehension,
ACA0.

Secondly, we have obtained a reversal for ATR0 in Baire space. Again, taking into
account the already known result of T. Nemoto, M. MedSalem, and K. Tanaka ([NMT07])
that ATR0 � �01-Det � �01-Det, we have all together:

� (Theorem 5.28) The following assertions are pairwise equivalent over RCA0:

1. ATR0.

2. (�01 [�01)-DetL.
3. �01-DetL.

4. (�01;�
0
1)-DetL.

5. �01-Det.

6. �01-Det.

As an intermediate step towards the above result, we have also obtained a second
reversal for ATR0, but this time over the stronger base theory ACA0. Nevertheless,
this second result has the advantage that it is also a reversal for the semilinear ordering
principle.

� (Theorem 5.21)The following assertions are pairwise equivalent over ACA0:

1. ATR0.

2. �01-DetL.

3. �01-SLOL.

Comparing the recent result of A. Montalbán and R. A. Shore to the earlier result of A.
Louveau and Saint Raymond, it is natural to think that there must exist a huge di¤erence
between Lipschitz and Gale-Stewart determinacy. Lipschitz determinacy is much weaker
than Gale-Stewart determinacy, since full Borel Lipschitz determinacy can be proved in
Z2, whereas �04 Gale-Stewart determinacy is already not provable in Z2. However, the
two reversals we have just mentioned suggest that this di¤erence does not reveal itself
at the lower stages of the hierarchy of sets. In fact, we have proven that Gale-Stewart
and Lipschitz determinacy in Cantor space are equivalent (over RCA0) when restricted
to di¤erences of closed sets. Similarly, we have proven that Gale-Stewart and Lipschitz
determinacy in the Baire space are equivalent (over ACA0) when restricted to clopen or
closed sets.
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Although we have not obtained a reversal for WKL0, it seems plausible to aim at
proving an equivalence betweenWKL0 and �01-Det

�
L. However, we have only been able

to obtain �01-Det
�
L=W fromWKL0 plus an assertion stating that every closed set is either

true closed (i.e. closed and not open) or clopen. Whether this dichotomy property is
provable within WKL0 is left pending. In addition, we have considered several other
natural assertions which imply this dichotomy property. Interestingly, all these assertions
have turned out to be equivalent to ACA0. Thus, as a by-product, this investigation
has yielded up several reversals for ACA0. We collect them in the next theorem. The
respective proofs can be found in Chapter 4.

� (Theorem 4.41, Proposition 4.30, Proposition 4.7) The following assertions are pair-
wise equivalent over RCA0:

1. ACA0.

2.
�
�01
�
2
-Det�L.

3.
�
�01
�
2
-SLO�L.

4. Every binary tree can be pruned.

5. Weak König Lemma for �01 trees.

6. Weak Radó selection lemma.

7. The scheme of �01 ^�01 choice.

In Baire space, (�01 [ �01)-DetW can be proved in ACA0 and
�
�01
�
2
[ :

�
�01
�
2
�DetL

can be obtained from �11-CA0, but we do not know if they are strong enough to obtain
a reversal for ACA0 and �11-CA0, respectively. Thus, a reversal for �

1
1-CA0 in terms of

Lipschitz determinacy is also left pending.

The results obtained in the thesis are far from exhausting the subject of calibrating
the strength of Lipschitz and Wadge determinacy, and of Lipschitz and Wadge semilinear
ordering principles, in terms of subsystems of second order arithmetic. Nonetheless we
think that they represent an interesting �rst step towards a better understanding of the
subject.

We conclude this introduction by giving a brief summary of the structure of the thesis.
The work is divided into the present Introduction and Chapters 1, 2, 3, 4, 5, and 6.

In Chapter 1 we present necessary background material concerning Baire and Cantor
spaces, in�nite games (classical Gale-Stewart, and Lipschitz and Wadge games), the prin-
ciple of semilinear order, and the basic de�nitions and results of descriptive set theory
and of second order arithmetic. We also introduce the basic tool of trees and rank func-
tions de�ned on well-founded trees, which will be needed in the analysis developed in the
following chapters.

In Chapter 2 we give direct proofs of the determinacy of Lipschitz and Wadge games
for the �rst �ve levels of the Wadge hierarchy, ful�lling this way the �rst goal of the thesis.
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In Chapter 3 we formalize Lipschitz and Wadge games in the language of second order
arithmetic. Underpinned by this formalization we prove several basic facts within RCA0
concerning the general relations between Lipschitz and Wadge determinacy, and Lipschitz
and Wadge semilinear ordering principles. This chapter also contains our proof of Wadge�s
lemma within RCA0.

Chapter 4 investigates the reverse mathematics of Lipschitz and Wadge determinacy
in the Cantor space. We show that our analysis of games in the Cantor space can be
carried out within the subsystems WKL0 and ACA0. This chapter also contains one
of the main results of the thesis. Namely, we show that within the base system RCA0,
Lipschitz semilinear ordering principle and Lipschitz determinacy in Cantor space are as
strong as the subsystem of second order arithmetic ACA0. This ful�lls the second and
third goals of the thesis for di¤erences of closed sets in Cantor space.

Chapter 5 is devoted to Lipschitz and Wadge determinacy in Baire space. We show
that our analysis of the games in the Baire space can be carried out within the subsystems
ATR0 and �11-CA0. This chapter contains the second main result of the thesis. Here
we show that Lipschitz determinacy for closed sets and ATR0 are equivalent over base
system RCA0, ful�lling in this way the second goal of the thesis for closed sets in the
Baire space.

Finally, Chapter 6 contains some concluding remarks and some open problems.



Chapter 1

Preliminaries

Throughout this thesis the analysis of Lipschitz and Wadge games will be held within one
of the two main topological spaces of Descriptive Set Theory, the Cantor space or the Baire
space. Thus in the present chapter we begin by characterizing the topology of both Baire
and Cantor spaces and by pointing out their connection with other topological spaces.
It will become clear that these spaces are salient examples of Polish spaces. Additional
information on the concepts and the proofs of the assertions stated in the �rst section of
this chapter can be found in [Sri98].

In Section 2 we succinctly describe the main classi�cations of subsets of Polish spaces
used in Descriptive Set Theory, the Borel and the projective hierarchies. The �rst levels
of the Hausdor¤ hierarchy will be also discussed in detail in later sections.

In Section 3 we de�ne the concept of an in�nite nullsum two person game with perfect
memory and perfect information in its classical form, the Gale-Stewart games. The as-
sumption that in all these games one of the players has a strategy which allows him to win
the game whatever his opponent does is the content of the so called axiom of determinacy
from Descriptive Set Theory. The detailed proofs of the results mentioned in this and in
the previous section can be found in the classical work of A. S. Kechris [Kec95].

In Section 4 we introduce Lipschitz and Wadge games. We de�ne the Lipschitz and
Wadge reducibility relations and degrees, and state the well-known Wadge�s Lemma.

We detail the structure of Lipschitz and Wadge hierarchies of degrees in Section 5.
The main features of these hierarchies were obtained by Wadge assuming the axiom of
determinacy. They are contained in the clauses of Theorem 1.10 at the end of Section 5.

Section 6 is devoted to the principle of semilinear order. This principle was introduced
by Wadge as an immediate consequence of the axiom of determinacy. Gradually it became
clear that the principle of semilinear order shares with the axiom of determinacy many of
its consequences and currently there is even the conjecture that in an appropriate realm
of set theory these assertions are equivalent. Further information on the subject of this
and the previous two sections can be found in [WWW83] and [AA03].

In Section 7 we explain the relation between Lipschitz hierarchy and classical Haus-
dor¤´s hierarchy of di¤erences.

1
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In Section 8 we introduce some basic notation and de�ne the combinatorial tools we
will need in Chapter 2. This includes trees and rank functions de�ned on trees. Proofs of
the propositions formulated in this section can be found in [Kec95].

In Section 9 we introduce the language of second order arithmetic and describe some
of the subsystems of second order arithmetic that will be used in later chapters. More
detailed information concerning the subsystems of second order arithmetic described in
this section is contained in the classical book of S. G. Simpson [Smp99].

In Sections 1 to 8 we will be using the language of set theory and our meta-theory will
be ZF. Whenever we need an additional principle we will mention it explicitly.

1.1 Baire and Cantor spaces

Let us introduce some notation concerning sequences. For any nonempty set X and n 2 !,
we denote by Xn the set of sequences s = hs(0); :::; s(n� 1)i of length n from X. The
length of a �nite sequence s is denoted by jsj. If jsj = 0 then s is the empty sequence, i.e.
jsj = hi. If k � n = jsj, then we let

s [k] = hs(0); :::; s(k � 1)i .

Obviously s [0] = hi. Let
X<! =

[
n2!

Xn,

i.e. X<! is the set of all �nite sequences of elements of X. If s; t 2 X<!, we say that s is
an initial segment of t (or t is an extension of s), if s = t[k] for some k � jtj. We denote
this by s � t. Clearly hi � t for any t. We abbreviate s � t ^ s 6= t by s � t. Moreover,
for any s; t 2 X<! with jsj = k and jtj = l, the concatenation of s and t is the sequence

s � t = hs(0); :::; s(k � 1); t(0); :::; t(l � 1)i .

Let X! denote the set of all in�nite sequences of elements of X. For any in�nite
sequence x 2 X! and all k 2 ! we also de�ne

x [k] = hx(0); :::; x(k � 1)i

Obviously x[0] = hi. If s 2 X<! and x 2 X! we say that s is an initial segment of x (or
x is an extension of s), if s = x[jsj]. In this case we write s � x or sometimes s � x.
Clearly hi � x for any x 2 X!.

Baire and Cantor spaces are topological spaces. Let X be either f0; 1g or !. For each
s 2 X<! we de�ne the set Ns of all in�nite sequences from X! with the common initial
segment s putting

Ns = fx 2 X! : s � xg.
The set fNs : s 2 X<!g is a basis for a topology on X!. Endowed with this topology the
space f0; 1g! or 2! is called Cantor space and the space !! is called Baire space. It is also
usual to write N to denote the Baire space.
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Observe that for any s; t 2 X<!

Ns \Nt 2 f;; Ns; Ntg

and that each open set Ns is also closed. Since they are simultaneously open and closed
these sets are called clopen.

Next we mention some important properties of the topology of Cantor and Baire spaces.

Lemma 1.1 Let X be either f0; 1g or !. Then:

1. If X is endowed with the discrete topology, i.e. every subset of X is open, then the
above mentioned topology of X! coincides with the product topology

Q
i2!Xi, where

Xi = X for every i 2 !.

2. The topology of X! is induced by the metric d : X! � X! ! Q de�ned for all
x; y 2 X! by

d(x; y) =

�
2�minfk2!:x(k) 6=y(k)g�1; if x 6= y
0; otherwise

3. The space X! is complete, i.e. every Cauchy sequence in X! converges to an element
of X!.

4. The space X! is 0-dimensional, i.e. X! has a basis consisting of clopen sets.

5. The space X! is second countable, i.e. X! has a countable basis.

6. The space X! is separable, i.e. X! contains a countable dense subset.

7. The space X! is totally disconnected, i.e. the empty set and one-point sets are the
only subsets that cannot be represented as the union of two or more disjoint nonempty
open subsets.

8. The space X! is homeomorphic to the product of any �nite number of copies of itself.

Moreover, the Cantor space is compact while the Baire space is not. The open cover
fNhni : n 2 !g has no �nite subcover.

A Polish space is a topological space which is separable and completely metrizable.
Polish spaces are a very large family of topological spaces. However, topological problems
in general Polish spaces can be transferred to the Baire space !! or the Cantor space 2!

as it becomes clear from the following two theorems ([Sri98], section 2.6):

Theorem 1.2 Every compact metric space is a continuous image of 2!.

Theorem 1.3 Every Polish space is a continuous image of !!.

The Baire space is homeomorphic to the set of irrational numbers when they are given
the subspace topology inherited from the real line (a homeomorphism can be constructed
using continued fractions). In Descriptive Set Theory the set of real numbers is commonly
identi�ed with the Baire space.
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1.2 Borel and projective hierarchies

The Borel and the projective hierarchies are classi�cations of classes of sets, called point-
classes, in semilinear orders of increasing complexity. These pointclasses are called boldface
classes because they are closed under continuous preimages. The hierarchies can be de�ned
for each Polish space.

Let X be a Polish space. Then the class B(X) of the Borel sets is the smallest collection
of subsets of X that contains all open sets and is closed under complement and countable
unions. This de�nition of the Borel sets is the simplest, but to put them in a hierarchy
of boldface pointclasses we give a more constructive de�nition by simultaneous trans�nite
recursion:

�01(X) = fG � X : G is openg,
�0
1(X) = fF � X : F is closedg,

�0�(X) = f
S
n2!An : An 2 �0

�n
(X); 0 < �n < �g, for 1 < �,

�0
�(X) = f

T
n2!An : An 2 �0�n(X); 0 < �n < �g, for 1 < �,

�0
�(X) = �

0
�(X) \�0

�(X), for 1 � �.

The slightly complex third and fourth clauses in the de�nition are needed only at limit
ordinals; for successor ordinals we could simply say that

�0�+1(X) = f
S
n2!An : An 2 �0

�(X)g,
�0
�+1(X) = f

T
n2!An : An 2 �0�(X)g.

If X is a countable Polish space, then all subsets of X and their complements are
countable unions of singletons, so, for all A � X, A 2 �0

2(X). The Borel sets become
interesting when X is an uncountable Polish space. In this case there are subsets of X
that are not Borel and the Borel sets form a hierarchy which does not collapse.

Remark 1.4 Since R � Irr = Q =
S
x2Qfxg is a countable union of closed sets and

Irr �= N the classes of Borel sets B(R), B(Irr), and B(N ) are isomorphic for � > 2.

Proposition 1.5 Let X be an uncountable Polish space. Then for every 1 < � < !1,

�0�(X) 6= �0
�(X), �

0
�(X) $ �0�(X) $�0

�+1(X) and �0
�(X) $ �0

�(X) $�0
�+1(X).

Assuming the axiom of countable choices, AC! it can be proved that in the above
recursive way we only need !1 steps to produce all Borel sets.

Proposition 1.6 (AC!) Let X be metrizable and in�nite. Then:

B(X) =
[

0<�<!1

�0�(X)



1.2. BOREL AND PROJECTIVE HIERARCHIES 5

Thus, this is the usual picture of the Borel hierarchy for uncountable Polish spaces,
where the arrows represent strict inclusions:

�01 �02 �03
% & % & % &

�0
1 �0

2 �0
3 � � �

& % & % & %
�0
1 �0

2 �0
3| {z }

!1

= B

There are projections (continuous images) of Borel sets which are not Borel sets. The
hierarchy of projective sets, which can be also de�ned for each Polish space, is based on
this fact.

Let X and Y be topological spaces and B � X � Y . Then the set

p(B) = fx 2 X : 9 y 2 Y (x; y) 2 Bg,

is said to be the projection of B on X.

Let X be a Polish space. A subset A � X is called analytic if there is a Borel set
B 2 B(X � X) such that A = p(B), and is called coanalytic if its complement Ac is
analytic.

As we did with the Borel sets we de�ne the projective sets by simultaneous recursion.
For each n 2 !, with n > 0, we de�ne

�11(X) = fA � X : A is analyticg,
�1
n(X) = fA � X : Ac 2 �1n(X)g;

�1n+1(X) = fA � X : A = p(B) and B 2 �1
n(X �X)g;

�1
n(X) = �

1
n(X) \�1

n(X):

Proposition 1.7 (AC!) Let X be an uncountable Polish space. Then for every n � 1,

�1n(X) 6= �1
n(X), �

1
n(X) $ �1n(X) $�1

n+1(X) and �1
n(X) $ �1

n(X) $�1
n+1(X).

For uncountable Polish spaces the class of the analytic sets is strictly larger than the
class of Borel sets. To see this it su¢ ces to prove that �1

1(X) = B(X). This result is
called the Suslin theorem.

Theorem 1.8 (AC!) Let X be an uncountable Polish space. Then for all A � X,

A is Borel i¤ A is analytic and coanalytic.

In particular, B(X) =�1
1(X).
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The usual picture of the projective hierarchy for uncountable Polish spaces, where the
arrows represent strict inclusions, is the following:

�11 �12 �13
% & % & % &

B =�1
1 �1

2 �1
3 � � �

& % & % & %
�1
1 �1

2 �1
3| {z }

!

Assuming the full axiom of choice it is provable that all Borel sets and all analytic sets
have the three regularity properties. Namely, in any Polish space X if A � X is a Borel
or an analytic set:

(-) A is Lebesgue measurable, i.e. there are Borel sets B and B0 such that (ArB)[ (Br
A) � B0 and m(B0) = 0 where m stands for a Lebesgue measure.

(-) A has the perfect set property, i.e. A is countable or else has a perfect subset (a
nonempty closed set without isolated points).

(-) A has the property of Baire, i.e. for some open set G, (ArG)[ (GrA) is a union of
countably many nowhere dense sets (sets whose closure has an empty interior).

This is the best result of this kind that can be proved within ZFC. In fact, there
are models of ZFC (to wit, V = L) where the regularity properties fail for �1

2 sets. In
addition, the perfect set property is already independent of ZFC for �1

1 sets. (See T.
Jech�s book "Set Theory" (2nd Ed.), Springer, pp. 527-529 for further information.)

1.3 Gale-Stewart games and the axiom of determinacy

Let X be either f0; 1g or !, and let A � X!. The Gale-Stewart game for A, denoted G(A),
is de�ned as follows: Two players, say player I (male) and player II (female), alternately
choose natural numbers f(i) and g(i), respectively, in X.

I f(0) f(1) f(2) : : :

II g(0) g(1) g(2) : : :

After ! turns, player I has produced a sequence f : ! ! X of elements of X, and player II
has produced a sequence g : ! ! X of elements of X. The resulting play is the sequence
f 
 g : ! ! X given by f 
 g = hf(0); g(0); f(1); g(1); : : : i, which collects the alternating
moves of players I and II.

Player I wins a play of the game G(A) if and only if

f 
 g 2 A.
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Otherwise player II wins that play.

Gale-Stewart games are in�nite nullsum two person games with perfect memory and
perfect information. In�nite because players play in�nite times; nullsum because only
one of the players can win (and there is no ties); two person because there are only two
players; with perfect memory because both players know and do not forget all previous
moves; and with perfect information because both players are able to calculate all possible
moves starting at any given position.

A strategy for player I in the game G(A) is a function assigning an element of X to
every sequence from X of even length. (We think of this as telling player I which move
to make at any �nite stage on the game.) Similarly, a strategy for player II in the game
G(A) is a function assigning an element of X to every sequence from X of odd length.

A strategy for player I is called winning if player I wins the game as long as he plays
following it, no matter what his opponent plays. Similarly, a strategy for player II is called
winning if player II wins the game as long as she plays following it, no matter what her
opponent plays.

A game G(A) (or the set A) is said to be determined if either player I or player II has a
winning strategy in G(A). The full axiom of choice, AC, implies that all Borel games, i.e.
games G(A) where A is a Borel set, are determined. However, to obtain the determinacy
of slightly more complex sets, for example analytic sets, we already need to assume other
type of axioms, namely axioms stipulating the existence of large cardinals.

The axiom of determinacy AD (introduced by Jan Mycielski and Hugo Steinhaus in
1962) is the principle stating that all subsets of real numbers are determined. Thus,

AD = For all A � !!, the game G(A) is determined.

In presence of AD no uncountable subset of !! is well-ordered and so AD contradicts
AC. However AD has other interesting consequences. Namely, the axiom of countable
choices, AC!(!!), is a consequence of AD and the above mentioned three regularity
properties (Lebesgue measurability, the perfect set property and the property of Baire)
are also derivable from AD for every subset of the reals without restrictions to speci�c
pointclasses.

1.4 Lipschitz and Wadge games, and Wadge determinacy

Let X be either f0; 1g or !, and let A;B � X!. We will use f�s and g�s to refer to
members of A and B, respectively. In other words, f and g stand for functions from ! to
X.

The Lipschitz game for A and B, denoted GL(A;B), is the in�nite nullsum two person
game on X with perfect information and perfect memory where player I (male) and player
II (female) take turns and play natural numbers f(i) and g(i), respectively. Player I plays
�rst:
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I f(0) f(1) f(2) : : :

II g(0) g(1) g(2) : : :

Player II wins the game GL(A;B) if

f 2 A i¤ g 2 B,

If the equivalence does not hold, player I wins.

Next we de�ne the concepts of a strategy for player I and for player II. Let us denote
by Seqeven the subset of X<! containing all �nite sequences of even length, and by Seqodd
the subset of X<! containing all �nite sequences of odd length. Then a strategy for player
I in a Lipschitz game GL(A;B) is a function assigning a member of X to every �nite
sequence of even length. Analogously, a strategy for player II in Lipschitz game GL(A;B)
is a function assigning a member of X to every �nite sequence of odd length. That is to
say, a strategy for player I in the game GL(A;B) is a function EI :Seqeven ! X and a
strategy for player II in the game GL(A;B) is a function EII :Seqodd ! X.

Thus if player I is pitting a strategy EI :Seqeven ! X against the moves produced by
player II we have

I f(0) = EI (hi) f(1) = EI (hf(0); g(0)i) f(2) = EI (hf(0); g(0); f(1); g(1)i) : : :

II g(0) g(1) : : :

for any g 2 X!. Then EI
g stands for the complete play of GL (A;B) where we distinguish
the play of player I from the play of player II putting

f(n) = (EI 
 g)(2n) and g(n) = (EI 
 g)(2n+ 1),

respectively, for each n 2 !. In order to keep the reference to the strategy that player I is
using we will denote the play of player I by EI 
I g and the play of player II by EI 
II g.
Thus for every n 2 !, we have

f(n) = (EI 
I g)(n) and g(n) = (EI 
II g)(n).

An important part of the proofs of determinacy in the forthcoming chapters is the
de�nition of a strategy for player I. To do that we start by specifying EI(hi). Then we take
an arbitrary partial play s 
 t of even length and explain how to obtain the value of the
strategy EI :Seqeven ! X for that argument.

Now we explain what a partial play is. Let s; t 2 X<! and suppose player I is using
strategy EI. Then s
 t is a partial play of length 2j where jsj = jtj = j if

t = h(t)0; (t)1; :::; (t)j�1i

for any (t)0; (t)1; :::; (t)j�1 2 X and

s = h(s)0 ; (s)1 ; :::; (s)j�1i
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where (s)0 = EI (hi), (s)1 = EI (h(s)0 ; (t)0i), ..., and

(s)j�1 = EI(h(s)0 ; (t)0; (s)1 ; (t)1; :::; (s)j�2 ; (t)j�2i).

On the other hand, if player II is using strategy EII :Seqodd ! X, for any f 2 X! we
have

I f(0) f(1) : : :

II g(0) = EII (hf(0)i) g(1) = EII (hf(0); g(0); f(1)i) : : :

The complete play of GL(A;B) is denoted f 
 EII. Again, we distinguish the play f of
player I, f(n) = (f
EII)(2n), from the play of player II, g(n) = (f
EII)(2n+1). In order
to keep the reference to the strategy player II is using we will denote the play of player I
by f 
I EII and the play of player II by f 
II EII. Thus for every n 2 !,

f(n) = (f 
I EII)(n) and g(n) = (f 
II EII)(n).

In order to de�ne a strategy for player II we will take an arbitrary partial play s
 t of
odd length and explain how to obtain the value of the strategy EII :Seqodd ! X for that
partial play. Let s; t 2 X<! and suppose player II is using strategy EII. Then s 
 t is a
partial play of length 2j + 1 where jsj = j + 1 and jtj = j if

s = h(s)0; (s)1; :::; (s)ji

for any (s)0; (s)1; :::; (s)j 2 f0; 1g and

t = h(t)0 ; (t)1 ; :::; (t)j�1i

with (t)0 = EII (h(s)0i), (t)1 = EII (h(s)0 ; (t)0; (s)1i), ..., and

(t)j�1 = EII (h(s)0 ; (t)0; (s)1 ; :::; (t)j�2; (s)j�1i) .

A strategy for player I, EI, is called a winning strategy for player I if player I wins the
game as long as he plays following it, no matter what his opponent plays. Thus, EI is a
winning strategy for player I in GL(A;B) if for every g 2 X!,

EI 
I g 2 Ac i¤ g 2 B,

where Ac stands for the complement of A in X!, i.e. Ac = X! �A. Similarly, a strategy
for player II, EII, is called a winning strategy for player II if player II wins the game as long
as she plays following it, no matter what player I plays. Thus, EII is a winning strategy
for player II in GL(A;B) if for every f 2 X!,

f 2 A i¤ f 
II EII 2 B.

Finally, we say that a Lipschitz game GL(A;B) is determined if either player I or
player II has a winning strategy in GL(A;B).
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The Wadge game for A and B, denoted GW (A;B), is the variant of the Lipschitz
game where player II is allowed to pass at any round, but she must play in�nitely often
otherwise she loses:

I f(0) f(1) : : : f(k) f(k + 1) : : : f(l) : : :

II p p � � �p g(0) p p � � �p g(1) : : :

The p�s denote the moves in which player II passes, i.e. does not play. Thus the moves of
player II in a Wadge game are the terms of a sequence g0 2 (X [ fpg)!. The �nal play of
player II, however, is the sequence g 2 X! such that for every n 2 !, g(n) = g0(kn), where

k0 = �i
�
g0(i) 6= p

�
kn+1 = �i

�
kn < i ^ g0(i) 6= p

�
So the �nal sequence built by player II, g, disregards all p�s. As before player II wins the
game GW (A;B) if

f 2 A i¤ g 2 B,

otherwise player I wins. The notions of a strategy and a winning strategy for a Wadge
game are de�ned similarly.

The principle stating that all Lipschitz games are determined is denoted ADL, i.e.

ADL = For all A;B � !!, the game GL(A;B) is determined.

Analogously we denote by ADW the assertion stating that all Wadge games are deter-
mined, i.e.

ADW = For all A;B � !!, the game GW (A;B) is determined.

Both ADL and ADW are consequences of the more general AD. There is the conjecture,
probably due to R. Soloway, that assuming ZF plus the constructibility axiom V = L(R)
we have

AD() ADW .

However, there is no known canonical way to reduce an arbitrary Gale-Stewart game to
a Wadge game and an indirect proof was never obtained, so the problem remains open to
this day (see [AA03], p. 165).

Lipschitz and Wadge games provide a substantial help in studying the reducibility
relation based on the topological notion of inverse image by a continuous function. A
function F : X! ! X! is said to be continuous if for all f 2 X!

8n 2 !9m 2 ! F (Nf [m]) � NF (f)[n].

For A;B � X!, we say that A is Wadge reducible to B, denoted A �W B, if there is
a continuous function F : X! �! X! such that

f 2 A i¤ F (f) 2 B



1.5. LIPSCHITZ AND WADGE HIERARCHIES 11

for all x 2 X!. It is not hard to see that the relation �W is a preorder, i.e. re�exive and
transitive on the class of subsets of X!. A <W B stands for A �W B and B 
W A.

It is immediate from the de�nition that A �W B i¤ Ac �W Bc. A subset A is called
Wadge self-dual if A �W Ac and is called Wadge non-self-dual otherwise. A �W B
means A �W B and B �W A. Note that A �W Ac implies A �W Ac, so that A
being self-dual actually means A �W Ac. The Wadge degree of A is the equivalence class
[A]W = fB : B �W Ag, and the relation �W de�ned on these equivalence classes is a
partial order induced by the preorder �W . The above de�nitions can be extended to the
Wadge degrees. [A]W �W [B]W stands for [A]W �W [B]W and [B]W 6�W [A]W . [A]W is
the dual of [Ac]W , and if [A]W �W [Ac]W the degree [A]W is calledWadge self-dual degree.
Note that if [A]W is self-dual, we actually have [A]W = [Ac]W . On the other hand if [A]W
6�W [Ac]W then [A]W 6= [Ac]W and f[A]W ; [Ac]W g form a pair of Wadge degrees called a
Wadge non-self-dual pair.

A function F : X! �! X! is said to be Lipschitz if there is a constant c � 1 such that
for all f; g 2 X!

d(F (f); F (g)) � c � d(f; g).

If for A;B � X! there exists a Lipschitz function F : X! �! X! such that

f 2 A i¤ F (f) 2 B

then we say that A is Lipschitz reducible to B and denote this by writing A �L B. The
notions A <L B, A �L B, [A]L, and �L are de�ned similarly using �L instead of �W .
Obviously, A �L B implies A �W B.

The basic tool in the study of Lipschitz and Wadge degrees is the de�nition of the
relations �L and �W in terms of Lipschitz and Wadge games, respectively. Continuous
functions from X! to X! can be determined by monotone functions from X<! to X<!

which, in turn, can be identi�ed with strategies for Lipschitz/Wadge games. This is the
content of Wadge�s lemma ([WWW83], Ch. I, B). See also Section 3.6 of Chapter 3 of the
present thesis, where a proof of Wadge�s lemma within Second Order Arithmetic is given.

Lemma 1.9 (Wadge�s lemma) Let X be f0; 1g or !. Let A;B � X!. Then:

1. Player II wins the game GL(A;B) i¤ A �L B.

2. Player II wins the game GW (A;B) i¤ A �W B.

3. If player I wins GL(A;B) or GW (A;B) then B �L Ac.

1.5 Lipschitz and Wadge hierarchies

In his Ph.D. thesis [WWW83], Wadge deduced the fundamental properties of the Wadge
degrees assuming the determinacy of the Wadge games over the real numbers. He showed



12 CHAPTER 1. PRELIMINARIES

that Wadge degrees build a hierarchy of growing complexity, similar to the Borel hierarchy,
that looks like a ladder:

� � � � �
� � � � � � � � � � � � � � �

� � � � �
" "

cof = ! cof > !

Let X be either f0; 1g or !. The �rst degree (level 0) is the non-self-dual pair
f[;]W ; [X!]W g where [;]W = f;g and [X!]W = fX!g. For all A � X! such that A 6= ;
and A 6= X! we have that [;]W �W [A]W and [X!]W �W [A]W . A successor Wadge degree
[A]W is a degree such that there is a degree [B]W �W [A]W , but there is no other degree in
between. In this case [A]W is said to be the immediate successor of [B]W . The immediate
successor of [;]W and [X!]W is a self-dual degree (level 1) which entails all clopen sets
except ; and X!. The next level is occupied by a non-self-dual pair formed from the class
of the closed sets which are not open and the class of the open sets which are not closed.
Along the hierarchy non-self-dual and self-dual degrees continue to alternate.

A degree that is not a successor degree and is neither [;]W nor [X!]W is called a limit
Wadge degree. A limit Wadge degree is of countable co�nality if it is the least upper
bound of a countable sequence of smaller Wadge degrees. A limit degree which is not of
countable co�nality is said to be of uncountable co�nality. Wadge showed that at limit
levels of countable co�nality there is a self-dual Wadge degree, and at all other limit levels
there is a non-self-dual Wadge degree.

Similar de�nitions and results hold for the Lipschitz degrees. However, there is a
di¤erence. Lipschitz hierarchy is even �ner than the Wadge hierarchy since immediately
above a non-self-dual Lipschitz pair there is a strictly increasing sequence of !1 (! in the
Cantor space) consecutive self-dual Lipschitz degrees.

� � � � �
�� � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � �
" "

cof = ! cof > !

The relation between the hierarchies of Lipschitz and Wadge is obtained as a consequence
of a result of J. Steel and Van Wesep (see [VWsp78] and [Stee77]). The non-self-dual
Wadge pairs correspond to the non-self-dual Lipschitz pairs and each self-dual Wadge
degree is exactly the union of all consecutive self-dual Lipschitz degrees contained in one
of the sequences of !1 (! in the Cantor space) consecutive self-dual Lipschitz degrees
which appear in the Lipschitz hierarchy.

Assuming AD and the axiom of dependent choice, DC, which is independent of AD,
we have in the Baire space:

Theorem 1.10 Assume AD+DC. Then:
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1. �W and �L are well-founded relations,

2. immediately above a non-self-dual Wadge (Lipschitz) pair there is a single self-dual
Wadge degree,

3. immediately above a non-self-dual Lipschitz (Wadge) pair there is a strictly increas-
ing sequence of !1 consecutive self-dual Lipschitz degrees,

4. immediately above a single self-dual Wadge degree there is a non-self-dual Wadge
(Lipschitz) pair,

5. immediately above a strictly increasing sequence of !1 consecutive self-dual Lipschitz
degrees there is a non-self-dual Lipschitz (Wadge) pair,

6. at limit levels of countable co�nality there is a self-dual Wadge (resp. Lipschitz)
degree, and at all other limit levels there is a non-self-dual Wadge (resp. Lipschitz)
pair.

1.6 Semilinear order principle

Let X be either f0; 1g or !. The Wadge semilinear order principle, SLOW , is the assertion
stating that for all A;B � X!, A �W B or Bc �W A holds. Thus,

SLOW = For all A;B � X!; A �W B _Bc �W A.

Similarly, SLOL denotes the Lipschitz semilinear order principle, i.e.

SLOL = For all A;B � X!; A �L B _Bc �L A.

As a consequence of Wadge´s lemma we obtain that the relation between Wadge
and Lipschitz determinacy axioms and Wadge and Lipschitz semilinear principles is the
following:

ADL =) SLOL
+

ADW =) SLOW

Recently A. Andretta ([AA03] and [AA04]) has proved that all these principles are
actually equivalent, so we know now that

SLOW () ADW () ADL () SLOL.

This result was obtained within ZF+BP+DC, i.e. within Zermelo-Fraenckel set theory
without the full axiom of choice but with two assumptions, the property of Baire and the
axiom of dependent choice.

The principle SLOW shares with AD important consequences. For example, SLOW
implies the perfect set property, a result which was proved by Wadge ([WWW83], Ch.
II, C). This means that SLOW contradicts the axiom of choice. However, SLOW does
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not exclude all kinds of choice. The weaker principle of countable choices, AC!, is a
consequence of SLOW ([AA03], pp. 176-178).

A. Andretta also proved that in Theorem 1.10 AD can be replaced by SLOW +BP,
and that many properties of Wadge and Lipschitz hierarchies can be obtained assuming
only SLOW .

L. Harrington [Har78] has shown that SLOW and AD, restricted to �1
1 sets, are

equivalent. G. Hjorth [Hjr96] proved the equivalence of both principles when they are
restricted to �1

2 sets. Thus, since the proofs of A. Andretta are "local" ([AA03], pp. 164),
for n = 1; 2 we have

AD
�
�1
n

�
() SLOW

�
�1
n

�
() ADW

�
�1
n

�
() ADL

�
�1
n

�
() SLOL

�
�1
n

�
.

A generalization to higher projective pointclasses, as we mentioned in section 1.4,
remains an open problem.

1.7 Hausdor¤ di¤erences and Lipschitz games

Hausdor¤ introduced a sequence of classes of di¤erences of sets over the ordinals. Since we
are only interested in the initial terms of this sequence, we de�ne only �nite di¤erences.
Let n 2 ! and S = (F0; F1; ::; Fn) be a sequence of closed subsets of X!, i.e. Fi 2 �0

1(X
!)

for all 0 � i � n. Then we de�ne

Dn(S) =
[
i<n

(F2i � F2i+1).

For example, for n = 0; 1; 2; 3 we have

D0(S) = ;
D1(S) = F0 � F1
D2(S) = (F0 � F1) [ F2
D3(S) = (F0 � F1) [ (F2 � F3)

Now we can de�ne classes of di¤erences of closed sets by

Dfn =
�
Dn(S) : S is monotone nonincreasing in �0

1(X
!) ^ Fn = ;

	
Again, for n = 0; 1; 2; 3 and any subset A � X!

A 2 Df0 i¤ A = ;
A 2 Df1 i¤ A 2 �0

1(X
!)

A 2 Df2 i¤ (A = F0 � F1 ^ F0 � F1)
A 2 Df3 i¤ (A = F0 � (F1 � F2) ^ F0 � F1 � F2)

where F0; F1; F2 2 �0
1 (X

!).
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We introduce also for each n 2 ! the class
^
Dfn of the complements of the sets in Dfn.

Thus for each A � X! we have

A 2 Dfn i¤ A = F0 � (F1 � (� � � � (Fn�1 � Fn) � � � ))

and

A 2
^
Dfn i¤ Ac = F0 � (F1 � (� � � � (Fn�1 � Fn) � � � ))

where F0, F1, ..., Fn�1, Fn 2 �0
1(X

!) and F0 � F1 � � � � � Fn�1 � Fn = ;.

As we mentioned above, the de�nitions can be extended to the ordinals. Using a
classical result of Hausdor¤ stating that

�0
2(X

!) =
X
�<!1

Df�

([Kec95], p. 176), Wadge carried out a very detailed analysis of Wadge degrees below �0
2.

He found the classes which occupy each degree noting that for each i 2 !, �0i (resp., �0
i )

is an initial segment of �W , i.e. if A is �0i (resp., �0
i ) and B �W A, then B is �0i (resp.,

�0
i ). Moreover the sets in �

0
i ��0

i (resp., �
0
i ��0i ) are �0i -complete (resp., �0

i -complete),
i.e. if A is �0i ��0

i (resp., �
0
i ��0i ) and B is �0i (resp., �

0
i ), then B �W A.

In the following table we show the �rst �ve levels of the hierarchy of Wadge we are
interested in. They correspond to the �rst three levels of Hausdor¤´s hierarchy of di¤er-
ences.

Df0z}|{ Df1 = �
0
1z }| { Df2z }| {

0 1 2 3 4

f;g �0
1 ��01 Df2 �

^
Df2

�0
1 � f;; X!g (Df2 \

^
Df2)�

�
�0
1 [�01

�
fX!g �01 ��0

1

^
Df2 �Df2

0� 2� 4�|{z}
^
Df0

| {z }
^
Df1 = �

0
1

| {z }
^
Df2

Note that, according to (3) of Theorem 1.10, self-dual Wadge degrees 1 and 3 correspond
to !1 (! in the Cantor space) self-dual Lipschitz degrees, while the non-self-dual pairs 0,
0�, 2, 2�, and 4, 4�, correspond to non-self-dual pairs of Lipschitz degrees.

In the following chapter we shall show that the Lipschitz game GL(A;B) and the
Wadge game GW (A;B) are determined in both Cantor and Baire spaces when A and B
belong to any of the Lipschitz degrees we referred above.
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1.8 Well-founded trees and ranks

A subset T � X<! is called a tree on X if T is closed under initial segments, i.e.

8s; t 2 X<! (s 2 T ^ t � s! t 2 T ).

In particular, hi 2 T if T is nonempty. We call the elements of T the nodes of T . T is said
to be in�nite if the set of nodes of T is in�nite. If S � X<! is a tree on X and S � T ,
then S is called a subtree of T .

Let T be a tree on a set X. Then:

(-) A node s 2 T is called terminal if it has no proper extension in T , i.e. if

8a 2 X (s � hai =2 T ) .

(-) T is said to be pruned if it has no terminal nodes.

(-) T is said to be �nitely splitting if for every node s 2 T , fa 2 X : s � hai 2 Tg is �nite.
Otherwise T is called in�nitely splitting.

(-) f 2 X! is called a path or an in�nite branch of T if

8n 2 ! (f [n] 2 T ) .

(-) The body of T is written as [T ] and is the set of all paths of T , i.e.

[T ] = ff 2 X! : 8n 2 ! f [n] 2 Tg.

(-) T is called a well-founded tree if [T ] = ;, i.e. if it has no path. Otherwise we say that
T is ill-founded.

It is not hard to see that every tree can be pruned, i.e. that for every tree T � X<!

there exists a pruned subtree S � T such that [S] = [T ]. In fact,

S = ft 2 X<! : t 2 T ^ 9f 2 X! (f 2 [T ] ^ t � f)g.

Of course, if T has no in�nite path, then S = ;. In set theory the assertion that every
nonempty pruned tree S � X<! has a path is equivalent to the axiom of dependent
choices, DC(X<!) (see Proposition 1.12 of [AA01]).

König´s Lemma will be often referred to in later chapters. Its proof requires only the
axiom of countable choice, AC!.

Proposition 1.11 (König Lemma) If T � X<! is an in�nite, �nitely splitting tree,
then T has a path, i.e. is ill-founded.
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Corollary 1.12 Every in�nite binary tree T � 2<! has a path, i.e. is ill-founded.

As we mentioned in Section 1, X! can be viewed as the topological space of all !-
sequences of elements of X endowed with the product topology inherited by the discrete
topology on !. The following characterization allows us to classify closed sets by the
combinatorial properties of the trees which de�ne them:

Proposition 1.13 A subset F of X! is closed i¤ it is the body of a tree T on X, i.e.
F = [T ].

If T is a well-founded tree on a setX, then there is a unique function �T : X<! �! Ord
de�ned recursively by

�T (t) = supf�T (s) + 1 : s 2 T ^ t � sg
= supf�T (t � hni) + 1 : t � hni 2 Tg,

for each t 2 T . For all sequences t 2 X<! such that t =2 T we put �T (t) = 0. If t 2 T and
t is terminal we also have �T (t) = sup ; = 0.

The rank of a well-founded tree T is de�ned to be the ordinal

�(T ) = supf�T (t) + 1 : t 2 Tg.

Thus if T is nonempty, �(T ) = �T (hi) + 1.

The notation introduced in this section will be also used in the setting of second
order arithmetic with the necessary adjustments, especially as regards the interpretation
of symbols.

1.9 Second order arithmetic

In this section, we recall some basic de�nitions and facts about second order arithmetic.
The language L2 of second order arithmetic is a two-sorted language with number variables
x, y, z, ..., which are intended to range over the set ! of all natural numbers, and set
variables X, Y , Z, ..., which are intended to range over subsets of !, i.e. over }(!). The
set variables can also be viewed as variables intended to range over the f0; 1g�valued
functions, that is, the characteristic functions of sets of natural numbers. We have also
the constant number symbols 0 and 1, binary function symbols + and �, and binary relation
symbols =, <, all of them on !. Additionally, we have the membership relation symbol 2,
which is intended to range over !� }(!).

Terms and formulas are de�ned as usual. Numerical terms are number variables, the
constant symbols 0 and 1, and t1+ t2 and t1 � t2 whenever t1 and t2 are numerical terms. If
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t1 and t2 are numerical terms and X is any set variable, then t1 = t2, t1 < t2, and t1 2 X
are atomic formulas. If X and Y are set variables, expressions X = Y and X � Y are to
be seen as a shorthand for 8x (x 2 X $ x 2 Y ) and 8x (x 2 X ! x 2 Y ), respectively.

The axioms of second order arithmetic consist of the universal closure of the following
L2-formulas:

(i) discrete order semi-ring axioms for (!;+; �; 0; 1; <),

(ii) induction axiom:

(0 2 X ^ 8x(x 2 X ! x+ 1 2 X))! 8x x 2 X,

(iii) comprehension scheme:
9X8x (x 2 X $ '(x)) ,

where '(x) is any formula of L2 in which X does not occur freely. The formula '(x)
may contain free variables in addition to x. These free variables may be referred as
parameters of this instance of the comprehension scheme. Parameters will be also
allowed in the rest of axiom schemes we shall introduce in this section.

The formal system of second order arithmetic, shortly Z2, consists of the axioms of
second order arithmetic, together with all formulas of L2 which are deducible from the
axioms by means of the usual logical axioms and rules of inference. In order to introduce
formal subsystems of second order arithmetic we need a classi�cation of the formulas
attending to their quanti�er complexity.

Let x be a variable, let t be a numerical term not containing x, and let ' be a formula
of L2. We use the following abbreviations:

8x < t ' abbreviates 8x(x < t! '),
9x < t ' abbreviates 9x(x < t ^ '),

and
8x � t ' abbreviates 8x < t+ 1 ',
9x � t ' abbreviates 9x < t+ 1 '.

A formula of L2 is said to be arithmetical if it contains no set quanti�ers. Now we
classify the arithmetical formulas, whose class is denoted �01. Let ' be a formula of L2:

(-) ' is a bounded quanti�er formula (shortly �00 or �
0
0) if it is built up from atomic

formulas by using connectives and bounded number quanti�ers 8x < t and 9x < t,
where t does not contain x. Note that a bounded quanti�er formula may contain
free set or number variables, also called parameters,
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(-) ' is a �01 formula if it is of the form 9x �, where x is a number variable and � is a
bounded quanti�er formula.

(-) ' is a �01 formula if it is of the form 8x �, where x is a number variable and � is a
bounded quanti�er formula.

In general, for 0 < k 2 !:

(-) ' is said to be a �0k formula if it is of the form

9x18x29x3 � � �Qxk �,

with Q = 9, if k is odd, and Q = 8, if k is even, and where x1, x2, ..., xk are number
variables and � is a bounded quanti�er formula.

(-) ' is said to be a �0k formula if it is of the form

8x19x28x3 � � �Qxk �,

with Q = 8, if k is odd, and Q = 9, if k is even, and where x1, x2, ..., xk are number
variables and � is a bounded quanti�er formula.

Similarly we can set up a classi�cation of formulas whose quanti�ers range over set
variables. We denote the class of these formulas by �11. Let ' be a formula of L2:

(-) ' is a �11 formula if it is of the form 9X �, where X is a set variable and � is an
arithmetical formula.

(-) ' is a �11 formula if it is of the form 8X �, where X is a set variable and � is an
arithmetical formula.

In general, for 0 < k 2 !:

(-) ' is said to be a �1k formula if it is of the form

9X18X29X3 � � �QXk �,

with Q = 9, if k is odd, and Q = 8, if k is even, and where X1, X2, ..., Xk are
number variables and � is an arithmetical formula.

(-) ' is said to be a �1k formula if it is of the form

8X19X28X3 � � �QXk �,

with Q = 8, if k is odd, and Q = 9, if k is even, and where X1, X2, ..., Xk are
number variables and � is an arithmetical formula.
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Let i 2 f0; 1g and k 2 !. Clearly any �ik formula is logically equivalent to the negation
of a �ik formula, and vice versa. Moreover, up to logical equivalence of formulas, we have
�ik [�ik � �ik+1 \�ik+1.

We loosely say that a formula is �ik (respectively �
i
k) if it is equivalent over a base

theory to a �ik (respectively �
i
k) formula.

Using the above classi�cation, we de�ne schemata of comprehension and induction as
follows.

De�nition 1.14 Let � be � or �. Then for i 2 f0; 1g:

1. The scheme of �ik comprehension, denoted by �
i
k-CA, consists of all axioms of the

form
9X8x (x 2 X $ '(x)) ,

where ' is �ik, and X does not occur freely in '(x).

2. The scheme of bounded �ik comprehension consists of all axioms of the form

8n9X8x (x 2 X $ (x < n ^ '(x))) ,

where ' is �ik, and X does not occur freely in '(x).

3. The scheme of �ik comprehension, denoted by �
i
k-CA, consists of all axioms of the

form
8x ('(x)$  (x))! 9X8x (x 2 X $ '(x)) ,

where ' is �ik,  (x) is �
i
k, and X does not occur freely in '(x).

4. The scheme of �ik induction, denoted by �
i
k-IND, consists of all axioms of the form

'(0) ^ 8x('(x)! '(x+ 1))! 8x'(x),

where ' is �ik.

5. The scheme of �ik axiom of choice, denoted �ik-AC, consists of all axioms of the
form

8x9X'(x;X)! 9Y 8x'(x; (Y )x),

where ' is �ik and (Y )x = fi : (i; x) 2 Y g. Note that we are using the paring function
(i; j) = (i+ j)2 + i.

6. The scheme of strong �ik collection consists of all axioms of the form

8x9y8i < x(9j '(i; j)! 9j < y '(i; j)),

where ' is �ik and y does not occur freely in '.
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A subsystem of second order arithmetic is a formal system in the language L2 each of
whose axioms is a theorem of second order arithmetic. In order to de�ne a subsystem of
second order arithmetic, we have to specify the axioms of the system by referring some
formulas of L2. The axioms are then taken to be the universal closures of those formulas.

Now we de�ne the subsystem of second order arithmetic Recursive Comprehension
axiom with restricted induction, RCA0. The subscript 0 denotes restricted induction.
This means that the system does not include the full second order induction scheme, but
a restricted version of it.

De�nition 1.15 RCA0 is the formal system in the language of L2 which consists of

1. the discrete order semi-ring axioms for (!;+; �; 0; 1; <),

2. �01-CA,

3. �01-IND.

Within RCA0 the set of natural numbers is de�ned as the unique set X such that
8x (x 2 X), and it is denoted N. Within RCA0 we can encode �nite sets and �nite
sequences as single natural numbers. The set of all codes of �nite sequences exists by �00-
CA, and is denoted N<N. Similarly the set of all codes of �nite sequences of 0´ s and 1´ s
exists and is denoted 2<N. We continue to use the symbology introduced in the previous
section to deal with members of N<N and of 2<N, bearing in mind that the symbols now
represent codes. We will also continue to use the terminology concerning trees introduced
in section 1.8. These expressions will then denote the corresponding concepts codi�ed in
second order arithmetic (for a detailed de�nition see [Smp99], pp. 20 and 121.)

Within RCA0 the number systems Z, Q, and R, are developed in a way very similar
to the Dedekind-Cauchy construction. We will refer this fact in more detail in the last
section of Chapter 3.

Within RCA0, we de�ne a numerical paring function by letting

(m;n) = (m+ n)2 +m.

Using �01-CA, we can prove that for all sets X, Y � N, there exists a set X � Y � N
consisting of all (m;n) such that m 2 X and n 2 Y . Then a function f : X ! Y is
de�ned to be a set f � X � Y such that for all m 2 X there is exactly one n 2 Y such
that (m;n) 2 f . For m 2 X; f(m) is de�ned to be the unique n such that (m;n) 2 f .
We can also deal with functions of any arity k � 1 by using the pairing function. The
usual properties of such functions can be proved in RCA0. In particular, RCA0 proves
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that functions are closed under composition, primitive recursion, and minimization. Let
us observe that the language of second order arithmetic does not formally contain any
function variables. However, one can naturally express the fact that "G is the graph of a
function f : N ! X" by using a �02 formula. Thus, we can freely use variables ranging
over functions in our language. In addition, within RCA0 we have ([Smp99], p. 72):

Proposition 1.16 RCA0 proves:

1. Bounded �01 comprehension.

2. �01-IND.

3. Strong �01 collection.

Proposition 1.17 For each k 2 ! such that k > 0, RCA0 proves:

1. �0k-IND$ �0k-IND.

2. �0k-IND$ bounded �0k comprehension.

3. �0k-IND$ strong �0k collection.

The other subsystems of second order arithmetic are de�ned by adding some existence
axioms to RCA0. In order to de�ne the next subsystem we need the Weak König�s
Lemma, which states that:

For all tree T � 2<N, if T is in�nite, then T has a path.

Now we can de�ne the subsystem Weak König�s Lemma with restricted induction,
WKL0.

De�nition 1.18 WKL0 is the formal system in the language of L2 which consists of

1. the axioms of RCA0,

2. Weak König�s Lemma:

Subsystems RCA0 and WKL0 are close in proof theoretic strength. In fact, both
share the same �rst order part (viz. �1-induction I�1) and by a well known theorem
of Harrington, WKL0 is conservative over RCA0 for �11-sentences. However, WKL0 is
much stronger thanRCA0 from the viewpoint of mathematical practice. In fact,WKL0 is
strong enough to prove many well known nonconstructive theorems which are not provable
in RCA0.

The subsystem Arithmetical Comprehension with restricted induction, ACA0, is de-
�ned as follows.

De�nition 1.19 ACA0 is the formal system in the language of L2 which consists of
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1. the discrete order semi-ring axioms for (!;+; �; 0; 1; <),

2. the induction axiom:

(0 2 X ^ 8x(x 2 X ! x+ 1 2 X))! 8x x 2 X,

3. the arithmetical comprehension scheme, �01-CA:

9X8x (x 2 X $ '(x)) ,

where '(x) is any arithmetical formula of L2 in which X does not occur freely.

As a consequence of the induction axiom and arithmetical comprehension scheme we
have in ACA0 the arithmetical induction scheme, �01-IND, i.e.

'(0) ^ 8x('(x)! '(x+ 1))! 8x'(x),

restricted to arithmetical formulas of L2. In fact, the �rst order part ofACA0 is, precisely,
Peano arithmetic PA.

The following proposition will be useful (see [Smp99], Lemma III.1.3 for a proof).

Proposition 1.20 The following are equivalent over RCA0:

1. ACA0.

2. �01-CA.

The next subsystem of second order arithmetic we shall refer is a bit more elaborate to
describe and we will postpone a formal de�nition to Chapter 5. Informally, Arithmetical
Trans�nite Recursion with restricted induction, shortly ATR0, is a system stronger than
ACA0, where we can not only prove assertions by trans�nite induction, which is already
possible within ACA0, but also make de�nitions by trans�nite recursion. This latter
feature is not available in ACA0 and it is responsible for the possibility of proving within
ATR0 that the countable ordinals form a linear ordering. This fact will be used in Chapter
5 to prove results which depend on countable ordinals.

The system ATR0 consists of ACA0 plus a set existence axiom known as Arithmetical
Trans�nite Recursion. Intuitively we can describe this axiom as follows. Let �(n;X) be
an arithmetical formula with a free number variable n and a free set variable X. We may
view this formula as an arithmetical operator � : }(N)! }(N) de�ned by

�(X) = fn 2 N : �(n;X)g .
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Let � stand for a countable well ordering, i.e. a relation on N such that for all x; y; z 2 �

(x < y ^ y < z)! x < z

and
x = y _ x < y _ y < x,

and there is no sequence fxi : i 2 Ng � � with xi+1 < xi for all i 2 N. Now consider the
set Y � N� � obtained by iterating the operator � along �, i.e.

Y = f(n; 0) : n 2 �(;)g [ f(n; 1) : n 2 �(�(;))g [ � � �

Thus, Arithmetical Trans�nite Recursion is the axiom scheme asserting that the set Y
exists, for every arithmetical operator � and every countable well ordering �.

De�nition 1.21 ATR0 is the formal system in the language of L2 which consists of

1. ACA0,

2. Arithmetical Trans�nite Recursion.

The following result will be useful in Chapter 5.

Proposition 1.22 ATR0 proves the �11 axiom of choice, i.e. the scheme

8x9X('(x;X)! 9Y 8x'(x; (Y )x)),

where '(x) is �11 and (Y )x = fi : (i; x) 2 Y )g.

Finally, we introduce the subsystem of second order arithmetic �11-Comprehension with
restricted induction, shortly �11-CA0. This subsystem of Z2 is de�ned as follows:

De�nition 1.23 �11-CA0 is the formal system in the language of L2 which consists of

1. the discrete order semi-ring axioms for (!;+; �; 0; 1; <);

2. induction axiom:

(0 2 X ^ 8x(x 2 X ! x+ 1 2 X))! 8x x 2 X ;

3. comprehension scheme, �11-CA:

9X8x (x 2 X $ '(x)) ,

where '(x) is a �11 formula of L2 in which X does not occur freely.
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Let us note that subsystems �11-CA0 and �
1
1-CA0 are equivalent, i.e. they have the

same theorems (see [Smp99], p. 16).

There is a relation of strict inclusion between all the subsystems that we described:

RCA0 �WKL0 � ACA0 � ATR0 � �11-CA0

(see [Smp99], pp. 35 and 39).

The �ve subsystems of second order arithmetic, RCA0,WKL0, ACA0, ATR0, and
�11-CA0, also known as the "big �ve", encompass almost all ordinary mathematics in the
sense that almost all mathematical results are equivalent to results that can be proved in
at least one of them. In addition, a huge amount of theorems of ordinary mathematics
have turned out to be either provable in RCA0 or exactly equivalent over RCA0 to one
of the remaining "big �ve". This is the main theme in Reverse Mathematics. Further
information on these systems can be found in Simpson�s book [Smp99].

Finally, let us note that it is immediate that

Z2 =
[
k2!

�1k-CA0.

Thus, full second order arithmetic is sometimes also denoted by �11-CA0.
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Chapter 2

Topological analysis of Lipschitz
and Wadge games

In this chapter we ful�ll the �rst goal of the thesis. Namely, we give direct proofs of the
determinacy of Lipschitz and Wadge games for the �rst levels of the Wadge hierarchy.
This will be done in Sections 2 and 3. The proofs take advantage of Wadge´s topological
analysis of �0

2 sets developed in [WWW83]. Let us recall that Wadge�s goal was not
to prove the determinacy of Wadge games but to discover the structure of the class of
degrees. Here we show that, however, it is possible to adapt Wadge�s ideas in order to give
direct proofs of the determinacy of both Lipschitz and Wadge games. This is particularly
interesting because in Chapters 4 and 5 we will formalize these proofs for the study of
Lipschitz and Wadge determinacy in second order arithmetic.

The chapter is divided into three sections. In Section 1 we examine the �rst levels of
Hausdor¤�s hierarchy of di¤erences below �0

2. Relying on the work of Hausdor¤, Wadge
showed that for any �0

2 sets A and B, A is reducible to B i¤ B has at least as many
nonempty residues and adjoins as does A, i.e. for any countable ordinal �,

Rs�(A) 6= ; implies Rs�(B) 6= ;, and Rs�(Ac) 6= ; implies Rs�(Bc) 6= ;,

where Rs� stands for the �-th residue or adjoin. In this section we describe Hausdor¤
residues and their relation to di¤erences of closed sets. This description allied to the
representation of closed sets in terms of trees creates the conditions to develop more
combinatorial arguments on which the proofs of Sections 2 and 3 can be built.

In Section 2 we work in Cantor space and prove the determinacy of Lipschitz and
Wadge games up to di¤erences of closed sets and their complements, i.e. for subsets of
the Cantor space which occupy degrees corresponding to the �rst �ve levels of Wadge
hierarchy.

In Section 3 we also prove the determinacy of Lipschitz and Wadge games up to
di¤erences of closed sets and their complements but, in this section, we work in the Baire
space.

27
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Finally, let us note that in this chapter we work in the setting of Zermelo-Fraenckel set
theory and, as is customary in descriptive set theory, our metatheory will be ZF+DC.
As before we use boldface notation �0

1, �
0
1, �

0
1, and �

0
1 [�0

1 to denote, respectively, the
pointclass of clopen sets, the pointclass of open sets, the pointclass of closed sets, and the
pointclass of sets which are open or closed.

2.1 Hausdor¤ residues and adjoins

We follow section C of Chapter I of Wadge thesis [WWW83] as well as Chapter VII of
Hausdor¤�s book [H57]. In order to deal with di¤erences of sets Hausdor¤ introduced
the notion of a residue and the related notion of an adjoin. Here we will introduce these
concepts in a slightly di¤erent way and we will de�ne them as Wadge did in his thesis.
Actually we will not use explicitly the concept of adjoin.

We will use some common notation. Let X be either f0; 1g or ! and A;B � X!.
Then:

1. Ac denotes the complement of A in X!, i.e. Ac = X! �A.

2. A denotes the closure of A, i.e. A = \fF 2 �0
1 : A � Fg.

3. int(A) denotes the interior of A, i.e. int(A) = [fG 2 �01 : G � Ag.

4. @A denotes the boundary of A, i.e. @A =
�
A \Ac

�
.

5. A
B
denotes the closure of A in B, i.e. A

B
= A \B.

6. intB(A) denotes the interior of A in B, i.e.

intB(A) = [fG \B : G 2 �01; G \B � Ag:

7. @BA denotes the boundary of A in B, i.e. @BA = A
B \B �AB.

Now we de�ne the Hausdor¤ sequence of �nite residues. Let A be any subset of X!.
Then we de�ne the sequence of residues of A, fRsn(A) : n 2 !g, recursively by putting

Rs0(A) = A,

Rsn+1(A) = Rsn(Ac) \A.

In Hausdor¤�s terminology Rs1(Ac) = A \ Ac is the �rst adjoin of A and Rs2(Ac) =
Rs1(A) \ Ac = Ac \A \ Ac is the �rst residue of Ac. According to Hausdor¤�s theorem
di¤erences of closed sets can be characterize by residues and adjoins. We will only need
the �nite version of this result ([H57]; see also [WWW83], p. 87):

Proposition 2.1 For all A � X! and all n 2 !,

Rsn(A) = ; i¤ A 2

8<: Dfn if n is even
^
Dfn if n is odd
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For our proofs of determinacy it will be crucial to know the structure of the residue of
a set taking into account to which class of di¤erences its complement belongs. Let X be
either f0; 1g or ! and A � X!. We highlight some useful facts:

1. A is a closed set if and only if the �rst adjoin of A is empty, i.e. Rs1(Ac) = A\Ac =
A \Ac = ;. Note that for every closed set A, @A � A.

2. If A 2 �0
1 ��01 then @A � A and

Rs1(A) = Ac \A = Ac \A = @A 6= ;.

On the other hand a closed set A is clopen if and only if Rs1(A) = @A = ;.

The next two facts are immediate consequences of Hausdor¤�s result (see also [WWW83],
p. 80):

3. A 2 Df2 if and only if Rs2(A) = ;.

4. A;Ac 2 Df2 if and only if Rs2(A) = Rs2(Ac) = ;.

Now we search for a necessary and su¢ cient condition for Ac 2 Df2 when we already
know that A 2 Df2. This fact will play an important role in the proofs of Lipschitz and
Wadge determinacy, so we examine it in some detail.

5. If A 2 Df2, i.e. if A = F0 � F1 for some F0; F1 2 �0
1 with F1 � F0, then Ac 2 Df2

if and only if
@F0F1 \ @F0 � F1 = ;.

Since by Hausdor¤�s theorem Ac 2 Df2 if and only if Rs2(Ac) = ;, it is enough to
show that Rs2(Ac) = @F0F1 \ @F0 � F1. Bearing in mind that A = F0 \F c1 and thus
Ac = F c0 [ F1, we get

Rs2(A
c) = Ac \A \Ac

= Ac \ F0 \ F c1 \ (F c0 [ F1)

=
�
Ac \ F0 \ F c1 \ F c0

�
[
�
Ac \ F0 \ F c1 \ F1

�
Now, let us notice that

Ac \ F0 \ F c1 = F c0 [ F1 \ F0 \ F c1
= (F c0 [ F1) \ F0 \ F c1
= F c0 \ F0 \ F c1
= @F0 � F1

Then
Rs(Ac) =

�
@F0 � F1 \ F c0

�
[
�
@F0 � F1 \ F1

�
= @F0 � F1 \ F1
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since, @F0 � F1 \ F c0 � F0 \ F c0 = ;. On the other hand, F1 is a closed set in the
subspace F0, so F1 = @F0F1 [ intF0(F1).
Let us prove that @F0 � F1 \ intF0(F1) = ;. If f 2 intF0(F1) then there exists an
open neighborhood G of f such that G\F0 � F1. If in addition, f 2 @F0 � F1 then
there exists a sequence (fn)n2! such that lim fn = f and for all n 2 !, fn 2 @F0�F1.
Then there exists k 2 ! such that for all n � k, fn 2 G\F0 � F1. Thus fn 2 F1 for
every n � k and this is a contradiction.
We can now conclude our argument as follows:

Rs2(A
c) = @F0 � F1 \ F1

= @F0 � F1 \ (@F0F1 [ intF0(F1))

= (@F0 � F1 \ �F0F1) [ (@F0 � F1 \ intF0(F1))

= @F0 � F1 \ @F0F1
as required.

We will make use of the above topological concepts in order to prove several Lipschitz
and Wadge determinacy results in the next two sections. Thus, it will be crucial to express
these notions in the language of second order arithmetic in order to formalize such proofs.
To do that, the key idea is to re-express these notions by means of paths of appropriate
trees. Below we give some examples.

Let T; S � X<! be trees with T � S. The boundary of T is the following set

�(T ) = ft 2 T : 9t0(t � t0 ^ t0 =2 T )g

The boundary of T in S is the set

�ST = ft 2 T : 9t0(t � t0 ^ t0 2 S � T )g

We recall that [T ] is the set of all in�nite branches of T , i.e.

[T ] = ff 2 X! : 8n 2 ! f [n] 2 Tg.

Now let us notice that:

1. �(T ) and �ST are also trees.

2. [�(T )] is, precisely, the boundary of the set [T ], i.e.

@[T ] = [�(T )] = ff 2 [T ] : 8k 9s (f [k] � s ^ s =2 T )g.

3. [�ST ] is, precisely, the boundary of [T ] in [S], i.e.

@[S][T ] = [�ST ] = ff 2 [T ] : 8k 9s (f [k] � s ^ s 2 S � T )g

Also note that, in general,

[�ST ] 6= [�(T )] \ [S] = [�(T ) \ S]
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2.2 Determinacy of Lipschitz and Wadge games in Cantor
space

In this section we prove Lipschitz and Wadge determinacy in the Cantor space for the �rst
�ve levels of Wadge hierarchy (see Section 7 of the previous chapter). For A;B � 2! we
denote by G�L(A;B) the Lipschitz game in Cantor space for A and B, and by G�W (A;B)
the corresponding Wadge game. We will use the notation and de�nitions introduced in
Section 4 of the previous chapter with adequate modi�cations. We will denote by 2<!

the set of �nite sequences from f0; 1g, by Seq�even the subset of 2<! containing all �nite
sequences of even length, and by Seq�odd the subset of 2

<! containing all �nite sequences
of odd length.

The arguments that we present in this chapter will be later formalized in second order
arithmetic. This will be done in Chapter 4 and to make that work easier we will here set
up the winning strategies needed in the proofs of Lipschitz determinacy in a very detailed
form.

The following lemma settles the issue of Lipschitz and Wadge determinacy in Cantor
space for the �rst two levels of the Wadge hierarchy.

Lemma 2.2 Let A and B be clopen sets in Cantor space.

1. G�L(A;B) is determined.

2. G�W (A;B) is determined.

Proof. We shall assume that A and B are both di¤erent from ; and 2!. We can check
easily that the result holds in these cases.
Since A;B 2�0

1, there exist pruned binary trees S; S
0; T and T 0 such that

A = [S]; Ac = [S0]; B = [T ]; and Bc = [T 0].

Since [S \ S0] = [S] \ [S0] = ;, by König�s lemma, S \ S0 is a �nite tree. Let us de�ne
l1 = maxfjsj : s 2 S \ S0g. In a similar way, we de�ne l2 = maxfjtj : t 2 T \ T 0g.
(1): We must show G�L([S]; [T ]) is determined. We distinguish two cases:
Case 1: l1 � l2.
Then player II has a winning strategy in the game G�L([S]; [T ]). Indeed, let t0 2 T \ T 0
such that jt0j = l2 (such an element exists by de�nition of l2). Observe that, since T and
T 0 are pruned trees and due to the maximal character of l2, we have

8t (t0 � h0i � t! t 2 T ) ^ 8t (t0 � h1i � t! t 2 T 0)

or
8t (t0 � h0i � t! t 2 T 0) ^ 8t (t0 � h1i � t! t 2 T ).

Using that l1 � l2 we also get that for each s0 with js0j � l2,

8s (s0 � h0i � s! s 2 S) ^ 8s (s0 � h1i � s! s 2 S0)
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or
8s (s0 � h0i � s! s 2 S0) ^ 8s (s0 � h1i � s! s 2 S).

Having this in mind, a strategy EII : Seq�odd ! f0; 1g for player II can be de�ned as
follows. For all s; t 2 2<! with jsj = j + 1 and jtj = j, where j 2 !, we de�ne

EII(s
 t) =

8>>>>><>>>>>:

(t0)j if j + 1 < l2

minfk : t0 � hki 2 Tg if s 2 S ^ j + 1 = l2

minfk : t0 � hki 2 T 0g if s 2 S0 ^ j + 1 = l2

0 otherwise

It is not hard to see that EII is a winning strategy for player II. Indeed, according to EII
player II enumerates t0 no matter what player I does. At the time player II reaches (t0)l2�1
player I has already irrevocably committed himself to enumerate an element of either A
or Ac since l1 � l2. Player II, however, can still decide to enumerate an element of either
B or Bc. Now if player I is enumerating an element of A, and he will do it forever, player
II chooses k and enumerates an element of B, also forever. If player I is enumerating an
element of Ac, then player II chooses k0 and enumerates an element of Bc. Thus, for every
f 2 2! we have f 2 A i¤ f 
II EII 2 B and hence EII is a winning strategy for player II.
Case 2: l2 < l1.
Then player I has a winning strategy in the game G�L([S]; [T ]). Indeed, let s0 2 S \ S0
such that js0j = l1. Then

8s (s0 � h0i � s! s 2 S) ^ 8s (s0 � h1i � s! s 2 S0)

or
8s (s0 � h0i � s! s 2 S0) ^ 8s (s0 � h1i � s! s 2 S).

In addition, for each �nite sequence t0 with jt0j � l1 � 1,

8t (t0 � h0i � t! t 2 T ) ^ 8t (t0 � h1i � t! t 2 T 0)

or
8t (t0 � h0i � t! t 2 T 0) ^ 8t (t0 � h1i � t! t 2 T ).

Proceeding as before we can de�ne a strategy EI : Seq�even ! f0; 1g for player I. First we
put EI(hi) = (s0)0. Now for all s; t 2 2<! with jsj = jtj = j and j � 1, we de�ne

EI(s
 t) =

8>>>>><>>>>>:

(s0)j if j < l1

minfk : s0 � hki 2 S0g if t 2 T ^ j = l1

minfk : s0 � hki 2 Sg if t 2 T 0 ^ j = l1

0 otherwise

To see that EI is a winning strategy for player I let us observe the following. Player I
enumerates s0 no matter what player II plays. After player I reaches (s0)l1�1 player II
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must decide to continue in either B or Bc, if she has not already decided. Now if player
II decides to commit herself to B, the next move of player I is to choose k0 and to play
forever outside A, i.e. in Ac. If, on the contrary, player II decides to stay in Bc for the
rest of the game, then in the next move player I chooses k and remains forever inside A.
In both cases, for every g 2 2!, g 2 B i¤ EI 
 g 2 Ac. Thus EI is a winning strategy for
player I.

(2): We distinguish the same two cases. Concerning case 1, a winning strategy for player
II in a Lipschitz game yields automatically a winning strategy for player II in the corre-
sponding Wadge game. On the other hand, it is not hard to see that if player II is allowed
to pass, she will also win the game in case 2. In fact, player II can keep passing until
player I commits himself to remaining either in A or outside A forever. In conclusion, the
Wadge game G�W (A;B) is determined and now it is player II who always has a winning
strategy.

This completes the proof of the lemma.

Remark 2.3

1. In the previous proof we used pruned trees and König�s lemma. In set theory this is
not a concern since every tree can be pruned, i.e. contains a pruned subtree with the
same set of paths, and the König�s lemma is a consequence of AC!. In second order
arithmetic, however, it will be crucial to derive the fact that every tree corresponding
to a clopen set can be pruned from König�s lemma itself. This will enable us to prove
the result within WKL0.

2. The above proof of determinacy of games G�W (A;B), where A and B are clopen
sets, implies that clopen sets di¤erent from ; and 2! form a Wadge degree. Simi-
larly we get that each clopen set di¤erent from ; and 2! is �0

1-complete for Wadge
reducibility.

The following notation will be useful in the proofs of this and the next sections. Let X
be f0; 1g or ! and s 2 X<!. Then the tree s �X<! of the initial segments and extensions
of s is de�ned by

s �X<! = ft 2 X<! : t � s _ s � tg.

Also we de�ne
s �X! = ff 2 X! : s � fg.

Observe that [s �X<!] = s �X!.

Corollary 2.4 There is a sequence of Lipschitz degrees f[Ai]L : i 2 !g in Cantor space
such that:

1. for each i 2 !, Ai is a clopen set di¤erent from ; and 2!;

2. for each i 2 !, [Ai]L �L [Ai+1]L; and
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3. for each clopen set B di¤erent from ; and 2! there exists i 2 ! such that [B]L =
[Ai]L.

Proof. It follows from Lemma 2.2 putting Ai = 0(i+1) � 2!.

Lemma 2.5 Let A and B be closed sets in Cantor space.

1. G�L(A;B) is determined.

2. G�W (A;B) is determined.

Proof. (1): It is enough to show that if S; T � 2<! are pruned binary trees then the
Lipschitz game G�L([S]; [T ]) is determined. We distinguish three cases:
Case 1: @[T ] = [�(T )] 6= ;.
Then there is g 2 [T ] such that 8k 9t (g[k] � t ^ t =2 T ) and a winning strategy for player
II, EII, can be de�ned as follows. For all s; t 2 2<! with jsj = j + 1 and jtj = j, we put

EII(s
 t) =

8>><>>:
g(j) if s 2 S

minfk : t � hki =2 Tg if s =2 S ^ (t � h0i =2 T _ t � h1i =2 T )

g(j) if s =2 S ^ (t � h0i 2 T ^ t � h1i 2 T )

To see that EII is a winning strategy for player II it su¢ ces to observe that following
strategy EII player II enumerates g as long as player I is enumerating an element of [S],
and that she can always use a branch of g to leave [T ] if player I decides to leave [S].
Thus, for every f 2 2! we have f 2 A i¤ f 
II EII 2 B and hence EII is a winning strategy
for player II.

Case 2: [�(T )] = ; and @[S] = [�(S)] 6= ;.
Then there exists f 2 [S] such that 8k 9s (f [k] � s ^ s =2 S). Note that �(T ) is a binary
tree with no path (since [�(T )] = ;). Hence, �(T ) must be �nite and, as a consequence,
there exists l = max(fjtj : t 2 �(T )g. A winning strategy for player I, EI, can be de�ned
as follows. Let EI(hi) = f(0) and for all s; t 2 2<! with jsj = jtj = j � 1,

EI(s
 t) =

8>><>>:
f(j) if t =2 T _ (t 2 T ^ j � l)

minfk : t � hki =2 Sg if t 2 T ^ j > l ^ (s � h0i =2 S _ s � h1i =2 S)

f(j) if t 2 T ^ j > l ^ (s � h0i 2 S ^ s � h1i 2 S)

To see that EI is a winning strategy for player I let us observe the following. Player I
starts by enumerating f and continues enumerating f until he reaches f(l), no matter
what player II plays. At this point player II must decide to continue in either B or Bc,
if she has not already decided. Now if player II decides to commit herself to B, player
I continues to enumerate f ; otherwise he leaves A as soon as he can. Hence, for every
g 2 2!, g 2 B i¤ EI 
 g 2 Ac and EI is a winning strategy for player I.
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Case 3: [�(T )] = ; and [�(S)] = ;.
Then, as in Case 2, �(T ) is a �nite tree and we can de�ne l = max(fjt0j : t0 2 Tg: From
the de�nition of l we immediately get that [T ] is �0

1:

g 2 [T ]$ 8u (g[u] 2 T )$ g[l] 2 [T ].

A similar reasoning can be applied to [S] and, therefore, GL([S]; [T ]) is determined since
[S] and [T ] are clopen (see Lemma 2.2).

(2): For Wadge games, it is clear that player II has a winning strategy in cases 1 and 3
above (as usual, we are assuming that [S] and [T ] are di¤erent from ; and 2!). As for
case 2, it is player I who has a winning strategy. Indeed, player I can enumerate f 2 @[S]
as long as player II is passing or enumerating some t 2 �(T ). Since she cannot do this
forever, player I wins the game.

This completes the proof of the lemma.

Remark 2.6

1. Cases 2 and 3 are obtained by applying König�s lemma to a �nite tree de�ned by an
existential condition. Since this possibility is not available within WKL0, we will
be forced to derive this result within a subsystem of second order arithmetic stronger
than WKL0, namely within ACA0.

In addition, we have assumed that the trees characterizing closed sets A and B are
pruned. This fact can also be used in second order arithmetic. In fact, in Chapter 4
we will show that the principle asserting that every tree can be pruned is equivalent
to ACA0 over RCA0.

2. It follows from the previous proof that �0
1��01 form both a Lipschitz and a Wadge de-

gree. Also, it follows that every closed set with a nonempty boundary is �0
1-complete

for both Lipschitz and Wadge reducibility.

Corollary 2.7 There exists a closed and not open set of the Cantor space, B, such that
for every closed and not open set of the Cantor space, A, we have [A]L =L [B]

Proof. It follows from Lemma 2.5 putting B = f~0g [
S
k 0

(k) � h1i � h0i � 2!.

Lemma 2.8 Let A and B be subsets of the Cantor space such that A;B 2 �01 [�0
1.

1. G�L(A;B) is determined.

2. G�W (A;B) is determined.



36CHAPTER 2. TOPOLOGICAL ANALYSIS OF LIPSCHITZ AND WADGE GAMES

Proof. The case A; B 2 �0
1 is just Lemma 2.5. Now bearing in mind that the

strategies for a game G�L(A;B) are also strategies for the dual game G
�
L(A

c; Bc) we obtain
that G�L(A;B) is determined when A; B 2 �01. Analogously we obtain that G�W (A;B) is
determined when A; B 2 �01.

(1): Let us prove that G�L(A;B) is determined for A 2 �01 and B 2 �0
1. (The case where

B 2 �01 and A 2 �0
1 follows from this one by duality.)

It is enough to show that if S; T � 2<! are pruned binary trees, then the Lipschitz game
G�L([S]

c; [T ]) is determined. We distinguish two cases:

Case 1: @[S] = [�(S)] 6= ;.
Then there exists f 2 [S] such that 8k 9s (f [k] � s ^ s =2 S).
A winning strategy EI, for player I, can be de�ned as follows. Let EI(hi) = f(0) and for
all s; t 2 2<! with jsj = jtj = j � 1, we put

EI(s
 t) =

8>><>>:
f(j) if t 2 T

minfk : t � hki =2 Sg if t =2 T ^ (s � h0i =2 S _ s � h1i =2 S)

f(j) if t =2 T ^ (s � h0i 2 S ^ s � h1i 2 S)

Case 2: @[S] = [�(S)] = ;.
Then �(S) is a �nite binary tree. Let l = max(fjsj : s 2 �(S)g. We have

8f (f 2 [S]$ f [l + 1] 2 S)

and, so, [S] is clopen and G�L([S]
c; [T ]) is determined by Lemma 2.5.

(2): Again it su¢ ces to show that G�W ([S]
c; [T ]) is determined for S; T � 2<! pruned

binary trees. We distinguish the same two cases. Although in Wadge games player II
has an extra resource (she can pass a �nite number of times), in case 1 player I can still
use essentially the same strategy to win the game. Case 2 is completely analogous to the
corresponding case for Lipschitz games.

This completes the proof of the lemma.

Remark 2.9

1. The above arguments also yield that�0
1��01 and �01��0

1 form a pair of incomparable
dual Lipschitz/Wadge degrees.

2. Being a non-self-dual pair, it is natural to obtain that it is player I who has a winning
strategy when his opponent plays in a set which belongs to the other non-self-dual
degree or to degrees below.

In the next lemmas the topological analysis of Section 1, especially the useful fact
number 5 there, will be used profusely. The �rst lemma deals with sets in the third level
of Wadge hierarchy.
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Lemma 2.10 Let A and B be subsets of the Cantor space such that A;B;Ac; Bc 2 Df2.

1. G�L(A;B) is determined.

2. G�W (A;B) is determined.

Proof. Without loss of generality, we can assume that there exist pruned binary trees
S0; S1; T0; T1 such that

1. S1 � S0 and T1 � T0.

2. A = [S0]� [S1], and B = [T0]� [T1].

Since Ac 2 Df2,

Rs2(A
c) = @[S0] [S1] \ @[S0]� [S1] = [�S0S1] \ [�(S0)]� [S1] = ;:

Observe that Rs2(Ac) is a closed set and so Rs2(Ac) = [�(S0; S1)] for some tree �(S0; S1),
namely

�(S0; S1) = fs 2 S1 : 9f1; f2 (f1 2 [�S0S1] ^ f2 2 [�(S0)]� [S1] ^ s � f1 ^ s � f2)g:

By König�s lemma, �(S0; S1) must be �nite. Similarly,

Rs2(B
c) = @[T0] [T1] \ @[T0]� [T1] = [�T0T1] \ [�(T0)]� [T1] = ;

and hence �(T0; T1) is also a �nite tree de�ned putting

�(T0; T1) = ft 2 T1 : 9g1; g2 (g1 2 [�T0T1] ^ g2 2 [�(T0)]� [T1] ^ t � g1 ^ t � g2)g:

Let a = maxfjsj : s 2 �(S1; S1)g and b = maxfjsj : s 2 �(T0; T1)g.

(1): To prove that G�L(A;B) is determined we distinguish three main cases with several
subcases.
Case 1: [�T0T1] 6= ;, [�(T0)]� [T1] 6= ;, and [�S0S1] 6= ;, [�(S0)]� [S1] 6= ;.
We distinguish two subcases:

1. If a � b, then player II has a winning strategy, EII.

Let tb 2 �(T0; T1) be such that jtbj = b, i.e. tb is a sequence of �(T0; T1) of maximal
length. Let us �x g1; g2 2 2! such that tb � g1, g1 2 [�T0T1], tb � g2, and g2 2
[�(T0)] � [T1]. Also recall that (tb)j = tb(j) and s [k] denotes the �nite sequence
hs(0); :::; s(k� 1)i. We can de�ne a winning strategy for player II as follows. For all
s; t 2 2<! with jsj = j + 1 and jtj = j, we put
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EII(s
t) =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(tb)j if j < b

g1(j) if j � b ^ s[b+ 1] =2 S0

g2(j) if j � b ^ s[b+ 1] 2 S0 � S1 ^ s 2 S0

g2(j) if j � b ^ s[b+ 1] 2 S0 � S1 ^ s =2 S0 ^ t � h0i 2 T0 ^ t � h1i 2 T0

k if j � b ^ s[b+ 1] 2 S0 � S1 ^ s =2 S0 ^ (t � h0i =2 T0 _ t � h1i =2 T0)

and k = minfi : t � hii =2 T0g

g1(j) if j � b ^ s[b+ 1] 2 S1 ^ 9f (f 2 [�S0S1] ^ s[b+ 1] � f) ^

(s 2 S1 _ s =2 S0)

g1(j) if j � b ^ s[b+ 1] 2 S1 ^ 9f (f 2 [�S0S1] ^ s[b+ 1] � f) ^

s 2 S0 � S1 ^ 9s0(s � s0 ^ s0 =2 S0)

g1(j) if j � b ^ s[b+ 1] 2 S1 ^ 9f (f 2 [�S0S1] ^ s[b+ 1] � f) ^

s 2 S0 � S1 ^ 8s0(s � s0 ! s0 2 S0) ^

(t � h0i =2 T0 � T1 ^ t � h1i =2 T0 � T1)

k if j � b ^ s[b+ 1] 2 S1 ^ 9f (f 2 [�S0S1] ^ s[b+ 1] � f) ^

s 2 S0 � S1 ^ 8s0(s � s0 ! s0 2 S0) ^

(t � h0i 2 T0 � T1 _ t � h1i 2 T0 � T1)

and k = minfi : t � hii 2 T0 � T1g

g2(j) if j � b ^ s[b+ 1] 2 S1 ^ :9f (f 2 [�S0S1] ^ s[b+ 1] � f) ^

(s 2 �S0S1 _ s 2 S0 � S1)

g2(j) if j � b ^ s[b+ 1] 2 S1 ^ :9f (f 2 [�S0S1] ^ s[b+ 1] � f) ^

s =2 �S0S1 ^ (s 2 S1 _ s =2 S0) ^ t � h0i 2 T0 ^ t � h1i 2 T0

k if j � b ^ s[b+ 1] 2 S1 ^ :9f (f 2 [�S0S1] ^ s[b+ 1] � f) ^

s =2 �S0S1 ^ (s 2 S1 _ s =2 S0) ^ (t � h0i =2 T0 _ t � h1i =2 T0)

and k = minfi : t � hii =2 T0g
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That is to say, player II plays using tb during the �rst b rounds. Then, she plays
according to one of the following cases:

Case 1A: At the (b + 1)-th round, player I has played outside S0. Then, player I
will continue outside S0 forever (S0 is a tree) and player II can simply play using g1
(recall that g1 =2 [T0]� [T1] and tb � g1).

Case 1B: At the (b+ 1)-th round, player I has played in S0 � S1. Then:

� As long as player I continues playing inside S0, player II will play using g2.
Thus, if player I continues playing inside S0 forever (and so his resulting play
is a point in [S0]� [S1]), player II has also produced a point in [T0]� [T1].

� Assume that at some round c > b+ 1, player I plays outside S0 (and hence he
will continue outside S0 forever). Since player II has been playing using g2 so
far and g2 belongs to [� (T0)], there must be some round d � c in which player
II can play outside T0. Then, player II continues playing using g2 waiting for
such a round d to appear; and at round d, she plays outside T0 (and hence she
will continue outside T0 forever).

Case 1C: At the (b + 1)-th round, player I has played in S1 and s [b+ 1] has some
extensions in [�S0S1].

� As long as player I continues playing inside S1, player II will play using g1.
Thus, if player I continues playing inside S1 forever (and so his resulting play is
a point not in [S0]� [S1]), player II has also produced a point not in [T0]� [T1].

Now assume that at some round c > b+ 1, player I plays outside S1. Then:

� As long as player I plays inside � (S0), player II will continue using g1. But
observe that player I cannot continue playing in � (S0) forever. For otherwise
s [b+ 1] would be in �(S0; S1), which is impossible since a � b. So, after a �nite
number of steps one of the following two cases will hold.

� If player I plays outside S0 (and so his resulting play will be a point not in
[S0]� [S1]), player II will simply continue playing using g1.

� If player I plays in S0� � (S0), then he will be forced to play in S0�S1 forever
and thus his resulting play will be a point in [S0]� [S1]. But so far player II has
been playing using g1, which is a point of [�T0T1]. Consequently, there must be
some round d in which player II can play in T0 � T1. Then player II continues
playing using g1 waiting for such a round to appear; and at round d, she plays
in T0� T1 and will continue playing in T0� T1 forever (this is possible because
T0 is a pruned tree).
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Case 1D: At the (b + 1)-th round, player I has played in S1 and s [b+ 1] has no
extension in [�S0S1].

� As long as player I plays in �S0S1, player II will play using g2. But observe
that player I cannot continue playing in �S0S1 forever, for we are assuming that
s [b+ 1] has no extension in [�S0S1]. So, after a �nite number of steps player I
will necessarily play outside �S0S1. Then:

� As long as player I plays in S0 � S1, player II will continue using g2.

� If at some round player I has played s either in S1 or outside S0, then player
I is forced to play outside [S0]� [S1] since we are assuming that s =2 �(S0; S1).
But so far player II has been playing using g2, which is a point of [�(T0)]� [T1].
Consequently, there must be some round d in which player II can play outside
T0. Then player II continues playing using g2 waiting for such a round to
appear; and at round d, she plays outside T0 and hence will play outside T0
forever.

This proves that EII is a winning strategy for player II.

2. If a > b, then player I has a winning strategy.

Let sa 2 �(S0; S1) be such that jsaj = a, i.e. let sa be a sequence of �(S0; S1) of
maximal length. Let us �x f1; f2 2 2! such that sa � f1, f1 2 [�S0S1], sa � f2, and
f2 2 [�(S0)] � [S1]. Then player I wins the game with the following strategy. Let
EI(hi) = (sa)0 and for all s; t 2 2<! with jsj = jtj = j � 1, put
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EI(s
t) =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(sa)j if j < a

f2(j) if j � a ^ t[a] =2 T0

f1(j) if j � a ^ t[a] 2 T0 � T1 ^ t 2 T0

f1(j) if j � a ^ t[a] 2 T0 � T1 ^ t =2 T0 ^ s � h0i =2 S0 � S1 ^ s � h1i =2 S0 � S1

k if j � a ^ t[a] 2 T0 � T1 ^ t =2 T0 ^ (s � h0i 2 S0 � S1 _ s � h1i 2 S0 � S1)

and k = minfi : s � hii 2 S0 � S1g

f2(j) if j � a ^ t[a] 2 T1 ^ 9g (g 2 [�T0T1] ^ t[a] � g) ^ (t 2 T1 _ t =2 T0)

f2(j) if j � a ^ t[a] 2 T1 ^ 9g (g 2 [�T0T1] ^ t[a] � g) ^

t 2 T0 � T1 ^ 9t0(t � t0 ^ t0 =2 T0)

f2(j) if j � a ^ t[a] 2 T1 ^ 9g (g 2 [�T0T1] ^ t[a] � g) ^

t 2 T0 � T1 ^ 8t0(t � t0 ! t0 2 T0) ^

(s � h0i 2 S0 � S1 ^ s � h1i 2 S0 � S1)

k if j � a ^ t[a] 2 T1 ^ 9g (g 2 [�T0T1] ^ t[a] � g) ^

t 2 T0 � T1 ^ 8t0(t � t0 ! t0 2 T0) ^

(s � h0i =2 S0 � S1 _ s � h1i =2 S0 � S1)

and k = minfi : s � hii 2 S0 � S1g

f1(j) if j � a ^ t[a] 2 T1 ^ :9g (g 2 [�T0T1] ^ t[a] � g) ^

(t 2 �T0T1 _ t 2 T0 � T1)

f1(j) if j � a ^ t[a] 2 T1 ^ :9g (g 2 [�T0T1] ^ t[a] � g) ^

t =2 �T0T1 ^ (t 2 T1 _ t =2 T0) ^ s � h0i =2 S0 � S1 ^ s � h1i =2 S0 � S1

k if j � a ^ t[a] 2 T1 ^ :9g (g 2 [�T0T1] ^ t[a] � g) ^

t =2 �T0T1 ^ (t 2 T1 _ t =2 T0) ^ (s � h0i 2 S0 � S1 _ s � h1i 2 S0 � S1)

and k = minfi : t � hii 2 S0 � S1g
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That is to say, player I plays using sa until round a. Then, he plays according to
one of the following cases:

Case 2A: At the a-th round, player II has played outside T0. Then, player II will
continue outside T0 forever (T0 is a tree) and player I can simply play using f2 (recall
that f2 2 [S0]� [S1] and sa � f2).

Case 2B: At the a-th round, player II has played in T0 � T1. Then:

� As long as player II continues playing inside T0, player I will play using f1.
Thus, if player II continues playing inside T0 forever (and so her resulting play
is a point in [T0]� [T1], player I has produced a point in [S1].

� Assume that at some round c > a, player II plays outside T0 (and hence she
will continue outside T0 forever). Since player I has been playing using f1 so
far and f1 belongs to [�S0S1], there must be some round d � c in which player
I can enter S0 � S1. Then, player I continues playing using f1 waiting for such
a round d to appear; and at round d, he enters S0 � S1 (and hence he will
continue inside S0 � S1 forever).

Case 2C: At the a-th round, player II has played in T1 and t [a] has some extensions
in [�T0T1].

� As long as player II continues playing inside T1, player I will play using f2.
Thus, if player II continues playing inside T1 forever (and so his resulting play
is a point not in [T0]� [T1], player I has produced a point in [S0]� [S1].

Now assume that at some round c > a, player II plays outside T1. Then:

� As long as player II plays inside � (T0), player I will continue using f2. But
observe that player II cannot continue playing in � (T0) forever. For otherwise
t [a] would be in �(T0; T1), which is impossible since a > b. So, after a �nite
number of steps one of the following two cases will hold.

� If player II plays outside T0 (and so her resulting play will be a point not in
[T0]� [T1]), player I will simply continue playing using f2.

� If player II plays in T0�� (T0), then she will be forced to play in T0�T1 forever
and thus her resulting play will be a point in [T0]� [T1]. But so far player I has
been playing using f2, which is a point of [�(S0)] � [S1]. Consequently, there
must be some round d in which player I can play not in S0�S1. Then player I
continues playing using f2 waiting for such a round to appear; and at round d,
he plays outside S0�S1 and will continue playing outside S0�S1 forever (this
can be done because [S0] is a pruned tree).

Case 2D: At the a-th round, player II has played in T1 and t [a] has no extension in
[�T0T1].
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� As long as player II plays in �T0T1, player I will play using f1. But observe that
player II cannot continue playing in �T0T1 forever, for we are assuming that
t [a] has no extension in [�T0T1]. So, after a �nite number of steps player II will
necessarily play outside �T0T1. Then:

� As long as player II plays in T0 � T1, player I will continue using f1.
� If at some round player II has played t either in T1 or outside T0, then player II is
forced to play outside [T0]�[T1] since we are assuming that t =2 �(T0; T1). But so
far player I has been playing using f1, which is a point of [�S0S1]. Consequently,
there must be some round d in which player I can play in S0�S1. Then player
I continues playing using f1 waiting for such a round to appear; and at round
d, he plays in S0 � S1 and hence will play outside S0 � S1 forever.

Hence EI is a winning strategy for player I.

In the following discussion, we shall say that (T0; T1) (and similarly (S0; S1)) are in a
degenerated position if [�T0T1] = ; or [�(T0)]� [T1] = ;.
Observe that if (T0; T1) are in a degenerated position then [T0]� [T1] must be an open or
closed set. Indeed, if [�(T0)]� [T1] = ; then [�(T0)] � [T1] and thus,

[T0]� [T1] = ([�(T0)] [ int([T0]))� [T1] = int([T0])� [T1]

is an open in Cantor space. If [�T0T1] = ; then [T1] is open in [T0] and [T0]� [T1] is closed
in [T0] (and therefore also in Cantor space).

Case 2: One (and only one) of (T0; T1) or (S0; S1) are in a degenerated position.
If player I plays in a degenerated position, then A is closed or open and player II has a
winning strategy (essentially, player II plays simulating the strategy described in Lemma
2.2 (case 1)):

� If A is closed then, since (T0; T1) is not in a degenerate position there exists g2 2
[�(T0)]� [T1] and player II can win the game using g2.

� If A is an open set then, since (T0; T1) is not in a degenerate position there exists
g1 2 [�T0T1] and player II can win the game using g1.

In a similar way it can be proved that if player II plays in a degenerated position then
player I has a winning strategy:

� If B is open then, since (S0; S1) is not in a degenerate position there exists f2 2
[�(S0)]� [S1] and player I can win the game using f2.

� If B is an closed set then, since (S0; S1) is not in a degenerate position there exists
f1 2 [�S0S1] and player I can win the game using f1.
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Case 3: (T0; T1) and (S0; S1) are in a degenerated position.
Recall that in these degenerated cases [T0] � [T1] and [S0] � [S1] are closed or open sets,
so, the corresponding game is determined by Lemma 2.8.

(2): Taking into account the former cases and the fact that a winning strategy for player
II in a Lipschitz game yields a winning strategy for player II in the corresponding Wadge
game, it remains to examine the second part of case 1 and the second part of case 2. In
the second part of case 1, since player II is now allowed to pass, she can wait until the
moves of player I form a sequence of length a. Then according to the decision of player I
of continuing to play in [S1], in A or outside A, player II plays in [T1], in B or outside B.
Following this strategy player II eventually wins the game. In the second part of case 2,
however, the allowance to pass is not enough for player II to win the game and it is easy
to check that player I still has an winning strategy in G�W (A;B).

This completes the proof of the lemma.

Remark 2.11 As a consequence of the latter lemma, sets A 2 Df2, which are neither
open nor closed, and whose complements also belong to Df2, form a Wadge degree.

Corollary 2.12 There is a sequence of Lipschitz degrees f[Ai]L : i 2 !g in Cantor space
such that:

1. for each i 2 !, Ai and Aci are di¤erences of closed sets which are neither open nor
closed;

2. for each i 2 !, [Ai]L �L [Ai+1]L; and

3. for each set B such that B and Bc are di¤erences of closed sets and B is neither
open nor closed, there exists i 2 ! such that [B]L = [Ai]L.

Proof. Putting

Ai = 0
(i+1) � (h0i � (f~0g [

[
k

0(k) � h1i � h0i � 2!) [ (h1i � (
[
k

0(k) � h1i � h0i � 2!)))

we observe that Ai is the di¤erence of two closed sets [F0] and [F1] such that 0(i+1) � ~0,
0(i+1) � h1i � ~0 2 [F0] and [F0] = fh1i � ~0g, and that Ai is neither open (since ~0 2 Ai) nor
closed (since h1i �~0 2 @Ai * Ai). The result follows from case 1 of the previous lemma.

Now we examine the sets occupying the fourth level of Wadge hierarchy.

Lemma 2.13 Let A and B be subsets of the Cantor space such that A;B 2 Df2.

1. G�L(A;B) is determined.

2. G�W (A;B) is determined.
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Proof. Without loss of generality, we can assume that there exist pruned binary trees
S0; S1; T0; T1 such that

1. S1 � S0 and T1 � T0.

2. A = [S0]� [S1], and B = [T0]� [T1].

(1): We distinguish three cases.
Case 1: Rs2(Bc) = [�T0T1] \ [�(T0)]� [T1] 6= ;,
Let g1 2 [�T0T1] \ [�(T0)]� [T1]. Then, player II wins using the following strategy. (This
time we only give an informal description of the winning strategy; a detailed de�nition
can be obtained using the ideas in the proof of Lemma 2.10.)

1. If player I plays s 2 S1 with jsj = j + 1 then player II plays g1(j).

2. If player I plays s =2 S0, with jsj = j + 1, and player II�s last move is t = g1 [j], then
player II plays g1(j).

3. Suppose player I plays s 2 S0 � S1 with jsj = j + 1 and s [j] 2 S1. Let t 2 T1 be
player II�s last move. Then there exists g2 2 [�(T0)] � [T1] such that t � g2 (recall
that g1 2 [�(T0)]� [T1]). Let us �x g2 in advance. Then player II plays g2(j).

4. If player I continues playing s 2 S0 � S1, then player II uses g2 as in previous case.

5. Finally, if player I plays s =2 S0 and t 2 T0 � T1 is player II�s last move, then player
II plays the least i � 1 such that t � hii =2 T0, if there exists such an element i. If
there is no such i, player II plays g2(j) waiting for such an i to appear (sooner or
later it will appear since g1 2 [�(T0)]).

6. If s =2 S0 and t =2 T0 then player II plays 0.

Case 2: Rs2(Bc) = ; but Rs2(Ac) = [�S0S1] \ [�(S0)]� [S1] 6= ;.
Since [�T0T1] \ [�(T0)]� [T1] = [�(T0; T1)], by König�s lemma �(T0; T1) is �nite. Let b =
maxfjtj : t 2 �(T0; T1)g and f1 2 [�S0S1] \ [�(S0)]� [S1].
Then player I wins the game with the following strategy:
Player I starts by playing f1 (that is, f1(0); f1(1); : : : and so on) until round b + 1 (in-
cluded). Let t0 denote the sequence of player II�s moves until round b+1. We distinguish
several cases:

1. t0 � 2<! � T1 or t0 =2 T0.

Since f1 2 [�(S0)]� [S1], there exists f2 2 [�(S0)]� [S1] such that f1[b+1] � f2 and
player I wins the game by playing f2.
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2. There exists g1 2 [�T0T1] such that t0 � g1.
Then there exists f2 2 [�(S0)]� [S1] such that f1[b+1] � f2 and player I plays using
f2, as long as player II plays in T1. If eventually player II produces t00 =2 T1, then we
distinguish two cases:

(-) If t00 =2 T0, player I continues playing using f2.
(-) Suppose t00 2 T0� T1. Then, player I plays using f2 but now eventually player II
must produce t000 such that t

0
0 � t000 and t

00
0 � 2<! � T0. Then, player I plays outside

S0 (note that he can eventually do such a move since f2 2 [�(S0)]).

3. t0 2 T0 � T1.
Then player I plays using f1. If eventually player II plays outside T0 then player I
can choose f2 2 [�(S0)] � [S1] (as in the previous case) and can win the game by
playing according to f2.

Case 3: Rs2(Ac) = ; and Rs2(Bc) = ;.
Then G�L(A;B) is determined by Lemma 2.10.

(2): Considering the former cases and taking into account that a winning strategy for
player II in a Lipschitz game yields a winning strategy for player II in the corresponding
Wadge game, it su¢ ces to examine case 2. It is not hard to see that the winning strategy
for player I described in the proof also works when player II is allowed to pass a �nite
number of times. Thus player I wins in this case also in the Wadge game G�W (A;B).

This completes the proof of the lemma.

Remark 2.14 In Chapter 4 we will prove the result of reverse mathematics stating that
in second order arithmetic both Lipschitz determinacy and SLO�L for sets in Df2 are
equivalent to ACA0.

Corollary 2.15 There exists a set B 2 Df2�
^
Df2of the Cantor space such that for every

A 2 Df2 �
^
Df2of the Cantor space A, [A]L =L [B].

Proof. It follows from case 1 of the previous lemma putting B = f~0g [
S
k 0

(k) � h1i �
h0i �B0, with

B0 = h0i � (h0i � (f~0g [
[
k

0(k) � h1i � h0i � 2!) [ (h1i � (
[
k

0(k) � h1i � h0i � 2!))).

Lemma 2.16 Let A and B be subsets of the Cantor space such that Ac; B 2 Df2.

1. G�L(A;B) is determined.

2. G�W (A;B) is determined.
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Proof. The proof is similar to that of Lemma 2.13 and we omit it.

Remark 2.17 From the above arguments it is not hard to see that both Df2 �
^
Df2 and

^
Df2 �Df2 are initial classes and form a pair of incomparable dual Lipschitz and Wadge
degrees.

We are ready for the main result of this section, which summarizes Lemmas 2.10, 2.13,
and 2.16.

Theorem 2.18 Let A and B be subsets of the Cantor space such that A;B 2 Df2[
^
Df2.

1. G�L(A;B) is determined.

2. G�W (A;B) is determined.

Proof. Follows from the previous lemmas.

Corollary 2.19 SLO�L and SLO
�
W hold for subsets A and B of the Cantor space such

that A;B 2 Df2 [
^
Df2.

Proof. The Lipschitz and Wadge semilinear order principles are consequences of the
determinacy of Lipschitz and Wadge games, respectively. Moreover, the implications are
local, i.e. the determinacy of G�L(A;B) for A;B 2 �0

1 implies SLO
�
L for A;B 2 �0

1; the
determinacy of G�L(A;B) for A;B 2 �0

1 implies SLO
�
L for A;B 2 �0

1, and so on.

We have proved the determinacy of Lipschitz and Wadge games for sets in the �rst �ve
levels of Wadge hierarchy. The proofs were based heavily on the analysis of the �rst residue
of a set. Thus it is natural to expect that proofs of determinacy concerning further �nite
levels could be obtained in the same way. Of course, it would be interesting to obtain
a proof by induction for all �nite levels and to extend the procedure for all countable
ordinals.

2.3 Determinacy of Lipschitz and Wadge games in Baire
space

In this section we show how our previous arguments can be adapted to prove determinacy
of Lipschitz and Wadge games in Baire space for degrees included in the �rst �ve levels of
the Wadge hierarchy. The key notion is that of a well�founded tree, and the ordinal rank
associated to each such a tree. Well�founded trees and ordinal ranks play here the role of
�nite trees and tree heights, which were used in the previous section.

For A;B � !! we denote by GL(A;B) the Lipschitz game in Baire space and by
GW (A;B) the Wadge game in Baire space. Notation and de�nitions related to these
concepts were introduced in Section 4 of Chapter 1. The di¤erence between the games
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studied in this section and the games studied in the previous section is that the moves of
players I and II are not restricted to the set f0; 1g. Players I and II can now play any
natural number.

As before we start by examining the clopen sets.

Lemma 2.20 Let A and B be clopen sets in Baire space.

1. GL(A;B) is determined.

2. GW (A;B) is determined.

Proof. We shall assume that A and B are both di¤erent from ; and !!. We can
check easily that the result holds in these cases.
Since A;B 2�0

1, there exist pruned trees S; S
0; T and T 0 such that

A = [S], Ac = [S0], B = [T ], and Bc = [T 0].

Since [S \ S0] = [S] \ [S0] = ;, S0 = S \ S0 is a well�founded tree. Let � be the rank of
S0, i.e. � = �(S0). In a similar way, we de�ne � = �(T0), where T0 = T \ T 0.

(1): We distinguish two cases:
Case 1: � � �.
Then player II has a winning strategy in the game GL(A;B). Let us observe that, since
T and T 0 are pruned trees if t0 =2 T0 = T \ T 0 then

8t1 (t0 � t1 ! t1 2 T ) _ 8t2 (t0 � t2 ! t2 2 T 0):

Similarly if s0 =2 S0 = S \ S0 then

8s1 (s0 � s1 ! s1 2 S) _ 8s2 (s0 � s2 ! s2 2 S0):

As a consequence a strategy EII : Seqodd ! ! for player II can be de�ned as follows. For
all s; t 2 !<! with jsj = j + 1 and jtj = j, we de�ne

EII(s
 t) =

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

minfk : t � hki 2 T0 ^ �S0(s) � �T0(t � hki)g if s 2 S0

minfk : 9t1 2 T (t � hki � t1)g if s 2 S � S0 ^

t 2 T0 ^ �T0(t) 6= 0

minfk : 9t2 2 T 0 (t � hki � t2)g if s 2 S0 � S0 ^

t 2 T0 ^ �T0(t) 6= 0

0 otherwise

Function EII is a winning strategy for player II. Indeed, according to EII player II enu-
merates an element of T0 no matter what player I plays. When it �nally happens that
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�T0(t) = 0 player I has irrevocably committed himself to enumerate an element of either
A or Ac since �(S0) � �(T0). Now if player I is enumerating an element of A, player
II chooses to go into B, and if player I is enumerating an element of Ac, then player II
decides to enter the set Bc. Thus, for every f 2 !! we have f 2 A i¤ f 
II EII 2 B and
hence EII is a winning strategy for player II.
Case 2: � < �.
Then player I has a winning strategy in the game GL(A;B).
Player I�s �rst move is

EI(hi) = minfk : hki 2 S0 ^ �S0(hki) � �g.

Now for all s; t 2 !<! with jtj = j � 1, we de�ne:

EI(s
 t) =

8>>>>>>>>>>>><>>>>>>>>>>>>:

minfk : s � hki 2 S0 ^ �T0(t) � �S0(s � hki)g if t 2 T0

minfk : 9s2 2 S0 (s � hki � s2)g if t 2 T � T0 ^

s 2 S0 ^ �S0(s) 6= 0

minfk : 9s1 2 S (s � hki � s1)g if t 2 T 0 � T0 ^

s 2 S0 ^ �S0(s) 6= 0

0 otherwise

To see that EI is a winning strategy for player I let us observe the following. Player I starts
to enumerate an element of S0 no matter what player II plays. When the sequence s that
player I is enumerating satis�es �S0(s) = 0, player II must decide to continue in either
B or Bc, if she has not already decided it. Now if player II decides to commit herself to
B, the next move of player I is to choose k such that s � hki � s2 for some s2 2 S0 and
to play forever outside A, i.e. in Ac. If, on the contrary, player II decides to stay in Bc

for the rest of the game, then in the next move player I chooses k such that s � hki � s1
for some s1 2 S and remains forever inside A. In both cases, for every g 2 !!, g 2 B i¤
EI 
 g 2 Ac. Thus EI is a winning strategy for player I.
(2): We distinguish the same two cases. Concerning case 1, a winning strategy for player
II in a Lipschitz game yields automatically a winning strategy for player II in the corre-
sponding Wadge game. Hence this case follows from case 1 for Lipschitz games. On the
other hand, it is not hard to see that if player II is allowed to pass, she would also win
the game in case 2. In fact, player II can keep passing until player I commits himself to
remaining either in A or outside A forever. In conclusion, the Wadge game GW (A;B),
where A and B are clopen sets of the Baire space, is determined.

This completes the proof of the lemma.

Remark 2.21

1. In the proof we used pruned trees and the rank of a tree. We can prove in set
theory that every tree can be pruned, i.e. contains a pruned subtree with the same
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set of paths, and that every well-founded tree has a rank. In second order arithmetic,
however, as we will prove in Chapter 5, both facts are available only in ATR0 and
in stronger subsystems of second order arithmetic. This will enable us to prove the
result within ATR0.

2. Since the rank of any ! tree of the Baire space is a countable ordinal the lemma
implies that there exists a sequence f[A�]L : � 2 !1g of Lipschitz degrees in the
Baire space such that:

(a) for each � 2 !1, A� is a clopen set di¤erent from ; and !!;
(b) for each � 2 !1, [A�]L �L [A�]L, where � 2 !1 is a successor or a limit ordinal

above �;

(c) for each clopen set B di¤erent from ; and !! there exists � 2 !1 such that
[B]L = [A�]L.

3. The determinacy of the Wadge games GW (A;B), where A and B are clopen sets
of the Baire space, implies that clopen sets di¤erent from ; and !! form a Wadge
degree. Additionally, using Wadge�s lemma we obtain that the clopen sets form a
initial class, i.e. for all A and B, if A is clopen and II wins G(B;A), then B is
clopen. Similarly we obtain that every clopen set is �0

1-complete, i.e. given a clopen
set A, for all clopen B player II wins G(B;A).

Lemma 2.22 Let A and B be closed sets in the Baire space.

1. GL(A;B) is determined.

2. GW (A;B) is determined.

Proof. It is enough to show that if S; T � !<! are pruned trees then the Lipschitz
game GL([S]; [T ]) is determined.

(1): We distinguish three cases:
Case 1: [�(T )] 6= ;.
Then there exists g 2 [T ] such that 8k 9t (g[k] � t ^ t =2 T ). Let us see that there exists a
winning strategy for player II, EII de�ned as follows:
For all s; t 2 !<! with jsj = j + 1 and jtj = j,

EII(s
 t) =

8>><>>:
g(j) if s 2 S

minfk : t � hki =2 Tg if s =2 S ^ 9t (t � hki =2 T )

g(j) if s =2 S ^ 8k (t � hki 2 T )

To see that EII is a winning strategy for player II it su¢ ces to observe that following
strategy EII player II enumerates g as long as player I is enumerating an element of [S]
and that she can always use a branch of g to leave [T ] if player I decides to leave [S].
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Thus, for every f 2 !! we have f 2 A i¤ f 
II EII 2 B and hence EII is a winning strategy
for player II.

Case 2: [�(T )] = ; and [�(S)] 6= ;.
Then there exists f 2 [S] such that 8k 9s (f [k] � s ^ s =2 S).
Let us de�ne T 0 = ft0 2 T : 9t (t0 � t ^ t =2 T )g. Then T 0 is a tree with no in�nite branch
(since Case 1 fails) and a winning strategy for player I, EI can be de�ned as follows:
Let EI(hi) = f(0) and for all s; t 2 !<! with jsj = jtj = j � 1,

EI(s
 t) =

8>><>>:
f(j) if t =2 T _ t 2 T 0

minfk : s � hki =2 Sg if t 2 T � T 0 ^ 9k (s � hki =2 S)

f(j) if t 2 T � T 0 ^ 8k (s � hki =2 S)

Since T 0 is well�founded player II must eventually play outside T 0. Let us denote by t the
sequence of player II�s movements. Then t =2 T 0 means that

8t0 (t � t0 ! t0 =2 T ) _ 8t0 (t � t0 ! t0 2 T )

Thus, according to EI Player I starts enumerating f and continues enumerating f as long
as player II plays inside T 0. For player II leaving T 0 amounts to decide whether she ends
the game in B or in Bc. So if player II decides to commit herself to B, player I continues
to enumerate f , otherwise he leaves A as soon as he can. Hence, for every g 2 !!, g 2 B
i¤ EI 
 g 2 Ac and EI is a winning strategy for player I.

Case 3: [�(T )] = ; and [�(S)] = ;.
Then, [T ] and [S] are clopen and therefore GL([S]; [T ]) is determined by Lemma 2.20.

(2): It is not hard to see that if we consider Wadge games, instead of Lipschitz games,
player II would have a winning strategy in every single case considered above except in
case 2. In this case player I can enumerate f while player II is passing or enumerating a
t0. Since she cannot do this forever, player I wins the game.

This completes the proof of the lemma.

Remark 2.23

1. In Chapter 5 we prove the reverse mathematics result stating that the Lipschitz de-
terminacy of closed sets in Baire space is equivalent to the subsystem of second order
arithmetic ATR0.

2. As a consequence of the above lemma and of Wadge�s lemma we obtain that the
closed sets form a initial class, and that every closed set with a nonempty boundary
is �0

1-complete.

In some of the following proofs we will de�ne winning strategies without detailing the
reasons why they are winning.
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Lemma 2.24 Let A and B be subsets of the Baire space such that A;B 2 �01 [�0
1.

1. GL(A;B) is determined.

2. GW (A;B) is determined.

Proof. The case A; B 2 �0
1 is just Lemma 2.22. Bearing in mind that the strategies

for a game GL(A;B) are also strategies for the dual game GL(Ac; Bc) we obtain from
Lemma 2.22 that GL(A;B) is determined when A; B 2 �01. Analogously we obtain that
GW (A;B) is determined when A; B 2 �01.

(1): Let us prove that GL(A;B) is determined for A 2 �01 and B 2 �0
1 (the remaining

case follows from this one by duality).
It is enough to show that if S; T � !<! are pruned trees then the Lipschitz game
GL([S]

c; [T ]) is determined. We distinguish two cases:

Case 1: [�(S)] 6= ;.
Then there exists f 2 [S] such that 8k 9s (f [k] � s ^ s =2 S).
A winning strategy EI, for player I, can be de�ned as follows:
Let EI(hi) = g(0) and for all s; t 2 !<! with jsj = jtj = j � 1,

EI(s
 t) =

8>><>>:
f(j) if t 2 T

minfk : s � hki =2 Sg if t =2 T ^ 9k (s � hki =2 S)

f(j) if t =2 T ^ 8k (s � hki 2 S)

Case 2: [�(S)] = ;.
Then [S]c is closed and GL([S]c; [T ]) is determined by Lemma 2.22.

(2): We distinguish the same two cases.
Observe that in case 1 player I can still use the same winning strategy to win GW (A;B)
with A 2 �01 and B 2 �0

1. Case 2 is analogous to the corresponding case for Lipschitz
games. Finally, the determinacy of GW (A;B) for B 2 �01 and A 2 �0

1 follows from the
previous cases by duality.

This completes the proof of the proposition.

Remark 2.25 The above arguments yield also that �0
1 � �01 and �01 � �0

1 are initial
classes and form a pair of incomparable dual Lipschitz and Wadge degrees.

As it was the case in the former section the topological analysis of Section 1 will play
a crucial role in the next lemmas.

Lemma 2.26 Let A and B be subsets of the Baire space such that A;B;Ac; Bc 2 Df2.

1. GL(A;B) is determined.
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2. GW (A;B) is determined.

Proof. Without loss of generality, we can assume that there exists pruned trees
S0; S1; T0; T1 such that

1. S1 � S0 and T1 � T0.

2. A = [S0]� [S1], and B = [T0]� [T1].

Since Ac 2 Df2, we know that Rs2(Ac) = [�S0S1] \ [�(S0)]� [S1] = ;. Observe that
Rs2(A

c) is a closed set, so Rs2(Ac) = [�(S0; S1)] for some tree �(S0; S1), namely

�(S0; S1) = fs 2 S1 : 9f1; f2 (f1 2 [�S0S1] ^ f2 2 [�(S0)]� [S1] ^ s � f1 ^ s � f2)g.

By hypothesis �(S0; S1)must be well�founded. Similarly, Rs2(Bc) = [�T0T1]\[�(T0)]� [T1] =
; and, therefore, �(T0; T1) is also a well�founded tree. Let � = � (�(S0; S1)) and � =
� (�(T0; T1)).

(1): To prove that GL(A;B) is determined we distinguish three main cases with several
subcases.
Case 1: [�T0T1] 6= ;, [�(T0)]� [T1] 6= ;, and [�S0S1] 6= ;, [�(S0)]� [S1] 6= ;.
We distinguish two subcases:

1. If � � �, then player II has a winning strategy, EII.

For all s; t 2 !<! with jsj = j + 1 and jtj = j if s 2 �(S0; S1) with �j = ��(S0;S1)(s),
then

EII(s
 t) = minfk : t � hki 2 �(T0; T1) ^ ��(T0;T1)(t � hki)) � �jg.

If at some point player I plays outside �(S0; S1) (this must be eventually the case,
since �(S0; S1) is well�founded) and player II is still playing inside �(T0; T1), with
��(T0;T1)(t) > 0, then

EII(s
 t) = minfk : t � hki 2 �(T0; T1)g

If ��(T0;T1)(t) = 0, or t =2 �(T0; T1), then player II decides her move depending on the
position, s, of player I, as follows:

For each u 2 �(T0; T1) such that ��(T0;T1)(u) = 0, let us �x gu1 2 [�T0T1] with
u � gu1 and gu2 2 [�(T0)] � [T1] with u � gu2 (here we are using AC!). Let us
de�ne bt = maxfk � jtj : t [k] 2 �(T0; T1)g. Then ��(T0;T1)(t [bt]) = 0 and taking
t0 = t [bt], we have at our disposal functions gt

0
1 and g

t0
2 . Then the strategy of player

II continues as follows:
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EII(s
t) =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

gt
0
1 (j) if j � bt ^ s[bt + 1] =2 S0

gt
0
2 (j) if j � bt ^ s[bt + 1] 2 S0 � S1 ^ s 2 S0

gt
0
2 (j) if j � bt ^ s[bt + 1] 2 S0 � S1 ^ s =2 S0 ^ 8k (t � hki 2 T0)

k if j � bt ^ s[bt + 1] 2 S0 � S1 ^ s =2 S0 ^ 9k (t � hki =2 T0)

and k = minfi : t � hii =2 T0g

gt
0
1 (j) if j � bt ^ s[bt + 1] 2 S1 ^ 9f (f 2 [�S0S1] ^ s[bt + 1] � f) ^

(s 2 S1 _ s =2 S0)

gt
0
1 (j) if j � bt ^ s[bt + 1] 2 S1 ^ 9f (f 2 [�S0S1] ^ s[bt + 1] � f) ^

s 2 S0 � S1 ^ 9s0(s � s0 ^ s0 =2 S0)

gt
0
1 (j) if j � bt ^ s[bt + 1] 2 S1 ^ 9f (f 2 [�S0S1] ^ s[bt + 1] � f) ^

s 2 S0 � S1 ^ 8s0(s � s0 ! s0 2 S0) ^ 8k (t � hki =2 T0 � T1)

k if j � bt ^ s[bt + 1] 2 S1 ^ 9f (f 2 [�S0S1] ^ s[bt + 1] � f) ^

s 2 S0 � S1 ^ 8s0(s � s0 ! s0 2 S0) ^ 9k (t � hki 2 T0 � T1)

and k = minfi : t � hii 2 T0 � T1g

gt
0
2 (j) if j � bt ^ s[bt + 1] 2 S1 ^ :9f (f 2 [�S0S1] ^ s[bt + 1] � f) ^

(s 2 �S0S1 _ s 2 S0 � S1)

gt
0
2 (j) if j � bt ^ s[bt + 1] 2 S1 ^ :9f (f 2 [�S0S1] ^ s[bt + 1] � f) ^

s =2 �S0S1 ^ (s 2 S1 _ s =2 S0) ^ 8k (t � hki 2 T0)

k if j � bt ^ s[bt + 1] 2 S1 ^ :9f (f 2 [�S0S1] ^ s[bt + 1] � f) ^

s =2 �S0S1 ^ (s 2 S1 _ s =2 S0) ^ 9k (t � hki =2 T0)

and k = minfi : t � hii =2 T0g
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That is to say, player II plays using t0 during the �rst bt rounds. Then, she plays
according to cases 1A0, 1B0, 1C0, and 1D0, which can be described as in cases 1A, 1B,
1C, and 1D of Lemma 2.10 by replacing b, g1, and g2 by bt, gt

0
1 , and g

t0
2 , respectively.

2. If � > �, then player I has a winning strategy.

First, EI(hi) = minfk : hki 2 �(S0; S1) ^ ��(S0;S1)(hki) � �g.

For all s; t 2 !<! with jsj = jtj = j � 1, if player II plays t 2 �(T0; T1) with
�j = ��(T0;T1)(t) then

EI(s
 t) = minfk : s � hki 2 �(S0; S1) ^ ��(S0;S1)(s � hki) � �jg

If at some point player II plays outside �(T0; T1) (this must eventually be the case,
since �(T0; T1) is well�founded) and player I is still playing inside �(S0; S1), with
��(S0;S1)(s) > 0, then

EI(s1 
 s2) = minfk : s � hki 2 �(S0; S1)g.

If ��(S0;S1)(s) = 0, or s =2 �(S0; S1), then player I decides his move depending on the
position t of II, as follows:

For each u 2 �(S0; S1) such that ��(S0; S1)(u) = 0, let us �x fu1 2 [�S0S1] with u � fu1
and fu2 2 [�(S0)]� [S1] such that u � fu2 . Let as = maxfk � jsj : s [k] 2 �(S0; S1)g.
Then, taking s0 = s [as], the strategy of player I continues as follows:
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EI(s
 t) =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

fs
0
2 (j) if j � as ^ t[as] =2 T0

fs
0
1 (j) if j � as ^ t[as] 2 T0 � T1 ^ t 2 T0

fs
0
1 (j) if j � as ^ t[as] 2 T0 � T1 ^ t =2 T0 ^ 8k (s � hki =2 S0 � S1)

k if j � as ^ t[as] 2 T0 � T1 ^ t =2 T0 ^ 9k (s � hki 2 S0 � S1)

and k = minfi : s � hii 2 S0 � S1g

fs
0
2 (j) if j � as ^ t[as] 2 T1 ^ 9g (g 2 [�T0T1] ^ t[as] � g) ^

(t 2 T1 _ t =2 T0)

fs
0
2 (j) if j � as ^ t[as] 2 T1 ^ 9g (g 2 [�T0T1] ^ t[as] � g) ^

t 2 T0 � T1 ^ 9t0(t � t0 ^ t0 =2 T0)

fs
0
2 (j) if j � as ^ t[as] 2 T1 ^ 9g (g 2 [�T0T1] ^ t[as] � g) ^

t 2 T0 � T1 ^ 8t0(t � t0 ! t0 2 T0) ^ 8k (s � hki 2 S0 � S1)

k if j � as ^ t[as] 2 T1 ^ 9g (g 2 [�T0T1] ^ t[as] � g) ^

t 2 T0 � T1 ^ 8t0(t � t0 ! t0 2 T0) ^ 9k (s � hki =2 S0 � S1)

and k = minfi : s � hii 2 S0 � S1g

fs
0
1 (j) if j � as ^ t[as] 2 T1 ^ :9g (g 2 [�T0T1] ^ t[as] � g) ^

(t 2 �T0T1 _ t 2 T0 � T1)

fs
0
1 (j) if j � as ^ t[as] 2 T1 ^ :9g (g 2 [�T0T1] ^ t[as] � g) ^

t =2 �T0T1 ^ (t 2 T1 _ t =2 T0) ^ 8k (s � hki =2 S0 � S1)

k if j � as ^ t[as] 2 T1 ^ :9g (g 2 [�T0T1] ^ t[as] � g) ^

t =2 �T0T1 ^ (t 2 T1 _ t =2 T0) ^ 9k (s � hki 2 S0 � S1)

and k = minfi : t � hii 2 S0 � S1g
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That is to say, player I plays using s0 during the �rst as rounds. Then, he plays according
to cases 2A0, 2B0, 2C0, and 2D0, which can be described as in cases 2A, 2B, 2C, and 2D of
Lemma 2.10 by replacing a, f1, and f2 by as, fs

0
1 , and f

s0
2 , respectively.

Recall that we say that (T0; T1) (and similarly (S0; S1)) are in a degenerated position if
[�T0T1] = ; or [�(T0)]� [T1] = ;.
Let us observe again that if (T0; T1) are in a degenerated position then [T0]� [T1] must be
an open or closed set.

Case 2: One (and only one) of (T0; T1) or (S0; S1) are in a degenerated position.
If player I plays in a degenerated position, then A is closed or open and player II has a
winning strategy (essentially, player II plays simulating the strategy described in Lemma
2.22 (case 1)). The subcases have been described in Case 2 of Lemma 2.10.

Case 3: (T0; T1) and (S0; S1) are in a degenerated position.
In these degenerated cases [T0] � [T1] and [S0] � [S1] are closed or open sets, so, the
corresponding game is determined by Lemma 2.24.

(2): Taking into account the former cases and the fact that a winning strategy for player
II in a Lipschitz game yields a winning strategy for player II in the corresponding Wadge
game, it remains to examine the second part of case 1 and the second part of case 2. In
the second part of case 1, since player II is now allowed to pass, she can wait until player
I�s moves form a sequence s0 of length ��(S0; S1)(s0) = 0. Then according to the decision
of player I of continuing to play in [S1], in A or outside A, player II plays in [T1], in B or
outside B. Following this strategy player II eventually wins the game. In the second part
of case 2 the allowance to pass is not enough for player II to win the game and player I
still has an winning strategy in GW (A;B).

This completes the proof of the proposition.

Remark 2.27

1. The lemma concerns sets in the third level of Wadge hierarchy. Similarly to lemma
2.20, we can derive the existence of a !1-sequence of Lipschitz degrees in the Baire
space. Since the rank of any ! tree of the Baire space is a countable ordinal there
exists a sequence f[A�]L : � 2 !1g of Lipschitz degrees in the Baire space such that:

(a) for each � 2 !1, A� is a di¤erence of closed sets and is neither open nor closed;
(b) for each � 2 !1, [A�]L �L [A�]L, where � 2 !1 is a successor or a limit ordinal

above �;

(c) for each set B which is a di¤erence of closed sets and is neither open nor closed
there exists � 2 !1 such that [B]L = [A�]L.

2. As a consequence of the above lemma sets A 2 Df2, which are neither open nor
closed, and whose complements also belong to Df2, form a Wadge degree.

Now we move on to the fourth level of Wadge hierarchy.
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Lemma 2.28 Let A and B be subsets of the Baire space such that A;B 2 Df2.

1. GL(A;B) is determined.

2. GW (A;B) is determined.

Proof. Without loss of generality, we can assume that there exist pruned trees
S0; S1; T0; T1 such that

1. S1 � S0 and T1 � T0.

2. A = [S0]� [S1], and B = [T0]� [T1].

Now we distinguish the same cases as in the proof of Lemma 2.13 and reason accord-
ingly. Equipped with Lemma 2.26, the proof is similar to that of Lemma 2.13 and we omit
it.

Lemma 2.29 Let A and B be subsets of the Baire space such that Ac; B 2 Df2.

1. GL(A;B) is determined.

2. GW (A;B) is determined.

Proof. The proof is similar to that of Lemma 2.13 and we omit it.

Remark 2.30 From the above arguments it is not hard to see that both Df2 �
^
Df2 and

^
Df2 �Df2 are initial classes and form a pair of incomparable dual Lipschitz and Wadge
degrees.

We are ready for the main result of this section, which summarizes lemmas 2.26, 2.28,
and 2.29.

Theorem 2.31 Let A and B be subsets of the Baire space such that A;B 2 Df2 [
^
Df2.

1. GL(A;B) is determined.

2. GW (A;B) is determined.

Proof. Follows from the previous lemmas.

Corollary 2.32 SLOL and SLOW hold for subsets A and B of the Baire space such that

A;B 2 Df2 [
^
Df2.

Proof. The Lipschitz and Wadge semilinear order principle are consequences of the
determinacy of Lipschitz and Wadge games, respectively. Again the implications are local
in the sense of Corollary 2.19
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Remark 2.33 In Chapter 5 we will derive this result within subsystem �11�CA0 of second
order arithmetic.

We have proved Lipschitz determinacy only for sets of both Cantor and Baire spaces
which occupy degrees corresponding to the �rst �ve levels of Wadge hierarchy.

It is likely that the argument can be extended to prove Lipschitz and Wadge determi-
nacy for all �nite di¤erences of closed sets (and of open sets) or even to countable ordinal
di¤erences of closed sets (and open sets).
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Chapter 3

In�nite games in Second Order
Arithmetic

This chapter is devoted to the formalization of in�nite nullsum two person games with
perfect information in the language of second order arithmetic. Originally the subject was
studied in the realm of Zermelo-Fraenckel set theory. However, around 1975 H. Friedman
realized that the standard theorems of classical (countable) mathematics require only
the basic axioms for arithmetic and set existence axioms just for subsets of N. This
motivated him to transfer the work of calibrating the strength of classical mathematical
theorems in terms of set existence axioms from the set theoretic realm to the setting of
second order arithmetic and its subsystems. One year later John R. Steel showed that the
determinacy of �01 games is equivalent over RCA0 to ATR0, and many results on the
reverse mathematics of Gale-Stewart games have been obtained since then.

In Section 1 we survey the most relevant results in this area as well as we describe the
usual formalization of Gale-Stewart games in second order arithmetic. This formalization
is well known (see [Smp99], V.8) and we only refer it for the sake of completion. We will
consider games played in both the Baire and the Cantor space. In terms of formalization,
the di¤erence between Gale-Stewart games played in the Baire space or in the Cantor space
reduces itself to the interpretation of the winning set. Nevertheless, when we examine the
strength of such principles for sets at levels below �03, we �nd substantial di¤erences as
can be seen in the end of Section 1.

In Sections 2 and 3 we formalize Lipschitz and Wadge games in the language of second
order arithmetic. We state the principles of Lipschitz and Wadge determinacy and the
semilinear order property, and set up the respective formalized theories. To the best of our
knowledge, there was no explicit formalization of these games in second order arithmetic
in the literature and we do it for the �rst time.

In Section 4 we state some basic facts concerning Lipschitz and Wadge determinacy,
semilinear order principle, and the relations between these concepts. All these basic facts
can be proved in our base theory RCA0 and will be used in the latter chapters sometimes
without explicit reference.

61
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In Section 5 we study the relation between Gale-Stewart and Lipschitz/Wadge games.
There is no obvious way of reducing an arbitrary Gale-Stewart game to a Lipschitz or
Wadge game. However, as we show in Section 5, every Lipschitz and every Wadge game
can be canonically reduced to a Gale-Stewart game, and this reduction can be easily
veri�ed within RCA0. Still, this reduction is obtained at the price of increasing the
payo¤ set complexity. This is something that cannot be disregarded when the goal is to
calibrate the strength of determinacy in terms of subsystems of second order arithmetic.

Finally, in Section 6 we show that Wadge�s Lemma can be proved within RCA0.
This fact justi�es our formalization of the semilinear order principle by means of Lip-
schitz/Wadge games, instead of having used the original de�nition with continuous reduc-
tions.

From now on, we always work in the language of second order arithmetic and our base
theory will be RCA0.

3.1 Gale-Stewart games

Let X � N be nonempty. For a given formula '(f) with a distinguished function variable
f 2 XN, a game in the space XN is de�ned as follows: Two players, say player I (male)
and player II (female), alternately choose an element x in X to form f 2 XN which is
called the resulting play. Player I plays �rst.

Player I x0 x1 x2 : : :

Player II y0 y1 y2 : : :

After ! turns, player I has produced a sequence of elements of X, hx0; x1; : : : i, and player
II has produced a sequence of elements ofX, hy0; y1; : : : i. The resulting play is the function
f 2 XN given by hx0; y0; x1; y1; : : : i. Player I wins if and only if '(f) holds. Otherwise
Player II wins that play. We denote by GX(') the Gale-Stewart game in the space XN

de�ned by the formula '(f).

A strategy for player I in the game GX(') is a function assigning an element of X to
every sequence from X of even length. A strategy for player II in the game GX(') is a
function assigning an element of X to every sequence from X of odd length. That is to
say, if we de�ne

SeqX = fs 2 Seq : s is a sequence of elements from Xg

SeqXeven = fs 2 SeqX : jsj is eveng

SeqXodd = fs 2 SeqX : jsj is oddg

then a strategy for player I in the game GX(') is a function �I : SeqXeven ! X and a
strategy for player II in the game GX(') is a function �II : SeqXodd ! X.
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If players I and II follow strategies �I and �II, respectively, the resulting play is uniquely
determined and denoted by �I 
 �II. In fact, �I 
 �II is the function h : N ! X de�ned
by the recursive equations

h(2k) = �I(h[2k])

h(2k + 1) = �II(h[2k + 1]).

Recall that h[i] denotes the �nite sequence hh(0); h(1) : : : ; h(i� 1)i.
A strategy for player I, �I, is winning if player I wins the game as long as he plays

following it, no matter what his opponent plays. Thus, the fact that �I is a winning
strategy for player I in GX(') can be formalized as follows

8�II '(�I 
 �II),

where �II ranges over strategies for player II. Similarly, a strategy for player II, �II, is
winning if player II wins the game as long as she plays following it, no matter what her
opponent plays. Thus, the fact that �II is a winning strategy for player II in GX(') can
be formalized as follows

8�I :'(�I 
 �II),

where �I ranges over strategies for player I.
A game GX(') is determined if either player I or player II has a winning strategy.

Hence, the determinacy of the game GX(') can be expressed by the axiom

DetX(') � 9�I 8�II '(�I 
 �II) _ 9�II 8�I :'(�I 
 �II),

where �I and �II range over strategies for player I and strategies for player II, respectively.

We are now in a position to give the axiomatizations of the Gale-Stewart determinacy
principles that have been considered in the literature (see, e.g., Section V.8 of [Smp99].)

De�nition 3.1 (Gale�Stewart Determinacy theories) Let � be a class of formulas
with a distinguished function variable f 2 XN.

1. The scheme of �-determinacy in XN, �-DetX , is given by the axiom scheme

DetX(')

where '(f) is in �.

2. The scheme of �0n-determinacy in X
N, �0n-Det

X , is given by the axiom scheme

8f 2 XN('(f)$  (f)) ! DetX(')

where '(f) is in �0n and  (f) is in �
0
n.

3. If X = N (determinacy in the Baire space), we will omit the superscript X and write
�-Det and �0n-Det, respectively. If X = f0; 1g (determinacy in the Cantor space),
we will write �-Det� and �0n-Det

�, respectively.
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Remark 3.2

1. In all the theories we will consider, formulas in the corresponding axiom schemes
are allowed to contain number and set parameters, although in most cases we will
not write them explicitly.

2. For the sake of notational simplicity, if the set X is clear from the context, we will
omit the superscript X in our notations GX('), SeqX , SeqXeven, Seq

X
odd, Det

X(').
In particular, this will be the case when working in the Cantor space (X = f0; 1g)
and in the Baire space (X = N).

3. Recall that the language of second order arithmetic does not formally contain any
function variables. However, one can naturally express the fact that "G is the graph
of a function f : N ! X" by using a �02 formula. The price to pay is a possible
increase of the quanti�er complexity of the formulas involved. This point could cause
problems in a system without full arithmetical comprehension. However, we will only
consider base theories below ACA0 when working in the Cantor space and, as usual,
if X = f0; 1g then we can regard f as a set variable simply by identifying f(n) = 0
and f(n) = 1 with n 62 f and n 2 f , respectively.

From now on, we consider the class of formulas � to be one of the following:

� Formulas �0n/�0n in the arithmetic hierarchy,

� Formulas �0n as de�ned above,

� Formulas (�0n)k, with k 2 ! and k > 0, corresponding to k-th level of the di¤erence
hierarchy on �0n sets. These formula classes are de�ned as follows. For k = 1,
(�0n)1 = �0n. For k > 1, ' 2 (�0n)k i¤ ' can be written as '1 ^ '2, where :'1 2
(�0n)k�1 and '2 2 �0n.

In particular, these classes of formulas are well known to satisfy nice closure properties
that will be used in the sequel sometimes without explicit mention.

Recall that given a class of formulas �, :� denotes the class of formulas given by
f:' : ' 2 �g. It is well known that determinacy for � games and determinacy for :�
games are equivalent principles. This fact easily formalizes in RCA0.

Lemma 3.3 (Lemma 3.6.3 of [N09b]) It is provable in RCA0 that �-DetX and (:�)-
DetX are equivalent.

Proof. By symmetry, it su¢ ces to show that �-DetX implies (:�)-DetX . Assume
�-determinacy in XN. Consider '(f) 2 :�. We must show that DetX(') holds. To
this end, consider �(f) � :'(f 0), where f 0 denotes the function de�ned from f by putting
f 0(n) = f(n+1). Since �(f) is equivalent in RCA0 to a formula in �, by applying �-DetX

we obtain that
9�I 8�II :'((�I 
 �II)0) _ 9�II 8�I '((�I 
 �II)0)
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Case 1: 9�I 8�II :'((�I 
 �II)0).
Then, we can use �I in order to construct a winning strategy for player II in the game
GX('). In fact, let a = �I(hi). Put

�II(hx0i) = �I(ha; x0i)

�II(hx0; y0; : : : ; xk+1i) = �I(ha; x0; y0; : : : ; xk; yki)

It is easy to see that �II is a winning strategy for player II in GX(').

Case 2: 9�II 8�I '((�I 
 �II)0).
Then, we can use �II in order to construct a winning strategy for player I in the game
GX('). Namely, pick b 2 X and de�ne a strategy �I as follows

�I(hi) = �II(hbi)

�I(hx0; y0; : : : ; xk; yki) = �II(hb; x0; y0; : : : ; xk; yki)

It is easy to see that �I is a winning strategy for player I in GX(').

This completes the proof of the lemma.

As a consequence, the following hierarchy of determinacy principles of increasing
strength emerges.

Baire space:

�01-Det �
�01-Det
jjj

�01-Det
� (�01)2-Det � (�01)3-Det � � � � � (�01)!-Det � �02-Det � : : :

Cantor space:

�01-Det
� �

�01-Det
�

jjj
�01-Det

�
� (�01)2-Det� � (�01)3-Det� � � � � � (�01)!-Det� � �02-Det� � : : :

where (�0n)!-Det denotes the principle of determinacy for the class of all �nite Boolean
combinations (�0n)! sets, as de�ned in [MS12].

It is easy to check that games in the Cantor space can be reduced to games in the
Baire space, without altering the payo¤ complexity of the game. Actually, the following
�folklore�result holds.

Lemma 3.4 It is provable in RCA0 that �-Det implies �-Det�.

Proof. Assume �-Det. We must show that �-Det� holds too. Consider '(f) in � and
de�ne �(f) � '(f 0), where f 0 denotes the function de�ned from f by putting f 0(n) = 0 if
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f(n) = 0 and f 0(n) = 1 if f(n) 6= 0. Since �(f) is equivalent in RCA0 to a formula in �,
by applying �-Det we obtain that

9�I 8�II '((�I 
 �II)0) _ 9�II 8�I :'((�I 
 �II)0)

where �I and �II range over strategies for the game GN(�).
Case 1: 9�I 8�II '((�I 
 �II)0).
Then, we can use �I in order to construct a winning strategy for player I in the game
Gf0;1g('). Namely, we de�ne a strategy �I as follows. Given a sequence s, let �I � s denote
the sequence of length 2 � jsj corresponding to the run of the game in which player I plays
following �I and player II plays s. Put

�I(hx0; y0; : : : xk; yki) =
�
0 if �I(�I � hy0; : : : ; yki) = 0
1 if �I(�I � hy0; : : : ; yki) 6= 0

Case 2: 9�II 8�I :'((�I 
 �II)0).
The proof is similar to the one of Case 1 and we omit it.

As to the opposite direction, it is also well known that games in the Baire space can
be e¤ectively (checkable in RCA0) reduced to games in the Cantor space, but now at the
price of increasing the payo¤ complexity � (see, e.g., [MS12], p. 229). If � is at least at
the level of �03, this complexity increase has no e¤ect and � determinacy in one space is
equivalent to � determinacy in the other. In contrast, at levels below �03, the strengths
of � determinacy in the Cantor space and � determinacy in the Baire space are known to
di¤er signi�cantly (see the table below).

The precise bounds for the amount of Gale-Stewart determinacy provable in second
order arithmetic were obtained by Montalbán and Shore in [MS12]. We state the result
for the Baire space, but observe that the same bounds apply equally well to the Cantor
space, for they lie above �03 determinacy.

Proposition 3.5 ([MS12])

1. For each k 2 !, Z2 proves (�03)k-Det.

2. Z2 does not prove (�03)!-Det. In particular, Z2 does not prove �
0
4-Det.

The strength of determinacy for levels below �04 has been calibrated in terms of the
common subsystems of second order arithmetic, both for games in the Cantor space and
for games in the Baire space. The following table summarizes the main results obtained
(cf. [Smp99], and [NMT07]).

The left most column contains subsystems of second order arithmetic from weaker to
stronger. The center column and the right most column contain classes of games in Cantor
space and Baire space, respectively. In the table a subsystem of second order arithmetic
and types of determinacy included in the same row are pairwise equivalent within RCA0.
Subsystem �11-TR0 is the system RCA0 plus �11 trans�nite recursion. On the other
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hand, for each k 2 !, the axiom scheme
�
�11
�k-ID0 represents the iteration of inductive

de�nitions with k operators (see [Smp99] and [MT07] for precise de�nitions).

Within RCA0 Determinacy in 2N Determinacy in NN

WKL0 , �01, �
0
1

ACA0 , (�01)2

ATR0 , �02; �
0
2 �01; �

0
1

�11 �CA0 , (�01)2

�11 �TR0 , �02

�11 � ID0 , (�02)2 �02
...

...
...�

�11
�k � ID0 , (�02)k+1 (�02)k

... ,
...

...

From the table it is clear that within RCA0 we have (�02)k-Det
� $ (�02)k�1-Det for

1 < k < !. It can also be proved that �03-Det
� $ �03-Det within RCA0.

As it was previously mentioned, second order arithmetic Z2 does not prove �04-Det,
not even (�03)!-Det. Nevertheless, since Z2 proves (�

0
3)k-Det, for each k 2 !, it makes

sense to ask in the spirit of reverse mathematics whether there exist results in the other
direction. I.e. whether (�03)k-Det can be proved to be equivalent to Z2. This is, however,
not the case. M. O. MedSalem and K. Tanaka have proved (see [MT07]) that Borel
determinacy, �11-Det, does not imply even �

1
2-CA0, let alone Z2.

3.2 Lipschitz games

Let X � N be nonempty. For given formulas A(f) and B(g) with distinguished function
variables f; g 2 XN, respectively, a Lipschitz game in the space XN is de�ned as follows:
Two players, say player I (male) and player II (female), alternately choose an element x
in X to form two functions f; g 2 XN. Player I plays �rst.

Player I x0 x1 x2 : : :

Player II y0 y1 y2 : : :

After ! turns, player I has produced a sequence of elements of X, hx0; x1; : : : i, and player
II has produced a sequence of elements of X, hy0; y1; : : : i. The resulting play for player I is
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the function f 2 XN given by hx0; x1; : : : i. The resulting play for player II is the function
g 2 XN given by hy0; y1; : : : i. Player I wins if and only if :(A(f)$ B(g)). Player II wins
if and only if A(f)$ B(g). We denote by GXL (A;B) the Lipschitz game in the space X

N

de�ned by the formulas A(f), B(g).

A strategy for player I in the game GXL (A;B) is a function assigning an element of X
to every sequence from X of even length. A strategy for player II in the game GXL (A;B)
is a function assigning an element of X to every sequence from X of odd length. That is
to say, a strategy for player I in the game GXL (A;B) is a function �I :Seq

X
even ! X and a

strategy for player II in the game GXL (A;B) is a function �II :Seq
X
odd ! X.

If players I and II follow strategies �I and �II, respectively, the resulting plays are
uniquely determined. We will write �I 
IL �II to denote player I�s resulting play and write
�I 
IIL �II to denote player II�s resulting play. Notice that

�I 
IL �II(n) = �I 
 �II(2n)

�I 
IIL �II(n) = �I 
 �II(2n+ 1).

A strategy for player I, �I, is winning if player I wins the game as long as he plays
following it, no matter what his opponent plays. Thus, the fact that �I is a winning
strategy for player I in GXL (A;B) can be formalized as follows

8�II :(A(�I 
IL �II)$ B(�I 
IIL �II)).

where �II ranges over strategies for player II. Similarly, a strategy for player II, �II, is
winning if player II wins the game as long as she plays following it, no matter what her
opponent plays. Thus, the fact that �II is a winning strategy for player II in GXL (A;B)
can be formalized as follows

8�I (A(�I 
IL �II)$ B(�I 
IIL �II)),

where �I ranges over strategies for player I.

Hence, the determinacy of the game GXL (A;B), denoted Det
X
L (A;B), can be expressed

by the axiom

9�I 8�II :(A(�I 
IL �II)$ B(�I 
IIL �II)) _ 9�II 8�I (A(�I 
IL �II)$ B(�I 
IIL �II)),

where �I and �II range over strategies for player I and strategies for player II, respectively.

We are now in a position to give the precise axiomatizations of the theories we will be
interested in.

De�nition 3.6 (Lipschitz Determinacy theories) Let �1 and �2 be classes of formu-
las with distinguished function variables f; g 2 XN, respectively.



3.2. LIPSCHITZ GAMES 69

1. The scheme of (�1;�2)-Lipschitz determinacy in XN, (�1;�2)-DetXL , is given by the
axiom scheme

DetXL (A;B)

where A(f) is in �1 and B(g) is in �2.

For simplicity, if �1 = �2 = �, we will write �-DetXL instead of (�;�)-DetXL .

2. The scheme of (�0n;�
0
m)-Lipschitz determinacy in X

N, (�0n;�
0
m)-Det

X
L , is given by

the axiom scheme

8f 2 XN(A(f)$ C(f)) ^ 8g 2 XN(B(g)$ D(g)) ! DetXL (A;B)

where A(f) is in �0n, C(f) is in �
0
n, B(g) is in �

0
m and D(g) is in �0m.

For simplicity, if n = m, we will write �0n-Det
X
L instead of (�0n;�

0
n)-Det

X
L .

3. The scheme of (�;�0n)-Lipschitz determinacy in X
N, (�;�0n)-Det

X
L , is given by the

axiom scheme
8g 2 XN(B(g)$ D(g)) ! DetXL (A;B)

where A(f) is in �, B(g) is in �0n and D(g) is in �
0
n.

4. The scheme of (�0n;�)-Lipschitz determinacy in X
N, (�0n;�)-Det

X
L , is given by the

axiom scheme
8f 2 XN(A(f)$ C(f)) ! DetXL (A;B)

where A(f) is in �0n, C(f) is in �
0
n and B(g) is in �.

5. If X = N (determinacy in the Baire space), we will omit the superscript X and
write (�1;�2)-DetL, (�0n;�

0
m)-DetL, and so on. If X = f0; 1g (determinacy in the

Cantor space), we will write (�1;�2)-Det�L, (�
0
n;�

0
m)-Det

�
L, and so on.

In a similar vein, one can naturally formalize in the language of second order arithmetic
the semilinear ordering principle for the Lipschitz reducibility relation. First of all, recall
that a set A � XN is Lipschitz reducible to a set B � XN, written A �L B, if and only if
player II has a winning strategy in the game GXL (A;B). Hence, given two formulas A(f)
and B(g), the fact that A �L B can be formalized by the following axiom

RedXL (A;B) � 9�II 8�I (A(�I 
IL �II)$ B(�I 
IIL �II)),

where �I and �II range over strategies for player I and strategies for player II, respectively.

The semilinear ordering principle SLOXL says that given A;B � XN, either A �L B
or :B �L A. Thus, the following axiomatizations appear naturally.

De�nition 3.7 (Lipschitz SLO theories) Let �1 and �2 be classes of formulas with
distinguished function variables f; g 2 XN, respectively.
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1. The scheme of (�1;�2)-Lipschitz semilinear ordering principle in XN, (�1;�2)-SLOXL ,
is given by the axiom scheme

RedXL (A;B) _RedXL (:B;A)

where A(f) is in �1 and B(g) is in �2.

For simplicity, if �1 = �2 = �, we will write �-SLOXL instead of (�;�)-SLOXL .

2. The scheme of (�0n;�
0
m)-Lipschitz semilinear ordering principle in X

N, (�0n;�
0
m)-

SLOXL , is given by the axiom scheme

8f 2 XN(A(f)$ C(f)) ^ 8g 2 XN(B(g)$ D(g)) ! RedXL (A;B) _RedXL (:B;A)

where A(f) is in �0n, C(f) is in �
0
n, B(g) is in �

0
m and D(g) is in �0m.

For simplicity, if n = m, we will write �0n-SLO
X
L instead of (�0n;�

0
n)-SLO

X
L .

3. The scheme of (�;�0n)-Lipschitz semilinear ordering principle in X
N, (�;�0n)-SLO

X
L ,

is given by the axiom scheme

8g 2 XN(B(g)$ D(g)) ! RedXL (A;B) _RedXL (:B;A)

where A(f) is in �, B(g) is in �0n and D(g) is in �
0
n.

4. The scheme of (�0n;�)-Lipschitz semilinear ordering principle in X
N, (�0n;�)-SLO

X
L ,

is given by the axiom scheme

8f 2 XN(A(f)$ C(f)) ! RedXL (A;B) _RedXL (:B;A)

where A(f) is in �0n, C(f) is in �
0
n and B(g) is in �.

5. If X = N (determinacy in the Baire space), we will omit the superscript X and
write (�1;�2)-SLOL, (�0n;�

0
m)-SLOL, and so on. If X = f0; 1g (determinacy in

the Cantor space), we will write (�1;�2)-SLO�L, (�
0
n;�

0
m)-SLO

�
L, and so on.

3.3 Wadge games

Wadge games are variants of Lipschitz games in which player II is allowed to pass (i.e.,
not to play) at any round, but she must play in�nitely often otherwise she loses.

Let X � N be nonempty. For given formulas A(f) and B(g) with distinguished
function variables f; g 2 XN, respectively, a Wadge game in the space XN is de�ned as
follows: Two players, say player I (male) and player II (female), alternately play to form
two functions f; g 2 XN. Player I plays �rst and in each of his turns he must choose an
element x in X. In each of her turns player II either chooses an element x in X or has the
option to pass (we will write p to denote this action.) But Player II has to play in�nitely
often otherwise she loses.
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Player I x0 x1 x2 x3 x4 : : :

Player II p p y0 p y1 : : :

After ! turns, player I has produced a sequence of elements of X, hx0; x1; x2 : : : i, and
player II has produced a sequence, hp; : : : ; p; y0; p; : : : ; p; y1; p; : : : ; p; y2; : : : i. The resulting
play for player I is the function f 2 XN given by hx0; x1; x2 : : : i. The resulting play for
player II is the function g 2 XN given by hy0; y1; y2 : : : i. Player I wins if and only if
:(A(f)$ B(g)). Player II wins if and only if A(f)$ B(g). We denote by GXW (A;B) the
Wadge game in the space XN de�ned by the formulas A(f); B(g).

In order to formalize the fact that player II can pass, we will identity passing with
picking the number zero. Accordingly, we will consider that if one of the two players
chooses number n+1 in the formalized Wadge game, he or she has actually chosen number
n in the real world game. As a consequence, player I and player II would play in di¤erent
spaces, for player I is not allowed to choose the number zero. To avoid this, we opt for
allowing player I to pick number zero as well and we consider that for player I, both
choosing 0 and 1 mean choosing 0 in the real world game. Thus, as an example, a
(formalized) play of a Wadge game of the form

2; 3; 0; 0; 1; 1; 4; 0 : : :

corresponds to the following real world play

Player I 1 0 0 3 : : :

Player II 2 p 0 p : : :

(Notice that the formalization of a play of a Wadge game is not unique. The previous one
could also be formalized as 2; 3; 1; 0; 1; 1; 4; 0 : : : or as 2; 3; 0; 0; 0; 1; 4; 0 : : : )

We are now in a position to give our de�nitions. Let X+ be the set de�ned as f0g [
fi + 1 : i 2 Xg. A strategy for player I in the game GXW (A;B) is a function assigning
an element of X+ to every sequence from X+ of even length. A strategy for player II in
the game GXW (A;B) is a function assigning an element of X

+ to every sequence from X+

of odd length. That is to say, a strategy for player I in the game GXL (A;B) is a function
�I :SeqX

+

even ! X+ and a strategy for player II in the game GXW (A;B) is a function
�II :SeqX

+

odd ! X+.

Given strategies �I and �II, the restriction that player II must play in�nitely often can
be expressed by the �02 formula

Inf(�I; �II) � 8n 9k > n �I 
 �II(2k + 1) 6= 0

(Recall that �I
�II denotes the resulting play for a Gale-Stewart game previously de�ned.)

If players I and II follow strategies �I and �II, respectively, and Inf(�I; �II) holds,
the resulting plays are uniquely determined. We will write �I 
IW �II to denote player I�s
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resulting play and write �I 
IIW �II to denote player II�s resulting play. Note that both
�I 
IW �II and �I 
IW �II will be functions from N into X. Actually, we de�ne

�I 
IW �II(n) = (�I 
 �II(2n)) _�1

move(0) = �i [(�I 
 �II)(2i+ 1) 6= 0]
move(n+ 1) = �i [i > move(n) ^ (�I 
 �II)(2i+ 1) 6= 0]

�I 
IIW �II(n) = (�I 
 �II(2move(n) + 1))� 1
where _� denotes the modi�ed subtraction function given by a _�b = max(0; a� b).

A strategy for player I, �I, is winning if player I wins the game as long as he plays
following it, no matter what his opponent plays. Thus, the fact that �I is a winning
strategy for player I in GXW (A;B) can be formalized as follows

8�II (Inf(�I; �II)! :(A(�I 
IW �II)$ B(�I 
IIW �II))),

where �II ranges over strategies for player II in the game GXW (A;B). Similarly, a strategy
for player II, �II, is winning if player II wins the game as long as she plays following it, no
matter what her opponent plays. Thus, the fact that �II is a winning strategy for player
II in GXW (A;B) can be formalized as follows

8�I (Inf(�I; �II) ^ (A(�I 
IW �II)$ B(�I 
IIW �II))),

where �I ranges over strategies for player I in the game GXW (A;B).

Hence, the determinacy of the game GXW (A;B), denoted Det
X
W (A;B), can be expressed

by the axiom

9�I 8�II
�
Inf(�I; �II)! :(A(�I 
IW �II)$ B(�I 
IIW �II))

�
_ 9�II 8�I

�
Inf(�I; �II) ^ (A(�I 
IW �II)$ B(�I 
IIW �II))

�
where �I and �II range over strategies for player I and strategies for player II, respectively.

We are now in a position to give the precise axiomatizations of the theories for Wadge
determinacy we will be interested in.

De�nition 3.8 (Wadge Determinacy Theories) Let �1 and �2 be classes of formulas
with distinguished function variables f; g 2 XN, respectively.

1. The scheme of (�1;�2)-Wadge determinacy in XN, (�1;�2)-DetXW , is given by the
axiom scheme

DetXW (A;B)

where A(f) is in �1 and B(g) is in �2.

For simplicity, if �1 = �2 = �, we will write �-DetXW instead of (�;�)-DetXW .
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2. The scheme of (�0n;�
0
m)-Wadge determinacy in X

N, (�0n;�
0
m)-Det

X
W , is given by

the axiom scheme

8f 2 XN(A(f)$ C(f)) ^ 8g 2 XN(B(g)$ D(g)) ! DetXW (A;B)

where A(f) is in �0n, C(f) is in �
0
n, B(g) is in �

0
m and D(g) is in �0m.

For simplicity, if n = m, we will write �0n-Det
X
W instead of (�0n;�

0
n)-Det

X
W .

3. The scheme of (�;�0n)-Wadge determinacy in X
N, (�;�0n)-Det

X
W , is given by the

axiom scheme
8g 2 XN(B(g)$ D(g)) ! DetXW (A;B)

where A(f) is in �, B(g) is in �0n and D(g) is in �
0
n.

4. The scheme of (�0n;�)-Wadge determinacy in X
N, (�0n;�)-Det

X
W , is given by the

axiom scheme
8f 2 XN(A(f)$ C(f)) ! DetXW (A;B)

where A(f) is in �0n, C(f) is in �
0
n and B(g) is in �.

5. If X = N (determinacy in the Baire space), we will omit the superscript X and
write (�1;�2)-DetW , (�0n;�

0
m)-DetW , and so on. If X = f0; 1g (determinacy in

the Cantor space), we will write (�1;�2)-Det�W , (�
0
n;�

0
m)-Det

�
W , and so on.

The next step is to give some natural axiomatizations of the semilinear ordering prin-
ciple for the Wadge reducibility relation. Recall that a set A � XN is Wadge reducible
to a set B � XN, written A �W B, if and only if player II has a winning strategy in the
game GXW (A;B). Hence, given two formulas A(f) and B(g), the fact that A �W B can
be formalized by the following axiom

RedXW (A;B) � 9�II 8�I [Inf(�I; �II) ^ (A(�I 
IW �II)$ B(�I 
IIW �II))],

where �I and �II range over strategies for player I and strategies for player II in the game
GXW (A;B), respectively.

The semilinear ordering principle SLOXW says that given A;B � XN, either A �W B
or :B �W A. Thus, the following axiomatizations appear naturally.

De�nition 3.9 Let �1 and �2 be classes of formulas with distinguished function variables
f; g 2 XN, respectively.

1. The scheme of (�1;�2)-Wadge semilinear ordering principle in XN, (�1;�2)-SLOXW ,
is given by the axiom scheme

RedXW (A;B) _RedXW (:B;A)

where A(f) is in �1 and B(g) is in �2.

For simplicity, if �1 = �2 = �, we will write �-SLOXW instead of (�;�)-SLOXW .
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2. The scheme of (�0n;�
0
m)-Wadge semilinear ordering principle in XN, (�0n;�

0
m)-

SLOXW , is given by the axiom scheme

8f 2 XN(A(f)$ C(f)) ^ 8g 2 XN(B(g)$ D(g)) ! RedXW (A;B) _RedXW (:B;A)

where A(f) is in �0n, C(f) is in �
0
n, B(g) is in �

0
m and D(g) is in �0m.

For simplicity, if n = m, we will write �0n-SLO
X
W instead of (�0n;�

0
n)-SLO

X
W .

3. The scheme of (�;�0n)-Wadge semilinear ordering principle in X
N, (�;�0n)-SLO

X
W ,

is given by the axiom scheme

8g 2 XN(B(g)$ D(g)) ! RedXW (A;B) _RedXW (:B;A)

where A(f) is in �, B(g) is in �0n and D(g) is in �
0
n.

4. The scheme of (�0n;�)-Wadge semilinear ordering principle in X
N, (�0n;�)-SLO

X
W ,

is given by the axiom scheme

8f 2 XN(A(f)$ C(f)) ! RedXW (A;B) _RedXW (:B;A)

where A(f) is in �0n, C(f) is in �
0
n and B(g) is in �.

5. If X = N (determinacy in the Baire space), we will omit the superscript X and write
(�1;�2)-SLOW , (�0n;�

0
m)-SLOW , and so on. If X = f0; 1g (determinacy in the

Cantor space), we will write (�1;�2)-SLO�W , (�
0
n;�

0
m)-SLO

�
W , and so on.

3.4 Basic properties of Lipschitz and Wadge determinacy

In what follows, we state some basic properties of Lipschitz and Wadge determinacy that
will be used in the next chapters, sometime without explicit reference.

The fact that �-determinacy and :�-determinacy are equivalent principles is immedi-
ate for Lipschitz and Wadge games, as the games GXL=W (A;B) and G

X
L=W (:A;:B) turn

out to be the same game.

Lemma 3.10 It is provable over RCA0 that

1. (�1;�2)-DetXL=W and (:�1;:�2)-DetXL=W are equivalent.

2. (�1;�2)-SLOXL=W and (:�1;:�2)-SLOXL=W are equivalent.

3. The same holds for the complementary pair of classes (�;�0m) and (:�;�0m), and
for (�0n;�) and (�

0
n;:�).

Proof. Given A;B � XN, note that GXL=W (A;B) and G
X
L=W (:A;:B) coincide, for

A(f)$ B(g) and :A(f)$ :B(g) are logically equivalent.
The argument that games in the Cantor space can be reduced to games in the Baire

space without increasing the payo¤ complexity given in the proof of Lemma 3.4 applies
equally well in the present context. Thus, we have
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Lemma 3.11 It is provable over RCA0 that

1. (�1;�2)-DetL=W implies (�1;�2)-Det�L=W .

2. (�1;�2)-SLOL=W implies (�1;�2)-SLO�L=W .

3. The same holds for classes (�0n;�
0
m), (�;�

0
m), (�

0
n;�).

The well known fact that the semilinear ordering principle can be inferred from deter-
minacy can be formalized inside RCA0. Indeed, we have

Lemma 3.12 It is provable over RCA0 that

1. (�1;�2)-DetXL=W implies (�1;�2)-SLOXL=W .

2. The same holds for classes (�0n;�
0
m), (�;�

0
m), (�

0
n;�).

Proof. We only write the proof for the Lipschitz determinacy case. The Wadge
determinacy case is analogous. Assume (�1;�2)-DetXL . Let A(f) 2 �1 and B(g) 2 �2.
We must show that either RedXL (A;B) or Red

X
L (:B;A) holds. By hypothesis, the game

GXL (A;B) is determined.

Case 1: 9�II 8�I (A(�I 
IL �II)$ B(�I 
IIL �II)).
Then, RedXL (A;B) holds by de�nition.

Case 2: 9�I 8�II :(A(�I 
IL �II)$ B(�I 
IIL �II)).
De�ne �II to be the strategy for player II given by:

�II(hx0i) = �I(hi)

�II(hx0; y0; : : : ; xk; yk; xk+1i) = �I(hy0; x0; : : : ; yk; xki)

We claim that �II is a winning strategy for player II in the game GXL (:B;A). To see this,
pick a strategy for player I, �I say, and consider �II to be the strategy for player II de�ned
from �I as above:

�II(hx0i) = �I(hi)

�II(hx0; y0; : : : ; xk; yk; xk+1) = �I(y0; x0; : : : ; yk; xki)

By �00-induction, it is easy to check that

�I 
IL �II = �I 
IIL �II
�I 
IIL �II = �I 
IL �II

So, :(A(�I 
IIL �II)$ B(�I 
IL �II)). Hence, :B(�I 
IL �II)$ A(�I 
IIL �II), as required.
We have thus shown that there exists a winning strategy for player II in the game
GXL (:B;A) and so RedXL (:B;A) holds.
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Remark 3.13 Notice that the previous argument actually shows that overRCA0, (�1;�2)-
DetXW implies RedXW (A;B) _RedXL (:B;A).

Concerning the relation between Lipschitz and Wadge determinacy, observe that i)
a winning strategy for player I in a Wadge game automatically gives rise to a winning
strategy for player I in the corresponding Lipschitz game, and ii) a winning strategy for
player II in a Lipschitz game automatically gives rise to a winning strategy for player I in
the corresponding Wadge game. Thus, we have

Lemma 3.14 Given formulas A(f); B(g), it is provable in RCA0 that

1. 9�I 8�II :(A(�I
IW �II)$ B(�I
IIW �II)) implies 9�I 8�II :(A(�I
IL �II)$ B(�I
IIL
�II)).

2. 9�II 8�I (A(�I
IL�II)$ B(�I
IIL�II)) implies 9�II 8�I (A(�I
IW�II)$ B(�I
IIW�II)).

Proof. Immediate.

As a consequence, we obtain that

Lemma 3.15 It is provable over RCA0 that

1. (�1;�2)-SLOXL implies (�1;�2)-SLOXW .

2. The same holds for classes (�0n;�
0
m), (�;�

0
m), (�

0
n;�).

Proof. It follows from Lemma 3.14 that RedXL (A;B) implies Red
X
W (A;B).

3.5 Reducing Lipschitz and Wadge games to Gale-Stewart
games

Lipschitz and Wadge games can be naturally reduced to Gale-Stewart games. This reduc-
tion is e¤ective and checkable in, say, RCA0. However, there is a price to pay: a possible
increase of the payo¤ set complexity.

Fix X � N. Let us start by analyzing the Lipschitz case, which is simpler because
player II is not allowed to pass. Consider the game GXL (A;B), where A(f); B(g) are
formulas and f; g range over XN. Recall that the resulting play in a Lipschitz game can
be e¤ectively recovered from the resulting play in a Gale-Stewart game. Indeed, given a
function h 2 XN, it su¢ ces to consider the functions h1; h2 de�ned by composition from
h as follows

h1(n) = h(2n)

h2(n) = h(2n+ 1).
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Now put

TransL(A;B)(h) = :(A(h1)$ B(h2));

where h ranges over functions in XN. It is clear that a winning strategy for player I
(respectively, for player II) in the game GX(TransL(A;B)) is a winning strategy for
player I (respectively, for player II) in the game GXL (A;B). Thus, we have

DetX(TransL(A;B))! DetXL (A;B).

Since :(A$ B) is logically equivalent to (A_B)^ (:A_:B), the previous reduction
allows one to infer Lipschitz determinacy for � sets from Gale-Stewart determinacy for
�^ (:�) sets (We are assuming that � is closed under conjunction and disjunctions.) This
provides us with an upper bound on the strength of Lipschitz determinacy for � sets.
This upper bound needn�t be, however, optimal. Even worse, a Lipschitz game whose
determinacy can be proved in second order arithmetic may well unravel to a Gale-Stewart
game whose determinacy cannot be established within second order arithmetic. Consider,
for example, payo¤ complexity � = �04. By a result of Louveau and Saint-Raymond
[LSR87] Z2 proves the principle of �04-DetL, whereas by a result of Montalbán and Shore
[MS12] Z2 does not prove �04 ^�04-Det.

As to the Wadge case, consider the game GXW (A;B), where A(f); B(g) are formulas
and f; g range over functions in XN. Given a function h 2 XN, let Inf(h) denote the �02
formula given by

8n 9k (k > n ^ h(k) 6= 0);

let h1; h2 denote the function given by

h1(n) = h(2n)

h2(n) = h(2n+ 1)

and let h2;W denote the function given by

move(h)(0) = �i [h(2i+ 1) 6= 0]

move(h)(n+ 1) = �i [i > move(h)(n) ^ h(2i+ 1) 6= 0]

h2;W (n) = h(2move(h)(n) + 1))� 1.

Now put

TransW (A;B)(h) = Inf(h2)! :(A(h1)$ B(h2;W )),

where h ranges over functions in XN. It is easy to see that a winning strategy for player
I (respectively, for player II) in the game GX(TransW (A;B)) gives rise to a winning
strategy for player I (respectively, for player II) in the game GXW (A;B). Thus, we have
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DetX(TransW (A;B))! DetXW (A;B).

As in the Lipschitz case, the previous reduction allows one to infer Wadge determinacy
for � sets from Gale-Stewart determinacy for an appropriate playo¤ complexity. But
observe that now the possible increase of the payo¤ complexity is even worse due to the
presence of the �02 formula Inf(h

2) in the translation of the game. For example, the
translation of a clopen Wadge game would already give rise to a �02 Gale-Stewart game.

3.6 Wadge�s lemma in RCA0

In this �nal section we show that Wadge�s lemma can be formalized and proved in RCA0.
We only present a proof of Wadge�s lemma for Lipschitz reductions, the proof for Wadge
reductions is similar. In order to do that, the notion of a Lipschitz function F : XN ! XN,
must be de�ned within RCA0. This will be done by adapting the de�nition of continuous
function given in Simpson in [Smp99], De�nition II.6.1. Previously we have to view XN

within RCA0 as a complete separable metric space. For this end we need to formalize
within RCA0 several concepts that we take from [Smp99], pp. 74-81.)

The set of real numbers, R, does not formally exist within RCA0, since RCA0 is
limited to the language of second order arithmetic. So the real numbers are de�ned in
RCA0 as Cauchy sequences of rational numbers. The latter numbers are obtained from
N via the usual Dedekind construction of the number systems. In this way, each integer
number is coded by a natural number coding a pair of natural numbers; and similarly, a
rational number is coded by a natural number coding a pair of integers.

Within RCA0, a real number is a sequence of rational numbers hqk : k 2 Ni such that

8k8i jqk � qk+ij � 2�k:

We say that two real numbers hqk : k 2 Ni and hq0k : k 2 Ni are equal if

8k
��qk � q0k�� � 2�k+1:

We embed Q in R by identifying each rational number q with the real xq = hqk : k 2 Ni,
with qk = q for all k 2 N.

Now we can formalize sequences of real numbers withinRCA0 as functions f : N�N!
Q such that for each n 2 N the function fn : N! Q de�ned by

fn(k) = f(k; n)

is a real number in the sense of the former de�nition of real number. The notation
hxk : k 2 Ni will be used to represent the sequence of real numbers f with fn = xn.

Using the previous de�nition we can de�ne convergence within RCA0. A sequence
hxk : k 2 Ni converges to the real number x, written limxn = x, if

8k 9n 8i jx� xn+ij < 2�k.
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Like R, the metric space XN also does not formally exist within RCA0. However we
can formalize it within RCA0 by using a coding machinery for complete separable metric
spaces. For this purpose let us observe that each complete separable metric space M is
determined by a countable dense set X � M and the function d : X �X ! R obtained
by restricting to X the distance function of M .

Formally, a code for a complete separable metric space is given by a set X and sequence
of real numbers d : X �X ! R such that

d(a; a) = 0, d(a; b) = d(b; a) � 0, and d(a; b) + d(b; c) � d(a; c)

for all a; b; c 2 X. A code (X; d) determines a metric space that we denote by bX (although
formally there is no concrete object corresponding to it). An element of bX is a sequence
hak : k 2 Ni of elements of X, such that

8i8j
�
i < j ! d(ai; aj) � 2�i

�
:

For points x = hak : k 2 Ni and y = hbk : k 2 Ni of bX we de�ne d(x; y) = limk d(ak; bk):
The equality x = y is de�ned to mean that d (x; y) = 0.

We embed X in bX by identifying each a 2 X with the point xa = hak : k 2 Ni of bX,
with xk = a for all k 2 N. Under this identi�cation, X is a (countable) dense subset of bX.

Baire space (and similarly Cantor space) can be described in this framework as follows.

First of all, recall that the set X0 of all functions f : ! ! ! such that for some kf 2 !,
we have f(n) = 0 for all n � kf , is a dense subset of Baire space. Each function f 2 X0
can be put in correspondence with the �nite sequence f [kf ] and so X0 is countable and
can be identi�ed with the set !<! of all �nite sequences. (A similar argument is also valid
for Cantor space.)

Therefore, working inRCA0, ifX = f0; 1g orX = N a code for the complete separable
metric space XN can be obtained by taking X<N as a code for a countable dense subset
and a distance function given by d : X<N �X<N ! R with

d(s; t) =

(
1

2k+1
if 9j � max(jsj ; jtj) (sj 6= tj) and k = minfj : sj 6= tjg

0 if 8j � max(jsj ; jtj) (sj = tj)

where

si =

(
s(i) if i < jsj

0 if i � jsj
and ti =

(
t(i) if i < jtj

0 if i � jtj

Lemma 3.16 Within RCA0 is provable that:

1. (X<N; d) is a code for a complete separable metric space, [X<N;

2. The points of [X<N can be identi�ed with functions from N to X. Namely,
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� If x = hak : k 2 Ni is a point of[X<N, we identify x with the function f : N! X,
de�ned by f(i) = ai+2(i), for all i; and

� Given f : N! X, we identify f with the point x = hak : k 2 Ni of [X<N de�ned
by ai = f [i], for all i.

So we shall denote [X<N by using the more natural notation XN. Under this identi�-
cation, the metric of the metric spacedXN coincides with the usual distance for Baire and
Cantor space de�ned in Chapter 1.

Within RCA0, each pair (s; r) 2 X<N � Q+ is regarded as a code for an open ball
B(s; r) consisting of all f 2 X<N such that d(s; f) < r. The notation (s; r1) < (t; r2) is
used to mean d(s; t) + r1 < r2, i.e. the closure of the open ball B(s; r1) is included in the
open ball B(t; r2).

Next we formalize the concept of a Lipschitz function (see [Smp99], De�nition II.6.1).
Within RCA0, a code for a Lipschitz function F : XN ! XN is a subset � � N ��
X<N �Q+

�2
which can be viewed as an union of pairs of open balls. The set � is

required to satisfy several properties as we state below. We write (s; r1)�(t; r2) as an
abbreviation for 9n (n; s; r1; t; r2) 2 �.

De�nition 3.17 The set � � N �
�
X<N �Q+

�2
is a code for a continuous function

F� : X
N ! XN if � satis�es the following properties:

1. If (s; r1)�(t; r2) and (s; r1)�(t0; r3), then d(t; t0) � r2 + r3.

2. If (s; r1)�(t; r2) and (s0; r3) < (s; r1), then (s0; r3)�(t; r2).

3. If (s; r1)�(t; r2) and (t; r2) < (t0; r3), then (s; r1)�(t0; r3).

The idea of the above de�nition is the following: the conditions make of the set � a
code for a partially de�ned continuous function from XN to XN. If f is a point of XN

(that is, a function from N to X), we write f 2 domF� to mean that for every k there
exists in � a pair of open balls, (t; r1)�(t0; r2) such that d(f; t) < r1 and r2 < 1

2k+1
. If

f 2 domF� it can be proved within RCA0 that the three conditions in the de�nition
ensure that there exists a unique g 2 XN such that d(g; t0) � r2 for all (t; r1)�(t0; r2) with
d(f; t) < r1. Namely, g : N! X is de�ned by

8i (g(i) = bi(i))

where bi 2 X<N is such that for some n; a; r1 and r2, u = (n; a; r1; b; r2) 2 � is the least
element of � such that

r2 <
1

2i+1
^ d(f; a) < r1

We refer this element by writing F�(f) = g. As usual, to say that F�(f) is de�ned
means that f 2 domF�, and to say that F� is totally de�ned on XN means that F�(f)
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is de�ned for every f 2 XN. We write F� : XN ! XN to mean that � a code for a
continuous function and F : XN ! XN is a continuous, totally de�ned function from XN

to XN.

We say that � is a code for Lipschitz function if � is code for a continuous function
F� : X

N ! XN and there exists c � 1 such that the following fourth condition is satis�ed

4. If f 6= f 0, F�(f) = g, and F�(f 0) = g0, then d(g; g0) � c � d(f; f 0).

If c < 1 we say that F� is a contraction.

Now let us consider the Lipschitz game GXL (A;B) in the space X
N determined by two

formulas A and B.

In order to establish a connection between Lipschitz reductions and winning strategies
we shall slightly modify our notion of strategy (although it can be easily proved within
RCA0 that both notions are equivalent).

A strategy for player I in the game GXL (A;B) is a function E : X<N ! X<N such that

s � s0 ! E(s) � E(s0) and jE(s)j = jsj+ 1

for all s; s0 2 X<N. The intuition here is that for any �nite sequence s played by the
opponent of player I, the strategy E instructs player I to play (E(s))jsj, i.e. the last
element of the sequence E(s). If s = hi, then (E(hi))0 is the move of player I with which
the game starts.

A strategy for player II in a Lipschitz game is a function E : X<N � fhig ! X<N such
that

s � t! E(s) � E(t) and jE(s)j = jsj
for all s; t 2 X<N. As former, the intuition here is that for any �nite sequence s played
by the opponent of player II, the strategy E instructs player II to play (E(s))jsj�1, i.e. the
last element of the sequence E(s).

Now we de�ne the concept of winning strategy. Let E : X<N � fhig ! X<N be a
strategy for player II in the game GXL (A;B). Given f : N ! X, there exists a unique
function g : N! X such that for all k 2 N,

g[k] = E(f([k])):

We denote this function g by FE(f).
The function E : X<N � fhig ! X<N is said to be a winning strategy for player II in

the Lipschitz game GXL (A;B) if for all f 2 XN

A(f)$ B(FE(f)).

Analogously a strategy E : X<N ! X<N for player I is said to be a winning strategy
for player I in the Lipschitz game GXL (A;B) if for all g 2 XN

A(FE(g))$ :B(g).



82 CHAPTER 3. INFINITE GAMES IN SECOND ORDER ARITHMETIC

where now FE(g) is de�ned to be the unique f : N! X such that for all k 2 N,

f [k + 1] = E(g[k]).

Now we establish the link to the Lipschitz functions.

Lemma 3.18 The following is provable in RCA0.

1. Let E : X<N � fhig ! X<N be a strategy for player II in a Lipschitz game. Then
there is a code � for Lipschitz function such that for every f 2 XN, FE(f) = F�(f).

2. Let E : X<N ! X<N be a strategy for I in a Lipschitz game. Then there is a code �
for a contraction (i.e. a Lipschitz function with constant c < 1) such that for every
f 2 XN, FE(f) = F�(f).

Proof. The proofs of both parts are similar.
Working in RCA0, by �01-comprehension there exists a set � such that

u 2 �$ 9k; s; t; r1; r2 � u

8>><>>:
u = (k; s; r1; t; r2) ^ k � 1 ^

r1; r2 2 Q+ ^ r1; r2 < 1
2k
^

E (s [k]) � t

Now it is straightforward to check that � is a code for a continuous function such that
for all f 2 XN, FE(f) = F�(f), and, as a consequence � is a code for a Lipschitz function.
If E is a strategy for player I then F� is a contraction.

To prove the Wadge lemma we need one more result.

Lemma 3.19 Let � be a code for a Lipschitz function. Then there is a strategy E :
X<N � fhig ! X<N for player II in a Lipschitz game such that F� = FE .

Proof. Let us de�ne E : X<N � fhig ! X<N as follows. For each s 2 X<N � fhig let
fs : N! X be de�ned by

fs(i) =

(
s(i) if i < jsj

0 if i � jsj

Since F� is a totally de�ned function, fs 2 domF� and, thus, there exists gs = F�(fs).
Let k = jsj. Then, since fs 2 domF�, by �01-minimization (available in RCA0) there

exists the least u = (n; a; r1; b; r2) 2 � such that d(fs; a) = d(s; a) < r1 and r2 < 1
2k+1

. We
de�ne E (s) = b [k]. By de�nition of gs, E(s) = F�(fs) [jsj] and E(t) = F�(ft) [jtj]. Since
s � t, d(fs; ft) < 1

2jsj+1
and since F� is Lipschitz we conclude that

d(F�(fs); F�(ft)) � d(fs; ft) �
1

2jsj+1
.
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Thus we have shown that F�(fs) [jsj] = F�(ft) [jsj] and so

E(s) = F�(fs) [jsj] � E(t) = F�(ft) [jtj] .

It is obvious that jE(s)j = jF�(fs) [jsj]j = jsj, for every s 2 X<N � fhig, and so E is a
strategy for player II, and, by de�nition, for all f 2 XN

F�(f) = FE(f).

Note that if we would like to obtain a strategy for player I in a Lipschitz game from a
Lipschitz function F , as we did for player II in the former lemma, the Lipschitz function
F would be required to be a contraction with c < 1. This is why the equivalence between
the existence of a winning strategy for player I in a Lipschitz game and the reducibility
relation �L is problematic.

Lemma 3.20 (Wadge) Within RCA0, if A(f) and B(g) are formulas then:

1. Player II has a winning strategy in the Lipschitz game GXL (A;B) i¤ A �L B.

2. If player I has a winning strategy in the Lipschitz game GXL (A;B), then :B �L A.

Proof. Part 1 follows from part 1 of Lemma 3.18 and from Lemma 3.19. To prove
part 2 let E be a strategy for player I and let E 0 : X<N � fhig ! X<N be de�ned by
E 0(s) = E(s). Then E 0 is a strategy for player II in the Lipschitz game GXL (:B;A) and
part 2 follows using part 1 of Lemma 3.18.

Since Wadge´s lemma is provable within RCA0, we have chosen to assume it as a
basic result and to formalize the relations A �W B and A �L B, respectively, as �player
II has a wining strategy in Wadge game GW (A;B)" and �player II has a wining strategy
in Lipschitz game GL(A;B)". This way the formalization becomes simpler since we deal
directly with games avoiding functions.
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Chapter 4

Lipschitz and Wadge games in
Cantor space

In this chapter we begin the task of calibrating the strength of determinacy principles in
terms of subsystems of second order arithmetic. The characterization of closed sets in
terms of trees and the fact that these trees can be pruned within subsystems of second
order arithmetic play a major role in the proofs of determinacy. Thus we start by studying
the axiomatic strength needed to prove that a tree can be pruned. In Section 1 we show
thatWKL0 su¢ ces to prove that trees which correspond to clopen sets can be pruned and
that within RCA0 the subsystem ACA0 can even be fully characterized by an assertion
that states that binary trees can be pruned.

In Section 2 we show that the subsystem of second arithmeticWKL0 is strong enough
to prove the determinacy of Lipschitz and Wadge games in the Cantor space. As a conse-
quence we obtain thatWKL0 also proves Lipschitz and Wadge semilinear order principle.

In Section 3 we analyze the strength needed to prove Lipschitz and Wadge determi-
nacy for open sets. We obtain several partial determinacy results from WKL0, but full
determinacy for open sets seems to require the strength of the second order subsystem
ACA0. We formulate a dichotomy principle (DP) which together with WKL0 implies
Lipschitz and Wadge determinacy in Cantor space. (DP) follows from several assertions,
all of them equivalent to ACA0. We do not know ifWKL0 is strong enough for proving
(DP). Would that be the case, WKL0 would su¢ ce to deduce Lipschitz and Wadge
determinacy and semilinear order principle for open sets in Cantor space.

In the last two sections we prove the main result of this chapter, namely that Lipschitz
determinacy and Lipschitz semilinear order principle for (�01)2 sets in Cantor space are
equivalent to ACA0 within base system RCA0. Both directions are interesting. The
direction from ACA0 to determinacy for (�01)2 sets is interesting since it cannot be de-
rived from known results on Gale-Stewart determinacy. The other direction is interesting
because it yields a reversal for ACA0.

In this chapter we continue to prefer f�s and s�s to denote variables which range over
2N and 2<N, respectively, for the plays of player I, and g�s and t�s for plays of player II.

85
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4.1 Trees and closed sets

A key fact for the topological analysis of Lipschitz and Wadge games developed in Chapter
2 is that closed sets in the Cantor and Baire spaces correspond to the sets of paths of
trees. This fact can be proved in RCA0 and it is, indeed, an immediate consequence of
the normal form theorem for �01 formulas (Theorem II.2.7 of [Smp99]).

Proposition 4.1 The following is provable in RCA0. Suppose X � N. Assume '(f) 2
�01, with f 2 XN. Then, there is a tree T � X<N satisfying that [T ] = ff 2 XN : '(f)g.

Proof. See Lemma VI.1.5 of [Smp99].

Thus, we identify points in the Cantor space with functions f 2 2N, and we identify closed
sets in the Cantor space with �01 formulas containing a second order free variable f which
ranges over 2N. Similarly, open sets will correspond to �01 formulas and so on. Mutatis
mutandis, we consider the same conventions for the Baire space.

We will also identify a closed set with the set of paths of a tree, [T ], and, by abuse
of language, use set theoretic notations to mean the arithmetic formula expressing the
corresponding set (For instance, a term of the form [T ] � [S] is to be understood as the
�01 ^ �01 formula expressing that f is a path of T and is not a path of S.)

De�nition 4.2 The following de�nition is made in RCA0. Given X � N, we say that a
tree T � X<N de�nes a clopen set if there exists another tree S � X<N such that

8f 2 XN (f =2 [T ]$ f 2 [S]):

De�nition 4.3 The following de�nition is made in RCA0. A tree T is said to be pruned
if every sequence of T lies on a path of T . More formally, given X � N, we say that a
tree T � X<N is pruned if

8s 2 X<N (s 2 T ! 9f 2 XN (s � f ^ f 2 [T ])):

It is well known that the assertion that every tree T � N<N can be pruned (that is to say,
for every tree there exists some pruned subtree with the same set of paths) is equivalent
over RCA0 to �11-CA0 (see, e.g., Lemma VI.4.4 of [Smp99]). However, here we show that
if we restrict ourselves to the Cantor space or to trees de�ning clopen sets, we can prune
a tree at a lower price. We �rst need the following lemma asserting that �01 formulas are
closed inWKL0 under existential quanti�ers of the form 9f 2 2N.

Lemma 4.4 Let  be a �01 formula. Within WKL0, 9f 2 2N  (f) is equivalent to a �01
formula.

Proof. See Lemma VIII.2.4 in [Smp99] or Lemma 3.2 in [NMT07].

In Section 4.4 we will also need the following version of the previous lemma.
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Lemma 4.5 Let  be a �01 ^ �01 formula. Within WKL0, 9f 2 2N  (f) is equivalent to
an arithmetical (in fact, �02) formula.

Proof. Write  = '(f) ^ 9x �(x; f), with ' 2 �01 and � 2 �00. Then:

9f 2 2N  (f) $ 9f 2 2N ('(f) ^ 9x �(x; f))
$ 9x9f 2 2N ('(f) ^ �(x; f))

Now the result follows from Lemma 4.4.

Proposition 4.6

1. The following is provable in ACA0. Let '(f) 2 �01, with f 2 2N. Then, there exists
a pruned binary tree T satisfying that [T ] = ff 2 2N : '(f)g.

2. The following is provable in WKL0. Let '(f) 2 �01 and  (f) 2 �01 such that
8f 2 2N('(f) $  (f)), with f 2 2N. Then, there exists a pruned binary tree T
satisfying that [T ] = ff 2 2N : '(f)g.

Proof. (1): We work in ACA0. By Proposition 4.1, let S be a binary tree such that
[S] = ff 2 2N : '(f)g. It su¢ ces to consider the obvious de�nition

T = fs 2 2<N : s 2 S ^ 9f 2 2N (f 2 [S] ^ s � f)g:

It is clear that T is a pruned subtree of S with [S] = [T ]. In addition, the existence of T
follows by �01-comprehension (available in ACA0), for the formula de�ning T is equivalent
to a �01 formula by Lemma 4.4.

(2): We work inWKL0. By Proposition 4.1, let S and S0 be binary trees such that

(-) [S] = ff 2 2N :  (f)g, and

(-) [S0] = ff 2 2N : :'(f)g.

De�ne

A(s) = fs 2 2<N : s 2 S ^ 9f 2 2N (f 2 [S] ^ s � f)g

B(s) = fs 2 2<N : s 2 S ^ 9t (s � t ^ t 62 S0)g

It is clear that B(s) 2 �01 and it follows from Lemma 4.4 that A(s) is equivalent to a �01
formula. In addition, we claim that
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� 8s 2 2<N (A(s)$ B(s)).

Pick s1 2 2<N satisfying A(s1). There exists g 2 [S] such that s1 � g. Then, g 62 [S0]
since [S]\ [S0] = ;. Consequently, there must exist some k > js1j such that g[k] 62 S0.
We have s1 � g[k] and g[k] 62 S0 and so B(s1) holds.

Now pick s2 2 2<N satisfying B(s2). There exists t1 such that s2 � t1 and t1 62 S0.
De�ne h : N ! f0; 1g by putting h(i) = t1(i) if i < jt1j and h(i) = 0 otherwise.
Clearly, h 62 [S0] and so h must be in [S]. But then we have s2 � h and h 2 [S] and
hence A(s2) holds.

It follows from the claim that fs : A(s)g exists by �01-comprehension. It is immediate to
check that A(s) de�nes a pruned binary tree, T , with [T ] = [S], as required.

Proposition 4.7 The following are equivalent over RCA0.

1. ACA0.

2. Every binary tree can be pruned, i.e., for every binary tree T there exists a pruned
binary tree T 0 such that [T ] = [T 0].

Proof. In view of Proposition 4.6, we only have to prove that part (2) implies part
(1). We reason in RCA0. Let '(x) 2 �01 (we disregard possible parameters). We must
show that fx : '(x)g exists. Put '(x) = 8y '0(x; y), with '0(x; y) 2 �00. De�ne a binary
tree T by putting s 2 T if and only if

8i < jsj (s(i) = 0)
_

9i < jsj [s(i) = 1 ^ 8j < jsj(j 6= i! s(j) = 0) ^ 8j < jsj � (i+ 1)'0(i; j)]

That is to say, a binary �nite sequence s is in T if and only if either

s = 0(k),

for some k 2 !, or
s = 0(i) � h1i � 0(l)

with 8y < l '0(i; y). Clearly, T exists by �01-comprehension. Since we are assuming that
every binary tree can be pruned, let T 0 be a binary pruned tree with [T ] = [T 0]. Then, we
have

'(k)$ 0(k) � h1i 2 T 0

and so fx : '(x)g exists by �01-comprehension.

Let us observe that concerning pruning trees in the Baire space at a lower price, in
Chapter 5 we will show that ATR0 su¢ ces for pruning a tree T de�ning a clopen set (an
analogous to part 2 of Proposition 4.6 above).

These facts together give us a nice picture of the strength needed to prove that a tree
can be pruned.
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Cantor space Baire space
Clopen case WKL0 ATR0
General case ACA0 �11-CA0

Moreover, the subsystems in the second row are known to be precisely equivalent to
the corresponding "pruning tree" assertion. We �nish by asking whether the same holds
for the systems in the �rst row.

Problem 4.8

1. Is WKL0 equivalent over RCA0 to the assertion that every binary tree de�ning a
clopen set can be pruned?

2. Is ATR0 equivalent over RCA0 to the assertion that every tree de�ning a clopen
set can be pruned?

4.2 Determinacy for clopen sets

In this section we show thatWKL0 su¢ ces for establishing the structure of clopen Lip-
schitz and Wadge degrees in the Cantor space. To that end, we will follow the topological
analysis of Lipschitz games developed in Chapter 2 and show that the reasoning involved
can be formalized withinWKL0.

We start with an easy observation. We say that a set is trivial if either it is empty
or it is the total set. Determinacy for games with some trivial payo¤ set turns out to be
trivial (and provable in, say, RCA0).

Lemma 4.9 Let Empty(') denote the formula :9f 2 2N'(f) and let Total(') denote
the formula 8f 2 2N'(f). The following facts are provable in RCA0.

1. Empty('1) ^ :Total('2)! Red?L=W ('1; '2).

2. Empty('1) ^ Total('2)! 9�I 8�II :('1(�I 
IL=W �II)$ '2(�I 
IIL=W �II)).

3. Total('1) ^ :Empty('2)! Red?L=W ('1; '2).

4. Total('1) ^ Empty('2)! 9�I 8�II :('1(�I 
IL=W �II)$ '2(�I 
IIL=W �II)).

Proof. Immediate.

As a consequence, it is provable inRCA0 that f;g and fXg form a pair of incomparable
degrees which are reducible to any other degree.

In what follows we show that some basic topological properties of clopen sets in the
Cantor space can be proved in WKL0. The use of WKL0 is not surprising, as this
subsystem is well known to be closely related to compactness arguments.

Our �rst result shows that it is provable inWKL0 that in Cantor space every clopen
set is a �nite union of basic opens.
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Proposition 4.10 The following is provable in WKL0. Let '(f) 2 �01 and  (f) 2 �01
such that 8f 2 2N('(f)$  (f)). Then, there exists a �nite set A � 2<N such that

8f 2 2N('(f)$ 9s (s 2 A ^ s � f)):

Proof. First of all, observe that we may assume that 9f 2 2N '(f) (otherwise take
A = ;) and that 9f 2 2N :'(f) (otherwise take A = fhig). By Proposition 4.1, there exist
some nonempty binary trees S and T satisfying that

� [S] = ff 2 2N : '(f)g, and

� [T ] = ff 2 2N : :'(f)g.

Then, S \ T is a nonempty binary tree with no path, for otherwise there would be f 2 2N
such that both '(f) and :'(f) hold. Also, note that S \ T exists by �00-comprehension.
Hence, by applyingWKL0, we obtain that S \ T must be �nite. Put

A = fs 2 2<N : s[jsj � 1] 2 S \ T ^ s 2 S ^ s 62 Tg
(Note that the set A exists by �00-comprehension.) It is clear that A is a �nite set. In
addition, we claim that

� 8f 2 2N('(f)$ 9s (s 2 A ^ s � f)).
Pick f 2 2N satisfying '(f). Then, f =2 [T ] and so there is some k 2 N such that
f [k] 62 T . By �00-minimization, let m be the least k satisfying f [k] =2 T . Take s0 to
be f [m]. Clearly, we have s0[m� 1] 2 S \ T , s0 2 S and s0 =2 T . By de�nition, s0 is
in A. Thus, s0 is the desired �nite sequence satisfying that s0 2 A and s0 � f .

For the opposite direction, pick f 2 2N and s1 2 2<N such that s1 2 A and s1 � f .
It follows from s1 =2 T and s1 � f that f =2 [T ] and hence '(f) holds.

This completes the proof of the Proposition.

As an application, we obtain:

Corollary 4.11 The following is provable inWKL0. Let '(f) 2 �01 and  (f) 2 �01 such
that 8f 2 2N('(f)$  (f)). Then, there exist X � 2<N �nite and k 2 N satisfying

8f 2 2N ('(f)$ f [k] 2 X):

Proof. By Proposition 4.10, there exists A � 2<N �nite satisfying that

8f 2 2N('(f)$ 9s (s 2 A ^ s � f)): (y)
Since A is �nite, there exists k 2 N such that 8s (s 2 A! jtj � k). Put

X = ft 2 2<N : jtj = k ^ 9s � t (s 2 A)g
(Note that X exists by �00-comprehension.) Clearly, X is a �nite set. In addition, we
claim that
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� 8f 2 2N ('(f)$ f [k] 2 X).
Pick f 2 2N satisfying '(f). By (y), there is some s 2 A such that s � f . In
particular, jsj � k and so s � f [k]. Thus, f [k] 2 X.

For the opposite direction, pick f 2 2N satisfying that f [k] 2 X. Then, there exists
s � f [k] with s 2 A. Thus, s 2 A and s � f . So, '(f) holds by (y).

This proves the Corollary.

We are ready for the main result of the section.

Theorem 4.12

1. WKL0 proves �01-Det
�
L.

2. RCA0 proves �01-Det
�
W .

Proof. (1): We work in an arbitrary model ofWKL0.
Let A(f); B(g) 2 �01 and A0(f); B0(g) 2 �01 satisfying that

(-) 8f 2 2N(A(f)$ A0(f)), and

(-) 8g 2 2N(B(g)$ B0(g)).

In view of Lemma 4.9, we can safely assume that all of A, A0, B, and B are di¤erent from
the empty set and the total set. That is to say, for each A, A0, B, and B there exists some
f 2 2N satisfying the corresponding formula. By Proposition 4.6, there are nonempty
pruned binary trees S; S0; T; T 0 � 2<N such that

[S] = ff 2 2N : A(f)g and
�
S0
�
= ff 2 2N : :A(f)g

[T ] = fg 2 2N : B(g)g and
�
T 0
�
= fg 2 2N : :B(g)g

We must show that the Lipschitz game GL([S]; [T ]) is determined.

Firstly, consider the set S \ S0 (such a set exists by �00-comprehension.) Note that
S \ S0 is a nonempty binary tree with no path, as S and S0 do not have any common
paths. Hence, S \S0 must be �nite byWKL0. By applying �00-induction, we obtain that
there are k 2 N and sk 2 2<N such that

1. k = maxfjsj : s 2 S \ S0g, and

2. sk 2 S \ S0 and jsj = k.

We claim that

� 8f 2 2N (A(f)$ f [k + 1] 2 S).

� One of the following holds:
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(-) 8f 2 2N [(sk � h0i � f ! A(f)) ^ (sk � h1i � f ! :A(f))], or
(-) 8f 2 2N [(sk � h0i � f ! :A(f)) ^ (sk � h1i � f ! A(f))].

Firstly, pick f 2 2N. It is clear that if A(f) holds then f 2 [S] and so f [k + 1] 2 S.
Now suppose that f [k + 1] 2 S but A(f) does not hold. Then, f 2 [S0] and so
f [k + 1] 2 S0. As a consequence, f [k + 1] would be a �nite sequence of length k + 1
belonging to S \ S0, which contradicts the de�nition of k. This proves the �rst part
of the claim.

Let us now prove the second part of the claim. We consider two cases.

Case 1: sk � h0i 2 S.
Since jsk � h0ij = k+1 and sk �h0i 2 S, it follows from the �rst part of the claim that
for each f 2 2N, sk � h0i � f ! A(f). Now pick f 2 2N satisfying sk � h1i � f . We
must show that :A(f) holds. Notice that sk � h0i 62 S0, for otherwise sk � h0i would
be in S \ S0, contradicting the maximality of k. Hence, since sk 2 S0 and S0 is a
pruned tree, sk �h1i must be in S0. But then sk �h1i is not in S, for otherwise sk �h1i
would be in S \ S0, again contradicting the maximality of k. As a consequence,
f 62 [S] and so :A(f) holds.

Case 2: sk � h0i 62 S.
Since sk 2 S and S is a pruned tree, sk � h1i must be in S. By reasoning as
in the previous case, we obtain that for each f 2 2N, sk � h1i � f ! A(f) and
sk � h0i � f ! :A(f).
This proves the second part of the claim.

By repeating the previous reasoning for the tree T \ T 0, we obtain that there exist m 2 N
and sm 2 2<N such that

� 8g 2 2N (B(g)$ g[m+ 1] 2 T ).

� One of the following holds:

(-) 8g 2 2N [(sm � h0i � g ! B(g)) ^ (sm � h1i � g ! :B(g))], or
(-) 8g 2 2N [(sm � h0i � g ! :B(g)) ^ (sm � h1i � g ! B(g))].

We are now in a position to show that the game GL([S]; [T ]) is determined.

Case A: k > m.
Then, player I has a winning strategy in the game GL([S]; [T ]). Namely, we de�ne a

strategy �I as follows. Assume that

8f 2 2N [(sk � h0i � f ! A(f)) ^ (sk � h1i � f ! :A(f))] (y)
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(If the other possibility holds, the de�nition of �I is to be modi�ed accordingly.) Put

�I(hx0; y0; : : : ; xn�1; yn�1i) =

8>>><>>>:
sk(n) if n < k

1 if n = k and hy0; : : : ; yn�1i 2 T
0 if n = k and hy0; : : : ; yn�1i =2 T
0 if n > k

It is clear that �I exists by �00-comprehension and it follows from the properties of the
sequences sk and sm and the assumption (y) that �I is winning for player I.

Case B: k � m.
Then, player II has a winning strategy in the game GL([S]; [T ]). Namely, we de�ne a

strategy �II as follows. Assume that

8g 2 2N [(sm � h0i � g ! B(g)) ^ (sm � h1i � g ! :B(g))] (yy)

(If the other possibility holds, the de�nition of �II is to be modi�ed accordingly.) Put

�II(hx0; y0; : : : ; xn�1; yn�1; xni) =

8>>><>>>:
sm(n) if n < m

0 if n = m and hx0; : : : ; xni 2 S
1 if n = m and hx0; : : : ; xni =2 S
0 if n > m

Clearly, �II exists by �00-comprehension and it follows from the properties of the sequences
sk and sm and the assumption (yy) that �II is winning for player II.

(2): We work in an arbitrary model of RCA0. Let A(f); B(f) 2 �01 and A0(f); B0(g) 2 �01
satisfying that

(-) 8f 2 2N(A(f)$ A0(f)), and

(-) 8g 2 2N(B(g)$ B0(g)).

By Lemma 4.9 we may assume that there exists some gin 2 2N satisfying B(gin) and
there exists some gout 2 2N satisfying :B(gout). By Proposition 4.1, there are binary trees
S; S0 � 2<N such that

[S] = ff 2 2N : A(f)g and [S0] = ff 2 2N : :A(f)g .

We must show that the Wadge game GW ([S]; B) is determined.

Observe that the binary tree S \ S0 cannot have any path. As a consequence, we can
de�ne a winning strategy for player II. The idea is simple: while player I plays inside S\S0
player II passes; and when player I leaves S \ S0 (this has to happen sooner or later as
S \ S0 has no path) player II plays accordingly by using either gin or gout. In order to
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give a precise de�nition of the strategy, recall that by our conventions in Chapter 3, the
following correspondence holds.

Formalized strategy Player I�s real move Player II�s real move
0 0 p
1 0 0

2 1 1

Having this in mind, given any sequence of odd length s = hx0; y0; : : : ; xn�1; yn�1; xni, we
put

�II(s) =

8><>:
0 if hx0 _�1; : : : ; xn _�1i 2 S \ S0

gout(n� k) + 1 if hx0 _�1; : : : ; xn _�1i 62 S and k = �j
�
hx0 _�1; : : : ; xj _�1i 62 S

�
gin(n� k) + 1 if hx0 _�1; : : : ; xn _�1i 62 S0 and k = �j

�
hx0 _�1; : : : ; xj _�1i 62 S0

�
Clearly, �II exists by �00-comprehension and it is easy to see that �II is winning for player
II. This completes the proof of the theorem.

Corollary 4.13

1. WKL0 proves �01-SLO
�
L.

2. RCA0 proves �01-SLO
�
W .

Proof. See Lemma 3.12.

Remark 4.14

1. The scheme of �01-induction has not been used so far. Thus, it follows from the
proof of Theorem 4.12 that WKL�0 already proves �

0
1-Det

�
L. The system WKL�0

consists of basic recursive axioms for addition, multiplication, and exponentiation;
augmented with the schemes of �01-Comprehension and �

0
0-Induction and with Weak

König Lemma. That is to say, WKL�0 is essentially WKL0 with �01 induction
weakened to �00 induction.

2. By a result of Nemoto (see Proposition 3.1 of [N09a]),WKL�0 proves �
0
1-Det

�. By
an observation in Section 6 of Chapter 3, a clopen Lipschitz game can be e¤ectively
reduced to a clopen Gale-Stewart game. Putting these two facts together, we obtain
another proof of part 1 of Theorem 4.12.

3. In the proof of part 2 of Theorem 4.12, we do not make use of the fact that '2 de�nes
a �01-set. Actually, the proof shows that it is provable in RCA0 that �

0
1-sets are

Wadge reducible to any nontrivial set.

In particular, it follows from the proof of part 2 of Theorem 4.12 that it is provable in
RCA0 that the nontrivial �01-sets form a Wadge degree. That is to say, write A �W B
to denote the formula Red?W (A;B) ^Red?W (B;A). Then, we have
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Proposition 4.15 It is provable in RCA0 that if S and T are binary trees de�ning
nontrivial clopen sets then [S] �W [T ].

Concerning the structure of the clopen Lipschitz degrees, the following result holds.
Write A <L B to denote the formula Red?L(A;B) ^ :Red?L(B;A) and write A �L B to
denote the formula Red?L(A;B) ^Red?L(B;A). Then, we have

Proposition 4.16 It is provable in WKL0 that there exists a sequence of binary trees,
fTk : k 2 Ng, satisfying that

1. for each k, [Tk] de�nes a nontrivial clopen set;

2. for each k, [Tk] <L [Tk+1]; and

3. for each binary tree S de�ning a nontrivial clopen set, there exists k 2 N such that
[S] �L [Tk].

Proof. We work in an arbitrary model of WKL0. For each k 2 N it su¢ ces to
consider the sequence of binary trees given by

t 2 Tk $ t � 0(k+1) _ 0(k+1) � t:

It is clear that such a sequence exists by �01-comprehension and it is easy to see that each
Tk de�nes a nontrivial clopen set. Finally, by inspection of the proof part 1 of Theorem
4.12, it follows that properties (2) and (3) above hold too.

We have been unable to obtain a reversal for WKL0 in terms of Lipschitz or Wadge
determinacy or semilinear ordering principle. We then pose the following questions.

Problem 4.17

1. Is WKL0 equivalent over RCA0 to �01-Det
�
L?

2. Is WKL0 equivalent over RCA0 to �01-SLO
�
L?

3. Is �01-Det
�
L equivalent over RCA0 to �

0
1-SLO

�
L?

4.3 Determinacy for open sets

In this section we show that the system ACA0 su¢ ces for proving determinacy for closed
sets (and so also for open sets) in the Cantor space. However, we start by showing that
WKL0 is still su¢ cient in most of the cases when one player plays in an open set and the
opponent plays in a clopen set. Namely, we have

Proposition 4.18

1. WKL0 proves (�01;�
0
1)-Det

�
L.



96 CHAPTER 4. LIPSCHITZ AND WADGE GAMES IN CANTOR SPACE

2. WKL0 proves (�01;�
0
1)-Det

�
W .

3. WKL0 proves (�01;�
0
1)-Det

�
L.

Proof. We work in an arbitrary model ofWKL0.
(1): We will prove (�01;�

0
1)-Det

�
L, which is equivalent to (�

0
1;�

0
1)-Det

�
L. Let A(f) 2 �01

and A0(f) 2 �01 satisfying that

(-) 8f 2 2N (A(f)$ A0(f)).

Let B(g) 2 �01 and let T be a binary tree such that

(-) [T ] = fg 2 2N : B(g)g.

Since A(f) is �01, it follows from Proposition 4.6 that there are pruned binary trees S; S
0<N

such that
[S] = ff 2 2N : A(f)g and [S0] = ff 2 2N : :A(f)g

Hence, reasoning as in the proof of Theorem 4.12 we obtain that there are k 2 ! and
sk 2 S \ S0 satisfying that

(a) 8f 2 2N (A(f)$ f [k + 1] 2 S).

(b) One of the following holds:

(-) 8f 2 2N [(sk � h0i � f ! A(f)) ^ (sk � h1i � f ! :A(f))], or
(-) 8f 2 2N [(sk � h0i � f ! :A(f)) ^ (sk � h1i � f ! A(f))].

Now consider the following sets

Xin = ft 2 2<N : jtj = k ^ t 2 T ^ 9g 2 2N (t � g ^ g 2 [T ])g

Xout = ft 2 2<N : jtj = k ^ t 2 T ^ 9t (t � t0 ^ t0 =2 T )g
X = Xin \Xout

The existence of such sets follows by bounded �01 or bounded �
0
1 comprehension (which

are well known to be provable from RCA0) and by the fact that �01 formulas are closed in
WKL0 under quanti�ers of the form 9g 2 2N (see Lemma 4.4). Intuitively, X comprises
those positions of length k for which player II still has the possibility of playing inside or
outside the closed set [T ].

Case 1: X is nonempty.
Then player II has a winning strategy. Namely, we de�ne �II as follows. Pick tk 2 X and
gin ; gout 2 2N such that tk � gin, tk � gout, gin 2 [T ] and gout =2 [T ]. Given any sequence
of odd length, s = hx0; y0; : : : ; xn�1; yn�1; xni, we de�ne

�II(s) =

8><>:
tk(n) if n < k

gin(n) if n � k and hx0; : : : ; xki 2 S
gout(n) if n � k and hx0; : : : ; xki =2 S
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It is clear that �II exists by �01-comprehension and in view of (a), it is immediate to see
that �II is winning for player II.

Case 2: X is empty.
Then player I has a winning strategy. On the one hand, since X = ;, we have :9t (t 2
Xin ^ t 2 Xout) and thus

8t (t 2 Xin ! 8g 2 2N (t � g ! g 2 [T ]))

8t (t 2 Xout ! 8g 2 2N (t � g ! g 62 [T ])):

On the other hand, it follows by (b) that there are fin ; fout 2 2N such that sk � fin,
sk � fout, fin 2 [S] and fout 62 [S]. Having these facts in mind, given any sequence of even
length, s = hx0; y0; : : : ; xn�1; yn�1i, we de�ne

�I(s) =

8>>><>>>:
sk(n) if n < k

fin(n) if n � k and hy0; : : : ; yn�1i =2 T
fout(n) if n � k and hy0; : : : ; yn�1i 2 Xin
fin(n) if n � k and hy0; : : : ; yn�1i 2 Xout

Again, �I exists by �01-comprehension and it easy to see that �I is winning for player I.

(2): In view of Remark 4.14, it su¢ ces to repeat the proof of part 2 of Theorem 4.12.

(3): The proof is similar to that of part 1 and we omit it.

In view of Lemma 3.12 we obtain:

Corollary 4.19 Each of the following is provable in WKL0:

(�01;�
0
1)� SLO�L, (�01;�01)� SLO�W , and (�01;�01)� SLO�L:

Remark 4.20

1. The scheme of �01-induction has been used in the proof of parts 1 and 3 in Proposition
4.18, but not for the proof of part 2.

2. We do not know whether (�01;�
0
1)-Det

�
W is provable from WKL0. We shall show,

however, that it is provable from ACA0.

De�nition 4.21 We say that a binary tree T de�nes a true closed set if

9f 2 2N [f 2 [T ] ^ 8k 9s (f [k] � s ^ s 62 T )]:

We will write TrueClosed(T ) to denote the above formula.
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Proposition 4.22 Assume that T is a binary tree. It is provable in ACA0 that

TrueClosed(T ) _ 9k 8f 2 2N (f 2 [T ]$ f [k] 2 T ):

Proof. We work in ACA0. Suppose that 9k 8f 2 2N (f 2 [T ] $ f [k] 2 T ) does not
hold. Then, we have

8k 9f 2 2N (f [k] 2 T ^ f =2 [T ])

and so
8k 9s; t 2 2<N (jsj = k ^ s � t ^ s 2 T ^ t =2 T ). (y)

De�ne T 0 to be
fs 2 2<N : s 2 T ^ 9t (s � t ^ t 62 T )g:

Note that T 0 exists by �01-comprehension (which is available thanks toACA0). Clearly, T
0

is a binary tree and it follows by (y) that T 0 is in�nite. By applying Weak König Lemma
we obtain that T 0 has a path, say g 2 2N. Since T 0 � T , g 2 [T ]. In addition, by the
de�nition of T 0 we have

8k 9s (g[k] � s ^ s 62 T ):

Thus, we have shown that TrueClosed(T ) holds, as required.

Corollary 4.23 Assume that T is a binary tree. It is provable in ACA0 that

TrueClosed(T ) _ T defines a clopen set.

We are in a position to prove the main result of the section.

Theorem 4.24

1. ACA0 proves �01-Det
�
L.

2. ACA0 proves �01-Det
�
W .

Proof. We work in an arbitrary model of ACA0.

(1): We will prove �01-Det
�
L, which is equivalent to �

0
1-Det

�
L. Let A(f); B(g) 2 �01. By

Proposition 4.1 there are binary trees S and T satisfying that

[S] = ff 2 2N : A(f)g and [T ] = fg 2 2N : B(g)g

We must show that the game GL([S]; [T ]) is determined.

Case A: TrueClosed(T ) holds.
Then, player II has a winning strategy in the game GL([S]; [T ]). Actually, pick g0 2 2N
satisfying that

g0 2 [T ] ^ 8k 9t (g0[k] � t ^ t =2 T )]:
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By �01-comprehension, there exists h : N! 2<N satisfying that

8k (g0[k] � h(k) ^ h(k) 62 T ):

De�ne H to be the set given by

(k; n; i) 2 H $ (n < jh(k)j ^ i = h(n)) _ (n � jh(k)j ^ i = 0):

Clearly, H exists by �01-comprehension. We will write Hk(n) = i for (k; n; i) 2 H. Thus,
each function Hk extends the �nite sequence h(k) by putting zeros on the end. We are
now in a position to de�ne a strategy for player II, �II, as follows. Given any sequence of
odd length s = hx0; y0; : : : ; xn�1; yn�1; xni, we de�ne

�II(s) =

(
g0(n) if hx0; : : : ; xni 2 S
Hk(n) if hx0; : : : ; xni =2 S and k = �j (hx0; : : : ; xji =2 S)

Again, �II exists by �01-comprehension and it is straightforward to see that �II is winning
for player II.

Case B: TrueClosed(T ) does not hold.
Then, it follows from Proposition 4.22 that there exists some k0 2 N satisfying that

8g 2 2N (g 2 [T ]$ g[k0] 2 T ):

Consequently, B(g) de�nes a �01-set.

Case B.1: TrueClosed(S) holds.
Then, player I has a winning strategy in the game GL([S]; [T ]). To see this, pick f0 2 2N
such that

f0 2 [S] ^ 8k 9s (f0[k] � s ^ s 62 S)]:

In particular, there is some �nite sequence s0 such that f0[k0] � s0 and s0 62 S. De�ne fin
to be f0 and de�ne fout to be the function obtained from the �nite sequence s0 by putting
zeros on the end. Then, we have s0 � fin, s0 � fout, fin 2 [S] and fout 62 [S]. Given any
�nite sequence of even length, s = hx0; y0; : : : ; xn�1; yn�1i, we de�ne

�I(s) =

8><>:
s0(n) if n < js0j
fout(n) if n � js0j and hy0; : : : ; yk0�1i 2 T
fin(n) if n � js0j and hy0; : : : ; yk0�1i =2 T

Then, �I exists by �01-comprehension and �I is winning for player I.

Case B.2: TrueClosed(S) does not hold.
It then follows from Proposition 4.22 that

9k 8f 2 2N (f 2 [S]$ f [k] 2 S):

Hence, both A(f) and B(g) de�ne a �01-set and the determinacy of the game GL([S]; [T ])
follows by Theorem 4.12.
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(2): We will prove �01-Det
?
W , which is equivalent to �

0
1-Det

?
W . Let A(f); B(g) 2 �01. By

Proposition 4.1 there are binary trees S and T satisfying that

[S] = ff 2 2N : A(f)g and [T ] = fg 2 2N : B(g)g

We must show that the game GW ([S]; [T ]) is determined. The proof is similar to that
of the Lipschitz case. Since a winning strategy for player II in GL([S]; [T ]) immediately
gives rise to a winning strategy for player II in GW ([S]; [T ]), the only situation that
deserves some explanations is the case where player I wins, i.e., case B.1 above. Thus,
assume TrueClosed(S) holds and TrueClosed(T ) does not. On the one hand, there exists
f0 2 2N such that

f0 2 [S] ^ 8k 9s (f0[k] � s ^ s =2 S)]:
On the other hand, it follows from Proposition 4.22 that there exists some k0 2 N satisfying
that

8g 2 2N (g 2 [T ]$ g[k0] 2 T ):
By �01-comprehension, there exists h : N! 2<N satisfying that

8k (f0[k] � h(k) ^ h(k) =2 S):

As in the proof of Case A of part (1), there exists a sequence of functions, fHk : k 2 Ng,
such that each Hk extends the �nite sequence h(k) by putting zeros on the end. Since now
player II is allowed to pass, we also need a function ext : 2<N ! 2<N such that ext(s) is
the �nite sequence obtained by dropping the zeros of the �nite sequence s and decreasing
the values by 1 (Recall that we identify passing with picking the number 0 and we identify
picking i with picking i + 1.) We are now in a position to de�ne a winning strategy for
player I. Given any sequence of even length, s = hx0; y0; : : : ; xn�1; yn�1i, we put

�I(s) =

8><>:
f0(n) + 1 if jext (hy0; : : : ; yn�1i) j < k0

Hk(n) + 1 if jext (hy0; : : : ; yn�1i) j < k0 and ext (hy0; : : : ; yn�1i) [k0] 2 T
f0(n) + 1 if jext (hy0; : : : ; yn�1i) j < k0 and ext (hy0; : : : ; yn�1i) [k0] =2 T

Then, �I exists by �01-comprehension and it is easy to verify that �I is winning for player
I. This completes the proof of the theorem.

Corollary 4.25

1. ACA0 proves �01-SLO
�
L.

2. ACA0 proves �01-SLO
�
W .

Proof. See Lemma 3.12.

Remark 4.26 Part 1 of Theorem 4.24 can also be derived from known results on Gale-
Stewart determinacy. On the one the hand, in [NMT07] Nemoto showed that ACA0
proves Gale-Stewart determinacy for the second level of the di¤erence hierarchy (�01)2.
On the other hand, we showed in Chapter 3 that an open Lipschitz game can be reduced
to a Gale-Stewart game of payo¤ complexity (�01)2. Part 2 of Theorem 4.24 is, to the best
of our knowledge, new.
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Although Part 1 of Theorem 4.24 is a consequence of already known results, we think
that the alternative proof we give here is interesting because it suggests a natural strategy
to improve the result. In fact, let us observe that in our proof of �01-Det

?
L=W , we only need

ACA0 to justify the use of Proposition 4.22. The rest of the proof only requiresWKL0.
Proposition 4.22 says that in the Cantor space, every closed set is either true closed or
clopen. This dichotomy principle can be formalized as follows.

De�nition 4.27 Let (DP) denote the formula

BinaryTree(T ) ! TrueClosed(T ) _ 9k 8f 2 2N (f 2 [T ]$ f [k] 2 T );

where BinaryTree(T ) is a formula declaring that T is a binary tree.

Then, the proof of Theorem 4.24 gives us

Corollary 4.28 WKL0 + (DP) proves �01-Det
�
L=W .

We do not know whether �01-Det
�
L=W is provable from plain WKL0. In view of

Corollary 6.2.1, a natural idea for searching for a proof of �01-Det
�
L=W inWKL0 emerges:

Can we �nd a principle implying (DP) and provable in WKL0? In what follows, we
present a number of natural principles implying (DP). However, all of them have turned
out to be equivalent to ACA0!

Proposition 4.29 Over RCA0, each of the following assertions implies (DP).

1. (Weak König Lemma for �01 trees) Let '(s) be a �
0
1 formula. If '(s) de�nes a binary

tree then

8k 9s (jsj = k ^ '(s)) ! 9f 2 2N 8k '(f [k]):

2. (Weak Radó selection lemma) Given a sequence of �nite functions hfk : k 2 Ni,
fk : f0; 1; : : : ; kg ! f0; 1g, there exists f : N! f0; 1g such that

8m9k (k � m ^ f [m] = fk[m]):

3. (The scheme of �01 ^ �01 choice) Let '(k; Y ) be a �01 ^ �01 formula in which Z does
not occur. Then

8k 9Y '(k; Y )! 9Z 8k '(k; (Z)k);

where we are using the notation (Z)k = fi : (i; k) 2 Zg.
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Proof. We work in RCA0. Let T be a binary tree. Suppose that

9k 8f 2 2N (f 2 [T ]$ f [k] 2 T )

does not hold. Then, we have 8k 9f 2 2N (f [k] 2 [T ] ^ f 62 [T ]) and so

8k 9s; t 2 2<N (jsj = k ^ s � t ^ s 2 T ^ t 62 T ): (y)

(1): Put '(s) � s 2 T ^ 9t (s � t ^ t 62 T ). Clearly, '(s) is in �01 and '(s) de�nes a
binary tree. It follows by (y) that 8k 9s (jsj = k ^ '(s)). Hence, by applying Weak König
Lemma for �01 trees, we obtain that 9g 2 2N 8k '(g[k]). Such a function g is a witness
that TrueClosed(T ) holds.

(2): Since the s in the 9s quanti�er in (y) can be bounded by a function of k, using RCA0,
we get a function h : N! N such that

8k 9s9t � h(k) (jsj = k ^ s � t ^ s 2 T ^ t =2 T ):

Again byRCA0, there exists a sequence of �nite functions hfk : k 2 Ni, fk : f0; 1; : : : ; kg !
f0; 1g, satisfying that

8k 9t (fk � t ^ fk 2 T ^ t =2 T )
(Notice that we identify �nite sequences with �nite functions.) By using Weak Radó
selection lemma, we pick g : N! f0; 1g such that 8m9k (k � m^g[m] = gk[m]). Clearly,
g is a witness that TrueClosed(T ) holds.

(3): Let bd : N! N be a function such that (the code of) each �nite sequence of length k
is bounded by bd(k). We claim that

� 8k 9Y
(
9u (u 2 Y ) ^
8u (u 2 Y ! 8s � bd(k) (9t (s � t ^ t 62 T )! 9t � u (s � t ^ t =2 T )))

To see this, �x k 2 N. Since RCA0 contains the scheme of �01 induction, RCA0 proves
the scheme of strong �01 collection (see, e.g., Exercise II.3.14 in [Smp99]). Hence, there
exists k0 2 N such that 8s � bd(k) (9t (s � t^ t 62 T )! 9t � k0 (s � t^ t 62 T )). It su¢ ces
to consider Y = fk0g. This proves the claim.
By applying �01 ^�01 choice, we obtain that there is a set Z satisfying that

8k
(
9u (u 2 (Z)k) ^
8u (u 2 (Z)k ! 8s � bd(k) (9t (s � t ^ t =2 T )! 9t � u (s � t ^ t =2 T )))

De�ne a function h : N! N by putting h(i) = least k such that (i; k) 2 Z. Then, we have

8s (9t (s � t ^ t =2 T )! 9t � h(jsj) (s � t ^ t =2 T )):

De�ne A(s) = fs : s 2 T ^ 9t � h(=2) (s � t ^ t =2 T )g (such a set exists by �01-
comprehension). Then, A is an in�nite binary tree. By Lemma VIII.2.5 in [Smp99] the
scheme of �01 choice already implies the weak König Lemma. Thus, the binary tree A has
a path. But any path of A is a witness that TrueClosed(T ) holds.
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Proposition 4.30 The following assertions are pairwise equivalent over RCA0.

1. ACA0.

2. Weak König Lemma for �01 trees.

3. Weak Radó selection lemma.

4. The scheme of �01 ^�01 choice.

Proof. We reason in RCA0.

(1)) (2): Immediate.

(2)) (3): Consider a sequence of �nite functions hfk : k 2 Ni, fk : f0; 1; : : : ; kg ! f0; 1g.
De�ne '(s) to be fs 2 2<N : 9k (s � fk)g. Then, '(s) 2 �01 de�nes a binary tree and
8k 9s (jsj = k ^ '(s)). By Weak König lemma for �01 trees, '(s) has a path, say f 2 2N.
Clearly, 8m9k (k � m ^ f [m] = fk[m]).

(3)) (1): It is well known that ACA0 is equivalent over RCA0 to the assertion that for
all injective functions g : N! N, the range of g exists (see, e.g., Lemma III.1.3 of [Smp99]).
Consider g : N ! N injective. We de�ne a sequence hfk : k 2 Ni, fk : f0; 1; : : : ; kg !
f0; 1g, as follows

fk(i) = 1 $ 9y � k g(y) = i

By Weak Radó lemma there is f 2 2N such that 8m9k (k � m^ f [m] = fk[m]). It is easy
to see that X = fi : f(i) = 1g de�nes the range of g.

(1)) (4): Immediate.

(4)) (1): By Lemma III.1.3 of [Smp99], it su¢ ces to show �01-comprehension. Let '(x)
be a �01 formula. By bounded �

0
1-comprehension (available thanks to RCA0), for every

k 2 N the set fx : x � k ^ '(x)g exists. Thus, have

8k 9Y [8u (u � k ^ '(x)! u 2 Y ) ^ 8u � k (u 2 Y ! '(u))]

Note that by �01 collection (again available thanks to RCA0), �
0
1 formulas are closed

under bounded quanti�cation. Hence, applying �01 ^�01 choice, we get that there exists Z
satisfying that

8k [8u (u � k ^ '(x)! u 2 (Z)k) ^ 8u � k (u 2 (Z)k ! '(u))]

Then, fx : '(x)g = fx : x 2 (Z)xg and this set exists by �01-comprehension.

The previous Proposition seems to suggest that natural formalizations of (DP) require
arithmetical comprehension. Of course, this does not rule out the possibility of �nding
other, perhaps more elaborated proofs of (DP) (and hence proofs of �01-Det

?
L too) which

can be formalized withinWKL0. Thus, we pose the following questions:

Problem 4.31
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1. Is (DP) provable in WKL0?

2. Is (DP) equivalent over RCA0 to ACA0?

Problem 4.32

1. Is �01-Det
?
L=W provable in WKL0?

2. Is �01-SLO
?
L=W provable in WKL0?

3. Is �01-Det
?
L=W equivalent over RCA0 to ACA0?

4. Is �01-Det
?
L=W equivalent over RCA0 to �01-SLO

�
L?

4.4 Determinacy for (�01)2 sets

In this section we show that ACA0 proves determinacy for the second level in the Dif-
ference Hierarchy, (�01)2. This result is particularly interesting since, to the best of our
knowledge, it cannot be derived from known results on Gale-Stewart determinacy.

Our starting point is the next Proposition.

Proposition 4.33

1. ACA0 proves (�01;�
0
1)-Det

?
L.

2. ACA0 proves (�01;�
0
1)-Det

?
L.

3. ACA0 proves (�01;�
0
1)-Det

?
W .

4. ACA0 proves (�01;�
0
1)-Det

?
W .

Proof. We work in an arbitrary model of ACA0.

(1): Let A(f) 2 �01 and B(g) 2 �01. We must show that the game GL(A;B) is determined.
By Proposition 4.1, there are binary trees S; T satisfying that

[S] = ff 2 2N : :A(f)g and [T ] = fg 2 2N : B(g)g

Case A: TrueClosed(S) holds.
Then, player I has a winning strategy. To see this, pick f0 2 2N such that

f0 2 [S] ^ 8k 9s (f0[k] � s ^ s =2 S):
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By �01-comprehension, there exists h : N! 2<N such that

8k (f0[k] � h(k) ^ h(k) =2 S)

and so
:A(f0) ^ 8k 8f 2 2N (h(k) � f ! A(f)): (y)

As in the proof of Theorem 4.24, consider a sequence of functions, fHk : k 2 Ng, such
that each function Hk extends the �nite sequence h(k) by putting zeros on the end.
We de�ne a strategy for player I as follows. Given any sequence of even length s =
hx0; y0; : : : ; xn�1; yn�1i, we de�ne

�I(s) =

(
f0(n) if hy0; : : : ; yn�1i 2 T
Hk(n) if hy0; : : : ; yn�1i =2 T and k = �j (hy0; : : : ; yj�1i =2 T )

Note that �I exists by �01-comprehension and it follows by (y) that �I is winning for player
I.

Case B: TrueClosed(S) does not hold.
Then, by Proposition 4.22, A(f) de�nes a �01-set. Thus, the fact that game GL(A;B)
is determined follows from (�01;�

0
1)-Det

?
L (which is available in WKL0 by Proposition

4.18).

(2): It follows by part (1), for (�01;�
0
1)-Det

?
L is equivalent to (�

0
1;�

0
1)-Det

?
L.

(3): Let A(f) 2 �01 and B(g) 2 �01. We must show that the game GW (A;B) is determined.
By Proposition 4.1, there are binary trees S; T satisfying that

[S] = ff 2 2N : :A(f)g and [T ] = fg 2 2N : B(g)g:

Case A: TrueClosed(S) holds.
Then, player I has a winning strategy. The proof is similar to that of part (1), but now
we have to take into account that player II is allowed to pass. Consider f0 2 2N such that

f0 2 [S] ^ 8k 9s (f0[k] � s ^ s =2 S)

and h : N! 2<N such that

8k (f0[k] � h(k) ^ h(k) =2 S):

Consider a sequence of functions, fHk : k 2 Ng, such that each function Hk extends the
�nite sequence h(k) by putting zeros on the end. Since now player II is allowed to pass, we
also need a function ext : 2<N ! 2<N such that ext(s) is the �nite sequence obtained by
dropping the zeros of the �nite sequence s and decreasing the values by 1 (Recall that we
identify passing with picking the number 0 and we identify picking i with picking i + 1.)
We are now in a position to de�ne a winning strategy for player I. Given any sequence of
even length, s = hx0; y0; : : : ; xn�1; yn�1i, we put

�I(s) =

(
f0(n) + 1 if ext(hy0; : : : ; yn�1i) 2 T
Hk(n) + 1 if ext(hy0; : : : ; yn�1i) =2 T and k = �j (ext (hy0; : : : ; yj�1i) =2 T )



106 CHAPTER 4. LIPSCHITZ AND WADGE GAMES IN CANTOR SPACE

It is easy to see that �I is a winning strategy for player I.

Case B: TrueClosed(S) does not hold.
Then, by Proposition 4.22, A(f) de�nes a �01-set. Thus, the fact that game GW (A;B)
is determined follows from (�01;�

0
1)-Det

?
W (which is available in WKL0 by Proposition

4.18).

(4): It follows by part (3), for (�01;�
0
1)-Det

?
W is equivalent to (�01;�

0
1)-Det

?
W .

Corollary 4.34

1. ACA0 proves (�01;�
0
1)-SLO

?
L.

2. ACA0 proves (�01;�
0
1)-SLO

?
L.

3. ACA0 proves (�01;�
0
1)-SLO

?
W .

4. ACA0 proves (�01;�
0
1)-SLO

?
W .

De�nition 4.35 The following de�nition is made in ACA0. Let T � 2<N be a binary
tree. The boundary of T is the following set

� (T ) = ft 2 T : 9t0(t � t0 ^ t0 =2 T )g.

Given S � 2<N, we de�ne

�ST = ft 2 T : 9t0(t0 2 S � T ^ t � t0)g:

If T1; T0 � 2<N are trees such that T1 � T0 then we de�ne

�(T0; T1) = fs 2 T1 : 9h; g (h 2 [�T0T1] ^ g 2 [� (T0)] ^ g =2 [T1] ^ s � h ^ s � g)g:

Let us notice that if T and S are trees then �T and �ST are also trees. The existence
of �(T0; T1) in ACA0 follows from Lemma 4.5. It is easily checked that �(T0; T1) is a tree.

Lemma 4.36 The following is provable in ACA0 Let S0; S1; T0; T1 � 2<N be pruned
trees such that

(-) S1 � S0 and T1 � T0, and

(-) �(T0; T1) and �(S0; S1) are �nite.

Then:

1. GL([S0]� [S1]; [T0]� [T1]) is determined.

2. GW ([S0]� [S1]; [T0]� [T1]) is determined.
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Proof. (1): By hypothesis �(S0; S1) and �(T0; T1) are �nite trees and, therefore, by
applying �00-induction, we obtain that there are k1; k2 2 N and sk1 ; sk2 2 2<N such that

1. k1 = maxfjsj : s 2 �(S0; S1)g,

2. sk1 2 �(S0; S1)g with jsk1 j = k1.

3. k2 = maxfjsj : s 2 �(T0; T1)g, and

4. sk2 2 �(T0; T1)g with jsk2 j = k2.

Then,

� one of the following holds:

(-) 9f0; f1 (sk1 � h0i � f0 ^ f0 2 [�S0S1] ^ sk1 � h1i � f1 ^ f1 2 [� (S0)]� [S1]),
(-) 9f0; f1 (sk1 � h0i � f0 ^ f0 2 [� (S0)]� [S1] ^ sk1 � h1i � f1 ^ f1 2 [�S0S1]).

� and one of the following holds:

(-) 9g0; g1 (sk2 � h0i � g0 ^ g0 2 [�T0T1] ^ sk2 � h1i � g1 ^ g1 2 [� (T0)]� [T1]),
(-) 9g0; g1 (sk2 � h0i � g0 ^ g0 2 [� (T0)]� [T1] ^ sk2 � h1i � g1 ^ g1 2 [�T0T1]).

Now, we distinguish several cases:

Case 1: [�T0T1] 6= ;, [� (T0)]� [T1] 6= ;, [�S0S1] 6= ;, and [� (S0)]� [S1] 6= ;.

We distinguish two subcases:

1. k1 � k2.
Then player II has a winning strategy in the game GL([S0]�[S1]; [T0]�[T1]). Namely,
we de�ne a strategy �II as follows. Assume that

9g0; g1 (sk2 � h0i � g0 ^ g0 2 [�T0T1] ^ sk2 � h1i � g1 ^ g1 2 [� (T0)]� [T1])

Thus we can �x a g0 2 2N such that sk2 � h0i � g0 ^ g0 2 [�T0T1] and a g1 2 2N such
that sk2 � h1i � g1 ^ g1 2 [� (T0)]� [T1].
We will need a formula (�) which says that there is no f 2 [�S0S1] such that s[k2+1] �
f . Namely

8s0((s [k2 + 1] � s0 ^ s0 2 �S0S1)! 9k8s00(s0 [k] � s00 ! s00 2 S1)) . (�)

Now let s; t 2 2<N be such that jsj = j + 1 and jtj = j.
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�II(s
t) =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(sk2)j if j < k2

g0(j) if j � b ^ s[k2 + 1] =2 S0

g1(j) if j � b ^ s[k2 + 1] 2 S0 � S1 ^ s 2 S0

g1(j) if j � b ^ s[k2 + 1] 2 S0 � S1 ^ s =2 S0 ^ t � h0i 2 T0 ^ t � h1i 2 T0

k if j � b ^ s[k2 + 1] 2 S0 � S1 ^ s =2 S0 ^ (t � h0i =2 T0 _ t � h1i =2 T0)

and k = minfi : t � hii =2 T0g

g0(j) if j � b ^ s[k2 + 1] 2 S1 ^ 9f (f 2 [�S0S1] ^ s[k2 + 1] � f) ^

(s 2 S1 _ s =2 S0)

g0(j) if j � b ^ s[k2 + 1] 2 S1 ^ 9f (f 2 [�S0S1] ^ s[k2 + 1] � f) ^

s 2 S0 � S1 ^ 9s0(s � s0 ^ s0 =2 S0)

g0(j) if j � b ^ s[k2 + 1] 2 S1 ^ 9f (f 2 [�S0S1] ^ s[k2 + 1] � f) ^

s 2 S0 � S1 ^ 8s0(s � s0 ! s0 2 S0) ^

(t � h0i =2 T0 � T1 ^ t � h1i =2 T0 � T1)

k if j � b ^ s[k2 + 1] 2 S1 ^ 9f (f 2 [�S0S1] ^ s[k2 + 1] � f) ^

s 2 S0 � S1 ^ 8s0(s � s0 ! s0 2 S0) ^

(t � h0i 2 T0 � T1 _ t � h1i 2 T0 � T1)

and k = minfi : t � hii 2 T0 � T1g

g1(j) if j � b ^ s[k2 + 1] 2 S1 ^ (�) ^ (s 2 �S0S1 _ s 2 S0 � S1)

g1(j) if j � b ^ s[k2 + 1] 2 S1 ^ (�) ^ s =2 �S0S1 ^ (s 2 S1 _ s =2 S0) ^

t � h0i 2 T0 ^ t � h1i 2 T0

k if j � b ^ s[k2 + 1] 2 S1 ^ (�) ^ s =2 �S0S1 ^ (s 2 S1 _ s =2 S0) ^

(t � h0i =2 T0 _ t � h1i =2 T0)

and k = minfi : t � hii =2 T0g
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Observe that the strategy �II exists by ACA0 (since 9f (f 2 [�S0S1]^ s[k2+1] � f)
is equivalent to a �01 formula thanks to Lemma 4.4) and that �II is a winning strategy
for player II in GL([S0] � [S1]; [T0] � [T1]). The proof of this assertion is analogous
to the one of part 1 of Case 1 in Lemma 2.10.

2. k2 < k1.

Then player I has a winning strategy in the game GL([S0]� [S1]; [T0]� [T1]). Namely,
we de�ne a strategy �I as follows. Assume that

9f0; f1 (sk1 � h0i � f0 ^ f0 2 [�S0S1] ^ sk1 � h1i � f1 ^ f1 2 [� (S0)]� [S1])

Thus we can �x a f0 2 2N such that sk1 � h0i � f0 ^ f0 2 [�T0T1] and a f1 2 2N such
that sk1 � h1i � f1 ^ f1 2 [� (T0)]� [T1].

Again we need a formula (��) which says that there is no g 2 [�T0T1] such that
t[a] � g. Namely

8t0(t [k1] � t0 ^ t0 2 �T0T1 ! 9k8t00(t0 [k] � t00 ! t00 2 T1)) . (��)

Let us now de�ne a strategy �I for player I. Firstly we put

�I (hi) = sk1(0).

Now for all s; t 2 2<N with jsj = jtj = j � 1.
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�I(s
t) =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(sk1)j if j < k1

f1(j) if j � k1 ^ t[k1] =2 T0

f0(j) if j � k1 ^ t[k1] 2 T0 � T1 ^ t 2 T0

f0(j) if j � k1 ^ t[k1] 2 T0 � T1 ^ t =2 T0 ^ s � h0i =2 S0 � S1 ^

s � h1i =2 S0 � S1

k if j � k1 ^ t[k1] 2 T0 � T1 ^ t =2 T0 ^

(s � h0i 2 S0 � S1 _ s � h1i 2 S0 � S1)

and k = minfi : s � hii 2 S0 � S1g

f1(j) if j � k1 ^ t[k1] 2 T1 ^ 9g (g 2 [�T0T1] ^ t[k1] � g) ^ (t 2 T1 _ t =2 T0)

f1(j) if j � k1 ^ t[k1] 2 T1 ^ 9g (g 2 [�T0T1] ^ t[k1] � g) ^

t 2 T0 � T1 ^ 9t0(t � t0 ^ t0 =2 T0)

f1(j) if j � k1 ^ t[k1] 2 T1 ^ 9g (g 2 [�T0T1] ^ t[k1] � g) ^

t 2 T0 � T1 ^ 8t0(t � t0 ! t0 2 T0) ^

(s � h0i 2 S0 � S1 ^ s � h1i 2 S0 � S1)

k if j � k1 ^ t[k1] 2 T1 ^ 9g (g 2 [�T0T1] ^ t[k1] � g) ^

t 2 T0 � T1 ^ 8t0(t � t0 ! t0 2 T0) ^

(s � h0i =2 S0 � S1 _ s � h1i =2 S0 � S1)

and k = minfi : s � hii 2 S0 � S1g

f0(j) if j � k1 ^ t[k1] 2 T1 ^ (��) ^ (t 2 �T0T1 _ t 2 T0 � T1)

f0(j) if j � k1 ^ t[k1] 2 T1 ^ (��) ^ t =2 �T0T1 ^ (t 2 T1 _ t =2 T0) ^

s � h0i =2 S0 � S1 ^ s � h1i =2 S0 � S1

k if j � k1 ^ t[k1] 2 T1 ^ (��) ^ t =2 �T0T1 ^ (t 2 T1 _ t =2 T0) ^

(s � h0i 2 S0 � S1 _ s � h1i 2 S0 � S1) ^

and k = minfi : t � hii 2 S0 � S1g
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The strategy �I does exist (by ACA0) and it is straightforward to check that it is
a winning strategy for player I in in GL([S0] � [S1]; [T0] � [T1]). The proof of this
assertion is analogous to the one of part 2 of Case 1 in Lemma 2.10.

Case 2: (T0; T1) or (S0; S1) is in a degenerated position, but not both of them.
As we did in the previous chapter we say that (T0; T1) (and similarly (S0; S1)) is in a
degenerated position if [�T0T1] = ; or [� (T0)]� [T1] = ;.
Recall that if (T0; T1) is in a degenerated position then the formula g 2 [T0] � [T1] is
equivalent to a �01 formula or a �

0
1 formula:

� If [�T0T1] = ; then �T0T1 is �nite and, as a consequence, we have for each g 2 2N,

g 2 [T0]� [T1]$ g 2 [T0] ^ 8k (g[k] =2 �T0T1 ! g[k] =2 T1)

� If [� (T0)]� [T1] = ; then let T 00 = fs 2 T0 : 8s0 (s � s0 ! s0 2 T0g. For each g 2 2N,

g 2 [T0]� [T1]$ 9k (g[k] 2 T 00 ^ g[k] =2 T1)

If player I plays in a degenerated position, then player II has a winning strategy (essentially,
player II plays simulating the strategy described in Lemma 4.24 (case A)):

� If f 2 [S0] � [S1] is equivalent to a �01 formula then, since (T0; T1) is not in a
degenerate position there exists g 2 [� (T0)] � [T1] and player II can win the game
using g.

� If f 2 [S0] � [S1] is equivalent to a �01 formula then, since (T0; T1) is not in a
degenerate position there exists g 2 [�T0T1] and player II can win the game using g.

In a similar way it can be proved that if player II plays in a degenerated position then
player I has a winning strategy:

� If g 2 [T0] � [T1] is equivalent to a �01 formula then, since (S0; S1) is not in a
degenerate position there exists f 2 [� (S0)] � [S1] and player I can win the game
using f .

� If g 2 [T0] � [T1] is equivalent to a �01 formula then, since (S0; S1) is not in a
degenerate position there exists f 2 [�S0S1] and player I can win the game using f .

Case 3: (T0; T1) and (S0; S1) are in a degenerated position.
Recall that in these degenerated cases f 2 [T0]� [T1] and f 2 [S0]� [S1] are equivalent to
some formulas in �01 [�01, so, the corresponding game is determined by Proposition 4.33.
(2): Now we prove that under the same hypothesis the Wadge game GW ([S0]� [S1]; [T0]�
[T1]) is determined. As before, let k1; k2 2 N and sk1 ; sk2 2 2<N such that

1. k1 = maxfjsj : s 2 �(S0; S1)g,
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2. sk1 2 �(S0; S1)g with jsk1 j = k1.

3. k2 = maxfjsj : s 2 �(T0; T1)g, and

4. sk2 2 �(T0; T1)g with jsk2 j = k2.

We have to consider the same cases:

Case 1: [�T0T1] 6= ;, [� (T0)]� [T1] 6= ;, [�S0S1] 6= ;, and [� (S0)]� [S1] 6= ;.

We distinguish two subcases:

1. k1 � k2.
Since a winning strategy for player II in GL([S0] � [S1]; [T0] � [T1]) immediately
yields a winning strategy for player II in GW ([S0]� [S1]; [T0]� [T1]), the proof of this
subcase is similar to that of the Lipschitz subcase.

2. k2 < k1.

In contrast to the corresponding Lipschitz subcase, in this subcase player II has a
winning strategy in the Wadge game GW ([S0] � [S1]; [T0] � [T1]), because player II
can pass while player I is playing inside �(S0; S1). As soon as player I starts playing
outside �(S0; S1), which must eventually happen, since �(S0; S1) is well-founded,
player II uses the strategy described in the former subcase and wins the game.

Cases 2 and 3: In these cases the fact that player II can pass in a Wadge game does not
change anything essential in the proofs in comparison to the corresponding Lipschitz cases.
The winning strategies for player I and player II in the Wadge game GW ([S0]� [S1]; [T0]�
[T1]) remain the same.

Theorem 4.37

1. ACA0 proves
�
�01
�
2
-Det�L.

2. ACA0 proves
�
�01
�
2
-Det�W .

Proof. We work in an arbitrary model of ACA0.
(1): Let A(f); B(f) 2

�
�01
�
2
. We must show that the game GL(A;B) is determined. Since

A(f) and B(f) are di¤erences of closed sets, there exist, by Proposition 4.7, binary pruned
trees S0, S1, T0, and T1 such that

1. S1 � S0 and T1 � T0.

2. A(f)$ f 2 [S0]� [S1], and B(g)$ g 2 [T0]� [T1].
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We distinguish several cases:
Case 1: [�(T0; T1)] 6= ;.
Let g0 2 [�(T0; T1)]. Then, g0 2 [�T0T1] and

8k 9g (g0[k] � g ^ g 2 [� (T0)]� [T1]).

By �01-comprehension, there exists h0 : N! 2<N such that

8k (g[k] � h0(k) ^ h0(k) 2 � (T0)� T1).

Thus, we have
8k 9h (h 2 2N ^ h0 [k] � h ^ h 2 [� (T0)] ^ h =2 [T1]).

Therefore, by �01 ^ �01 choice (available in ACA0 in by Proposition 4.30), there exists a
set H such that

8k ((H)k 2 2N ^ h0(k) � (H)k ^ (H)k 2 [� (T0)] ^ (H)k =2 [T1]).

We will write Hk(n) = i for (k; n; i) 2 H. Thus, each function Hk extends the �nite
sequence h0(k) to a path in [T0] and in the boundary of [T0], leaving player II the possibility
of playing still inside or outside [T0]. We are now in the position to de�ne a strategy for
player II, �II, as follows. Given s; t 2 2<N, with jsj = j + 1 and jtj = j, we de�ne

�II(s
 t) =

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

g0(j) if s 2 S1 _ (s =2 S0 ^ 8l (l < minfi : s [i] =2 S0g ! s [l] 2 S1))

Hb(j) if s 2 S0 � S1 ^ b = minfi : s [i+ 1] =2 S1g)

Hb(j) if s =2 S0 ^ 9l (s [l] 2 S0 � S1) ^ 8i (t � hii 2 T0)

and b = minfi : s [i+ 1] =2 S0g

k if s =2 S0 ^ 9l (s [l] 2 S0 � S1) ^ 9i (t � hii =2 T0)

and b = minfi : t � hii =2 T0g

Observe that �II formalizes the strategy described in case 1 of the proof of Lemma 2.13.
It is straightforward to check that it is winning strategy for player II.

Case 2: [�(T0; T1)] = ; but [�(S0; S1)] 6= ;.
Thus, Weak König Lemma implies that �(T0; T1) is a nonempty �nite binary tree. On the
other hand, let f0 2 [�(S0; S1)]. Then,

8k 9f (f0[k] � f ^ f 2 [� (S0)]� [S1])

By �01-comprehension, there exists h0 : N! 2<N such that

8k (f [k] � h0(k) ^ h0(k) 2 � (S0)� S1)

As in case A, using �01 ^ �01 choice, we de�ne H to be the set satisfying the following
condition

8k ((H)k 2 2N ^ h0(k) � (H)k ^ (H)k 2 [� (S0)] ^ (H)k =2 [S1]).
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We write Hk(n) = i for (k; n; i) 2 H. Then player I wins the game with the following
strategy, �I:
First �I(hi) = f0(0) and given s; t 2 2<N, with jsj = jtj = j � 1, let us take b = minfjt0j :
t0 � t ^ t0 =2 �(T0; T1)g and de�ne

�I(s
 t) =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

f0(j) if t 2 �(T0; T1)

Hb(j) if t =2 �(T0; T1) ^ 9g 2 [�T0T1] (t [b] � g) ^ t =2 T0 � T1

Hb(j) if t =2 �(T0; T1) ^ 9g 2 [�T0T1] (t [b] � g) ^ t 2 T0 � T1 ^

9t0 (t � t0 ^ t0 =2 T0)

Hb(j) if t =2 �(T0; T1) ^ 9g 2 [�T0T1] (t [b] � g) ^ t 2 T0 � T1 ^

8t0 (t � t0 ! t0 2 T0) ^ 8i (s � hii 2 S0)

k if t =2 �(T0; T1) ^ 9g 2 [�T0T1] (t [b] � g) ^ t 2 T0 � T1 ^

8t0 (t � t0 ! t0 2 T0) ^ 9i (s � hii =2 S0)

and k = minfi : s � hii =2 S0g

f0(j) if t =2 �(T0; T1) ^ :9g 2 [�T0T1] (t [b] � g) ^ t =2 T0 � T1 ^

9t0 2 T0 (t � t0 ^ t0 =2 T1)

Hc(j) if t =2 �(T0; T1) ^ :9g 2 [�T0T1] (t [b] � g) ^ t =2 T0 � T1 ^

8t0 2 T0 (t � t0 ! t0 2 T1)

and c = minfjt0j : t0 � t ^ 8t00 2 T0 (t0 � t00 ! t00 2 T1)g

f0(j) if t =2 �(T0; T1) ^ :9g 2 [�T0T1] (t [b] � g) ^ t 2 T0 � T1 ^

9t0 (t � t0 ^ t0 =2 T0)

Hd(j) if t =2 �(T0; T1) ^ :9g 2 [�T0T1] (t [b] � g) ^ t 2 T0 � T1 ^

8t0 2 T0 (t � t0 ! t0 2 T0 � T1)

and d = minfjt0j : t0 � t ^ 8t00 2 T0 (t0 � t00 ! t00 2 T0 � T1)g

Case 3: [�(T0; T1)] = ; and [�(S0; S1)] = ;.
Then GL(A;B) is determined by Lemma 4.36.

(2): Let A(f); B(f) 2
�
�01
�
2
. We must show that the game GW (A;B) is determined.

Since A(f) and B(f) are di¤erences of closed sets, there exist, by Proposition 4.7, binary
pruned trees S0, S1, T0, and T1 such that

1. S1 � S0 and T1 � T0.
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2. A(f)$ f 2 [S0]� [S1], and B(g)$ g 2 [T0]� [T1].

We distinguish the same cases as in the proof of Lipschitz determinacy:

Case 1: [�(T0; T1)] 6= ;.

The proof of this case is the same as the corresponding Lipschitz case since for all
A(f); B(f) 2

�
�01
�
2
a winning strategy for player II in GL(A;B) yields a winning strategy

for player II in GW (A;B).

Case 2: [�(T0; T1)] = ; but [�(S0; S1)] 6= ;.

This case deserves some explanation because player II can pass. By Weak König Lemma
�(T0; T1) is a nonempty �nite binary tree which implies that player II soon or later will
play outside the tree �(T0; T1), but she can delay this a �nite number of times. On the
other hand, let f0 2 [�(S0; S1)]. Then,

8k 9f (f0[k] � f ^ f 2 [� (S0)]� [S1])

By �01-comprehension, there exists h0 : N! 2<N such that

8k (f [k] � h0(k) ^ h0(k) 2 � (S0)� S1)

As in case A we de�ne the corresponding set H and write Hk(n) = i for (k; n; i) 2 H.
Thus there exists a sequence of functions, fHk : k 2 Ng, such that each Hk extends the
�nite sequence h(k) to a path in [S0] and in the boundary of [S0], leaving player II the
possibility of playing still inside or outside [S0]. Let ext : 2<N ! 2<N such that ext(s) is
the �nite sequence obtained by dropping the zeros of the �nite sequence s and decreasing
the values by 1. This sequence is needed since in a Wadge game player II is allowed to
pass and we identify passing with picking zero and we identify picking i with picking i+1.
Then I wins the game with the following strategy, �I:

First �I(hi) = f0(0) + 1 and given s; t 2 2<N, with jsj = jtj = j � 1, let us take
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b = minfjt0j : t0 � t ^ t0 2 �(T0; T1)g and de�ne

�I(s
t) =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

f0(j) + 1 if ext(t) 2 �(T0; T1)

Hb(j) + 1 if ext(t) =2 �(T0; T1) ^ 9g 2 [�T0T1] (ext(t) [b] � g) ^ ext(t) =2 T0 � T1

Hb(j) + 1 if ext(t) =2 �(T0; T1) ^ 9g 2 [�T0T1] (ext(t) [b] � g) ^ ext(t) 2 T0 � T1 ^

9t0 (ext(t) � t0 ^ t0 =2 T0)

Hb(j) + 1 if ext(t) =2 �(T0; T1) ^ 9g 2 [�T0T1] (ext(t) [b] � g) ^ ext(t) 2 T0 � T1 ^

8t0 (ext(t) � t0 ! t0 2 T0) ^ 8i (s � hii 2 S0)

k + 1 if ext(t) =2 �(T0; T1) ^ 9g 2 [�T0T1] (ext(t) [b] � g) ^ ext(t) 2 T0 � T1 ^

8t0 (ext(t) � t0 ! t0 2 T0) ^ 8i (s � hii =2 S0)

and k = fi : s � hii =2 S0g

f0(j) + 1 if ext(t) =2 �(T0; T1) ^ :9g 2 [�T0T1] (ext(t) [b] � g) ^ ext(t) =2 T0 � T1 ^

9t0 2 T0 (ext(t) � t0 ^ t0 =2 T1)

Hc(j) + 1 if ext(t) =2 �(T0; T1) ^ :9g 2 [�T0T1] (ext(t) [b] � g) ^ ext(t) =2 T0 � T1 ^

8t0 2 T0 (t � t0 ! t0 2 T1)

and c = minfjt0j : t0 � ext(t) ^ 8t00 2 T0 (t0 � t00 ! t00 2 T1)g

f0(j) + 1 if ext(t) =2 �(T0; T1) ^ :9g 2 [�T0T1] (ext(t) [b] � g) ^ ext(t) 2 T0 � T1 ^

9t0 (ext(t) � t0 ^ t0 =2 T0)

Hd(j) if ext(t) =2 �(T0; T1) ^ :9g 2 [�T0T1] (ext(t) [b] � g) ^ ext(t) 2 T0 � T1 ^

8t0 2 T0 (ext(t) � t0 ! t0 2 T0 � T1)

and d = minfjt0j : t0 � ext(t) ^ 8t00 2 T0 (t0 � t00 ! t00 2 T0 � T1)g

Case 3: [�(T0; T1)] = ; and [�(S0; S1)] = ;.
Then GW (A;B) is determined by Lemma 4.36.

Corollary 4.38

1. ACA0 proves
�
�01
�
2
-SLO�L.

2. ACA0 proves
�
�01
�
2
-SLO�W .

Again, we observe that it follows from the proof of part 2 of Theorem 4.37 that it is
provable in ACA0 that the nontrivial

�
�01
�
2
-sets form a Wadge degree. That is to say,

write A �W B to denote the formula Red?W (A;B) ^Red?W (B;A). Then, we have
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Proposition 4.39 It is provable in ACA0 that if S, S0, T , and T 0are binary trees such
that [S]� [S0] and [T ]� [T 0] are neither open nor closed, then [S]� [S0] �W [T ]� [T 0].

As above write A <L B to denote the formula Red?L(A;B) ^ :Red?L(B;A) and write
A �L B to denote the formula Red?L(A;B) ^Red?L(B;A). Then, we have

Proposition 4.40 It is provable in ACA0 that there exists a sequence of pairs of binary
trees f(Tk; T 0k) : k 2 Ng, such that

1. for each k 2 N, [Tk]� [T 0k] is neither open nor closed,

2. for each k 2 N, [Tk]� [T 0k] <L [Tk+1]�
�
T 0k+1

�
, and

3. for each pair of binary trees (S; S0) such that [S] � [S0] is neither open nor closed,
there exists k 2 N such that [S]� [S0] �L [Tk]� [T 0k].

Proof. We work in an arbitrary model of ACA0. De�ne binary trees T0 and T 00 by

t 2 T0 $
�
9m

�
h0i � 0(m) � h1i � h0i � t

�
_ 9m

�
h1i � 0(m) � h1i � h0i � t

�
_9m

�
t � 0(m)

�
_ 9m

�
t � h1i � 0(m)

�
and

t 2 T 00 $ 9m
�
t � 0(m)

�
.

Now assuming that the pair (Tk; T 0k) has already been de�ned we de�ne Tk+1 and T
0
k+1 by

t 2 Tk+1 $ 9t0 (t � h0i � t0 ^ t0 2 Tk)

and
t 2 T 0k+1 $ 9m

�
t � 0(m)

�
.

It is clear that such a sequence exists by �01-comprehension and it is easy to see that
each [Tk]� [T 0k] de�nes a set that satis�es property 1. Finally, by inspection of the proof
of part 1 of Theorem 4.37, it follows that properties 2 and 3 above hold too.

4.5 A reversal for ACA0

We close this chapter with one of the main results of this thesis. Namely, a reversal for
ACA0 which calibrates the exact strength in terms of Reverse Mathematics of Lipschitz
determinacy and semilinear ordering principle for (�01)2 sets.

Theorem 4.41 It is provable in RCA0 that (�01)2-SLO
�
L implies ACA0.
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Proof. Reasoning in RCA0, assume (�01)2-SLO
�
L. Take '(x) 2 �01 (we disregard

parameters). We must show that the set fx : '(x)g exists. To this end, de�ne A(f) and
B(g) to be

9k (f(k) = 1 ^ 8k0 < k f(k0) = 0)

and
9k (g(k) = 1 ^ 8k0 < k g(k0) = 0 ^ 8i � k (g(k + i+ 1) = 1! '(i)) ^
8k (g(k) = 1 ^ 8k0 < k g(k0) = 0! 8i � k ('(i)! g(k + i+ 1) = 1));

respectively. That is to say, a play for player I is in A if it is of the form

I : 0(k) � h1i � f 0

for some k 2 N and f 0 2 2N. On the other hand, a play for player II is in B if it is of the
form

II : 0(l) � h1i � ht0; t1 : : : tli � g0

for some g0 2 2N and for each i � l, ti = 1 i¤ '(i) holds.
It is clear that A and B are in (�01)2.

We claim that

� Player II cannot have a winning strategy in the game GL(:B;A).
We must show that 8�II 9�I :(:B(�I
I �II)$ A(�I
II �II)). Consider any strategy
for player II, �II. We distinguish two cases.

Case 1: For all k 2 N, �II(0(2k+1)) = 0.
It su¢ ces to consider the strategy for player I given by �I(s) = 0 for all s 2 Seqeven.
Then, (�I
I �II)(i) = (�I
II �II)(i) = 0 for all i 2 !. Hence, both :B(�I
I �II) and
:A(�I 
II �II) hold. Thus, :(:B(�I 
I �II)$ A(�I 
II �II)).

Case 2: There is some k 2 N such that �II(0(2k+1)) = 1. Let k0 denote a minimal
such element.

By bounded �01-comprehension (available in RCA0), there exists C = fx : x �
k0 ^ '(x)g. Let �I be any strategy for player I satisfying that
�I(0

(2m)) = 0, for each m � k
�I(0

(2k+1) � h1i) = 1

�I(s) =

�
1 if i 2 C
0 if i =2 C if jsj = 2k0 + 4 + 2i with i � k0.

Using �00-induction, we obtain that

8x � k ((�I 
I �II)(k + i+ 1) = 1$ x 2 C).

Then, both B(�I
I�II) and A(�I
II�II) hold. Thus, :(:B(�I
I�II)$ A(�I
II�II)),
as required.

This proves the claim.
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Hence by (�01)2-SLO
�
L, player II must have a winning strategy in GL(A;B). Let �II

denote a such winning strategy. Pick k 2 N. We will use the winning strategy �II to decide
whether or not '(k) holds. To that end, for each k 2 N, we consider a strategy for player
I, �kI , satisfying that

�kI (hx0; y0; :::; xn�1; yn�1i) =

8><>:
0 if n < k

1 if n = k

0 if n > k

That is to say, according to �kI player I plays as follows:

I : 0(k) � h1i �~0

It is clear that A(�kI 
I �II) holds. So B(�kI 
II �II) holds as well, for �II is a winning
strategy for player II in GL(A;B). Consequently, there exists l 2 N such that

g(l) = 1 ^ 8l0 < l g(l0) = 0 ^ 8i � l ('(i)$ g(i+ l + 1) = 1);

where g = �kI 
II �II.
Now we claim that

� We have k � l.
Assume not. Then, �(0(2l+1)) = 1. By bounded �01-comprehension there exists
D = fx : x � l ^ '(x)g. Consider a new strategy for player I, �0I, given by

�0I(hx0; y0; :::; xn�1; yn�1i) =

8>>><>>>:
0 if n < l + 2

0 if n = l + 2 and 8i � l (i 2 D $ yl+i+1 6= 0)
1 if n = l + 2 and :8i � l (i 2 D $ yl+i+1 6= 0)
0 if n > l + 2

In other words, at any stage di¤erent from 2l + 2 player I picks 0. At stage 2l + 2
player I picks 0 if player II has played inside B; or 1 otherwise.

It is clear that �0I exists by �
0
1-comprehension. In addition, it is immediate to see

that A(�0I 
I �II) holds if and only if B(�0I 
I �II) does not hold, contradicting the
fact that �II is a winning strategy for player II in GL(A;B).

This proves our second claim.

Observe that by �01-comprehension there exists S � Seqeven �N�N such that (S)k = �kI
for each k. Hence, we have

'(k)$ 9k0
(
(k � l ^ ((S)k 
II �II)(l) = 1 ^ 8l0 < l ((S)k 
II �II)(l0) = 0)^
((S)k 
II �II)(k + l + 1) = 1
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and

'(k)$ 9k0
(
(k � l ^ ((S)k 
II �II)(l) = 1 ^ 8l0 < l ((S)k 
II �II)(l0) = 0)!
((S)k 
II �)(k + l + 1) = 1

Thus the set fx : '(x)g exists by �01-comprehension using the winning strategy �II as a
parameter.

Corollary 4.42 The following assertions are pairwise equivalent over RCA0:

1. ACA0.

2. (�01)2-Det
�
L.

3. (�01)2-SLO
�
L.

Remark 4.43

1. Nemoto proved ACA0 to be equivalent to (�01)2-Det
� over RCA0. As a conse-

quence, it follows from Corollary 4.42 that over RCA0, Gale-Stewart determinacy
and Lipschitz determinacy for (�01)2 sets in the Cantor space are equivalent princi-
ples.

2. Andretta proved in Set Theory (actually, in ZF plus the axiom of dependent choices
over the reals and the statement that "every set has the property of Baire") that
Borel determinacy and the Borel semilinear ordering principle for Lipschitz games
are equivalent. Corollary 4.42 says that when restricted to (�01)2 sets, this equivalence
can be proved already in RCA0.

It seems natural to pose the following questions:

Problem 4.44

1. Is ACA0 equivalent over RCA0 to (�01)2-Det
�
W ?

2. Are (�01)2-Det
�
L and (�

0
1)2-Det

�
W equivalent over RCA0?

3. Are (�01)2-SLO
�
L and (�

0
1)2-SLO

�
W equivalent over RCA0?



Chapter 5

Lipschitz and Wadge games in
Baire space

The analysis of determinacy of Lipschitz and Wadge games in Baire space we have pre-
sented in Chapter 2 rests on basic properties of well-founded trees and ordinal rank func-
tions associated with them. Therefore, in order to obtain a formalization of these results in
a subsystem of second order arithmetic it is natural to aim at subsystems that are strong
enough to deal with the basic properties of countable ordinals. One of such subsystems
is ATR0. This system is axiomatized over ACA0 by a principle stating the existence of
sets de�ned by iterating arithmetical comprehension along countable well orderings. By a
result of Friedman (Theorem V.6.8 of [Smp99]), over RCA0, ATR0 is equivalent to the
principle of comparability of countable well orderings and, as a matter of fact, it encapsu-
lates most of the basic theory of countable ordinals. Thus, we shall begin this chapter by
providing a survey of some basic facts on ordinals and well-founded trees that are prov-
able in ATR0 and that will be needed for the formalization of the proofs of determinacy
given from Section 2 onwards. This introductory part (Section 1) ends with the proof that
ATR0 implies that a tree de�ning a clopen set in Baire space can be pruned. In Chapter
4 we proved a similar result concerning trees that de�ne clopen sets in Cantor space.

In Section 2 we prove one of the main results of this chapter, namely that Lipschitz
semilinear order principle for clopen sets in Baire space is equivalent to ATR0. This rever-
sal is obtained within the subsystem of second order arithmetic ACA0. As consequence
we also have that �01-SLOL and �

0
1-DetL are equivalent principles over ACA0.

The analysis of Lipschitz determinacy of closed sets in Baire space will allow us to
improve the reversal obtained in Section 2 by weakening the base theory. In fact, in the
next section (Section 3) we prove the main result of the chapter, namely that Lipschitz
determinacy for closed sets in Baire space is equivalent to ATR0 over RCA0.

In the last section of the present chapter, we formalize the concepts developed in the
topological analysis of Chapter 2 concerning Lipschitz determinacy for sets which are
di¤erences of two closed sets in Baire space. Finally we obtain the result that subsystem
�11-CA0 proves Lipschitz determinacy for all sets which are di¤erences of two closed sets.

121
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5.1 Well-founded trees and ranks in second order arithmetic

As usual in second order arithmetic, we identify N�N with a subset of N using a pairing
function (i; j) = (i+ j)2 + i. Thus, a binary relation R on N is identi�ed with a subset of
N� N.

Let us observe that, given a binary relation R on N, we cannot assume, working over
RCA0, the existence (as sets) of the domain or the range of R. To deal with this di¢ culty
in RCA0 an ordering is de�ned to be a re�exive relation (of course, satisfying other
additional properties). Working in RCA0 we make the following de�nitions:

Let R � N� N. We say that R is re�exive if

8i8j [(i; j) 2 R! ((i; i) 2 R ^ (j; j) 2 R)].

If R is re�exive then, by �00�comprehension, there exists a set

�eld(R) = fi : (i; i) 2 Rg.

We also write
i �R j $ (i; j) 2 R

i <R j $ (i; j) 2 R ^ (j; i) =2 R.

De�nition 5.1 The following de�nitions are made in RCA0. Let R be a re�exive binary
relation.

1. We say that R is well-founded if there is no f : N! �eld(R) such that

8n (f(n+ 1) <R f(n)) .

2. We say that R is a countable linear ordering if it is a re�exive ordering over its �eld,
i.e. R is a re�exive, symmetric, transitive, and total relation.

3. We say that R is a countable well ordering if it is a countable linear ordering and it
is well-founded.

Observe that there is an arithmetical formula LO(X) expressing that X is a countable
linear ordering. It can be easily checked that there exist �11 formulasWF(X) andWO(X)
(with a single free variable X) expressing, respectively, that X is a well-founded (re�exive)
relation and X is a countable well ordering.

A useful principle closely related to the notion of countable well ordering is the principle
of trans�nite induction. This principle is available in ACA0 for arithmetical formulas:

Lemma 5.2 (Arithmetical trans�nite induction) For each arithmetical formula '(u),
ACA0 proves

WO(X) ^ 8v (8u(u <X v ! '(u))! '(v))! 8v'(v)
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The systemATR0 is axiomatized overACA0 by the following principle of Arithmetical
Trans�nite Recursion. We need some notation for a complete description of this principle.

Let �(u; Y ) be any formula. We de�ne H�(X;Y ) to be the formula

LO(X) ^ 8z (z 2 Y $ 9u; j � z (z = (u; j) ^ j 2 �eld(X) ^ �(u; Y j)))

where Y j = f(m; i) : i <X j ^ (m; i) 2 Y g.
Using the normal form theorem it can be shown that if �(u; Y ) is arithmetical then

H�(X;Y ) is also an arithmetical formula.

De�nition 5.3 The system ATR0 is axiomatized over ACA0 by the scheme:

8X (WO(X)! 9Y H�(X;Y ))

where �(u; Y ) is arithmetical.

We shall use Greek letters �, �, 
; : : : to denote countable well orderings. If � is a well
ordering then � + 1 denotes a well ordering obtained from � by adding an upper bound
as follows:

�+ 1 = f(2m; 2n) : (m;n) 2 �g [ f(1; 1)g [ f(2m; 1) : m 2 �eld(�)g.

Let us now introduce two natural comparability notions between ordinals that turn
out to be equivalent to Arithmetical Trans�nite Recursion.

De�nition 5.4 The following de�nition is made in RCA0. Let � and � be countable
well orderings. We say that � is weakly less than or equal to �, � �w �, if there is an
injection f : �eld(�)! �eld(�) such that

8i; j 2 �eld(�) (i �� j $ f(i) �� f(j)) .

We write � <w � if �+ 1 �w �.

De�nition 5.5 The following de�nition is made in RCA0. Let � and � be countable
well orderings. We say that � is strongly less than or equal to �, � �s �, if there is
f : �eld(�)! �eld(�) such that:

1. 8i; j 2 �eld(�) (i �� j $ f(i) �� f(j)), and

2. f is bijective or, there exists k 2 �eld(�) such that f is a bijection from �eld(�) onto
the initial segment determined by k in �, i.e the set fi 2 �eld(�) : i <� kg.

We write � <s � if �+ 1 �s �.
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Theorem 5.6 ([Hir01]) Over RCA0 the following principles are equivalent:

1. ATR0.

2. 8�; � (� �s � _ � �s �).

3. 8�; � (� �w � _ � �w �).

In what follows we shall see that ATR0 is strong enough to prove the basic results
on well-founded trees and ordinal rank functions. Our exposition here follows [Hir00] and
Section 2 of [GM08]. The following de�nitions are made in RCA0.

De�nition 5.7 A tree T � NN is well-founded if it has no path.

Let us observe that for each tree T , the reverse inclusion � de�nes a re�exive binary
relation on T and T is a well-founded tree if and only if � is a well-founded relation.

De�nition 5.8 Let S; T � NN be trees. We shall write S � T if there is a function
f : S ! T such that

8s1; s2 2 S (s1 � s2 ! f(s1) � f(s2)) .

De�nition 5.9 Let T be a tree. A rank function for T is a pair (rk; �) where � is a
countable well ordering and rk : T ! �eld(�), is a function such that � = rk (hi) + 1 and
for every t 2 T ,

rk (t) = supfrk (s) + 1 : t � s ^ jsj = jtj+ 1g.

We say that T is a ranked tree if there exists some rank function for T .

The following basic properties of rank functions can be proved inRCA0. In particular,
from part 2 in the next proposition we see that RCA0 essentially proves uniqueness of
rank functions.

Proposition 5.10 Let T be a tree. The following is provable in RCA0.

1. If (rk; �) is a rank function for T , then

8t1; t2 2 T (t1 � t2 ! rk(t2) <� rk(t1)).

2. If (rk1; �) and (rk2; �) are rank functions for T , then there is an order preserving
bijection h : �eld(�)! �eld(�) such that for all t 2 T , rk1(t) = h(rk2(t)).
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Proof. We reason in RCA0.
(1): Let  (x) 2 �01 be the formula

8t2 2 T (jt2j = x! 8t1 2 T (t1 � t2 ! rk(t2) <� rk(t1))).

Then by �01�induction we obtain that 8x (x):
Obviously  (0) holds. Let us assume that  (x) holds and let t1; t2 2 T be such that
t1 � t2 and jt2j = x+ 1. If jt1j = x then, since rk is a rank function, we have

rk(t2) <� rk(t2) + 1 �� rk(t1).

In other case, there exists t0 2 T such that t1 � t0 � t2 and jt0j = x. By induction
hypothesis, rk(t0) <� rk(t1) and, since rk is a rank function, we have

rk(t2) <� rk(t2) + 1 �� rk(t0) <� rk(t1).

Thus,  (x+ 1) holds, as required.

(2): Let us de�ne h : �eld(�)! �eld(�) by

h(u) = rk2(minft 2 T : rk1(t) = ug)

for u 2 �eld(�). Then the function h exists by �01�comprehension and it is an order
isomorphism from � to �, see theorem 11 of [Hir00] for details.

As a consequence, the following de�nition makes sense.

De�nition 5.11 Let T be a ranked tree and (rk; �) a rank function for T . We de�ne the
rank of T as rk(T ) = rk(hi).

Remark 5.12 The following family of trees provides us with natural examples of ranked
trees with a given rank. It will appear again in the proof of a reversal for �01-SLOL and
ATR0 (see Theorem 5.21).
We work in RCA0. For each linear ordering X, we de�ne a tree

T (X) = fs 2 SeqX : 8i; j < jsj (i < j ! (s)j <X (s)i)g.

Then RCA0 can prove that, for each X such that LO(X), we have:

1. WO(X)$ T (X) is well-founded.

2. For every countable well ordering �, T (�) is ranked and has rank �.

Indeed a rank function for T (�) is rk : T (�)! �+ 1, de�ned by

rk(s) =

(
� if s = hi

(s)l if jsj = l + 1
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It can be easily checked that (in RCA0) every ranked tree is well-founded. The
converse can be derived in ATR0. As a matter of fact a stronger result holds (this is,
essentially, Theorem 7 of [Hir00]):

Theorem 5.13 The following assertions are equivalent over RCA0:

1. ATR0.

2. Every well-founded tree is ranked.

Rank functions provide a powerful tool in the study of immersions between well-
founded trees and they will be crucial in our research on determinacy of Lipschitz games
between clopen sets of the Baire space.

Lemma 5.14 Let S; T � N<N be ranked trees. Then

1. The following is provable in RCA0. If rk(S) �w rk(T ) then S � T .

2. The following is provable in ACA0. If S � T then rk(S) �w rk(T ).

Proof. See Lemma 3.6 and Lemma 3.7 in [GM08].

As an application we shall use the machinery we have just developed in a proof of a
result of existence of pruned trees. In Chapter 4 we have shown that in ACA0, every
closed set in the Cantor space is the set of paths of some pruned binary tree. A similar
result can be proved in WKL0 for clopen sets. In the Baire space, it is known that �11-
CA0 is equivalent to the fact that every closed set coincides with the set of paths of some
pruned tree. Now we shall see that the corresponding result for clopen sets can be proved
in ATR0.

Proposition 5.15 The following is provable in ATR0. Let '(f) 2 �01 and  (f) 2 �01
such that 8f 2 NN ('(f) $  (f)). Then there exists a pruned tree T satisfying that
[T ] = ff 2 NN : '(f)g.

Proof. Let S1 and S2 be trees such that

[S1] = ff 2 NN : :'(f)g and [S2] = ff 2 NN :  (f)g.

Then S1 \ S2 is a well-founded tree and, by Theorem 5.13, it is ranked. Let (rk; �) be a
rank function for S1 \ S2 and let us consider the following formula �(s; Y )

s 2 S2 ^ 8i 2 �eld(�) (9z ((z; i) 2 Y )! 9k (s � hki; i) 2 Y )).

Since � is a countable well ordering, by ATR0, there exists a set Y such that H�(�; Y )
and, as a consequence,

8u
�
u 2 Y $ 9z; i (u = (s; j) ^ j 2 �eld(�) ^ �(s; Y j)

�
where Y j = f(s; i) : i 2 �eld(�) ^ i <� j ^ (s; i) 2 Y g. For each j 2 �eld(�), let us de�ne
Yj = fs : �(s; Y j)g. Then
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1. 8j 2 �eld(�) (Yj � S2 ^ Yj is a tree).
Indeed, s 2 Yj $ �(s; Y j), and therefore s 2 Yj ! s 2 S2. The second assertion
follows form the following one, that we prove by trans�nite induction,

8i 2 �eld(�)8t; s
�
�(s; Y j) ^ t � s! �(t; Y j)

�
.

Let j 2 �eld(�) and let us assume that

8i <� j
�
8t; s

�
�(s; Y i) ^ t � s! �(t; Y i)

��
.

If �(t; Y j) ^ t � s then s 2 S2 and, since S2 is a tree, t 2 S2. Let i 2 �eld(�)
such that 9z ((z; i) 2 Y j). Then i <� j and 9k ((s � hki ; i) 2 Y ). But, by the very
de�nition of the set Y , (s � hki; i) 2 Y ! �(s � hki ; Y i), and, therefore, by induction
hypothesis, �(t � hki ; Y i) (recall that t � hki � s � hki). Thus �(t; Y j), as required.

2. For all j 2 �eld(�), Yj 6= ; and

8s (s 2 Yj $ ((s 2 S1 \ S2 ^ rk(s) � j) _ 9f 2 [S2] (s � f))) . (y)

We prove this by trans�nite induction. Let us assume that for all i <� j, Yi 6= ; and
Yi satis�es the corresponding equivalence

8s (s 2 Yi $ ((s 2 S1 \ S2 ^ rk(s) � i) _ 9f 2 [S2] (s � f))) .

Let s 2 S2. Then, since we are assuming that 8i <� j (Yi 6= ;), we get

s 2 Yj $ �(s; Y j)$ 8i <� j 9k (s � hki 2 Y ) .

( ) : Given s 2 S2, we distinguish two cases:

� If there exists f 2 [S2] such that s � f , then, taking k = f (jsj), we get that
s�hki � f and, by induction hypothesis, 8i <� j 9k (s � hki 2 Yi). By de�nition
of Yi, this implies 8i <� j �(s; Y i) and, so 8i <� j ((s � hki ; i) 2 Y ), as required.
� If s 2 S1\S2 and rk(s) � j, then, using the recursion equations that satisfy rk,
we obtain that 8i <� j 9k (rk (s � hki) � i). By induction hypothesis, it follows
that 8i <� j 9k (s � hki 2 Yi) and we conclude s 2 Yj as in previous case.

(!) : Let s 2 Yj , then 8i <� j 9k ((s � hki ; i) 2 Y ). By de�nition of Yi we get that
8i <� j 9k (s � hki 2 Yi). By induction hypothesis, it follows that

8i <� j 9k ((s � hki 2 S1 ^ rk (s � hki) � i) _ 9f 2 [S2] (s � hki � f))

and as a consequence, if 9f 2 [S2] (s � f) does not hold then

8i <� j 9k (s � hki 2 S1 ^ rk (s � hki) � i) ,

and it follows that s 2 S1 and rk (s) � j.
Finally let us observe that we can easily prove by trans�nite induction that for all
j 2 �eld(�), fs 2 S1 \ S2 ^ rk(s) � jg 6= ;, and thus Yj 6= ;.
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Now let T = fs 2 S2 : 8j 2 �eld(�) ((s; j) 2 Y )g. Then, using (y), we see that

T = fs 2 S2 : 8j 2 �eld(�) (s 2 Tj)g = fhig [ fs 2 S2 : 9f 2 [S2] (s � f)g.

So, T is a pruned tree and [T ] = [S2], as required.

This result partially completes the �rst line of the table presented in the previous
chapter concerning how much arithmetic is needed to prune a tree:

Cantor space Baire space
Clopen case WKL0 ATR0
General case ACA0 �11�CA0

We now know thatWKL0 and ATR0 su¢ ce for pruning a tree T de�ning a clopen set in
Cantor space (part 2 of Proposition 4.6) and in Baire space (Proposition 5.15), respectively.
However we do not know if these systems are precisely equivalent to the corresponding
"pruning tree" assertions.

Concerning the second row we proved in the previous chapter that ACA0 is equivalent
to the assertion stating that every binary tree can be pruned and it is well known that a
similar assertion for trees in Baire space is equivalent to �11-CA0 (see Lemma VI.4.4 in
[Smp99]). Thus, as we have already pointed out in the previous chapter, it remains us to
determine whether the same holds for the systems in the �rst row.

Problem 5.16

1. Is WKL0 equivalent over RCA0 to the assertion that every binary tree de�ning a
clopen set can be pruned?

2. Is ATR0 equivalent over RCA0 to the assertion that every tree de�ning a clopen
set can be pruned?

5.2 Determinacy for clopen games

By a result of Steel we know that �01-Det can be proved in ATR0 (and as matter of fact
both principles are equivalent over RCA0, see Theorems V.8.2 and V.8.7 in [Smp99]). As
a consequence ATR0 is strong enough to prove determinacy for clopen Lipschitz games,
for a clopen Lipschitz game can be e¤ectively reduced to a clopen Gale-Stewart game.
In this section we shall present an alternative proof of determinacy for clopen Lipschitz
games based on the topological arguments developed in Chapter 2. We shall obtain also
a reversal result (over ACA0) for ATR0 and �01-SLOL.

As in the previous chapter let us start with an easy observation. We recall that a set
is said to be trivial if either it is empty or it is the total set. Determinacy for games with
some trivial payo¤ set is as we already know trivial.

Lemma 5.17 Let Empty(') denote the formula :9f 2 NN'(f) and let Total(') denote
the formula 8f 2 NN'(f). The following facts are provable in RCA0.
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1. Empty('1) ^ :Total('2)! Red?L=W ('1; '2).

2. Empty('1) ^ Total('2)! 9�I 8�II :('1(�I 
IL=W �II)$ '2(�I 
IIL=W �II)).

3. Total('1) ^ :Empty('2)! Red?L=W ('1; '2).

4. Total('1) ^ Empty('2)! 9�I 8�II :('1(�I 
IL=W �II)$ '2(�I 
IIL=W �II)).

Proof. Immediate.

Theorem 5.18

1. ATR0 proves �01-DetL.

2. ACA0 proves �01-DetW .

Proof. (1): We work in an arbitrary model of ATR0.
Let A(f); B(f) 2 �01 and A0(g); B0(g) 2 �01 satisfying that

(-) 8f 2 NN(A(f)$ A0(f)), and

(-) 8g 2 NN(B(g)$ B0(g)).

In view of Lemma 5.17, we can safely assume that all of A, A0, B, and B are di¤erent from
the empty set and the total set. Then, by Proposition 5.15, there are nonempty pruned
trees S; S0; T; T 0 � N<N such that

[S] = ff 2 NN : A(f)g and [S0] = ff 2 NN : :A(f)g:

[T ] = fg 2 NN : B(g)g and [T 0] = fg 2 NN : :B(g)g:

We must show that the Lipschitz game GL([S]; [T ]) is determined.

Let us observe that S0 = S \ S0 and T0 = T \ T 0 are well-founded trees. Thus, by ATR0,
S0 and T0 are ranked trees. Let (rkS0 ; �) and (rkT0 ; �) be rank functions for S0 and T0
respectively. Again by ATR0, we have � �s � _ � �s �. We distinguish two cases:

Case 1: � �s �.
Then player II has a winning strategy in the game GL([S]; [T ]). Let us observe that, if
t0 =2 T0 = T \ T 0 then

8t (t0 � t! t 2 T ) _ 8t (t0 � t! t 2 T 0):

Similarly if s0 =2 S0 = S \ S0 then

8s (s0 � s! s 2 S) _ 8s (s0 � s! s 2 S0).
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As a consequence a winning strategy for player II, �II, can be de�ned as follows: For all
s; t 2 N<N with jsj = l + 1 and jtj = l,

�II(s
 t) =

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

minfk : t � hki 2 T0 ^ rkS0(s) �� rkT0(t � hki)g if s 2 S0

minfk : 9t1 2 T (t � hki � t1)g if s 2 S � S0 ^

t 2 T0 ^ rkT0(t) 6= 0

minfk : 9t2 2 T 0 (t � hki � t2)g if s 2 S0 � S0 ^

t 2 T0 ^ rkT0(t) 6= 0

0 otherwise

Since � �s � we can identify �eld(�) with an initial segment of �eld(�) (and <� is the
restriction of <� to �eld(�)). The strategy �II exists by arithmetical comprehension.

Case 2: � <s �.
Then player I has a winning strategy in the game GL([S]; [T ]).
Since � <s � there exists j� 2 �eld(�) such that � is order isomorphic to the initial
segment de�ned by j� in �.
The �rst move of player I is hii, with

i = minfk : hki 2 S0 ^ j� �� rkS0(hki)g.

For all s; t 2 N<N with jsj = jtj = j � 1,

�I(s
 t) =

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

minfk : s � hki 2 S0 ^ rkT0(t) �� rkS0(s � hki)g if t 2 T0

minfk : 9s1 2 S0 (s � hki � s1)g if t 2 T � T0 ^

s 2 S0 ^ rkS0(s) 6= 0

minfk : 9s2 2 S (s � hki � s2)g if t 2 T 0 � T0 ^

s 2 S0 ^ rkS0(s) 6= 0

0 otherwise

(2): We work in an arbitrary model ofACA0. Let A(f); B(f) 2 �01 and A0(g); B0(g) 2
�01 such that

(-) 8f 2 NN(A(f)$ A0(f)), and

(-) 8g 2 NN(B(g)$ B0(g)).

In view of Lemma 5.17, we may assume that there exists some gin 2 NN satisfying B(gin)
and there exists some gout 2 NN satisfying :B(gout). By Proposition 4.1, there are non-
empty pruned trees S, and S0 such that

[S] = ff 2 NN : A(f)g and [S0] = ff 2 NN : :A(f)g .
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We must show that the Wadge game GW ([S]; B) is determined.

Observe that S\S0 cannot have any path. Thus the following strategy �II will be winning
for player II. While player I plays inside S \ S0 player II passes; and when player I leaves
S\S0 (this has to happen sooner or later as S\S0 has no path) player II plays accordingly
by using either gin or gout. In order to give a precise de�nition of the strategy, recall that
by our conventions in Chapter 3, the following correspondence holds.

Formalized strategy Player I�s real move Player II�s real move

k k _�1 p, if k = 0
k � 1, otherwise

Having this in mind, given any sequence of odd length s = hx0; y0; : : : ; xn�1; yn�1; xni, we
put

�II(s) =

8>>>>>>>>>><>>>>>>>>>>:

0 if hx0 _�1; : : : ; xn _�1i 2 S \ S0

gout(n� k) + 1 if hx0 _�1; : : : ; xn _�1i 62 S

and k = �j
�
hx0 _�1; : : : ; xj _�1i 62 S

�
gin(n� k) + 1 if hx0 _�1; : : : ; xn _�1i 62 S0

and k = �j
�
hx0 _�1; : : : ; xj _�1i 62 S0

�
Clearly, �II exists by �01�comprehension and it is easy to see that �II is winning for player
II. This completes the proof of the theorem.

Corollary 5.19

1. ATR0 proves �01-SLOL.

2. ACA0 proves �01-SLOW .

In particular, it follows from the proof of part 2 of Theorem 5.18 that it is provable in
ACA0 that the nontrivial �01�sets form a Wadge degree. That is to say, write A �W B
to denote the formula RedW (A;B) ^RedW (B;A). Then, we have

Proposition 5.20 It is provable in ACA0 that if S and T are trees de�ning nontrivial
clopen sets then [S] �W [T ].

Now we derive a reversal for ATR0 over ACA0 in terms of Lipschitz determinacy and
semilinear order principle for clopen sets. Let us observe that in the next section we shall
obtain another reversal for ATR0 over the weaker base theory RCA0.

Theorem 5.21 The following are equivalent over ACA0:

1. ATR0.
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2. �01-DetL.

3. �01-SLOL.

Proof. By Theorem 5.18 we know that (1) implies (2) and, as we already saw in
chapter 3, �01-DetL implies �

0
1-SLOL (that is, (2) implies (3)). Therefore, we only

must show how to derive ATR0 from �01-SLOL (working over ACA0). Let � and �
be countable well orderings. We shall prove that � �s � _ � �s �. By Friedman�Hirst
theorem (see Theorem 4 of [Hir00]) this su¢ ces to derive ATR0.
Let S(�) be the tree of decreasing sequences (w.r.t. <�) of elements of �eld(�) (the tree
T (�) is de�ned using � accordingly). Then, as noticed in Remark 5.12, RCA0 su¢ ces to
show that S(�) and T (�) are ranked trees and that there are rank functions (rk; �) and
(rk; �) for S(�) and T (�) respectively. Let us de�ne the following trees

S = fs : s 2 S(�) _ 9t 2 S(�)9t0 2 N<N 9j (t � h2ji =2 S(�) ^ s = t � h2ji � t0)g,

S0 = fs : s 2 S(�) _ 9t 2 S(�)9t0 2 N<N 9j (t � h2j + 1i =2 S(�) ^ s = t � h2j + 1i � t0)g.
Then S and S0 are pruned trees, [S] is a clopen set (since [S0] is its complement) and, in
addition, S \ S0 = S(�).
In a similar way we de�ne

T = fs : s 2 T (�) _ 9t 2 T (�)9t0 2 N<N 9j (t � h2ji =2 T (�) ^ s = t � h2ji � t0)g,

T 0 = fs : s 2 T (�) _ 9t 2 T (�)9t0 2 N<N 9j (t � h2j + 1i =2 T (�) ^ s = t � h2j + 1i � t0)g.
Once again T and T 0 are pruned trees, [T ] and [T 0] are clopen sets and T (�) = T \ T 0.
By �01-SLOL we have that RedL([S]; [T ]) or RedL([T

0]; [S]) (recall that [T 0] coincides with
the complement of [T ]).
If RedL([S]; [T ]) holds then player II has a winning strategy �II in the Lipschitz game
GL([S]; [T ]). In such a case, we de�ne by primitive recursion a function F : N<N ! N<N
as follows

F (hi) = hi
F (s � hki) = F (s) � h�II((s
 F (s)) � hki)i

(Here, recall that if s and t are sequences with jsj = jtj, s 
 t denotes the sequence of
length 2jsj and elements

(s
 t)2j = (s)j and (s
 t)2i�1 = (t)i�1 (if 1 < i < jsj).

Obviously, if s1 � s2 then F (s1) � F (s2) and it can be easily checked that

8s (s 2 S(�)! F (s) 2 T (�)).

Indeed, if s 2 S(�) but F (s) =2 T (�) then, F (s) 2 T � T 0 or F (s) 2 T 0 � T say. If
F (s) 2 T � T 0 then there exists s0 2 S(�) such that s � s0 and s0 � h1i 2 S0 and we can
de�ne a strategy �I for player I as follows:

�I(s
 t) =
(
(s0)i if jsj = i < js0j

1 otherwise
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Then �I 
IL �II 2 [S0] but �I 
IIL �II 2 [T ]. This is a contradiction since �II is a winning
strategy for player II in the game GL([S]; [T ]).
Thus, using F we show that S(�) � T (�) and, as a consequence, rk(S(�)) = � �s
rk(T (�)) = �.
If RedL([T 0]; [S]) holds then there exists a winning strategy for player II in the Lipschitz
game GL([T 0]; [S]), and we can prove reasoning as in the previous case that T (�) � S(�)
and, as a consequence, � = rk(T (�)) �s rk(S(�)) = �.

This completes the proof of the lemma.

Remark 5.22 Andretta proved in ZF + BP +DC that Lipschitz determinacy and the
Lipschitz semilinear ordering principle are equivalent. Theorem 5.21 says that when re-
stricted to �01 sets, this equivalence can be proved already in ACA0.

Since the above reversal was not obtained over the ideal base theory RCA0, it is
natural to ask whether the result can be improved. Thus we pose the following questions.

Problem 5.23

1. Is ATR0 equivalent over RCA0 to �01-SLOL?

2. Does �01-SLOL or �
0
1-DetL imply ACA0 over RCA0?

3. Are �01-SLOL and �
0
1-DetL equivalent over RCA0?

5.3 Determinacy for closed and open sets

In this section we shall study determinacy of Lipschitz and Wadge games for open or
closed sets in the Baire space. We shall obtain a reversal (over RCA0) for ATR0 using
�01-DetL. This improves the previous reversal for ATR0 that was derived over ACA0.

In the analysis of determinacy for closed sets that we developed in Chapter 4 the notion
TrueClosed(T ) and the associated dichotomy property (DP) played an important role.
We proved there that ACA0 proves the dichotomy property for closed sets in the Cantor
space. A similar property for closed sets in the Baire space can be also derived in ACA0.

De�nition 5.24 We say that a tree T de�nes a true closed set if

9f 2 NN [f 2 [T ] ^ 8k 9s (f [k] � s ^ s 62 T )]:

We will write TrueClosed(T ) to denote the above formula.

Lemma 5.25 Assume that T is a tree. It is provable in ACA0 that

TrueClosed(T ) _ T de�nes a clopen set:
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Proof. We work in ACA0. Suppose that :TrueClosed(T ) holds. Let us de�ne

S = fs 2 N<N : 9t (s � t ^ t =2 T )g.

The set S exists by �01�comprehension, and it is a tree. Finally it is easily checked that

8f 2 NN (f =2 [T ]$ f 2 [S]):

So, T de�nes a clopen set.

Theorem 5.26

1. ATR0 proves (�01 [�01)-DetL.

2. ACA0 proves (�01 [�01)-DetW .

Proof. (1): Let A(f); B(g) 2 �01 [ �01 and let us consider the game GL(A;B). First
we deal with the case A(f); B(g) 2 �01. It is enough to show that, working in an arbitrary
model of ATR0 if T; S � N<N are pruned trees then the Lipschitz game GL([S]; [T ]) is
determined. We distinguish two cases:

Case 1: TrueClosed(T ) holds, i.e., there exists g 2 [T ] such that 8k 9s (g[k] � s ^ s =2 T ).
Let us see that in this case there exists a winning strategy for player II, �II, de�ned as
follows:
For all s; t 2 N<N with jsj = j + 1 and jtj = j,

�II(s
 t) =

8>><>>:
g(j) if s 2 S

minfk : t � hki =2 Tg if s =2 S ^ 9k (t � hki =2 T )

g(j) if s =2 S ^ 8k (t � hki 2 T )
The existence of such a �II is granted by ACA0 and it is straightforward to check that
�II is a winning strategy for player II.

Case 2: Case 1 does not hold but TrueClosed(S) holds, i.e., there exists f 2 [S] such that
8k 9s (f [k] � s ^ s =2 S).
Let us de�ne T 0 = ft 2 T : 9t0 (t � t0 ^ t0 =2 T )g. Then, by arithmetical comprehension, T 0
is a well-founded tree (since Case 1 fails) and a winning strategy for player I, �I, can be
de�ned as follows:
Let �I(hi) = f(0) and for all s; t 2 N<N with jsj = jtj = j � 1,

�I(s
 t) =

8>><>>:
f(j) if t =2 T _ t 2 T 0

minfk : s � hki =2 Sg if t 2 T � T 0 ^ 9k (s � hki =2 S)

f(j) if t 2 T � T 0 ^ 8k (s � hki 2 S)
Since T 0 is well�founded player II must eventually play outside T 0. Let us denote by t the
sequence of movements of player II. Then t =2 T 0 and

8t (t � t0 ! t0 =2 T ) _ 8t (t � t0 ! t0 2 T ).
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Thus �I is a winning strategy for player I.

Case 3: Both TrueClosed(T ) and TrueClosed(S) fail.
Since Case 1 fails, by Lemma 5.25 [T ] is a clopen set and, by a similar argument (recall
that Case 2 also fails) we have that [S] is also a clopen set. Therefore GL([S]; [T ]) is
determined by Theorem 5.18.

We have showed in this way that ATR0 proves �01-DetL. Now, bearing in mind that
the strategies for a game GL(A(f); B(g)) are also strategies for the corresponding dual
game GL(:A(f);:B(g)) we obtain from �01-DetL that GL(A(f); B(g)) is also determined
when A(f); B(g) 2 �01. To conclude let us prove that GL(A(f); B(g)) is determined for
A(f) 2 �01 and B(g) 2 �01 (the remaining case follows from this one by duality).
It is enough to show that if T; S � N<N are pruned trees then the Lipschitz game
GL([S]

c; [T ]) is determined. We distinguish two cases:

Case 1: There exists f 2 [S] such that 8k 9s (f [k] � s^ s =2 S), i.e., TrueClosed(S) holds.
Then, a winning strategy for player I, �I, can be de�ned as follows:
Let �I(hi) = f(0) and for all s; t 2 N<N with jsj = jtj = j,

�I(s
 t) =

8>><>>:
f(j) if t 2 T

minfk : s � hki =2 Sg if t =2 T ^ 9k (s � hki =2 S)

f(j) if t =2 T ^ 8k (s � hki 2 S)

Once more, the existence of �I is granted by ACA0 and it is straightforward to check that
�I is a winning strategy for player I in GL([S]c; [T ]).

Case 2: Case 1 fails.
Then [S]c is closed and GL([S]c; [T ]) is determined as proved in the �rst part of this proof.

(2): Firstly, observe that the winning strategies for player I given in the part (1) of the
present proof are also winning for player I even if player II is allowed to pass a �nite
number of times. Secondly, observe that in the previous argument ATR0 was only used
to deal with determinacy of Lipschitz games for clopen sets. Since determinacy of Wadge
games for clopen sets can be proved in ACA0 the result follows.
This completes the proof of the theorem.

Corollary 5.27

1. ATR0 proves (�01 [�01)-SLOL.

2. ACA0 proves (�01 [�01)-SLOW .

Our next result is the promised reversal for ATR0 over the base theory RCA0.

Theorem 5.28 The following are equivalent over RCA0:

1. ATR0.
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2. (�01 [�01)-DetL.

3. �01-DetL.

4. (�01;�
0
1)-DetL.

Proof. By Theorem 5.26 it is enough to show that (4) implies (1). Since (�01;�
0
1)-

DetL extends �01-DetL and, by Theorem 5.21, �01-DetL implies ATR0 over ACA0 it
will su¢ ce to show how to derive, over RCA0, ACA0 from (�01;�

0
1)-DetL.

Reasoning in RCA0, assume (�01;�
0
1)-DetL. We take '(x) 2 �01 (we disregard para-

meters) and show that the set fx : '(x)g exists. To this end, we assume that '(x) is
9y '0(x; y), with '0(x; y) 2 �00, and de�ne A(f) and B(g) to be

9k 8j � k (f(j) = k � j)

and

8l 8m (g(0) = l ^ g(l + 1) = m! 8j � l (g(j) = l � j) ^ 8i � l (g(l + i+ 2) � 1)^
8i � l ('(i)! g(l + i+ 2) = 1) ^
8i � l (g(l + i+ 2) = 1! 9y � m'0(i; y)));

respectively. That is to say, a play for player I is in A if it is of the form

I :

length k+1z }| {
hk; (k � 1); (k � 2); : : : ; 0i � f 0

for some f 0 2 NN.
A play for player II is in B if it is of the form

II :

length l+1z }| {
hl; (l � 1); (l � 2); : : : ; 0i � hmi � ht0; t1; : : : ; tli � g0

for some g0 2 NN and, for each i � l, if ti = 1 then 9y � m '0(i; y) holds, and if '(i) holds
then ti = 1.
It is clear that B is in �01 and that A is equivalent to

8k (f(0) = k ! 8j � k (f(j) = k � j).

Therefore A is in �01

We claim that

� Player I cannot have a winning strategy in the game GL(A;B).
We must show that 8�I 9�II (B(�I 
I �II) $ A(�I 
II �II)). Consider any strategy
for player I, �I, and k = �I(hi). Let �II be a strategy for player II that mimics the
moves of player I until round k (included), that is, given s; t 2 N<N with jtj = i < k
and jsj = i+ 1,

�II(s
 t) = (s)i .
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We distinguish two cases.

Case 1: There is i � k such that �I 
I �II(i) = �I 
II �II(i) 6= k � i.
Then, both :B(�I 
I �II) and :A(�I 
II �II) hold. Therefore, (A(�I 
I �II) $
B(�I 
II �II)) holds and, thus, �I is not a winning strategy for player I, as required.
Case 2: 8i � k

�
(�I 
I �II)(i) = (�I 
II �II)(i) = k � i

�
.

Then, using �01-induction (which is available in RCA0), we can prove that there is
some m 2 N such that

8i � k (9y '0(i; y)! 9y � m'0(i; y)).

By bounded �01-comprehension (available thanks to RCA0), there exists

C = fx : x � k ^ 9y � m'0(x; y)g.

Let �II be a strategy for player II that mimics �I until round k (included) and
continues by playing as follows:

Given s; t 2 N<N with jtj = i < k and jsj = i+ 1,

�II(s
 t) =

8>><>>:
m; if i = k + 1

1; if k + 1 < i � 2k + 2 ^ i� (k + 2) 2 C

0; if k + 1 < i � 2k + 2 ^ i� (k + 2) =2 C

Then, we have B(�I
I �II) and A(�I
II �II). Therefore, we also have A(�I
I �II)$
B(�I 
II �II)) and, thus �I is not a winning strategy for player II, as required.

This proves the claim.

Hence, by (�01;�
0
1)-DetL, player II must have a winning strategy in the game GL(A;B).

Let �II denote such a winning strategy. Pick k 2 N. We will use the winning strategy �II
to decide whether or not '(k) holds. To that end, for each k 2 N, we consider a strategy
for player I, �kI , satisfying that for each s; t 2 N<N with jsj j = i = jtj,

�kI (s
 t) =
(
k � i if i � k

0 if i > k

That is to say, according to �kI player I plays as follows:

I :

k+1 movesz }| {
hk; (k � 1); (k � 2); : : : ; 0i � ~0

It is clear that A(�kI 
I �II) holds. So B(�kI 
II �II) holds as well, for �II is a winning
strategy for player II in GL(A;B). Consequently, there exist l;m 2 N such that

g(0) = l ^ g(l + 1) = m ^ 8i � l (g(i) = l � i)^
8i � l (('(i)! g(i+ l + 2) = 1) ^ g(l + i+ 2) = 1! 9y � m'0(i; y));
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where g = �kI 
II �II.

Now we claim that

� We have k � 2(l + 2).
Assume not. Then, 2(l + 2) < k and, by bounded �01-comprehension, there exists
D = fx : x � l ^ '(x)g. Consider a new strategy for player I, �0I , given by

�0I(hx0; y0; : : : ; xn�1; yn�1i) =

8>>>>>>>>>><>>>>>>>>>>:

k � n if n < 2l + 3

k � n if 2l + 3 � n � k ^

8i � l ((i 2 D ! yl+i+2 = 1) ^

(i =2 D ! yl+i+2 = 0))

k + 1 otherwise

It is clear that �0I exists by �
0
1-comprehension. In addition, it is immediate to see

that A(�0I 
I �II) holds if and only if B(�0I 
II �II) does not hold, thus contradicting
the fact that �II is a winning strategy for player II in GL(A;B).

This proves our second claim.

Observe that by �01�comprehension, there exists S � Seqeven �N�N such that (S)k = �kI
for each k, where (S)k = f(s; n) 2 Seqeven �N : (s; n; k) 2 Sg. Then, we have

'(k)$ 9l (k � l ^ ((S)2(k+2) 
II �II)(l + 2 + k) = 1)

and

'(k)$ 8l (k � l ^ ((S)2(k+2) 
II �II)(l + 2 + k) = 1).

Thus, the set fx : '(x)g exists by �01-comprehension using the winning strategy �II as a
parameter.
This completes the proof of the theorem.

Remark 5.29 According to Simpson [Smp99] ATR0 is equivalent to �01-Det and �
0
1-Det

over RCA0. As a consequence, it follows from the above theorem that over RCA0, Gale-
Stewart determinacy for open sets and Lipschitz determinacy for open sets are equivalent
principles in Baire space. Hence, the huge di¤erence of strength between Gale-Stewart and
Lipschitz determinacy must appear in higher levels of Borel determinacy.

The following questions emerge naturally:

Problem 5.30

1. Is (�01 [�01)-DetW equivalent over RCA0 to ACA0?
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2. Is (�01 [�01)-SLOW equivalent over RCA0 to ACA0?

3. Is (�01 [�01)-SLOL equivalent over RCA0 to ATR0?

4. Is �01-SLOL equivalent over RCA0 to ATR0?

5. Is (�01;�
0
1)-SLOL equivalent over RCA0 to ATR0?

5.4 Determinacy for (�01)2 sets

In this section we show that the topological argument presented in Chapter 2 can be
formalized in the system �11-CA0, obtaining in this way a proof of ((�

0
1)2 [ :(�01)2)-

DetL=W in this system.

First of all, we show that some auxiliary trees used in the topological argument can
be proved to exist in models of �11-CA0.

De�nition 5.31 The following de�nition is made in �11-CA0. Let T � N<N be a tree.
The boundary of T is the following set

� (T ) = ft 2 T : 9t0(t � t0 ^ t0 =2 T )g

Given S � N<N, we de�ne

�ST = ft 2 T : 9t0(t0 2 S � T ^ t � t0)g:

If T1; T0 � N<N are trees such that T1 � T0 then we de�ne

�(T0; T1) = fs 2 T1 : 9h; g (h 2 [�T0T1] ^ g 2 [� (T0)] ^ g =2 [T1] ^ s � h ^ s � g)g:

Let us notice that � (T ) and �ST exist (as sets) by ACA0 and that they are trees if so
are T and S. The existence of �(T0; T1) requires �11-comprehension, which is available in
�11-CA0. It is easily checked that �(T0; T1) is a tree.

Lemma 5.32 The following is provable in �11-CA0. Let S0; S1; T0; T1 � N<N be pruned
trees such that

(-) S1 � S0 and T1 � T0, and

(-) �(T0; T1) and �(S0; S1) are well-founded.

Then:

1. GL([S0]� [S1]; [T0]� [T1]) is determined.

2. GW ([S0]� [S1]; [T0]� [T1]) is determined.
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Proof. (1): By hypothesis �(S0; S1) and �(T0; T1) are well�founded trees and, there-
fore, by ATR0 they are ranked trees. Thus, there are rank functions (rk1; �) and (rk2; �)
for �(S0; S1) and �(T0; T1) respectively. Now, we distinguish several cases:

Case 1: [�T0T1] 6= ;, [� (T0)]� [T1] 6= ;, [�S0S1] 6= ;, and [� (S0)]� [S1] 6= ;.

We distinguish two subcases:

1. � �s �.

It follows from the de�nition of �(T0; T1) that for each t 2 �(T0; T1) there exist
gt 2 [�T0T1] with t � gt and g0t 2 [� (T0)] � [T1] such that t � g0t. Using �

1
1-AC,

available by ATR0 (see theorem V.8.3 in [Smp99]) the functions gt and g0t can be
selected uniformly. Indeed, let �(t; g) be the formula

t 2 �(T0; T1)! t � g ^ g 2 [�T0T1].

Then 8t9g �(t; g) and by �11-AC there exists g such that 8t �(t; (g)t).

In a similar way we can prove that there exists g0 such that

t 2 �(T0; T1)! t � (g0)t ^ (g0)t 2 [� (T0)]� [T1].

Then player II has a winning strategy, �II, de�ned as follows:

For all s; t 2 N<N with jsj = j + 1 and jtj = j, if player I plays s 2 �(S0; S1) then

�II(s
 t) = minfk : t � hki 2 �(T0; T1) ^ rk2(t � hki) � rk1(s)g.

If at some point player I plays outside �(S0; S1) (this must be eventually the case,
since �(S0; S1) is well�founded) and player II is still playing inside �(T0; T1), with
rk2(t) 6= 0, then

�II(s
 t) = minfk : t � hki 2 �(T0; T1)g.

If rk2(t) = 0, or t =2 �(T0; T1), then player II decides her move depending on the
position, s, of player I, as follows.

For each t0 2 �(T0; T1) such that ��(T0;T1)(t0) = 0 let us �x (g1)t0 2 [�T0T1] with t0 �
(g1)t0 and (g2)t0 2 [�(T0)]� [T1] with t0 � (g2)t0 . Let bt0 = maxfk : t0 [k] 2 �(T0; T1)g
and let (�) be the formula

8s0((s [bt0 + 1] � s0 ^ s0 2 �S0S1)! 9k8s00(s0 [k] � s00 ! s00 2 S1)). (�)

Then the strategy of player II continues as follows:
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�II(s
t) =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(g1)t0(j) if j � bt0 ^ s[bt0 + 1] =2 S0

(g2)t0(j) if j � bt0 ^ s[bt0 + 1] 2 S0 � S1 ^ s 2 S0

(g2)t0(j) if j � bt0 ^ s[bt0 + 1] 2 S0 � S1 ^ s =2 S0 ^ 8k (t � hki 2 T0)

k if j � bt0 ^ s[bt0 + 1] 2 S0 � S1 ^ s =2 S0 ^ 9k (t � hki =2 T0)

and k = minfi : t � hii =2 T0g

(g1)t0(j) if j � bt0 ^ s[bt0 + 1] 2 S1 ^ 9f (f 2 [�S0S1] ^ s[bt0 + 1] � f) ^

(s 2 S1 _ s =2 S0)

(g1)t0(j) if j � bt0 ^ s[bt0 + 1] 2 S1 ^ 9f (f 2 [�S0S1] ^ s[bt0 + 1] � f) ^

s 2 S0 � S1 ^ 9s0(s � s0 ^ s0 =2 S0)

(g1)t0(j) if j � bt0 ^ s[bt0 + 1] 2 S1 ^ 9f (f 2 [�S0S1] ^ s[bt0 + 1] � f) ^

s 2 S0 � S1 ^ 8s0(s � s0 ! s0 2 S0) ^ 8k (t � hki =2 T0 � T1)

k if j � bt0 ^ s[bt0 + 1] 2 S1 ^ 9f (f 2 [�S0S1] ^ s[bt0 + 1] � f) ^

s 2 S0 � S1 ^ 8s0(s � s0 ! s0 2 S0) ^ 9k (t � hki 2 T0 � T1)

and k = minfi : t � hii 2 T0 � T1g

(g2)t0(j) if j � bt0 ^ s[bt0 + 1] 2 S1 ^ :9f (f 2 [�S0S1] ^ s[bt0 + 1] � f) ^

(s 2 �S0S1 _ s 2 S0 � S1)

(g2)t0(j) if j � bt0 ^ s[bt0 + 1] 2 S1 ^ :9f (f 2 [�S0S1] ^ s[bt0 + 1] � f) ^

s =2 �S0S1 ^ (s 2 S1 _ s =2 S0) ^ 8k (t � hki 2 T0)

k if j � bt0 ^ s[bt0 + 1] 2 S1 ^ :9f (f 2 [�S0S1] ^ s[bt0 + 1] � f) ^

s =2 �S0S1 ^ (s 2 S1 _ s =2 S0) ^ 9k (t � hki =2 T0)

and k = minfi : t � hii =2 T0g

Let us observe that the strategy �II exists by �11�CA0. Let us see that �II is a
winning strategy for player II. We must check that

8�I (�I 
IL �II 2 [S0]� [S1]$ �I 
IIL �II 2 [T0]� [T1]).

Let �I be such that �I 
IL �II 2 [S0]� [S1]. This means that either player I has been
playing all the time inside S0 � S1 or he started playing inside S1 and at some later
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moment he switched to S0 � S1. Player II always starts playing inside T1, but if
player I commits himself to S0 � S1 then player II will �nish the game in T0 � T1 as
we can see checking the second, the fourth, the eighth, and the ninth conditions in
the de�nition of the strategy �II. Suppose now that �I
IL �II 2 S1[Sc0. Then, as we
can check observing the �rst, the �fth, the sixth, and the eleventh conditions, player
II will either play in T1 or leave T0. The remaining conditions represent intermediate
steps. Hence �I 
IIL �II =2 [T0]� [T1].

2. � <s �.

Then player I has a winning strategy.

Using again �11-AC we can prove that there exist f and g such that

8s (s 2 �(S0; S1)! s � (f)s ^ (f)s 2 [�S0S1]), and

8s (s 2 �(S0; S1)! s � (f 0)s ^ (f 0)s 2 [� (S0)]� [S1]):

Let us de�ne the following strategy �I for player I. First, we put

�I(hi) = minfk : � �s rk1(hki)g:

Let s; t 2 N<N with jsj = jtj = j � 1. If player II plays t 2 �(T0; T1) then

�I(s
 t) = minfk : s � hki 2 �(S0; S1) ^ rk2(t) �s rk1(s � hki)g.

If at some point player II plays outside �(T0; T1) (this must be eventually the case,
since �(T0; T1) is well�founded) and player I is still playing inside �(S0; S1), with
rk1(s) 6= 0, then

�I(s
 t) = minfk : s � hki 2 �(S0; S1)g.

If rk1(s) = 0, or s =2 �(S0; S1), then player I decides his move depending on the
position, t, of player II, as follows.

For each s0 2 �(S0; S1) such that ��(S0; S1)(s0) = 0 let us �x (f1)s0 2 [�S0S1] with
s0 � (f1)s0 and (f2)s0 2 [�(S0)]� [S1] such that s0 � (f2)s0 . Let as0 = maxfk : s0 [k] 2
�(S0; S1)g and let (��) be the formula

8t0(t [as0 ] � t0 ^ t0 2 �T0T1 ! 9k8t00(t0 [k] � t00 ! t00 2 T1)). (��)
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Then the strategy of player II continues as follows:

�I(s
t) =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(f2)s0(j) if j � as0 ^ t[as0 ] =2 T0

(f1)s0(j) if j � as0 ^ t[as0 ] 2 T0 � T1 ^ t 2 T0

(f1)s0(j) if j � as0 ^ t[as0 ] 2 T0 � T1 ^ t =2 T0 ^ 8k (s � hki =2 S0 � S1)

k if j � as0 ^ t[as0 ] 2 T0 � T1 ^ t =2 T0 ^ 9k (s � hki 2 S0 � S1)
and k = minfi : s � hii 2 S0 � S1g

(f2)s0(j) if j � as0 ^ t[as0 ] 2 T1 ^ 9g (g 2 [�T0T1] ^ t[as0 ] � g) ^

(t 2 T1 _ t =2 T0)

(f2)s0(j) if j � as0 ^ t[as0 ] 2 T1 ^ 9g (g 2 [�T0T1] ^ t[as0 ] � g) ^

t 2 T0 � T1 ^ 9t0(t � t0 ^ t0 =2 T0)

(f2)s0(j) if j � as0 ^ t[as0 ] 2 T1 ^ 9g (g 2 [�T0T1] ^ t[as0 ] � g) ^

t 2 T0 � T1 ^ 8t0(t � t0 ! t0 2 T0) ^ 8k (s � hki 2 S0 � S1)

k if j � as0 ^ t[as0 ] 2 T1 ^ 9g (g 2 [�T0T1] ^ t[as0 ] � g) ^

t 2 T0 � T1 ^ 8t0(t � t0 ! t0 2 T0) ^ 9k (s � hki =2 S0 � S1)

and k = minfi : s � hii 2 S0 � S1g

(f1)s0(j) if j � as0 ^ t[as0 ] 2 T1 ^ :9g (g 2 [�T0T1] ^ t[as0 ] � g) ^

(t 2 �T0T1 _ t 2 T0 � T1)

(f1)s0(j) if j � as0 ^ t[as0 ] 2 T1 ^ :9g (g 2 [�T0T1] ^ t[as0 ] � g) ^

t =2 �T0T1 ^ (t 2 T1 _ t =2 T0) ^ 8k (s � hki =2 S0 � S1)

k if j � as0 ^ t[as0 ] 2 T1 ^ :9g (g 2 [�T0T1] ^ t[as0 ] � g) ^

t =2 �T0T1 ^ (t 2 T1 _ t =2 T0) ^ 9k (s � hki 2 S0 � S1)

and k = minfi : t � hii 2 S0 � S1g

The strategy �I does exist by �11�CA0. To see that it is a winning strategy for player
I, we must check that

8�II (�I 
IL �II 2 [S0]� [S1]$ �I 
IIL �II =2 [T0]� [T1]).

Let �II be such that �I 
IIL �II 2 [T0] � [T1]. This means that either player II has
been playing all the time inside T0 � T1 or he started playing inside T1 and at some
later moment he switched to T0 � T1. Player I starts playing inside S1 and if player
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II commits himself to T0 � T1 then player II will �nish the game in S1 as we can
see checking the second, the eighth, and the ninth conditions in the de�nition of the
strategy �I. Thus player I �nishes the game outside [S0] � [S1]. Suppose now that
�I
IIL �II =2 [T0]� [T1], that is �I
IIL �II 2 [T1][ [T c0 ]. Then, as we can check observing
the �rst, the fourth, the �fth, the sixth, and the eleventh conditions, player I will
play in [S0] � [S1]. The remaining conditions represent intermediate steps. Hence
�I 
IL �II 2 [S0]� [S1].

Case 2: (T0; T1) or (S0; S1) is in a degenerated position, but not both of them.
Here we say that (T0; T1) (and similarly (S0; S1)) is in a degenerated position if [�T0T1] = ;
or [� (T0)]� [T1] = ; ([�S0S1] = ; or [� (S0)]� [S1] = ;).
Let us observe that if (T0; T1) is in a degenerated position then the formula g 2 [T0]� [T1]
is equivalent to a �01 formula or a �

0
1 formula:

� If [�T0T1] = ; then �T0T1 is well-founded and, as a consequence, we have for each
g 2 NN,

g 2 [T0]� [T1]$ g 2 [T0] ^ 8k (g[k] =2 �T0T1 ! g[k] =2 T1).

� If [� (T0)]� [T1] = ; then let T 00 = fs 2 T0 : 8s0 (s � s0 ! s0 2 T0)g. For each g 2 NN,

g 2 [T0]� [T1]$ 9k (g[k] 2 T 00 ^ g[k] =2 T1).

If player I plays in a degenerated position, then player II has a winning strategy (essentially,
player II plays simulating the strategy described in Lemma ?? (case 1)):

� If f 2 [S0] � [S1] is equivalent to a �01 formula then, since (T0; T1) is not in a
degenerate position there exists g 2 [� (T0)] � [T1] and player II can win the game
using g.

� If f 2 [S0] � [S1] is equivalent to a �01 formula then, since (T0; T1) is not in a
degenerate position there exists g 2 [�T0T1] and player II can win the game using g.

In a similar way it can be proved that if player II plays in a degenerated position then
player I has a winning strategy.

Case 3: (T0; T1) and (S0; S1) are in a degenerated position.
Recall that in these degenerated cases f 2 [T0]� [T1] and f 2 [S0]� [S1] are equivalent to
some formulas in �01 [�01, so, the corresponding game is determined by Theorem 5.28.

(2): Now we prove that under the same hypothesisGW ([S0]�[S1]; [T0]�[T1]) is determined.
As before, let (rk1; �) and (rk2; �) be rank functions for �(S0; S1) and �(T0; T1) respectively.
We have to consider the same cases:

Case 1: [�T0T1] 6= ;, [� (T0)]� [T1] 6= ;, [�S0S1] 6= ;, and [� (S0)]� [S1] 6= ;.

We distinguish two subcases:
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1. � �s �.
Since a winning strategy for player II in GL([S0] � [S1]; [T0] � [T1]) immediately
yields a winning strategy for player II in GW ([S0]� [S1]; [T0]� [T1]), the proof of this
subcase is similar to that of the Lipschitz subcase.

2. � <s �.

In contrast to the corresponding Lipschitz subcase, in this subcase player II has a
winning strategy in the Wadge game GW ([S0] � [S1]; [T0] � [T1]), because player II
can pass while player I is playing inside �(S0; S1). As soon as player I starts playing
outside �(S0; S1), which must eventually happen, since �(S0; S1) is well-founded,
player II uses the strategy described in the former subcase and wins the game.

Cases 2 and 3: In these cases the fact that player II can pass in a Wadge game does
not change anything essential in the proofs in comparison to the corresponding Lipschitz
cases. The winning strategies for player I and player II in GW ([S0] � [S1]; [T0] � [T1])
remain basically the same.

Proposition 5.33

1. �11-CA0 proves ((�
0
1)2 [ :(�01)2)-DetL.

2. �11-CA0 proves ((�
0
1)2 [ :(�01)2)-DetW .

Proof. (1): Let A(f); B(g) 2 (�01)2 [ :(�01)2. We shall prove that GL(A;B) is
determined. By duality it is enough to show determinacy in the following cases:

(A) A(f); B(g) 2 (�01)2, and

(B) A(f) 2 :(�01)2 and B(g) 2 (�01)2 .

Case (A): Let us assume that A(f); B(g) 2 (�01)2.
Without loss of generality, by �11�CA0, we can assume that there exist pruned trees
S0; S1; T0; T1 such that

1. S1 � S0 and T1 � T0.

2. A(f)$ f 2 [S0]� [S1], and B(g)$ g 2 [T0]� [T1].

We distinguish several subcases:

� Case A.1: [�(T0; T1)] 6= ;.

Let g 2 [�(T0; T1)]. Then,

8k 9g0 (g[k] � g0 ^ g0 2 [� (T0)]� [T1]).
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By �11�AC, there exists G such that

8k (g[k] � (G)k ^ (G)k 2 [� (T0)]� [T1]).

Using g and G a winning strategy, �II, for player II can be informally described as
follows. Given s; t 2 N<N, with jsj = j + 1 and jtj = j, we de�ne

�II(s
t) =

8>>>>>>>>>><>>>>>>>>>>:

g(j) if s 2 S1 _ (s =2 S0 ^ 8l (l < minfi : s[i] =2 S0g ! s[l] 2 S1))

(G)k(j) if k = minfi : s [i+ 1] =2 S1g) ^ (s 2 S0 � S1 _

s =2 S0 ^ 9l s [l] 2 S0 � S1 ^ 8i (t � hii 2 T0)

k if s =2 S0 ^ 9l s [l] 2 S0 � S1 ^

k = minfi : t � hii =2 T0g

Case A.2: [�(T0; T1)] = ; but [�(S0; S1)] 6= ;.
Then �(T0; T1) is a well�founded tree. Pick f 2 [�(S0; S1)]. Then, f 2 [�S0S1)] and

8k 9f 0 (f [k] � f 0 ^ f 0 2 [� (S0)]� [S1]).

By �11�AC, there exists F such that

8k (f [k] � (F )k ^ (F )k 2 [� (S0)]� [S1]).

Then I wins the game with the following strategy, �I.

First we put �I(hi) = f(0), and for all s; t 2 N<N with jsj = jtj = j � 1 and
t 2 �(T0; T1) we de�ne

�I(s
 t) = f(j).

Now at some point player II plays outside �(T0; T1), since �(T0; T1) is well�founded.
So in this case player I decides his move depending on the position t =2 �(T0; T1) of
player II using a strategy similar to that of the proof of Theorem 4.37, part (1), case
2.

Case A.3: [�(T0; T1)] = ; and [�(S0; S1)] = ;.
Then GL(A;B) is determined by Lemma 5.32.

Case B: A(f) 2 :(�01)2 and B(g) 2 (�01)2.
Then there exist pruned trees S0; S1; T0; T1 such that

1. S1 � S0 and T1 � T0.

2. :A(f)$ f 2 [S0]� [S1], and

3. B(g)$ g 2 [T0]� [T1].
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We distinguish again three cases:

� Case B.1: [�(S0; S1)] 6= ;.
Let f 2 [�(S0; S1)]. By �11�AC, there exists F such that

8k (f [k] � (F )k ^ (F )k 2 [� (S0)]� [S1]).

Then I wins the game with the following strategy:

Fist �I(hi) = f(0). Given s; t 2 N<N, with jsj = jtj = j � 1, we de�ne

�I(s
 t) =

8>>>>>>>>><>>>>>>>>>:

f(j) if t 2 T1 _ (t =2 T0 ^ 8l (l < minfi : t[i] =2 T0g ! t[l] 2 T1))

(F )k(j) if k = minfi : t [i+ 1] =2 T1g) ^ (t 2 T0 � T1 _

t =2 T0 ^ 9l t [l] 2 T0 � T1 ^ 8i (s � hii 2 S0)

k if t =2 T0 ^ 9l t [l] 2 T0 � T1 ^

k = minfi : s � hii =2 S0g

Case B.2: [�(S0; S1)] = ; and [�(T0; T1)] 6= ;.
Let g 2 [�(T0; T1)] and, as in previous cases, let us �x G such that

8k (g[k] � (G)k ^ (G)k 2 [� (T0)]� [T1]).

Then, player II wins using the following strategy:

Given s; t 2 N<N, with jsj = j + 1, jtj = j, and s 2 �(S0; S1) we de�ne

�II(s
 t) = g(j).

We know that at some point player I plays outside �(S0; S1), since �(S0; S1) is well�
founded. So from that point player II decides her move depending on the position
s =2 �(S0; S1) of player I following a strategy similar to that of the proof of Theorem
4.37, part (1), case 2.

Case B.3: [�(S0; S1)] = ; and [�(T0; T1)] = ;.
Then GL(A;B) is determined by Lemma 5.32.

(2): The cases to be considered are exactly the same as in the latter proof of Lipschitz
determinacy. Since a winning strategy for player II in a Lipschitz game automatically
gives rise to a strategy for player II in a Wadge game, the proofs in the cases where player
II has a winning strategy are very similar. In the other cases, where player I has a winning
strategy, it is not hard to see that the fact that player II can pass in a Wadge game can
not be used to alter the �nal result. The strategies for player I are de�ned as in Theorem
4.37 using a function ext : N<N ! N<N such that ext(s) is the �nite sequence obtained by
dropping the zeros of the �nite sequence s and decreasing the values by 1.
This completes the proof of the proposition.
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Corollary 5.34

1. �11-CA0 proves ((�
0
1)2 [ :(�01)2)-SLOL.

2. �11-CA0 proves ((�
0
1)2 [ :(�01)2)-SLOW .

Althought it seems plausible that �11-CA0 is already equivalent to (�
0
1)2-DetL, we

have not been able to obtain a reversal for �11-CA0 in terms of Lipschitz determinacy in
Baire space. We then pose the following questions.

Problem 5.35

1. Is ((�01)2 [ :(�01)2)-DetL equivalent over RCA0 to �11-CA0?

2. Is ((�01)2 [ :(�01)2)-SLOL equivalent over RCA0 to �11-CA0?

3. Is ((�01)2 [ :(�01)2)-DetW equivalent over RCA0 to �11-CA0?

4. Is ((�01)2 [ :(�01)2)-SLOW equivalent over RCA0 to �11-CA0?



Chapter 6

Concluding remarks

In this chapter we recapitulate the main questions that have been raised throughout the
thesis and that have been left unanswered, as well as the ways in which this future research
can be developed. First of all, we recall the main goals of the thesis referred in the
introduction:

� to give direct proofs of the determinacy of Lipschitz and Wadge games for the �rst
levels of the Wadge hierarchy;

� to formalize these proofs in the setting of second order arithmetic in order to calibrate
the strength of Lipschitz and Wadge determinacy in terms of the (set existence) ax-
ioms needed to prove them, as a new contribution to the research program of Reverse
Mathematics; and

� to examine the relation between the semilinear order principle and the determinacy
of Lipschitz and Wadge games in the formal context of second order arithmetic and
to search for the axioms needed to prove the equivalence between these principles.

The �rst goal was completely ful�lled for the �rst �ve levels of the Wadge hierarchy
both in Cantor and in Baire space (Chapter 2). This result was grounded on a topological
analysis of the structure of the residues of those sets which, together with their comple-
ments, are di¤erences of closed sets. In order to extend this approach to further levels of
the Wadge hierarchy, the underlying topological analysis would have to be extended too.
We give some more details in Section 1 below.

The second and third goals were ful�lled only partially. We gave explicit formalizations
of determinacy for Lipschitz and Wadge games, and the semilinear ordering principle, in
second order arithmetic (Chapter 3). We obtained a good number of results showing
natural subsystems of Z2 in which these principles are provable (Chapter 4 and 5). But
we only were able to calibrate the exact strength of these principles in the following cases:

� Lipschitz determinacy and semilinear ordering principle for di¤erences of closed sets
in Cantor space (Corollary 4.42),

149
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� Lipschitz determinacy for closed sets in Baire space (Theorem 5.28), and

� over the stronger base theory ACA0, Lipschitz determinacy and semilinear ordering
principle for clopen sets in Baire space (Theorem 5.21).

A number of other calibrating questions remained open. We give some more details in
Section 2 below.

6.1 Topological analysis of Lipschitz and Wadge games

The topological analysis of Chapter 2 was only carried out to the extent we needed for
obtaining determinacy proofs for sets located in the �rst �ve Wadge degrees. Of course, it
would be interesting to know if this analysis can be further extended to all �nite levels, or
even to the in�nite ordinal levels, of the di¤erence hierarchy, thus covering all complexity
levels below �02.

Let us formulate in some detail the �nite case. As before A 2 Dfn(X!) means that
A � X! is a �nite di¤erence of a sequence of closed sets F0, ..., Fn of X!, i.e.

A = (F0 � (F1 � � � � (Fn�1 � Fn) � � � ))

Suppose F;E � X!. We de�ne a sequence fCi : n � 1g by putting C1 = @F �E, and for
any n > 1,

Cn =

�
Cn�1 \ E if n is even
Cn�1 \ Ec if n is odd

Thus, we have

C1 = @F � E
C2 = @F � E \ E

C3 = @F � E \ E \ Ec

...

The key property we used in Chapter 2 and that we conjecture to be true for all �nite
levels is the following.

Proposition 6.1 Let A 2 Dfn(X!) such that A = F � E for some closed set F and
E 2 Dfn�1(X!). Then:

1. If n is even, Ac 2 Dfn(X!) i¤

Rsn(A
c) = Cn and Rsn(Ac) = ;.

2. If n is odd, Ac 2 Dfn(X!) i¤

Rsn(A) = Cn and Rsn(A) = ;.
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Case n = 1 is immediate, and we have already proved case n = 2 in Chapter 2. We
have also checked cases n = 3 and n = 4, but an inductive proof for all �nite levels has
been left pending.

Equipped with the above results, a natural line of future research could be

(L1) to extend the topological analysis of games developed in Chapter 2 to all levels of
the di¤erence hierarchy in order to obtain a direct proof of Lipschitz and Wadge
determinacy for �0

2 sets.

Hopefully, such a direct proof could help us obtain further reverse mathematics results
for Lipschitz determinacy restricted to sets in the di¤erence hierarchy.

6.2 Lipschitz and Wadge games in second order arithmetic

Several interesting problems concerning the reverse mathematics of Lipschitz and Wadge
games are left to solve. Among others, the problems particularly interesting for the author
are the following ones.

6.2.1 Games in Cantor space: subsystems WKL0 and ACA0

In Chapter 4 we have shown thatWKL0 su¢ ces for establishing the structure of clopen
Lipschitz and Wadge degrees in the Cantor space. As consequence, we have also shown
that the semilinear ordering principle for clopen Lipschitz and Wadge games is provable in
WKL0. However, we were not able to obtain a reversal forWKL0 in terms of Lipschitz
or Wadge determinacy or semilinear ordering principle. A natural candidate, we think, is
�01-SLO

�
L. If �

0
1-SLO

�
L would imply WKL0 over RCA0, then WKL0, �01-Det

�
L, and

�01-SLO
�
L would be all equivalent over RCA0. Thus, the following questions are in order:

� IsWKL0 equivalent over RCA0 to �01-Det
�
L?

� IsWKL0 equivalent over RCA0 to �01-SLO
�
L?

� Is �01-Det�L equivalent over RCA0 to �01-SLO�L?

We have also shown that subsystemWKL0 would be su¢ cient for obtaining Lipschitz
and Wadge for open sets in Cantor space if we could prove the dichotomy principle (DP)
withinWKL0 (see Corollary of Theorem 4.24).

Recall that (DP) formalizes the basic topological property: "every closed set in Cantor
space either has a nonempty boundary or is clopen."

We have only been able to prove (DP) within ACA0. So, determining the exact
strength of this principle seems to be of interest. However, it is also possible that, after
all, (DP) turns out to be too strong to be provable fromWKL0; but, on the other hand,
one could prove open Lipschitz determinacy withinWKL0 by using a di¤erent argument.
Thus several questions regarding determinacy for open sets are in order:
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� Is (DP) provable inWKL0?

� Is �01-Det?L=W provable inWKL0?

� Is �01-SLO?L=W provable inWKL0?

� Is (DP) equivalent over RCA0 to ACA0?

� Is �01-Det?L=W equivalent over RCA0 to ACA0?

� Is �01-Det?L=W equivalent over RCA0 to �01-SLO
�
L?

Subsuming, we think that clopen/open Lipschitz determinacy in Cantor space deserves
further investigations in a near future.

As to subsystem ACA0, the analysis of Lipschitz determinacy and semilinear ordering
principle for di¤erences of closed sets in Cantor space has been remarkably successful.
We have shown that both principles are equivalent over RCA0 to ACA0 (see Corollary
4.42). Nonetheless several natural problems concerning Wadge determinacy for di¤erences
of closed sets in Cantor space remain still open. Namely:

� Is ACA0 equivalent over RCA0 to (�01)2-Det�W ?

� Are (�01)2-Det�L and (�01)2-Det�W equivalent over RCA0?

� Are (�01)2-SLO�L and (�01)2-SLO�W equivalent over RCA0?

Finally, we state a second line of future research, in connection with line L1 stated
above. We think that it is plausible to extend our methods in order to show that ACA0
can prove Lipschitz and Wadge determinacy not only for (�01)2 sets, but also for all the
�nite levels of the di¤erence hierarchy of closed sets.

(L2) To show that ACA0 is strong enough to formalize out topological analysis of games
up to �nite levels of the di¤erence hierarchy, and thus obtain Lipschitz and Wadge
determinacy for all �nite levels of the di¤erence hierarchy within ACA0.

This result would be particularly interesting, because it can be seen as a variant of an
old result announced by Steel. In fact, in his PhD [Stee77], Steel stated without a proof
that ACA0 plus full induction can prove Gale-Stewart determinacy for all �nite levels of
the di¤erence hierarchy. However, to the best of our knowledge, no precise proof of that
result has been given in the literature. An argument pointing out that Steel�s conjecture
might be, after all, false cannot be found either.
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6.2.2 Games in Baire space: subsystems ATR0 and �11-CA0

We have obtained two reversals in terms of Lipschitz determinacy for subsystem ATR0.
The �rst one is proved over the ideal base theory RCA0 (see Theorem 5.28). The second
one is proved over the stronger base theory ACA0, but it has the advantage of including
an equivalence in terms of the semilinear ordering principle (see Theorem 5.21). Natural
improvements of these results could be:

� Is ATR0 equivalent over RCA0 to �01-SLOL?

� Is ATR0 equivalent over RCA0 to �01-SLOL?

� Are �01-DetL and �01-DetL equivalent over RCA0?

� Are �01-SLOL and �01-SLOL equivalent over RCA0?

� Does �01-SLOL or �01-DetL imply ACA0 over RCA0?

Regarding �11�CA0, we have not been able to obtain a reversal for this subsystem in
terms of Lipschitz determinacy or semilinear ordering principle in Baire space. So, this is
a clear line of research to explore in a near future.

By analogy with our result for ACA0 in Cantor space (see Corollary 4.42), natural
candidates for obtaining such a reversal are the principle of Lipschitz determinacy and the
principle of semilinear order restricted to the second sevel of the di¤erence hierarchy (�01)2.
Indded, we also think that it is plausible to extend our topological analysis of games in
Baire space in order to show that �11-CA0 can prove Lipschitz determinacy for all �nite
levels of the di¤erence hierarchy. We pose both conjectures as pending questions.

� Is �11-CA0 equivalent over RCA0 to (�01)2-DetL?

� Is �11-CA0 equivalent over RCA0 to (�01)2-SLOL?

� Does �11-CA0 imply over RCA0 the principle of Lipschitz determinacy in Baire
space for all �nite levels of the di¤erence hierarchy?

Finally, we would like to discuss two general lines of future research in the area which
are natural extensions of the present work.

Firstly, note that we have obtained a number of reversals in terms of Lipschitz deter-
minacy, but we have not been able to prove any reversal in terms of Wadge determinacy or
Wadge semilinear ordering principle. Hence, a better understanding of the exact strength
of Wadge determinacy is pending.

Let us observe that in the setting of set theory, Andretta [AA03] showed that the
determinacy of all Lipschitz games, the determinacy of all Wadge games, and the semilinear
ordering principle for Lipschitz maps are all equivalent. In addition, Andretta�s proof is
�local�in the sense that it remains true when the sets range over some reasonably closed
pointclass (e.g., �0n or �

1
n). Thus, we propose:
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(L3) to formalize Andretta�s proof within Z2 in order to obtain equivalences between sub-
systems of second order arithmetic and Wadge determinacy principles.

Secondly, one of the main questions in the area is still open. Louveau and Saint-
Raymond [LSR87] showed that Z2 can prove Lipschitz determinacy for all Borel sets. But
determining the exact strength of Borel Lipschitz determinacy is still pending. Thus, an
interesting line of research for the not distant future is:

(L4) to study in detail Louveau and Saint-Raymond�s proof in order to isolate a natural
subsystem of second order arithmetic which can already prove full Borel Lipschitz
determinacy, and to investigate whether that subsystem would turn out to be actually
equivalent to Borel Lipschitz determinacy over a weak base theory.

At �rst glance, this task seems to be quite di¢ cult, since Louveau and Saint-Raymond�s
proof is very technical and elaborated. But a satisfactory answer would be, we think, a
very nice result in the reverse mathematics of in�nite games.
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