GEOMETRIC REALIZATION OF MÖBIUS TRIANGULATIONS*

MARÍA JOSE CHÁVEZ ${ }^{\dagger}$, GAŠPER FIJAVŽ ${ }^{\ddagger}$, ALBERTO MÁRQUEZ ${ }^{\dagger}$, ATSUHIRO NAKAMOTO§, AND ESPERANZA SUÁREZ ${ }^{\dagger}$

Abstract

A Möbius triangulation is a triangulation on the Möbius band. A geometric realization of a map M on a surface Σ is an embedding of Σ into a Euclidean 3 -space \mathbb{R}^{3} such that each face of M is a flat polygon. In this paper, we shall prove that every 5 -connected triangulation on the Möbius band has a geometric realization. In order to prove it, we prove that if G is a 5 -connected triangulation on the projective plane, then for any face f of G, the Möbius triangulation $G-f$ obtained from G by removing the interior of f has a geometric realization.

Key words. geometric realization, triangulation, Möbius band, projective plane
AMS subject classifications. $05 \mathrm{C} 10,52 \mathrm{~B} 70,05 \mathrm{C} 83$
DOI. 10.1137/070693382

1. Introduction. Let Σ be a surface with at most one boundary component, and let M be a map on Σ. If Σ has a boundary, we suppose that some cycle of M coincides with the boundary of Σ. Such a cycle of M is called the boundary of M and denoted by ∂M. A vertex of M not on ∂M is called an inner vertex. A k-cycle means a cycle of length k. A triangulation on Σ is a map on Σ such that each face is bounded by a 3 -cycle. In particular, a Möbius triangulation is a triangulation on the Möbius band. For an inner vertex v of a triangulation, the link of v is the boundary walk of the 2 -cell region consisting of all faces incident to v. Throughout this paper, we suppose that the graph of a map is simple, i.e., with no multiple edges and no loops. For a cycle or path C in M, a chord of C means an edge $x y$ of M such that $x, y \in V(C)$ but $x y \notin E(C)$. Hence C is induced in M if and only if C has no chord.

A geometric realization of a map M on a surface Σ is an embedding of Σ into a Euclidean 3 -space \mathbb{R}^{3} such that each face of M is a flat polygon. Steinitz's theorem states that a spherical map has a geometric realization if and only if its graph is 3 -connected [10]. Moreover, Archdeacon, Bonnington, and Ellis-Monanghan proved that every toroidal triangulation has a geometric realization [1]. In general, Grünbaum conjectured that every triangulation on any orientable closed surface has a geometric realization [7], but Bokowski and Guedes de Oliveira recently showed that a triangulation by K_{12} on the orientable closed surface of genus 6 has no geometric realization [2]. (For related topics, see [5].)

Let us consider a geometric realization of a triangulation on the projective plane. Let \mathbb{P} denote the projective plane throughout this paper. Since the projective plane itself is not embeddable in \mathbb{R}^{3}, no map on \mathbb{P} has a geometric realization. Let G be a triangulation on \mathbb{P}, and let f be a face of G. Let $G-f$ denote the Möbius triangulation

[^0]

Fig. 1. A Möbius triangulation with no geometric realization.
obtained from G by removing the interior of f. Since the punctured surface obtained from \mathbb{P} by removing a 2-cell, the Möbius band, is embeddable in $\mathbb{R}^{3}, G-f$ might have a geometric realization. The following is known.

Theorem 1.1 (Bonnington and Nakamoto [3]). Every triangulation G on the projective plane \mathbb{P} has a face f such that the Möbius triangulation $G-f$ has a geometric realization.

Brehm [4] has already found a Möbius triangulation with no geometric realization, shown in Figure 1, in which both express the same triangulation. (In Figure 1, we identify the vertices with the same label. In the right-hand side, the shaded part means the hole.) Why does Brehm's example have no geometric realization? We can prove that for each of its spatial embedding, the two disjoint 3 -cycles 123 and 456 have a linking number of at least 2. (See [9] for the definition of the linking number.) However, two 3 -cycles, each with an edge straight segment embedded in \mathbb{R}^{3}, have a linking number of at most 1 , a contradiction. Hence, generalizing this example, we can see that if a triangulation M on the Möbius band has a boundary cycle C of length 3 and a 3 -cycle C^{\prime} disjoint from C which forms an annular region with C^{\prime}, then M never has a geometric realization.

A graph M is said to be cyclically k-connected if M has no separating set $S \subset$ $V(M)$ with $|S| \leq k-1$ such that each connected component of $M-S$ has a cycle. Then the cyclical 4-connectivity of a triangulation G on \mathbb{P} is necessary for a geometric realization of $G-f$ for any face f of G. We conjecture as follows that it is also sufficient.

Conjecture 1.2. Let G be a triangulation on the projective plane \mathbb{P}. Then $G-f$ has a geometric realization for any face f of G if and only if G is cyclically 4-connected.

In this paper, we prove the following.
THEOREM 1.3. Let G be a 5 -connected triangulation on the projective plane \mathbb{P}. Then $G-f$ has a geometric realization for any face f of G.

By Theorem 1.3, a Möbius triangulation M has a geometric realization if M is obtained from a 5 -connected triangulation G on \mathbb{P} by removing a 2 -cell.

Let M be a 5 -connected Möbius triangulation with a boundary cycle $C=v_{1} \cdots v_{k}$ of length k. Let P be the map on \mathbb{P} obtained from M by pasting a 2-cell to C. If $k=3$, then P is a 5 -connected triangulation on \mathbb{P}. If $k=4$, then P can be extended to a 5 connected triangulation on \mathbb{P} by adding an edge $v_{1} v_{3}$ or $v_{2} v_{4}$. (If this is impossible, then M would have edges $v_{1} v_{3}$ and $v_{2} v_{4}$, and hence M would contain a quadrangulation
isomorphic to K_{4}, contrary to the 5 -connectivity of M.) If $k \geq 5$, then P can be extended to a 5 -connected triangulation on \mathbb{P} by adding a new vertex joined to all vertices on C. Hence we have the following.

Corollary 1.4. Every 5 -connected Möbius triangulation has a geometric realization.

Let M be a map on a surface Σ with a boundary, and let C be the boundary cycle of M. We say that M is internally k-connected if M is $(k-1)$-connected and if for any vertex $v \in V(M-C)$, there are at least k disjoint paths from v to C. Clearly, if G is a 5 -connected triangulation on \mathbb{P}, then for any $v \in V(P), G-v$ can be regarded as an internally 5 -connected Möbius triangulation whose boundary cycle has a length of at least 5 . Hence we can relax the condition of Corollary 1.4 to prove the following.

Corollary 1.5. Every internally 5-connected Möbius triangulation has a geometric realization if the boundary cycle has a length of at least 5.
2. Split- $\boldsymbol{K}_{\mathbf{5}}$'s in 5-connected triangulations. Put a 5 -cycle $C=v_{1} v_{2} v_{3} v_{4} v_{5}$ on \mathbb{P}, called the boundary, so that C bounds a 2 -cell R on \mathbb{P}, where each v_{i} is called a node. (We always fix its orientation \vec{C} along the numbering of the vertices.) Join v_{i} to v_{i+2} and v_{i+3} by edges not in R for each i. Then the resulting graph is isomorphic to K_{5} in which each face except R is triangular. (See the left-hand side of Figure 2.) Consider a splitting (i.e., the inverse operation of an edge contraction) of v_{i} into two adjacent vertices, v_{i} and v_{i}^{\prime}, of degree 3 . There are two possibilities for the splitting. When v_{i} and v_{i}^{\prime} lie on C (we always suppose that v_{i} and v_{i}^{\prime} appear on \vec{C} in this order), $\left\{v_{i}, v_{i}^{\prime}\right\}$ is called a boundary pair of nodes, and each of v_{i} and v_{i}^{\prime} is called a boundary split node. (The path from v_{i} to v_{i}^{\prime} on \vec{C} is called the boundary split interval of $\left\{v_{i}, v_{i}^{\prime}\right\}$.) Otherwise, $\left\{v_{i}, v_{i}^{\prime}\right\}$ is called an inner pair of nodes, and each of v_{i} and v_{i}^{\prime} is called an inner split node, where we always suppose that v_{i} lies on C. Let K be a map on \mathbb{P} obtained from the above K_{5} by splittings of some of v_{i} 's. A split- K_{5} is a subdivision of K on \mathbb{P}. (See the right-hand side of Figure 2.)

Fig. 2. K_{5} and split- K_{5}.
The following is the most important claim in this paper. It guarantees that a 5 -connected triangulation on \mathbb{P} has a special type of a split- K_{5}.

Lemma 2.1. Let G be a 5-connected triangulation on \mathbb{P}, and let uvw be any face of G. Then G has a split- $K_{5} H$ such that
(i) the boundary ∂H of H coincides with the link of u in G.
(ii) H has at most one boundary pair of nodes.
(iii) if H has a boundary pair, then at least one of v and w is a boundary split node, but the edge $v w$ is not contained in a boundary split interval. Otherwise, v or w is a node of H.

In the following two sections, we give preliminaries for the proof of Lemma 2.1. In section 5 , we prove Lemma 2.1.
3. Lemmas. Let G be a graph on \mathbb{P}, and let C be a contractible cycle of G, i.e., one bounding a 2 -cell on \mathbb{P}. (A cycle or a closed curve on a surface is essential if it is not contractible.) Then C cuts \mathbb{P} into two surfaces, one homeomorphic to an open disk and the other homeomorphic to an open Möbius band. Let $\operatorname{int}_{C}(G)$ denote the graph consisting of the vertices and edges lying in the disk component of C, and let $\operatorname{Int}_{C}(G)$ be the graph consisting of the vertices and edges lying on C and in the disk component of C. We define $\operatorname{ext}_{C}(G)$ and $\operatorname{Ext}_{C}(G)$ analogously. Note that $\operatorname{Int}_{C}(G)$ is not necessarily an induced subgraph of G.

Let $C=v_{1} v_{2} v_{3} v_{4} \cdots v_{k}$ be a cycle. A closed segment $\left[v_{i}, v_{j}\right]$ is a $v_{i}-v_{j}$ path along \vec{C}. An open segment $\left(v_{i}, v_{j}\right)$ is obtained by deleting the endvertices of the corresponding closed segment. Moreover, we use the notations $\left[v_{i}, v_{j}\right)$ and $\left(v_{i}, v_{j}\right]$, defined similarly.

Lemma 3.1. Let G be a 5 -connected triangulation on \mathbb{P}. Let $C=v_{1} v_{2} v_{3} v_{4}$ be a contractible 4 -cycle in G. Then $\operatorname{int}_{C}(G)$ contains no vertices.

Proof. Assume $v \in V\left(\operatorname{int}_{C}(G)\right)$. Since G is 5 -connected, $\operatorname{ext}_{C}(G)$ contains no vertices. Then we can add only two edges $v_{1} v_{3}$ and $v_{2} v_{4}$ outside C, since T is simple. Hence this contradicts that G is a triangulation.

Lemma 3.2. Let v be a vertex of a 5 -connected triangulation G on \mathbb{P}, and let C be a contractible 5-cycle containing v in its interior. Then there exists a unique contractible 5 -cycle \bar{C} so that $\operatorname{Int}_{\bar{C}}(G)$ contains all contractible 5 -cycles which contain v in their respective interiors.

Proof. Let C_{1} and C_{2} be contractible 5 -cycles containing v in their interiors, and suppose that $\operatorname{Int}_{C_{1}}(G)$ and $\operatorname{Int}_{C_{2}}(G)$ are inclusionwise incomparable, that is, neither $\operatorname{Int}_{C_{1}}(G) \subseteq \operatorname{Int}_{C_{2}}(G)$ nor $\operatorname{Int}_{C_{1}}(G) \supseteq \operatorname{Int}_{C_{2}}(G)$. It suffices to prove that there is a contractible 5 -cycle C^{\prime} such that $\operatorname{Int}_{C^{\prime}}(G)$ contains both $\operatorname{Int}_{C_{1}}(G)$ and $\operatorname{Int}_{C_{2}}(G)$.

Since C_{1} and C_{2} are of length 5 and neither one is contained in the closed interior of the other, they intersect in exactly two vertices. These two vertices divide C_{i} into a segment lying in the interior of C_{3-i} and one lying in the exterior of C_{3-i}, where $i=$ 1,2 . Combining the common segments and both interior segments yields a contractible cycle, which contains v in its interior. By Lemma 3.1, its length is at least 5 . Combining the two exterior segments with the two common segments, we obtain a contractible cycle C^{\prime} of length at most 5 , since both C_{1} and C_{2} were 5 -cycles. Since G is simple, C^{\prime} contains no essential cycle, and hence it is a contractible cycle in G. Now C^{\prime} has length 5 by Lemma 3.1 since it contains v in its interior. On the other hand, $\operatorname{Int}_{C^{\prime}}(G)$ contains both $\operatorname{Int}_{C_{1}}(G)$ and $\operatorname{Int}_{C_{2}}(G)$, and the proof is complete.

Lemma 3.3. Let G be a 5 -connected triangulation on \mathbb{P}, and let $C=v_{1} v_{2} v_{3} v_{4} v_{5}$ be a contractible 5 -cycle in G. If G has no vertex in the exterior of C, then $\operatorname{Ext}_{C}(G)$ is isomorphic to K_{5}.

Proof. We have to show that $\operatorname{ext}_{C}(G)$ contains every possible edge $v_{i} v_{i+2}$ (in indices modulo 5). A similar argument as in the proof of Lemma 3.1 does the trick.

The following lemma is an immediate consequence of 5 -connectivity.
Lemma 3.4. Let G be a 5 -connected triangulation on \mathbb{P}, and let $v \in V(G)$. Let v^{\prime} and $v^{\prime \prime}$ be two nonconsecutive neighbors of v. If v^{\prime} and $v^{\prime \prime}$ have another common neighbor w which is not adjacent to v, then the cycle $v v^{\prime} w v^{\prime \prime}$ is essential.

Let D be a plane graph with boundary cycle C and each inner face triangular, and let x, y be distinct vertices of C. An internal $x-y$ path is a path in D joining x and y and intersecting C only at its endvertices.

Lemma 3.5. Let D be a triangulation on the disk with boundary cycle C, and let x, y be distinct vertices of C with $x y \notin E(C)$. Then D has an internal $x-y$ path if and only if D has no chord pq for some $p, q \in V(D)-\{x, y\}$ such that x and y are contained in distinct components of $C-\{p, q\}$.

Proof. The sufficiency is obvious and so we consider the necessity. Suppose that C has a chord $p q$. By the assumption, x and y are contained in one, say D_{1}, of the two subgraphs D_{1}, D_{2} such that $V(D)=V\left(D_{1}\right) \cup V\left(D_{2}\right)$ and $V\left(D_{1}\right) \cap V\left(D_{2}\right)=\{p, q\}$. In this case, we have to look for a required internal $x-y$ path in D_{1}. Hence in the following argument, we may suppose that D has no chord. Observe that since C is chordless, each vertex on C is adjacent to at least one vertex in $D-C$. Moreover, we can see that $\operatorname{int}_{C}(D)$ is connected. (For otherwise, i.e., if $\operatorname{int}_{C}(D)$ is disconnected, then there are two vertices $p^{\prime}, q^{\prime} \in C$ such that $D-\left\{p^{\prime}, q^{\prime}\right\}$ is disconnected. However, this is impossible since each inner face of D is triangular.) Hence we have an internal $x-y$ path in D.

Let C be a contractible cycle of length at least 4 in a triangulation G. Suppose that vertices $r_{1}, r_{2}, r_{3}, r_{4}$ lie along C in this order, but they do not need to be consecutive along C. Let us also assume that the segments $\left[r_{1}, r_{2}\right],\left[r_{2}, r_{3}\right],\left[r_{3}, r_{4}\right]$, and $\left[r_{4}, r_{1}\right]$ have no chords in $\operatorname{Int}_{C}(G)$. We say that $\operatorname{Int}_{C}(G)$ is a 4-patch with nodes $r_{1}, r_{2}, r_{3}, r_{4}$.

We obtain the following three lemmas, carefully applying Lemma 3.5 to P.
Lemma 3.6. Let P be a 4-patch with nodes $r_{1}, r_{2}, r_{3}, r_{4}$. Assume that $r_{1} r_{4}, r_{2} r_{3} \in$ $E(P)$ and that u and v are vertices from $\left(r_{1}, r_{2}\right)$ and $\left(r_{3}, r_{4}\right)$, respectively. Then $P-$ $\left\{r_{1}, r_{2}, r_{3}, r_{4}\right\}$ contains an $u-v$ path, or a pair of antipodal nodes are adjacent.

Lemma 3.7. Let P be a 4-patch with nodes $r_{1}, r_{2}, r_{3}, r_{4}$. Then $P-\left\{r_{1}, r_{3}\right\}$ contains an $r_{2}-r_{4}$ path unless $r_{1} r_{3} \in E(P)$.

Let P be a 4 -patch with nodes $r_{1}, r_{2}, r_{3}, r_{4}$. An $r_{2}-r_{4}$ diagonal in P is an $r_{2}-r_{4}$ path $Q=u_{1} u_{2} u_{3} \cdots u_{k-1} u_{k}\left(u_{1}=r_{2}\right.$ and $\left.u_{k}=r_{4}\right)$ in $P-\left\{r_{1}, r_{3}\right\}$ if there exists indices $i<j$ such that
(D1) the initial segment $u_{1} \cdots u_{i}$ is a segment of ∂P,
(D2) the terminal segment $u_{j} \cdots u_{k}$ is a segment of ∂P, and
(D3) the intermediate segment $u_{i} \cdots u_{j}$ is a segment of P such that $u_{i}, u_{j} \in V(\partial P)$ and that all other vertices lie in $\operatorname{int}(P)$.
If Q is an $r_{2}-r_{4}$ diagonal in P, then it is also an $r_{4}-r_{2}$ diagonal. Further, if a patch P with nodes $r_{1}, r_{2}, r_{3}, r_{4}$ contains an $r_{2}-r_{4}$ path avoiding r_{1} and r_{3}, then it also contains an $r_{2}-r_{4}$ diagonal.

We say that an $r_{2}-r_{4}$ diagonal Q lies closest to r_{1} if the number of faces of P bounded by Q and the segments incident with r_{1} is as small as possible.

Lemma 3.8. Let P be a 4-patch with nodes $r_{1}, r_{2}, r_{3}, r_{4}$, and let Q be the $r_{2}-r_{4}$ diagonal closest to r_{1}. Let u_{i} and u_{j} be the first and last vertex of the intermediate segment of Q, respectively. Then r_{1} is adjacent to $u_{i}, u_{i+1}, \ldots, u_{j-1}, u_{j}$ in P.
4. Essential 3-linkages. A near triangulation R is a map on \mathbb{P} with a distinguished face f such that every other face of R is triangular, and that the facial walk along f is a cycle. Suppose that the boundary cycle of f, denoted by W, has a length of at least 6 . Let $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}$ be six vertices that appear along W in this order but that do not need to be consecutive along W. An essential 3 -linkage (with respect to $\left.v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right)$ is a collection L of three disjoint paths P_{1}, P_{2}, P_{3} so that P_{i} is a $v_{i}-v_{i+3}$ path for $i=1,2,3$. It is easy to see that $W \cup P_{i}$ contains some essential cycle. Let Q_{1} be some minimal subpath of P_{1} so that $W \cup Q_{1}$ still contains an essential cycle. Also Q_{1}, P_{2}, P_{3} form an essential 3-linkage with possibly different endvertices. By applying the same idea on P_{2} and P_{3}, we obtain the following lemma.

LEmma 4.1. Let L be an essential 3-linkage with respect to nodes v_{1}, \ldots, v_{6}. There exists an essential 3-linkage L^{\prime} so that every path in L^{\prime} intersects W only at its endvertices.

The second result has been, in greater generality, proved by Robertson and Seymour in [8]. We state it adapted to our needs.

Theorem 4.2 (Robertson and Seymour [8]). Let R be a near triangulation of \mathbb{P} and $f=v_{1} v_{2} v_{3} v_{4} v_{5} v_{6}$ its distinguished face of length 6 . Then R contains an essential 3 -linkage with respect to $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}$ if and only if
(L1) R contains no pair of parallel nonhomotopic edges with common endvertices;
(L2) R does not contain a contractible cycle C of length at most 5 whose interior contains f.
A pair of parallel nonhomotopic edges violating (L1) forms an essential cycle of length 2. Traversing these two edges twice yields a contractible (but not simple) closed walk whose "interior" contains all faces of R. This observation enables both conditions (L1) and (L2) to be combined into a single condition, albeit with slight adaptations. For practicality, we prefer the conditions to be written separately, since they are of different flavors and have to be tackled with different approaches.

We look for essential 3-linkages in near triangulations. In the case when the length of the distinguished face exceeds 6 , we first decide which six vertices are the endvertices of a linkage. The rest of this section is devoted to the proof of the following.

Proposition 4.3. Let G be a 5-connected triangulation of \mathbb{P}, and let v be a vertex of degree $d \geq 6$. Let $D=u_{1} u_{2} \cdots u_{d}$ be the link of v in G. Then the near triangulation $R=G-v$ contains an essential 3-linkage if and only if v is not contained in the interior of a contractible cycle of length at most 5.

Proof. Clearly a cycle containing v in its interior meets each path in an essential 3linkage at least twice. The difficulty lies in the other direction-how to find a linkage if v is not contained in the interior of a "short" contractible cycle.

An edge $e \in E(R)$ is said to be essential if the endvertices of e lie in D and $D \cup e$ contains an essential cycle. We shall split the proof of Proposition 4.3 with respect to the number of essential edges. If R contains a set of three independent essential edges, then no further proof is needed. This leaves us with the case where a maximal set of independent essential edges contains at most two edges.

Assume next that R contains a set of two independent essential edges. The four endvertices of these essential edges split the f-facial walk into four open segments. Let us choose essential edges $e=r_{1} r_{4}$ and $e^{\prime}=r_{3} r_{6}$ in such a way that the union of two consecutive open segments $\left(r_{1}, r_{6}\right) \cup\left(r_{3}, r_{4}\right)$ in D contains as few vertices as possible. Suppose that $\left(r_{1}, r_{3}\right)$ contains a vertex, say v_{2}, and that $\left(r_{4}, r_{6}\right)$ contains a vertex, say v_{5}. Now if $r_{1} r_{6} \in E(R)-E(D)$, then the contractible cycle $v r_{4} r_{1} r_{6}$ separates v_{2} from v_{5}, and if $r_{3} r_{4} \in E(R)-E(D)$, then the contractible cycle $v r_{3} r_{4} r_{1}$ separates v_{2} from v_{5}. Neither can happen since G is 5 -connected. By Lemma 3.6, we can join v_{2} and v_{5} by a path avoiding r_{1}, r_{2}, r_{3}, and r_{4}, and hence we can find an essential 3-linkage.

So we assume that there exists a set of two independent essential edges $e=w_{1} w_{3}$ and $e^{\prime}=w_{2} w_{4}$ so that w_{1}, w_{2}, and w_{3} lie consecutively along D. We may also assume that w_{4} lies closer to w_{3} than to w_{1} along D, and that no essential edge incident with w_{2} has the other endvertex in $\left(w_{3}, w_{4}\right)$. Denote the vertices along D by $v_{1}, v_{2}, v_{3}, \ldots, v_{d}$ so that $v_{1}=w_{1}$ and $v_{2}=w_{2}$ (also $v_{3}=w_{3}$, but then this may not go on). Add to R the new edges $v_{1} v_{k}$, where $k=6, \ldots, d-1$, and denote the resulting near triangulation with R^{\prime}, with the distinguished face of size 6 .

It is easy to see that R^{\prime} satisfies (L1), since the newly added edges do not have their essential counterparts. Similarly, a short contractible cycle C containing the distinguished face of R^{\prime} in its interior, i.e., contradicting (L2), would have to use some new edge $v_{1} v_{k}$, where $k \geq 6$. Now C would contain vertices v_{k}, w_{1}, w_{2}, and w_{3}, which implies that vertices v_{k} and w_{3} have a common neighbor in R. This contradicts Lemma 3.4 since C is contractible. Hence R^{\prime} contains an essential 3-linkage. Since all new edges share a common endvertex, we can, if necessary, transform the linkage into an essential 3-linkage in R.

Suppose next that there is an essential edge but we cannot find a set of two independent essential edges. Let $e=w_{1} w_{2}$ be the essential edge, and assume that the segment $\left(w_{1}, w_{2}\right)$ is as short as possible. Since G is simple, w_{1} and w_{2} are not consecutive along D. Denote the vertices of D so that $w_{1}=v_{3}$ and v_{4} lies in (w_{1}, w_{2}). As $\left(w_{1}, w_{2}\right)$ is as short as possible, we have $w_{2} \neq v_{1}$.

As in the previous case, let R^{\prime} be the near triangulation obtained by adding new edges $v_{1} v_{k}$, where $k=6, \ldots, d-1$. We will argue that R^{\prime} has an essential 3-linkage.

If R^{\prime} does not satisfy (L1), then an essential edge e^{\prime} must be incident with both v_{1} and v_{k} for some k satisfying $6 \leq k \leq d$. By interlacing essential edges incident to $v_{k} \in\left[w_{1}, w_{2}\right]=\left[v_{3}, w_{2}\right]$, we clearly have $v_{k} \neq v_{3}$. On the other hand, v_{k} cannot lie in $\left(w_{1}, w_{2}\right)=\left(v_{3}, w_{2}\right)$, as two independent essential edges cannot exist, and hence $v_{k}=w_{2}$. But this contradicts 5-connectivity of G, since the 4 -cycle $v v_{1} v_{k} v_{3}=v v_{1} w_{2} w_{1}$ separates v_{2} and v_{4}.

Next assume that R^{\prime} contradicts (L2). The short cycle C contradicting (L2) can be divided into three segments: the first one between v_{1} and w_{1}, the second between w_{1} and w_{2}, and the third between w_{2} and v_{1}. Their lengths are at least 2,2 , and 1 , respectively, using the fact that neither v_{1} and $w_{1}=v_{3}$ nor w_{1} and w_{2} are consecutive along D, and the fact that C uses one of the new edges. Since the length of C is at most 5 , all lower bounds are sharp. By Lemma 3.4, C must pass through v_{2}, and also C must pass through v_{4} and $w_{2}=v_{5}$. On the segment between w_{2} and v_{1} the cycle C uses exactly one edge, namely $v_{1} w_{2}=v_{1} v_{5}$, and it also has to use one new edge. This is a contradiction, so R^{\prime} satisfies both (L1) and (L2), and R^{\prime} contains an essential 3-linkage. As in the previous case we can, if necessary, transform the linkage into an essential 3-linkage in R.

We are left with the case where R contains no essential edges. Even if we add new edges to the interior of f, we cannot contradict (L1), and our only concern will be meeting the condition (L2).

We proceed naively. Let us assign labels $v_{1}, v_{2}, \ldots, v_{d}$ to neighbors of v in the order of their indices. Add new edges of the form $v_{1} v_{k}$, where $k=6, \ldots, d-1$. The newly obtained near triangulation R^{\prime} may contain an essential 3-linkage, and we win. On the other hand, it may not, as we contradict (L2), and we lose. In this case, R^{\prime} contains a short cycle C which uses a new edge $v_{1} v_{\ell}$ for some $\ell \in\{6, \ldots, d-1\}$.

Hence we assume that we lose for every assignment of labels $v_{1}, v_{2}, \ldots, v_{d}$ to the consecutive neighbors of v. Now fix an assignment of labels so that there exists a cycle C_{v} contradicting (L2) using a new edge $v_{1} v_{k}$, where k is as large as possible.

Let us denote $w_{1}=v_{1}, w_{2}=v_{2}, w_{3}=v_{3}, w_{4}=v_{k-1}, w_{5}=v_{k}$, and $w_{6}=$ v_{k+1}. Further, let us add new edges joining w_{1} to vertices of (w_{6}, w_{1}) and additional new edges joining w_{3} to vertices of $\left(w_{3}, w_{4}\right)$. We denote the newly obtained near triangulation by R_{w}. We claim that R_{w} contains an essential 3-linkage.

Assume that this is not the case, and let C_{w} be the obstruction according to (L2). Clearly C_{w} contains at least one new edge. Observe that C_{w} cannot contain both a
new edge incident with w_{1} and a new edge incident with w_{3}, since a segment of C_{w} of length at most 2 would join two nonconsecutive vertices of D. The cycle C_{w} cannot contain a new edge incident with w_{1} since this would contradict maximality of k. Hence, C_{w} contains a new edge incident with w_{3}. Now let C^{\prime} be the cycle containing the edges of C_{w} lying outside C_{v} and the edges of C_{v} lying outside of C_{w}. Then C^{\prime} is a contractible cycle containing f in its interior. Let $P \subseteq C_{w} \cup C_{v}$ be the $v_{1}-v_{3}$ path whose edges lie in the interior of C^{\prime}. Since it connects two nonconsecutive vertices along f, its length is at least 3 . This implies that the length of C^{\prime} is at most 5 , a contradiction.

Hence R_{w} contains an essential 3-linkage, and consequently R also contains an essential 3-linkage. This completes the proof of Proposition 4.3.
5. Proof of Lemma 2.1. In this section, we shall prove Lemma 2.1. We begin with the following proposition.

Proposition 5.1. Let G be a 5-connected triangulation on \mathbb{P}, and let $u \in V(G)$. Then G has a split- $K_{5} H$ whose boundary coincides with the link of u in G.

Proof. We will split the analysis into two cases regarding the properties of u and treat one of the two cases by referring to [6]. Let D be the link of u.

Case 1. G contains a contractible 5 -cycle $C=v_{1} v_{2} v_{3} v_{4} v_{5}$ such that $u \in V\left(\operatorname{int}_{C}(G)\right)$.
By Lemma 3.2, we may assume that C is the maximal 5 -cycle containing u in its interior. Since G is 5 -connected, there exist internally disjoint $u-v_{i}$ paths P_{i} for $i=1, \ldots, 5$.

In order to find a suitable split- K_{5}, we need to find a subgraph of $\operatorname{Ext}_{C}(G)$ which contracts to the zigzag cycle $v_{1} v_{3} v_{5} v_{2} v_{4}$. This task has been treated in greater generality in $\left[6\right.$, subsection: Finding a suitable cycle minor U in $\left.G_{x}\right]$. Hence we can obtain a split- $K_{5} H^{\prime}$ whose boundary is C. Now let

$$
H=\left(H^{\prime}-E(C)\right) \cup D \cup \bigcup_{i=1}^{5}\left(P_{i}-\{v\}\right)
$$

Then H is a split- K_{5} with boundary D, in which there is no boundary pair.
Case 2. u does not lie in the interior of a contractible 5 -cycle.
Then we clearly have $|D|=\operatorname{deg}(u)=k \geq 6$. Let f be the distinguished face of $G-v$ with boundary D. By Theorem 4.2, $G-v$ contains an essential 3-linkage $L=\left\{P_{1}, P_{2}, P_{3}\right\}$ with respect to $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}$, where P_{i} joins u_{i} and u_{i+3} for $i=1,2,3$. We may also assume that each P_{i} in L has no chord. Then L divides the near triangulation $G-v$ into three patches R_{12}, R_{23}, and R_{13}, whose nodes are $\left(u_{1}, u_{2}, u_{5}, u_{4}\right),\left(u_{2}, u_{3}, u_{6}, u_{5}\right)$, and $\left(u_{3}, u_{4}, u_{1}, u_{6}\right)$ lying on their boundary in this order, respectively.

We first claim that these patches contain two vertex-disjoint diagonals. Let us first prove that every two patches, say R_{12} and R_{23}, contain diagonals with disjoint endvertices. Suppose this is not the case, and let, say, u_{2} be an endvertex of every possible diagonal in both R_{12} and R_{23}. By Lemma 3.7, we have $u_{2} u_{4} \in E\left(R_{12}\right)$ and $u_{2} u_{6} \in E\left(R_{23}\right)$. This contradicts the 5 -connectivity of G since $\left\{u, u_{2}, u_{4}, u_{6}\right\}$ separates v_{5} and v_{1} in G. Hence we may assume that R_{12} contains a $u_{1}-u_{5}$ diagonal D_{15} and that R_{23} contains a $u_{2}-u_{6}$ diagonal D_{26}. We first suppose that D_{15} and D_{26} are disjoint. In this case, we can obtain a required split- $K_{5} H$ such that $H=D \cup L \cup D_{15} \cup D_{26}$.

Now consider the case when D_{15} and D_{26} share an inner vertex. Let us try to push the diagonals away: suppose that D_{15} and D_{26} are closest to u_{4} and u_{3}, respectively. If D_{15} and D_{26} are not vertex disjoint, then the terminal segment S of D_{15} intersects
the initial segment S^{\prime} of D_{26} at P_{2}. Let w be the first vertex of S, and let w^{\prime} be the last vertex of S^{\prime}. Then, by Lemma 3.8, we have both $u_{4} w \in E\left(R_{12}\right)$ and $u_{3} w^{\prime} \in E\left(R_{23}\right)$. If $w \neq w^{\prime}$, then we can find a $u_{2}-u_{4}$ diagonal in R_{12} through $w u_{4}$ and a $u_{3}-u_{5}$ diagonal in R_{23} through $u_{3} w^{\prime}$. Since they are disjoint, we are done, similarly as above.

Suppose that $w=w^{\prime}$. Since $u_{4} w \in E\left(R_{12}\right)$, we focus on the 4 -patch R_{12}^{\prime} with nodes u_{1}, u_{2}, w, u_{4} contained in R_{12}. Note that $u_{1} w \notin E\left(R_{12}^{\prime}\right)$. (For otherwise, $\left\{u, u_{1}, w, u_{3}\right\}$ separates u_{2} and u_{4}, since $u_{3} w \in E\left(R_{23}\right)$. This contradicts the 5 connectivity of G.) Hence R_{12}^{\prime} admits a $u_{2}-u_{4}$ diagonal D_{24}, avoiding w and u_{1}, by Lemma 3.7. Let D_{35} be the $u_{3}-u_{5}$ diagonal of R_{23} through $u_{3} w$. Then $D \cup L \cup D_{24} \cup D_{35}$ is a required split- K_{5} in G since D_{24} and D_{35} are disjoint.

By Proposition 5.1, a 5 -connected triangulation on \mathbb{P} has a split- $K_{5} H$ whose boundary coincides with the link of a specified vertex. Let $[a, b]$ denote the path in H joining two vertices a and b which is contained in the path joining two nodes in H, where $1 \leq i<j \leq 5$. Moreover, we denote $(a, b)=[a, b]-\{a, b\}$, and also use the notations $[a, b)$ and (a, b] similarly.

The following claims that a boundary pair of nodes can be "moved" in a sense.
Lemma 5.2. Suppose that a triangulation G on \mathbb{P} has a split- $K_{5} H$ with boundary C. Let $\left\{a^{\prime}, a^{\prime \prime}\right\}$ be a boundary pair of nodes of H, and let Q be the plane subgraph of G corresponding to a face of H with nodes $a^{\prime}, a^{\prime \prime}, b, c$. Then, for some vertex a of $\left[a^{\prime}, a^{\prime \prime}\right]$ in G, we can find a split- $K_{5} H^{\prime}$ with boundary C such that a is a node of H^{\prime} contained in neither a boundary pair nor an inner pair. Moreover, if b is contained in a boundary pair, then the number of the boundary pairs can be decreased in H^{\prime}; otherwise, b might be contained in a new boundary pair of H^{\prime}.

Proof. We may suppose that a vertex y of $\left(a^{\prime}, c\right]$ and a vertex z of $\left(a^{\prime}, a^{\prime \prime}\right]$ are not adjacent in Q. (For otherwise, replacing $\left[a^{\prime}, y\right)$ with $z y$, we can regard z as a new a^{\prime}.) Then, by Lemma 3.5, we can take an internal $a^{\prime}-x$ path P for some x on either $\left(a^{\prime \prime}, b\right]$ or (b, c). In the former case, let $H^{\prime}=H-\left(a^{\prime \prime}, x\right) \cup P\left(\right.$ or $H^{\prime}=H-\left(a^{\prime \prime}, b^{\prime}\right) \cup P$ when x is in $\left(b, b^{\prime}\right)$ for an inner pair $\left.\left\{b, b^{\prime}\right\}\right)$. See Figure 3. Then we can decrease the number of boundary split pairs. In the latter case, let $H^{\prime}=H-\left(a^{\prime \prime}, b\right) \cup P$ (or $H^{\prime}=K-\left(a^{\prime \prime}, b^{\prime}\right) \cup P$ when $\left\{b, b^{\prime}\right\}$ is an inner pair), in which x might be a new boundary pair.

FIG. 3. Eliminate or move a boundary split node.
Now we shall prove Lemma 2.1.
Proof of Lemma 2.1. Let G be a 5 -connected triangulation on \mathbb{P}, and let uvw be any face of G. By Proposition 5.1, G has a split- $K_{5} H$ whose boundary ∂H coincides with the link of u in G. Let $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ be five nodes of H (where $\overrightarrow{\partial H}$ is fixed along the ordering of v_{1}, \ldots, v_{5}); some v_{i} 's might be contained in boundary or inner pairs $\left\{v_{i}, v_{i}^{\prime}\right\}$ of nodes.

We shall deform H to satisfy conditions (ii) and (iii) in the lemma. We may
suppose that the edge $v w$ is contained in $\left[v_{1}, v_{2}\right]$ so that $v \vec{w}$ is along $\partial \vec{H}$. Moreover, we may suppose that neither v_{1} nor v_{2} is a boundary split node. (For otherwise, we can apply Lemma 5.2 to $\left\{v_{1}, v_{1}^{\prime}\right\}$ or $\left\{v_{2}, v_{2}^{\prime}\right\}$.)

We first show that one of v and w can be chosen as a node in a new split- K_{5}. Hence we may suppose that $v \neq v_{1}$ and $w \neq v_{2}$. Let R be the plane subgraph of G corresponding to a face of H incident to $\left[v_{1}, v_{2}\right]$. Suppose that R is bounded by [$\left.v_{1}, v_{2}\right],\left[v_{1}, v_{4}\right],\left[v_{4}, v_{4}^{\prime}\right]$, and $\left[v_{2}, v_{4}^{\prime}\right]$ of H, when $\left\{v_{4}, v_{4}^{\prime}\right\}$ is a boundary split pair. (See Figure 4. Since the other two cases shown in the figure are similar, we omit the details.) Observe that there are no two vertices x and y in $\left[v_{1}, v_{2}\right]$ joined by a chord. (For otherwise, $\{x, y, u\}$ would be a 3 -cut of G, contrary to the 5 -connectivity of G.) Hence, by Lemma 3.5, we can find an internal path P from v to a vertex on $\left(v_{1}, v_{4}\right.$], to a vertex on $\left(v_{4}, v_{4}^{\prime}\right]$, or to $\left(v_{2}, v_{4}^{\prime}\right]$. In the first and second cases, adding P to H and deleting a segment suitably, we obtain a split- K_{5} with v a node. If we do not have these cases, then there is a vertex s in $\left[v_{1}, v\right)$ and a vertex t in $\left(v_{4}^{\prime}, v_{2}\right)$ which are adjacent in R. In this case, we must have an internal path P^{\prime} from w to some vertex r of $\left(v_{4}^{\prime}, v_{2}\right)$ in R. Similarly to the previous two cases, we obtain a split- K_{5} with w a node.

Fig. 4. Take a path from v or w.
We may suppose that v is a node. If v is a boundary split node, then put $v=v_{1}^{\prime}$, and suppose that $v w$ is contained in $\left[v_{1}^{\prime}, v_{2}\right]$. Otherwise, put $v=v_{1}$. If v_{4} is contained in a boundary pair $\left\{v_{4}, v_{4}^{\prime}\right\}$, then we apply Lemma 5.2 to eliminate the boundary pair $\left\{v_{4}, v_{4}^{\prime}\right\}$, fixing v, or move the boundary pair toward v_{2}. (Otherwise, we proceed to v_{2}.) Then, fixing the new v_{4}, we apply Lemma 5.2 to $\left\{v_{2}, v_{2}^{\prime}\right\}$ if $\left\{v_{2}, v_{2}^{\prime}\right\}$ is a boundary split pair. Similarly, we apply Lemma 5.2 to $\left\{v_{5}, v_{5}^{\prime}\right\}$ and $\left\{v_{3}, v_{3}^{\prime}\right\}$ in this order if necessary. Then, the resulting split- K_{5} has at most one boundary split pair containing v.
6. Proof of the theorem. In this section, we shall prove Theorem 1.3. The main part of the proof, which is to make a geometric realization of a 5 -connected triangulation G on \mathbb{P} with any one face f removed, depends on the technique developed in [3].

Lemma 6.1 (Bonnington and Nakamoto [3]). Let T be a Möbius triangulation with boundary C. Suppose that T has a split- $K_{5} H$ with boundary C and at most one boundary pair of nodes.
(i) If H has no boundary pair and we let $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ be the nodes of T lying on C in this order, then let e be the edge of $\left[v_{1}, v_{2}\right]$ incident to v_{1}.
(ii) If H has a boundary pair $\left\{v_{1}, v_{1}^{\prime}\right\}$ and we let $v_{1}, v_{1}^{\prime}, v_{2}, v_{3}, v_{4}, v_{5}$ be the nodes of T lying on C in this order, then let e be the edge of $\left[v_{1}^{\prime}, v_{2}\right]$ incident to v_{1}^{\prime}.
Then T has a geometric realization \hat{T} such that all edges on C except e can be seen from some fixed point $x \in \mathbb{R}^{3}$.

Fig. 5. Examples of geometric realizations of T.

Figure 5 shows examples of geometric realizations of split- K_{5} 's satisfying Lemma 6.1. The left-hand side shows one with exactly five nodes $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ on the boundary, and the right-hand side shows one with exactly one boundary split pair $\left\{v_{1}, v_{1}^{\prime}\right\}$. (Note that a triangulation G dealt with in Lemma 6.1 might have several inner pairs of nodes.) In both parts of figure, we can see all segments on ∂H, except a side of $\left[v_{1}, v_{2}\right]$ incident to v_{1} in the left-hand case and a side of $\left[v_{1}^{\prime}, v_{2}\right]$ incident to v_{1}^{\prime} in the right-hand case.

Now we shall prove Theorem 1.3.
Proof of Theorem 1.3. Let G be a 5 -connected triangulation on \mathbb{P}, and let f be any face of G bounded by $u v w$. Let C be the link of u. Then, by Lemma 2.1, G contains a split- $K_{5} H$ such that
(i) the boundary ∂H of H coincides with C,
(ii) H has at most one boundary split pair, and
(iii) if H has a boundary pair, then v is a boundary split node of H, but $v w$ is not contained in a boundary split interval; otherwise, v or w is a node of H.
Consider the Möbius triangulation $G^{\prime}=G-u$ with boundary C. We apply Lemma 6.1 to G^{\prime} and the above H. Then we get a geometric realization \hat{G}^{\prime} of G^{\prime} such that from some point $x \in \mathbb{R}^{3}$, all edges on C except $v w$ can be seen.

First, we put the vertex u at $x \in \mathbb{R}^{3}$. For each edge $p q$ of \hat{G}^{\prime} lying on C, let $\Delta_{p q} \in \mathbb{R}^{3}$ denote the triangular disk with x, p, q as its vertices. Now, for any edge $h \in E(C)-\{v w\}$, we shall fit Δ_{h} into the body of \hat{G}^{\prime}, where Δ_{h} corresponds to a face of G incident to h and v. Since each $h \in E(C)-\{v w\}$ can be seen from $x \in \mathbb{R}^{3}$, the interior of Δ_{h} does not collide with \hat{G}^{\prime}. Moreover, for any two distinct $h, h^{\prime} \in E(C)-\{v w\}$, the interiors of Δ_{h} and $\Delta_{h^{\prime}}$ do not collide internally, since h and h^{\prime} can be seen from x simultaneously. So we get a geometric realization of $G-f$.

Acknowledgments. The authors are grateful to two anonymous referees for their carefully reading of the paper and helpful suggestions.

REFERENCES

[1] D. Archdeacon, C. P. Bonnington, and J. A. Ellis-Monanghan, How to exhibit toroidal maps in space, Discrete Comput. Geom., 38 (2007), pp. 573-594.
[2] J. Bokowski and A. Guedes de Oliveira, On the generation of oriented matroids, Discrete Comput. Geom., 24 (2004), pp. 197-208.
[3] C. P. Bonnington and A. Nakamoto, Geometric realization of a triangulation on the projective plane with one face removed, Discrete Comput. Geom., 40 (2008), pp. 141-157.
[4] U. Brehm, A nonpolyhedral triangulated Möbius strip, Proc. Amer. Math. Soc., 89 (1983), pp. 519-522.
[5] U. Brehm and J. M. Wills, Polyhedral manifolds, in Handbook of Convex Geometry, P. M. Gruber and J. M. Wills, eds., North-Holland, Amsterdam, 1993, pp. 535-554.
[6] G. Fijavž and B. Mohar, K6-minors in projective planar graphs, Combinatorica, 23 (2003), pp. 453-465.
[7] B. Grünbaum, Convex Polytopes, Pure and Appl. Math. 16, Interscience Publishers John Wiley \& Sons, Inc., New York, 1967.
[8] N. Robertson and P. D. Seymour, Graph minors. VI. Disjoint paths across a disc, J. Combin. Theory Ser. B, 41 (1986), pp. 115-138.
[9] D. Rolfsen, Knots and Links, Math. Lecture Ser. 7, Publish or Perish, Inc., Berkeley, CA, 1976.
[10] E. Steinitz, Polyeder und Raumeinteilunger, Enzykl. Math. Wiss., 3 (1922), part 3A612, pp. 1-139.

[^0]: *Received by the editors May 31, 2007; accepted for publication (in revised form) August 22, 2008; published electronically December 19, 2008.
 http://www.siam.org/journals/sidma/23-1/69338.html
 ${ }^{\dagger}$ Departamento de Matematica Aplicada I, Universite de Sevilla, Escuela Universitaria Arquitectura Tecnica, Avda Reina Mercedes S/N, 41012 Sevilla, Spain (mjchavez@cica.es, almar@cica.es, emsuarez@cica.es).
 ${ }^{\ddagger}$ Department of Computer Science, University of Ljubljana, 1000 Ljubljana, Slovenia (gasper. fijavz@fri.uni-lj.si).
 ${ }^{\S}$ Department of Mathematics, Yokohama National University, Yokohama 240-8501, Japan (nakamoto@edhs.ynu.ac.jp).

