## EXTREMAL GRAPHS WITHOUT TOPOLOGICAL COMPLETE SUBGRAPHS\*

M. CERA<sup>†</sup>, A. DIÁNEZ<sup>‡</sup>, AND A. MÁRQUEZ<sup>§</sup>

**Abstract.** The exact values of the function  $ex(n; TK_p)$  are known for  $\lceil \frac{2n+5}{3} \rceil \leq p < n$  (see [Cera, Diánez, and Márquez, *SIAM J. Discrete Math.*, 13 (2000), pp. 295–301]), where  $ex(n; TK_p)$  is the maximum number of edges of a graph of order n not containing a subgraph homeomorphic to the complete graph of order p. In this paper, for  $\lceil \frac{2n+6}{3} \rceil \leq p < n-3$ , we characterize the family of extremal graphs  $EX(n; TK_p)$ , i.e., the family of graphs with n vertices and  $ex(n; TK_p)$  edges not containing a subgraph homeomorphic to the complete graph of order p.

Key words. extremal graph theory, topological complete subgraphs

AMS subject classifications. 05C35, 05C70

**DOI.** 10.1137/S0895480100378677

SIAM J. DISCRETE MATH. Vol. 18, No. 2, pp. 388–396

**1. Introduction.** The study of the function  $ex(n; TK_p)$ —i.e., the maximum number of edges of a graph of order n not containing a subgraph homeomorphic to  $K_p$ , where  $K_p$  is the complete graph with p vertices—is one of the most general extremal problems, as pointed out by Bollobas in [1]. Exact values for this function are known only in some cases, as can be seen in Table 1.1.

| TABLE 1.1 |        |            |          |                |  |
|-----------|--------|------------|----------|----------------|--|
| Exact     | values | $of \ the$ | function | $ex(n; TK_p).$ |  |

| p                                                                                         | $ex(n; TK_p)$                                                  | Reference     |
|-------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------|
| 3                                                                                         | n-1                                                            |               |
| 4                                                                                         | 2n - 3                                                         | [3]           |
| 5                                                                                         | 3n-6                                                           | [4], [8], [9] |
| :                                                                                         | :                                                              | :             |
| $\left\lceil \frac{2n+5}{3} \right\rceil \le p < \left\lceil \frac{3n+2}{4} \right\rceil$ | $\left(\begin{array}{c}n\\2\end{array}\right) - (5n - 6p + 3)$ | [2]           |
| $\left\lceil \frac{3n+2}{4} \right\rceil \leq p < n$                                      | $\left(\begin{array}{c}n\\2\end{array}\right) - (2n - 2p + 1)$ | [2]           |

The aim of this work is to characterize a family of extremal graphs  $EX(n; TK_p)$  for appropriate values of n and p, i.e., the set of graphs of order n, with  $ex(n; TK_p)$ 

<sup>\*</sup>Received by the editors September 28, 2000; accepted for publication (in revised form) July 1, 2004; published electronically December 9, 2004. This research was partially supported by the Ministry of Science and Technology, Spain, Research Project BMF2001-2474.

http://www.siam.org/journals/sidma/18-2/37867.html

<sup>&</sup>lt;sup>†</sup>E.U.I.T. Agrícola, Universidad de Sevilla, Ctra. Utrera s/n, 41013-Sevilla, Spain (mcera@us.es). <sup>‡</sup>E.T.S. Arquitectura, Universidad de Sevilla, Reina Mercedes 2, 41012-Sevilla, Spain (anadianez@us.es).

E.T.S.I. Informática, Universidad de Sevilla, Reina Mercedes <br/>s/n, 41012-Sevilla, Spain (almar@us.es).

edges and not containing any subgraph homeomorphic to  $K_p$ . Actually, we characterize the family  $EX(n; TK_p)$  for  $\lceil \frac{2n+6}{3} \rceil \leq p < n-3$ :

$$EX(n; TK_p) = \begin{cases} (3n - 4p + 2)\overline{K_3} + (6p - 4n - 3)\overline{K_2} & \text{for } \lceil \frac{2n + 6}{3} \rceil \le p < \lceil \frac{3n + 2}{4} \rceil, \\ K_{4p - 3n - 2} + (2n - 2p + 1)\overline{K_2} & \text{for } \lceil \frac{3n + 2}{4} \rceil \le p < n - 3. \end{cases}$$

2. Definitions and notation. Given a graph H and a set  $\{v_1, \ldots, v_q\}$  of vertices of H, we denote by  $H_0 = H$  and by  $H_k$  for  $k = 1, \ldots, q$  the induced subgraph in H by the set of vertices  $V(H) - \{v_1, \ldots, v_k\}$ . We denote by  $\Delta(H)$  the maximum degree of the graph H and by  $\delta_H(v)$  the degree of the vertex v in the graph H. The complement graph of H will be denoted by  $\overline{H}$ .

Let q and s be a pair of nonnegative integers;  $C_q^s$  denotes the set of graphs H such that there exists a set  $\{v_1, \ldots, v_q\}$  of vertices of H verifying the following:

(1)  $\delta_{H_{j-1}}(v_j) \ge \delta_{H_j}(v_{j+1})$  for  $j = 1, \dots, q-1$ .

(2) For each positive integer h, if there exists  $k \in \{1, \ldots, q\}$  and  $v \in H_k$  such that  $\delta_{H_k}(v) \ge h$ , then  $\delta_{H_j}(v_{j+1}) \ge h$  for all  $j = 1, \ldots, k$ .

(3)  $H_q$  has at most s edges (i.e.,  $|E(H_q)| \le s$ ).

The next results show different conditions to guarantee that a graph belongs to the family described above (see [2]).

LEMMA 2.1 (see [2]). Let H be a graph with n vertices. Then, for any  $q \leq n$ , there exists s such that H is in  $C_q^s$ .

When s = q, we know sufficient conditions for the edges of a graph to belong to the class  $C_q^q$ .

LEMMA 2.2 (see [2]). Let n and q be two positive integers, with q < n. If H is a graph with n vertices and 2q edges, then

1.  $H \in \mathcal{C}_q^q$ ,

2.  $\delta_{H_q}(v) \leq 1$  for  $v \in V(H_q)$ .

LEMMA 2.3 (see [2]). Let q and k be two positive integers with  $k \leq q-2$ . Let H be a graph with 4q-k+1 vertices and 2q+k+1 edges. Then  $H \in C_q^q$ .

Notation and terminology not given here can be found in [1] and [2].

**3. The family of extremal graphs.** In this section, we will characterize the family  $EX(n; TK_p)$  for  $\lceil \frac{2n+6}{3} \rceil \leq p < n-3$ . This problem is equivalent to characterizing  $EX(n; TK_{n-q})$  for  $n \geq 4q+2$  with  $q \geq 4$  (case  $\lceil \frac{3n+2}{4} \rceil \leq p < n-3$ ) and n = 4q - k + 1 with  $q \geq 5$ ,  $0 \leq k \leq q-5$  (the case  $\lceil \frac{2n+6}{4} \rceil \leq p < \lceil \frac{3n+2}{4} \rceil$ ).

In order to avoid excessive repetition, we define the graphs  $\mathcal{H}(n; TK_{n-q})$ :

$$\mathcal{H}(n; TK_{n-q}) = \begin{cases} K_{n-(4q+2)} + (2q+1)\overline{K_2} & \text{for } n \ge 4q+2, \\ (k+1)\overline{K_3} + (2(q-k)-1)\overline{K_2} & \text{for } n = 4q-k+1, \ 0 \le k \le q-5. \end{cases}$$

For  $n \ge 4q + 2$ , a graph G belongs to the family  $\{\mathcal{H}(n; TK_{n-q})\}$  if G has n vertices and  $\overline{G}$  is formed by 2q + 1 nonadjacent edges (see Figure 3.1).

For n = 4q - k + 1 with  $q \ge 5$  and  $0 \le k \le q - 5$ , a graph G belongs to the family  $\{\mathcal{H}(n; TK_{n-q})\}$  if it has 4q - k + 1 vertices and  $\overline{G}$  is formed by k + 1 nonadjacent triangles and 2(q - k) - 1 nonadjacent edges, as Figure 3.2 shows.

In the next two sections, we will prove the following theorem.

THEOREM 3.1.  $EX(n; TK_p) = \{\mathcal{H}(n; TK_p)\} \text{ for } \lceil \frac{2n+6}{3} \rceil \le p < n-3.$ 

## 2q+1 nonadjacent edges



FIG. 3.1. Structure of  $\overline{G}$  for  $n \ge 4q + 2$ .



FIG. 3.2. Structure of  $\overline{G}$  for n = 4q - k + 1.

4. Case  $\lceil \frac{3n+2}{4} \rceil \leq p < n-3$ . The aim of this section is to prove Theorem 3.1 when n and p are related by the expression  $\lceil \frac{3n+2}{4} \rceil \leq p < n-3$ .

PROPOSITION 4.1. Let n and p be two positive integers such that  $\lceil \frac{3n+2}{4} \rceil \leq p < n-3$ . It is verified that

$$EX(n; TK_p) = \{\mathcal{H}(n; TK_p)\}.$$

In order to provide this proposition, we need some previous results. First, we recall the following results about the function  $ex(n; TK_{n-q})$  (see [2]).

THEOREM 4.2 (see [2]). Let n and q be two positive integers. If  $n \ge 4q+2$ , then

$$ex(n; TK_{n-q}) = \binom{n}{2} - (2q+1).$$

Also, we recall that, given a graph H and  $v \in H$ , the set of vertices adjacent to v in H is denoted by  $\Gamma(v)$  (see [1]). Given a bipartite graph B whose classes are X and Y with  $|X| \leq |Y|$ , we say that B has a complete matching if there exists a set of nonadjacent edges in B with cardinality |X|. If we need to show the existence of a complete matching in a bipartite graph, then we can use Hall's condition.

THEOREM 4.3 (see [5]). Given a bipartite graph with classes X and Y, if  $|\Gamma(A)| \ge |A|$  for all  $A \subseteq X$ , where  $\Gamma(A) = \bigcup_{v \in A} \Gamma(v)$ , then there exists a complete matching.

The next result asserts that for any graph  $G \in EX(n; TK_{n-q})$  its complement graph  $\overline{G}$  is extremal for  $\mathcal{C}_q^{q+1}$  in the sense that  $\overline{G} \in \mathcal{C}_q^{q+1}$  and  $\overline{G} \notin \mathcal{C}_q^q$ .

LEMMA 4.4. Let n and q be two nonnegative integers with  $q \ge 4$  and  $n \ge 4q + 2$ . For every graph G from the family of graphs  $EX(n; TK_{n-q})$ , we have

$$\overline{G} \in \mathcal{C}_q^{q+1} - \mathcal{C}_q^q.$$

*Proof.* Let G be a graph such that  $G \in EX(n; TK_{n-q})$ . The graph G does not contain a subgraph homeomorphic to  $K_{n-q}$ , so by Theorem 4.2, we know that

$$|E(G)| = \binom{n}{2} - (2q+1).$$

Hence, |E(H)| = 2q + 1, where  $H = \overline{G}$ .

By Lemma 2.1, there exists an integer s such that  $H \in C_q^s$ . This means that there exists a subset  $\{v_1, \ldots, v_q\}$  of vertices of G verifying  $|E(H_q)| \leq s$ , where  $H_q = H - \{v_1, \ldots, v_q\}$ . If  $s \leq q + 1$ , then  $H \in C_q^{q+1}$ . Otherwise (s > q + 1), let  $H^*$  be the graph obtained from H by removing one of the edges of the subgraph  $H_q$ . The graph  $H^*$  has  $n \geq 4q + 2$  vertices and 2q edges, and applying Lemma 2.2 results in  $H^* \in C_q^q$ . Furthermore, by the construction of the graph  $H^*$ , the set of vertices chosen to prove that  $H^*$  belongs to the class of graphs  $C_q^q$  is the same as the one we chose previously in H; thus  $|E(H_q)| \leq q + 1$  and  $H \in C_q^{q+1}$ .

Now we will prove that the number of edges of  $H_q$  may not be equal to or less than q, i.e.,  $H \notin C_q^q$ . Suppose that  $H \in C_q^q$ . This means there exists a set of vertices  $\{v_1, \ldots, v_q\}$  guaranteeing this assertion. Let  $e_1 = (a_1, b_1), \ldots, e_s = (a_s, b_s)$  be the edges of  $H_q$  with  $1 \leq s \leq q$ .

We consider the bipartite graph B whose classes are  $X = \{e_1, \ldots, e_s\}$  and  $Y = \{v_1, \ldots, v_q\}$  such that  $e_i$  is adjacent to  $v_j$  in B if the path  $a_i v_j b_i$  exists in G. We note that if there exists a complete matching in B, then we have that G contains a subgraph homeomorphic to  $K_{n-q}$ . Now Hall's condition implies the existence of a complete matching. Thus, we will prove that  $|\Gamma(A)| \geq |A|$  for each  $A \subseteq X$ .

Let  $A = \{e_i\}$  be a subset of X with |A| = 1 for  $i \in \{1, \ldots, s\}$ . If  $|\Gamma(A)| = 0$ , then  $e_i$  is nonadjacent to any vertex of the set  $\{v_{q-2}, v_{q-1}, v_q\}$  in B. Hence, no vertex  $v \in \{v_{q-2}, v_{q-1}, v_q\}$  is adjacent to both  $a_i$  and  $b_i$  in G. Consequently,  $\delta_{H_{q-1}}(a_i) \ge 2$  or  $\delta_{H_{q-1}}(b_i) \ge 2$  and, furthermore,  $\delta_{H_{q-3}}(a_i) \ge 3$  or  $\delta_{H_{q-3}}(b_i) \ge 3$ . Thus, using property (2) of the definition of  $C_q^q$ , we obtain that  $\delta_{H_{j-1}}(v_j) \ge 3$  for  $j = 1, \ldots, q-2$  and  $\delta_{H_{j-1}}(v_j) \ge 2$  for j = q - 1, q. Therefore, since  $s \ge 1$  we have that

$$|E(H)| \ge 3(q-2) + 2 \cdot 2 + s \ge 2q + 2$$

for  $q \ge 3$ . But this is not possible since |E(H)| = 2q + 1.

We consider  $A = \{e_i, e_j\} \subseteq X$  for  $i, j \in \{1, \ldots, s\}$  with  $i \neq j$ , and we suppose  $|\Gamma(A)| \leq 1$ . This means that at least three vertices of the set  $\{v_{q-3}, v_{q-2}, v_{q-1}, v_q\}$  are nonadjacent to  $e_i$  and to  $e_j$  in B. Taking into account property (2) of the definition of  $C_q^q$ , we have that  $\delta_{H_{j-1}}(v_j) \geq 3$  for  $j = 1, \ldots, q-3$ ,  $\delta_{H_{j-1}}(v_j) \geq 2$  for j = q-2, q-1 and  $\delta_{H_{q-1}}(v_q) \geq 1$  (see Figure 4.1). Hence,

$$|E(H)| \ge 3(q-3) + 2 \cdot 2 + 1 + s \ge 2q + 2$$

for  $q \ge 4$ , and this is a contradiction, as in the previous case.

Let *m* be an integer with  $3 \leq m \leq s$ . Let *A* be the set of vertices  $\{e_{i_1}, \ldots, e_{i_m}\} \subseteq \{e_1, \ldots, e_s\}$  with  $i_1 < i_2 < \cdots < i_m$ . If  $|\Gamma(A)| \leq m - 1$ , then there



FIG. 4.1. Possible structure of H for the most unfavorable case for  $A = \{e_i, e_j\}$ .



FIG. 4.2. Possible structure of H for the most unfavorable case for  $3 \le m \le s$ .

exists  $i \in \{q - (m - 1), \ldots, q\}$  in such a way that  $v_i$  is not adjacent to any vertex of the set A in the graph B. By applying condition (2) of the definition of  $C_q^q$ , we obtain that  $\delta_{H_{q-m}}(v_{q-(m-1)}) \ge m$  and, therefore,  $\delta_{H_{j-1}}(v_j) \ge m$  for  $1 \le j \le q - (m-1)$  (see Figure 4.2). Furthermore,  $\delta_{H_{j-1}}(v_j) \ge 1$  for  $q - (m-2) \le j \le q$  and  $|E(H_q)| = s \ge m$ . Consequently,

$$|E(H)| \ge m(q - (m - 1)) + m - 1 + s$$
  

$$\ge mq - m^2 + 3m - 1.$$

Since E(H) = 2q + 1, we have that  $2q + 1 \ge mq - m^2 + 3m - 1$  and, therefore,  $q \le \frac{m^2 - 3m + 2}{m-2} \le m - 1 < m \le s$ , but this is not possible. Therefore,  $|\Gamma(A)| \ge |A|$  for each  $A \subseteq X$ . Thus, by Hall's condition, there exists a complete matching in B and, thereby, the graph G contains a subgraph homeomorphic to  $K_{n-q}$ . This is not possible, and the result follows.  $\Box$ 

Now we can prove Proposition 4.1.

Proof of Proposition 4.1. It is equivalent to prove that

$$EX(n; TK_{n-q}) = \{\mathcal{H}(n; TK_{n-q})\}$$

for  $q \ge 4$  and  $n \ge 4q + 2$ .

Let G be a graph belonging to  $\{\mathcal{H}(n; TK_{n-q})\}$  with  $n \geq 4q + 2$ . It is easy to check that G does not contain a subgraph homeomorphic to  $K_{n-q}$ . Furthermore, by denoting |E(G)| as the number of edges of G, we have that

$$|E(G)| = ex(n; TK_{n-q}) = \binom{n}{2} - (2q+1).$$

Thus, by Theorem 4.2, G is maximal on edges and

$$\{\mathcal{H}(n; TK_{n-q})\} \subseteq EX(n; TK_{n-q}).$$

In order to prove that  $EX(n; TK_{n-q}) \subseteq \{\mathcal{H}(n; TK_{n-q})\}$ , let G be a graph belonging to  $EX(n; TK_{n-q})$ , and we set  $H = \overline{G}$ . By Theorem 4.2 we have that |E(H)| = 2q + 1. By Lemma 2.1, we know there exists s such that  $H \in \mathcal{C}_q^s$ . Let  $\{v_1, \ldots, v_q\}$  be a set of q vertices guaranteeing this property. We know that there exists a vertex  $v \in H_q$  such that  $\delta_{H_q}(v) \ge 1$ , because otherwise  $H_q$  is empty and  $H \in \mathcal{C}_q^q$ . But this is not possible because, by Lemma 4.4, we know that  $H \notin \mathcal{C}_q^q$ . If  $\delta(v_1) \ge 2$ , then  $|E(H_q)| \le 2q + 1 - (2 + q - 1) = q$  and therefore  $H \in \mathcal{C}_q^q$ , a contradiction. Therefore,  $\delta(v_1) \le 1$ .

Thus, as  $v_1$  is the vertex of maximum degree in H, we have that  $\delta(v) \leq 1$  for all  $v \in H$ , and then the graph H is formed by 2q + 1 nonadjacent edges. Therefore, the result follows.  $\Box$ 

5. Case  $\lceil \frac{2n+6}{3} \rceil \leq p < \lceil \frac{3n+2}{4} \rceil$ . In this section, we will characterize the family of extremal graphs  $EX(n; TK_{n-q})$  for n = 4q - k + 1 with  $0 \leq k \leq q - 5$  in such a way that we will show that  $EX(n; TK_{n-q}) = \{\mathcal{H}(n; TK_{n-q})\}$ , applying techniques based on the same ideas as in the previous section.

THEOREM 5.1. Let n and p be two positive integers with  $\lceil \frac{2n+6}{3} \rceil \leq p < \lceil \frac{3n+2}{4} \rceil$ . Then

$$EX(n; TK_p) = \{\mathcal{H}(n; TK_p)\}.$$

In order to prove this result, we also need to recall some results about the function  $ex(n; TK_{n-q})$  (see [2]).

LEMMA 5.2 (see [2]). Let k be a nonnegative integer and H be a graph with maximum degree 2 and at least 3k + 1 vertices of maximum degree. Then there exist at least k + 1 nonadjacent vertices with degree 2.

THEOREM 5.3 (see [2]). Let n, k, and q be three nonnegative integers with  $0 \le k \le q-4$  and n = 4q-k+1. It is verified that

$$ex(n; TK_{n-q}) = \binom{n}{2} - (2q+k+2).$$

Now we will show, as in Lemma 4.4, that if  $G \in EX(n; TK_{n-q})$  with n = 4q-k+1, then  $\overline{G} \in \mathcal{C}_q^{q+1}$  but  $\overline{G} \notin \mathcal{C}_q^q$ .

LEMMA 5.4. Let k, n, and q be three nonnegative integers such that  $q \ge 5$ ,  $0 \le k \le q-5$ , and n = 4q - k + 1. If  $G \in EX(n; TK_{n-q})$ , then

$$\overline{G} \in \mathcal{C}_q^{q+1} - \mathcal{C}_q^q.$$

*Proof.* Let G be a graph belonging to  $EX(n; TK_{n-q})$ . This graph does not contain a graph homeomorphic to  $K_{n-q}$ , and by Theorem 5.3 we know that

$$|E(G)| = \binom{n}{2} - (2q+k+2).$$

Thus,  $H = \overline{G}$  has 2q + k + 2 edges.

Let  $H^*$  be the graph obtained from H by removing one edge, similar to what we have done in Lemma 4.4. Since  $H^*$  is a graph formed by 4q - k + 1 vertices and 2q + k + 1 edges, then applying Lemma 2.3 yields  $H^* \in C_q^q$ , and then

$$H \in \mathcal{C}_q^{q+1}.$$

Now we will show that  $H \notin C_q^q$ . To the contrary, suppose  $H \in C_q^q$  and let  $\{v_1, \ldots, v_q\}$  be a set of vertices of H guaranteeing that  $H \in C_q^q$ . Let  $e_1 = (a_1, b_1), \ldots, e_s = (a_s, b_s)$  be the edges of  $H_q$  with  $s \leq q$ . We consider the bipartite graph B constructed as in Lemma 4.4, i.e., the graph whose classes are  $X = \{e_1, \ldots, e_s\}$  and  $Y = \{v_1, \ldots, v_q\}$  in such a way that  $e_i$  is adjacent to  $v_j$  if the path  $a_i v_j b_i$  exists in the graph G. In this case, if we show the existence of a complete matching in B, then we would have that G contains a subgraph homeomorphic to  $K_{n-q}$ . Therefore, we will show that  $|\Gamma(A)| \geq |A|$  for each  $A \subseteq X$ .

If |A| = m = 1, by reasoning as in the proof of Lemma 4.4, we have that

$$|E(H)| \ge 3(q-2) + 4 + s = 3q + s - 2 \ge 3q - 1.$$

Since  $k \le q-4$ , it is verified that  $3q-1 \ge 2q+k+4-1 > 2q+k+2$ , but this is not possible.

For m = 2, by considering as done previously, we have that

$$|E(H)| \ge 3(q-3) + 4 + 1 + s = 3q - 4 + s \ge 3q - 2.$$

Taking into account that  $k \leq q-5$ , it is verified that |E(H)| > 2q + k + 2, and this is a contradiction.

We consider m = 3. Let  $A = \{e_{i_1}, e_{i_2}, e_{i_3}\}$  be a subset of vertices of X with  $1 \leq i_1 < i_2 < i_3 \leq s$ . If  $|\Gamma(A)| \leq 2$ , then there exists  $i \in \{q - 2, \ldots, q\}$  in such a way that  $v_i$  is not adjacent to any vertex of the set A in the graph B. Hence, by applying property (2) of the definition of  $C_q^q$ , we have that  $\delta_{H_{q-3}}(v_{q-2}) \geq 3$ . Thus,

$$|E(H)| \ge 3(q-2) + 2 + s \ge 3q - 1 > 2q + k + 2$$

since  $k \leq q - 4$ .

In general, if  $4 \leq m \leq s$ , then we consider A as the set of vertices  $\{e_{i_1}, \ldots, e_{i_m}\} \subseteq \{e_1, \ldots, e_s\}$  with  $i_1 < i_2 < \cdots < i_m$ . If  $|\Gamma(A)| \leq m - 1$ , then there exists  $i \in \{q - (m - 1), \ldots, q\}$  in such a way that  $v_i$  is not adjacent to any vertex of the set A in the graph B. Hence, as in the proof of Lemma 4.4, we have that  $\delta_{H_{q-m}}(v_{q-(m-1)}) \geq m$  and, therefore,

$$|E(H)| \ge m(q - (m - 1)) + m - 1 + s \ge mq - m^2 + 3m - 1.$$

But  $|E(H)| = 2q + k + 2 \le 3q - 3$  for  $k \le q - 5$ . Thus,  $3q - 3 \ge mq - m^2 + 3m - 1$  and, thereby,  $q \le m - \frac{2}{m-3} < m$ , but this is not possible.

Thus, using Hall's condition, there exists a complete matching in B, and consequently, G contains a subgraph homeomorphic to  $K_{n-q}$ , but this is not possible. Hence,  $H \notin C_q^q$  and the result follows.  $\Box$ 

The next result is devoted to proving the existence of nonadjacent triangles in graphs with maximum degree 2 and the prescribed number of vertices of maximum degree.

LEMMA 5.5. Let r be a nonnegative integer, and let H be a graph with maximum degree 2. If H has 3r + 3 vertices of degree 2 and r + 1 of them form an independent set, then H contains r + 1 nonadjacent triangles.

*Proof.* We apply induction on r. For r = 0 the result is obvious, because the triangle is the unique graph formed by 3 vertices of degree 2 and all of them are adjacent among themselves.

Now suppose that  $r + 1 \ge 2$  and the result holds for r. Let H be a graph with 3(r+1)+3 = 3(r+2) vertices of degree 2, and let  $w_1, \ldots, w_{r+2}$  be r+2 nonadjacent vertices of H.

If there exist  $i, j \in \{1, \ldots, r+2\}$  with  $i \neq j$  such that  $\Gamma(w_i) \cap \Gamma(w_j) \neq \emptyset$ , then  $|\bigcup_{k=1}^{r+2} \{\Gamma(w_k) \cup w_k\}| < 3(r+2)$ . Thus, there exists  $w \in H$  with degree 2 nonadjacent to  $w_i$  for all i. Hence,  $\{w, w_1, \ldots, w_{r+2}\}$  is a set of r+3 nonadjacent vertices of degree 2, but this is a contradiction. Therefore,  $\Gamma(w_i) \cap \Gamma(w_j) = \emptyset$  for all  $i \neq j$ . Furthermore, if  $w \in H$  is adjacent to any  $w_i$  for  $i \in \{1, \ldots, r+2\}$ , then w has degree 2; otherwise, since the number of vertices of degree 2 is 3(r+2), there exists  $v \in H$  with degree 2 nonadjacent to  $w_i$  for all i, and we have seen above that this is not possible.

Now, let a and b be the vertices adjacent to  $w_{r+2}$ . If the edge (a, b) does not belong to H, we have that  $\{w_1, \ldots, w_{r+1}, a, b\}$  is a set of r+3 nonadjacent vertices of degree 2. Thus, the vertices  $w_1$ , a, and b form a triangle.

Denote by  $H^*$  the graph obtained from H, removing the previous triangle. Therefore,  $H^*$  is a graph with 3r+3 vertices of degree 2, and r+1 of them are nonadjacent; by induction hypothesis,  $H^*$  contains r+1 nonadjacent triangles. Thus, H contains r+2 nonadjacent triangles.  $\Box$ 

To finish this section, we give the proof of Theorem 5.1, using the previous results. *Proof of Theorem* 5.1. It is equivalent to show that

$$EX(n; TK_{n-q}) = \{\mathcal{H}(n; TK_{n-q})\}$$

for n = 4q - k + 1 with  $q \ge 5, 0 \le k \le q - 5$ .

Let G be a graph belonging to the set  $\{\mathcal{H}(n; TK_{n-q})\}$ . By checking the structure of this graph G, it is easy to prove that G does not contain a subgraph homeomorphic to  $K_{n-q}$ . Since  $|E(G)| = ex(n; TK_{n-q}) = \binom{n}{2} - (2q + k + 2)$ , we have that  $G \in EX(n; TK_{n-q})$ .

In order to show that  $EX(n; TK_{n-q}) \subseteq \{\mathcal{H}(n; TK_{n-q})\}$ , let G be a graph belonging to  $EX(n; TK_{n-q})$ . We denote by  $H = \overline{G}$ . By Theorem 5.3, |E(H)| = 2q + k + 2. First, we will prove that  $\Delta(H) \leq 2$ . Suppose the contrary, that  $\Delta(H) \geq 3$ .

By applying Lemma 5.4, we have  $H \in C_q^{q+1} - C_q^q$ . Hence, there exists a subset of vertices  $\{v_1, \ldots, v_q\}$  of H guaranteeing this property. Furthermore,  $|E(H_q)| = q + 1$ . We claim there exists  $j \in \{1, \ldots, q\}$  such that  $\Delta(H_{j-1}) \geq 3$  and  $\Delta(H_j) \leq 2$ , because otherwise we have  $\delta_{H_{i-1}}(v_i) \geq 3$  for each  $1 \leq i \leq q$ , and

$$|E(H)| \ge 3q + (q+1) > 2q + k + 2,$$

but this is not possible. Now we distinguish the cases  $j \ge k+1$  and  $j \le k$ .

For  $j \ge k+1$ , we consider the fact that  $\Delta(H_{j-1}) \ge 3$  and  $\Delta(H_j) \le 2$ . Taking into account property (2) of the definition of  $C_q^{q+1}$  and  $|E(H_q)| > 0$ , we have  $\delta_{H_{i-1}}(v_i) \ge 3$ for  $1 \le i \le j$  and  $\delta_{H_{i-1}}(v_i) \ge 1$  for  $j+1 \le i \le q$ . Hence,

$$|E(H_q)| \le 2q + k + 2 - (3j + (q - j)) \le q - j + 1 \le q.$$

But this is not possible since  $|E(H_q)| = q + 1$ .

For  $j \leq k$ , we have that  $\delta_{H_{i-1}}(v_i) \geq 3$  for  $1 \leq i \leq j$ . If  $\Delta(H_k) \leq 1$ , then  $2|E(H_k)| \leq |V(H_k)|$  and

$$4q - 2k + 1 = |V(H_k)| \ge 2|E(H_k)| \ge 2(q - k + q + 1) = 4q - 2k + 2,$$

and this is a contradiction. Thus,  $\Delta(H_k) = 2$  and  $\delta_{H_{i-1}}(v_i) \ge 2$  for  $j+1 \le i \le k$ . Hence,

$$|E(H_q)| \le 2q + k + 2 - (3j + 2(k - j + 1) + (q - k + 1)) = q - j + 1 \le q,$$

and this not possible. Thus,  $\Delta(H) \leq 2$ .

Since 2|E(H)| > |V(H)|, we have  $\Delta(H) \ge 2$  and, consequently,  $\Delta(H) = 2$ .

Next we are going to study the structure of H. On the one hand, if H has at least 3(k+1)+1 vertices of degree 2, then by Lemma 5.2 we have that k+2 of those vertices  $\{w_1, \ldots, w_{k+2}\}$  are nonadjacent. Let  $w_{k+3}, \ldots, w_q$  be q - (k+2) vertices of H such that the set  $\{w_1, \ldots, w_{k+2}, w_{k+3}, \ldots, w_q\}$  verifies properties (1) and (2) of the definition of  $C_q^s$ . For this set of vertices, we have that

$$|E(H_q)| \le 2q + k + 2 - (2(k+2) + q - (k+2)) = q,$$

and therefore,  $H \in C_q^q$ , a contradiction. Thus, H has at most 3k+3 vertices of degree 2. On the other hand, if we denote by  $n_i$  the number of vertices of degree i in H, we have that

$$\frac{2n_2 + n_1 = 2(2q + k + 2)}{n_2 + n_1 + n_0 = 4q - k + 1} \right\}.$$

Thus,  $n_2 = 3k + 3 + n_0 \ge 3k + 3$  and the number of vertices of degree 2 in H is  $n_2 = 3k + 3$ .

Furthermore, as we have shown previously, H may not have k + 2 nonadjacent vertices of degree 2. Since H has  $3k+3 \ge 3k+1$  vertices of degree 2, by Lemma 5.2 we have that H has at least k + 1 nonadjacent vertices. Hence, H has maximum degree 2 and 3k + 3 vertices of degree 2, and k + 1 of them are nonadjacent. Therefore, by applying Lemma 5.5, H contains k + 1 nonadjacent triangles. Additionally,  $n_0 = 0$ ,  $n_1 = 4q - 4k - 2$ , and the result follows.  $\Box$ 

Acknowledgment. The authors thank the referees for their helpful comments and suggestions.

## REFERENCES

- [1] B. BOLLOBAS, Extremal Graph Theory, Academic Press, London, 1978.
- [2] M. CERA, A. DIÁNEZ AND A. MÁRQUEZ, The size of a graph without topological complete subgraphs, SIAM J. Discrete Math., 13 (2000), pp. 295–301.
- [3] G. A. DIRAC, In abstrakten Graphen vorhandene vollständige 4-Graphenund ihre Unterteilungen, Math. Nachr., 22 (1960), pp. 61–85.
- [4] G. A. DIRAC, Homeomorphism theorem for Graphs, Math. Ann., 153 (1964), pp. 69-80.
- [5] P. HALL, On representatives of subsets, J. London Math. Soc., 10 (1935), pp. 26–30.
- [6] W. MADER, Homomorphieegenshaften und mittlere Kantendichte von Graphen, Math. Ann., 174 (1967), pp. 265–268.
- [7] W. MADER, Hinreichende Bedingungen f
  ür die Existenz von Teilgraphen, diezu einem vollst
  ändigen Graphen Hom
  ömorph sind, Math. Nachr., 53 (1972), pp. 145–150.
- [8] W. MADER, Graphs without a Subdivision of  $K_5$  of Maximum Size, preprint, 1998.
- [9] W. MADER, 3n 5 edges do force a subdivision of  $K_5$ , Combinatorica, 18 (1998), pp. 569–595.
- [10] C. THOMASSEN, Some homomorphism properties of graphs, Math. Nachr., 64 (1974), pp. 119– 133.