EXTREMAL GRAPHS WITHOUT TOPOLOGICAL COMPLETE SUBGRAPHS*

M. CERA †, A. DIÁNEZ ${ }^{\ddagger}$, AND A. MÁRQUEZ ${ }^{\S}$

Abstract

The exact values of the function $\operatorname{ex}\left(n ; T K_{p}\right)$ are known for $\left\lceil\frac{2 n+5}{3}\right\rceil \leq p<n$ (see [Cera, Diánez, and Márquez, SIAM J. Discrete Math., 13 (2000), pp. 295-301]), where ex ($n ; T K_{p}$) is the maximum number of edges of a graph of order n not containing a subgraph homeomorphic to the complete graph of order p. In this paper, for $\left\lceil\frac{2 n+6}{3}\right\rceil \leq p<n-3$, we characterize the family of extremal graphs $E X\left(n ; T K_{p}\right)$, i.e., the family of graphs with n vertices and $e x\left(n ; T K_{p}\right)$ edges not containing a subgraph homeomorphic to the complete graph of order p.

Key words. extremal graph theory, topological complete subgraphs
AMS subject classifications. 05C35, 05C70
DOI. 10.1137/S0895480100378677

1. Introduction. The study of the function $e x\left(n ; T K_{p}\right)$-i.e., the maximum number of edges of a graph of order n not containing a subgraph homeomorphic to K_{p}, where K_{p} is the complete graph with p vertices-is one of the most general extremal problems, as pointed out by Bollobas in [1]. Exact values for this function are known only in some cases, as can be seen in Table 1.1.

Table 1.1
Exact values of the function ex $\left(n ; T K_{p}\right)$.

p	$e x\left(n ; T K_{p}\right)$	Reference
3	$n-1$	
4	$2 n-3$	$[3]$
5	$3 n-6$	$[4],[8],[9]$
\vdots	\vdots	\vdots
$\left.\frac{2 n+5}{3}\right\rceil \leq p<\left\lceil\frac{3 n+2}{4}\right\rceil$	$\binom{n}{2}-(5 n-6 p+3)$	$[2]$
$\left\lceil\frac{3 n+2}{4}\right\rceil \leq p<n$	$\binom{n}{2}-(2 n-2 p+1)$	$[2]$

The aim of this work is to characterize a family of extremal graphs $E X\left(n ; T K_{p}\right)$ for appropriate values of n and p, i.e., the set of graphs of order n, with ex $\left(n ; T K_{p}\right)$

[^0]edges and not containing any subgraph homeomorphic to K_{p}. Actually, we characterize the family $E X\left(n ; T K_{p}\right)$ for $\left\lceil\frac{2 n+6}{3}\right\rceil \leq p<n-3$:

$E X\left(n ; T K_{p}\right)= \begin{cases}(3 n-4 p+2) \overline{K_{3}}+(6 p-4 n-3) \overline{K_{2}} & \text { for }\left\lceil\frac{2 n+6}{3}\right\rceil \leq p<\left\lceil\frac{3 n+2}{4}\right\rceil, \\ K_{4 p-3 n-2}+(2 n-2 p+1) \overline{K_{2}} & \text { for }\left\lceil\frac{3 n+2}{4}\right\rceil \leq p<n-3 .\end{cases}$
2. Definitions and notation. Given a graph H and a set $\left\{v_{1}, \ldots, v_{q}\right\}$ of vertices of H, we denote by $H_{0}=H$ and by H_{k} for $k=1, \ldots, q$ the induced subgraph in H by the set of vertices $V(H)-\left\{v_{1}, \ldots, v_{k}\right\}$. We denote by $\Delta(H)$ the maximum degree of the graph H and by $\delta_{H}(v)$ the degree of the vertex v in the graph H. The complement graph of H will be denoted by \bar{H}.

Let q and s be a pair of nonnegative integers; \mathcal{C}_{q}^{s} denotes the set of graphs H such that there exists a set $\left\{v_{1}, \ldots, v_{q}\right\}$ of vertices of H verifying the following:
(1) $\delta_{H_{j-1}}\left(v_{j}\right) \geq \delta_{H_{j}}\left(v_{j+1}\right)$ for $j=1, \ldots, q-1$.
(2) For each positive integer h, if there exists $k \in\{1, \ldots, q\}$ and $v \in H_{k}$ such that $\delta_{H_{k}}(v) \geq h$, then $\delta_{H_{j}}\left(v_{j+1}\right) \geq h$ for all $j=1, \ldots, k$.
(3) H_{q} has at most s edges (i.e., $\left|E\left(H_{q}\right)\right| \leq s$).

The next results show different conditions to guarantee that a graph belongs to the family described above (see [2]).

Lemma 2.1 (see [2]). Let H be a graph with n vertices. Then, for any $q \leq n$, there exists s such that H is in \mathcal{C}_{q}^{s}.

When $s=q$, we know sufficient conditions for the edges of a graph to belong to the class \mathcal{C}_{q}^{q}.

Lemma 2.2 (see [2]). Let n and q be two positive integers, with $q<n$. If H is a graph with n vertices and $2 q$ edges, then

1. $H \in \mathcal{C}_{q}^{q}$,
2. $\delta_{H_{q}}(v) \leq 1$ for $v \in V\left(H_{q}\right)$.

Lemma 2.3 (see [2]). Let q and k be two positive integers with $k \leq q-2$. Let H be a graph with $4 q-k+1$ vertices and $2 q+k+1$ edges. Then $H \in \mathcal{C}_{q}^{q}$.

Notation and terminology not given here can be found in [1] and [2].
3. The family of extremal graphs. In this section, we will characterize the family $E X\left(n ; T K_{p}\right)$ for $\left\lceil\frac{2 n+6}{3}\right\rceil \leq p<n-3$. This problem is equivalent to characterizing $E X\left(n ; T K_{n-q}\right)$ for $n \geq 4 q+2$ with $q \geq 4$ (case $\left\lceil\frac{3 n+2}{4}\right\rceil \leq p<n-3$) and $n=4 q-k+1$ with $q \geq 5,0 \leq k \leq q-5$ (the case $\left.\left\lceil\frac{2 n+6}{3}\right\rceil \leq p<\left\lceil\frac{3 n+2}{4}\right\rceil\right)$.

In order to avoid excessive repetition, we define the graphs $\mathcal{H}\left(n ; T K_{n-q}\right)$:
$\mathcal{H}\left(n ; T K_{n-q}\right)= \begin{cases}K_{n-(4 q+2)}+(2 q+1) \overline{K_{2}} & \text { for } n \geq 4 q+2, \\ (k+1) \overline{K_{3}}+(2(q-k)-1) \overline{K_{2}} & \text { for } n=4 q-k+1,0 \leq k \leq q-5 .\end{cases}$
For $n \geq 4 q+2$, a graph G belongs to the family $\left\{\mathcal{H}\left(n ; T K_{n-q}\right)\right\}$ if G has n vertices and \bar{G} is formed by $2 q+1$ nonadjacent edges (see Figure 3.1).

For $n=4 q-k+1$ with $q \geq 5$ and $0 \leq k \leq q-5$, a graph G belongs to the family $\left\{\mathcal{H}\left(n ; T K_{n-q}\right)\right\}$ if it has $4 q-k+1$ vertices and \bar{G} is formed by $k+1$ nonadjacent triangles and $2(q-k)-1$ nonadjacent edges, as Figure 3.2 shows.

In the next two sections, we will prove the following theorem.
Theorem 3.1. $E X\left(n ; T K_{p}\right)=\left\{\mathcal{H}\left(n ; T K_{p}\right)\right\}$ for $\left\lceil\frac{2 n+6}{3}\right\rceil \leq p<n-3$.
$2 q+1$ nonadjacent edges

isolated vertices
Fig. 3.1. Structure of \bar{G} for $n \geq 4 q+2$.
$k+1$ triangles $\quad 2(q-k)-1$ nonadjacent edges

FIG. 3.2. Structure of \bar{G} for $n=4 q-k+1$.
4. Case $\left\lceil\frac{3 n+2}{4}\right\rceil \leq \boldsymbol{p}<\boldsymbol{n}-\mathbf{3}$. The aim of this section is to prove Theorem 3.1 when n and p are related by the expression $\left\lceil\frac{3 n+2}{4}\right\rceil \leq p<n-3$.

Proposition 4.1. Let n and p be two positive integers such that $\left\lceil\frac{3 n+2}{4}\right\rceil \leq p<$ $n-3$. It is verified that

$$
E X\left(n ; T K_{p}\right)=\left\{\mathcal{H}\left(n ; T K_{p}\right)\right\}
$$

In order to provide this proposition, we need some previous results. First, we recall the following results about the function $\operatorname{ex}\left(n ; T K_{n-q}\right)$ (see [2]).

ThEOREM 4.2 (see [2]). Let n and q be two positive integers. If $n \geq 4 q+2$, then

$$
e x\left(n ; T K_{n-q}\right)=\binom{n}{2}-(2 q+1)
$$

Also, we recall that, given a graph H and $v \in H$, the set of vertices adjacent to v in H is denoted by $\Gamma(v)$ (see [1]). Given a bipartite graph B whose classes are X and Y with $|X| \leq|Y|$, we say that B has a complete matching if there exists a set of nonadjacent edges in B with cardinality $|X|$. If we need to show the existence of a complete matching in a bipartite graph, then we can use Hall's condition.

Theorem 4.3 (see [5]). Given a bipartite graph with classes X and Y, if $|\Gamma(A)| \geq$ $|A|$ for all $A \subseteq X$, where $\Gamma(A)=\bigcup_{v \in A} \Gamma(v)$, then there exists a complete matching.

The next result asserts that for any graph $G \in E X\left(n ; T K_{n-q}\right)$ its complement graph \bar{G} is extremal for \mathcal{C}_{q}^{q+1} in the sense that $\bar{G} \in \mathcal{C}_{q}^{q+1}$ and $\bar{G} \notin \mathcal{C}_{q}^{q}$.

Lemma 4.4. Let n and q be two nonnegative integers with $q \geq 4$ and $n \geq 4 q+2$. For every graph G from the family of graphs $E X\left(n ; T K_{n-q}\right)$, we have

$$
\bar{G} \in \mathcal{C}_{q}^{q+1}-\mathcal{C}_{q}^{q}
$$

Proof. Let G be a graph such that $G \in E X\left(n ; T K_{n-q}\right)$. The graph G does not contain a subgraph homeomorphic to K_{n-q}, so by Theorem 4.2, we know that

$$
|E(G)|=\binom{n}{2}-(2 q+1)
$$

Hence, $|E(H)|=2 q+1$, where $H=\bar{G}$.
By Lemma 2.1, there exists an integer s such that $H \in \mathcal{C}_{q}^{s}$. This means that there exists a subset $\left\{v_{1}, \ldots, v_{q}\right\}$ of vertices of G verifying $\left|E\left(H_{q}\right)\right| \leq s$, where $H_{q}=$ $H-\left\{v_{1}, \ldots, v_{q}\right\}$. If $s \leq q+1$, then $H \in \mathcal{C}_{q}^{q+1}$. Otherwise $(s>q+1)$, let H^{*} be the graph obtained from H by removing one of the edges of the subgraph H_{q}. The graph H^{*} has $n \geq 4 q+2$ vertices and $2 q$ edges, and applying Lemma 2.2 results in $H^{*} \in \mathcal{C}_{q}^{q}$. Furthermore, by the construction of the graph H^{*}, the set of vertices chosen to prove that H^{*} belongs to the class of graphs \mathcal{C}_{q}^{q} is the same as the one we chose previously in H; thus $\left|E\left(H_{q}\right)\right| \leq q+1$ and $H \in \mathcal{C}_{q}^{q+1}$.

Now we will prove that the number of edges of H_{q} may not be equal to or less than q, i.e., $H \notin \mathcal{C}_{q}^{q}$. Suppose that $H \in \mathcal{C}_{q}^{q}$. This means there exists a set of vertices $\left\{v_{1}, \ldots, v_{q}\right\}$ guaranteeing this assertion. Let $e_{1}=\left(a_{1}, b_{1}\right), \ldots, e_{s}=\left(a_{s}, b_{s}\right)$ be the edges of H_{q} with $1 \leq s \leq q$.

We consider the bipartite graph B whose classes are $X=\left\{e_{1}, \ldots, e_{s}\right\}$ and $Y=\left\{v_{1}, \ldots, v_{q}\right\}$ such that e_{i} is adjacent to v_{j} in B if the path $a_{i} v_{j} b_{i}$ exists in G. We note that if there exists a complete matching in B, then we have that G contains a subgraph homeomorphic to K_{n-q}. Now Hall's condition implies the existence of a complete matching. Thus, we will prove that $|\Gamma(A)| \geq|A|$ for each $A \subseteq X$.

Let $A=\left\{e_{i}\right\}$ be a subset of X with $|A|=1$ for $i \in\{1, \ldots, s\}$. If $|\Gamma(A)|=0$, then e_{i} is nonadjacent to any vertex of the set $\left\{v_{q-2}, v_{q-1}, v_{q}\right\}$ in B. Hence, no vertex $v \in\left\{v_{q-2}, v_{q-1}, v_{q}\right\}$ is adjacent to both a_{i} and b_{i} in G. Consequently, $\delta_{H_{q-1}}\left(a_{i}\right) \geq 2$ or $\delta_{H_{q-1}}\left(b_{i}\right) \geq 2$ and, furthermore, $\delta_{H_{q-3}}\left(a_{i}\right) \geq 3$ or $\delta_{H_{q-3}}\left(b_{i}\right) \geq 3$. Thus, using property (2) of the definition of \mathcal{C}_{q}^{q}, we obtain that $\delta_{H_{j-1}}\left(v_{j}\right) \geq 3$ for $j=1, \ldots, q-2$ and $\delta_{H_{j-1}}\left(v_{j}\right) \geq 2$ for $j=q-1, q$. Therefore, since $s \geq 1$ we have that

$$
|E(H)| \geq 3(q-2)+2 \cdot 2+s \geq 2 q+2
$$

for $q \geq 3$. But this is not possible since $|E(H)|=2 q+1$.
We consider $A=\left\{e_{i}, e_{j}\right\} \subseteq X$ for $i, j \in\{1, \ldots, s\}$ with $i \neq j$, and we suppose $|\Gamma(A)| \leq 1$. This means that at least three vertices of the set $\left\{v_{q-3}, v_{q-2}, v_{q-1}, v_{q}\right\}$ are nonadjacent to e_{i} and to e_{j} in B. Taking into account property (2) of the definition of \mathcal{C}_{q}^{q}, we have that $\delta_{H_{j-1}}\left(v_{j}\right) \geq 3$ for $j=1, \ldots, q-3, \delta_{H_{j-1}}\left(v_{j}\right) \geq 2$ for $j=q-2, q-1$ and $\delta_{H_{q-1}}\left(v_{q}\right) \geq 1$ (see Figure 4.1). Hence,

$$
|E(H)| \geq 3(q-3)+2 \cdot 2+1+s \geq 2 q+2
$$

for $q \geq 4$, and this is a contradiction, as in the previous case.
Let m be an integer with $3 \leq m \leq s$. Let A be the set of vertices $\left\{e_{i_{1}}, \ldots, e_{i_{m}}\right\} \subseteq\left\{e_{1}, \ldots, e_{s}\right\}$ with $i_{1}<i_{2}<\cdots<i_{m}$. If $|\Gamma(A)| \leq m-1$, then there

Fig. 4.1. Possible structure of H for the most unfavorable case for $A=\left\{e_{i}, e_{j}\right\}$.

Fig. 4.2. Possible structure of H for the most unfavorable case for $3 \leq m \leq s$.
exists $i \in\{q-(m-1), \ldots, q\}$ in such a way that v_{i} is not adjacent to any vertex of the set A in the graph B. By applying condition (2) of the definition of \mathcal{C}_{q}^{q}, we obtain that $\delta_{H_{q-m}}\left(v_{q-(m-1)}\right) \geq m$ and, therefore, $\delta_{H_{j-1}}\left(v_{j}\right) \geq m$ for $1 \leq j \leq q-(m-1)$ (see Figure 4.2). Furthermore, $\delta_{H_{j-1}}\left(v_{j}\right) \geq 1$ for $q-(m-2) \leq j \leq q$ and $\left|E\left(H_{q}\right)\right|=s \geq m$. Consequently,

$$
\begin{aligned}
|E(H)| & \geq m(q-(m-1))+m-1+s \\
& \geq m q-m^{2}+3 m-1
\end{aligned}
$$

Since $E(H)=2 q+1$, we have that $2 q+1 \geq m q-m^{2}+3 m-1$ and, therefore, $q \leq \frac{m^{2}-3 m+2}{m-2} \leq m-1<m \leq s$, but this is not possible. Therefore, $|\Gamma(A)| \geq|A|$ for each $A \subseteq X$. Thus, by Hall's condition, there exists a complete matching in B and, thereby, the graph G contains a subgraph homeomorphic to K_{n-q}. This is not possible, and the result follows.

Now we can prove Proposition 4.1.
Proof of Proposition 4.1. It is equivalent to prove that

$$
E X\left(n ; T K_{n-q}\right)=\left\{\mathcal{H}\left(n ; T K_{n-q}\right)\right\}
$$

for $q \geq 4$ and $n \geq 4 q+2$.
Let G be a graph belonging to $\left\{\mathcal{H}\left(n ; T K_{n-q}\right)\right\}$ with $n \geq 4 q+2$. It is easy to check that G does not contain a subgraph homeomorphic to K_{n-q}. Furthermore, by denoting $|E(G)|$ as the number of edges of G, we have that

$$
|E(G)|=e x\left(n ; T K_{n-q}\right)=\binom{n}{2}-(2 q+1)
$$

Thus, by Theorem 4.2, G is maximal on edges and

$$
\left\{\mathcal{H}\left(n ; T K_{n-q}\right)\right\} \subseteq E X\left(n ; T K_{n-q}\right) .
$$

In order to prove that $E X\left(n ; T K_{n-q}\right) \subseteq\left\{\mathcal{H}\left(n ; T K_{n-q}\right)\right\}$, let G be a graph belonging to $E X\left(n ; T K_{n-q}\right)$, and we set $H=\bar{G}$. By Theorem 4.2 we have that $|E(H)|=2 q+1$. By Lemma 2.1, we know there exists s such that $H \in \mathcal{C}_{q}^{s}$. Let $\left\{v_{1}, \ldots, v_{q}\right\}$ be a set of q vertices guaranteeing this property. We know that there exists a vertex $v \in H_{q}$ such that $\delta_{H_{q}}(v) \geq 1$, because otherwise H_{q} is empty and $H \in \mathcal{C}_{q}^{q}$. But this is not possible because, by Lemma 4.4, we know that $H \notin \mathcal{C}_{q}^{q}$. If $\delta\left(v_{1}\right) \geq 2$, then $\left|E\left(H_{q}\right)\right| \leq 2 q+1-(2+q-1)=q$ and therefore $H \in \mathcal{C}_{q}^{q}$, a contradiction. Therefore, $\delta\left(v_{1}\right) \leq 1$.

Thus, as v_{1} is the vertex of maximum degree in H, we have that $\delta(v) \leq 1$ for all $v \in H$, and then the graph H is formed by $2 q+1$ nonadjacent edges. Therefore, the result follows.
5. Case $\left\lceil\frac{2 n+6}{3}\right\rceil \leq p<\left\lceil\frac{3 n+2}{4}\right\rceil$. In this section, we will characterize the family of extremal graphs $E X\left(n ; T K_{n-q}\right)$ for $n=4 q-k+1$ with $0 \leq k \leq q-5$ in such a way that we will show that $E X\left(n ; T K_{n-q}\right)=\left\{\mathcal{H}\left(n ; T K_{n-q}\right)\right\}$, applying techniques based on the same ideas as in the previous section.

THEOREM 5.1. Let n and p be two positive integers with $\left\lceil\frac{2 n+6}{3}\right\rceil \leq p<\left\lceil\frac{3 n+2}{4}\right\rceil$. Then

$$
E X\left(n ; T K_{p}\right)=\left\{\mathcal{H}\left(n ; T K_{p}\right)\right\}
$$

In order to prove this result, we also need to recall some results about the function $e x\left(n ; T K_{n-q}\right)$ (see [2]).

Lemma 5.2 (see [2]). Let k be a nonnegative integer and H be a graph with maximum degree 2 and at least $3 k+1$ vertices of maximum degree. Then there exist at least $k+1$ nonadjacent vertices with degree 2 .

ThEOREM 5.3 (see [2]). Let n, k, and q be three nonnegative integers with $0 \leq$ $k \leq q-4$ and $n=4 q-k+1$. It is verified that

$$
e x\left(n ; T K_{n-q}\right)=\binom{n}{2}-(2 q+k+2)
$$

Now we will show, as in Lemma 4.4, that if $G \in E X\left(n ; T K_{n-q}\right)$ with $n=4 q-k+1$, then $\bar{G} \in \mathcal{C}_{q}^{q+1}$ but $\bar{G} \notin \mathcal{C}_{q}^{q}$.

LEMMA 5.4. Let k, n, and q be three nonnegative integers such that $q \geq 5$, $0 \leq k \leq q-5$, and $n=4 q-k+1$. If $G \in E X\left(n ; T K_{n-q}\right)$, then

$$
\bar{G} \in \mathcal{C}_{q}^{q+1}-\mathcal{C}_{q}^{q}
$$

Proof. Let G be a graph belonging to $E X\left(n ; T K_{n-q}\right)$. This graph does not contain a graph homeomorphic to K_{n-q}, and by Theorem 5.3 we know that

$$
|E(G)|=\binom{n}{2}-(2 q+k+2)
$$

Thus, $H=\bar{G}$ has $2 q+k+2$ edges.
Let H^{*} be the graph obtained from H by removing one edge, similar to what we have done in Lemma 4.4. Since H^{*} is a graph formed by $4 q-k+1$ vertices and $2 q+k+1$ edges, then applying Lemma 2.3 yields $H^{*} \in \mathcal{C}_{q}^{q}$, and then

$$
H \in \mathcal{C}_{q}^{q+1}
$$

Now we will show that $H \notin \mathcal{C}_{q}^{q}$. To the contrary, suppose $H \in \mathcal{C}_{q}^{q}$ and let $\left\{v_{1}, \ldots, v_{q}\right\}$ be a set of vertices of H guaranteeing that $H \in \mathcal{C}_{q}^{q}$. Let $e_{1}=\left(a_{1}, b_{1}\right), \ldots$, $e_{s}=\left(a_{s}, b_{s}\right)$ be the edges of H_{q} with $s \leq q$. We consider the bipartite graph B constructed as in Lemma 4.4, i.e., the graph whose classes are $X=\left\{e_{1}, \ldots, e_{s}\right\}$ and $Y=\left\{v_{1}, \ldots, v_{q}\right\}$ in such a way that e_{i} is adjacent to v_{j} if the path $a_{i} v_{j} b_{i}$ exists in the graph G. In this case, if we show the existence of a complete matching in B, then we would have that G contains a subgraph homeomorphic to K_{n-q}. Therefore, we will show that $|\Gamma(A)| \geq|A|$ for each $A \subseteq X$.

If $|A|=m=1$, by reasoning as in the proof of Lemma 4.4, we have that

$$
|E(H)| \geq 3(q-2)+4+s=3 q+s-2 \geq 3 q-1
$$

Since $k \leq q-4$, it is verified that $3 q-1 \geq 2 q+k+4-1>2 q+k+2$, but this is not possible.

For $m=2$, by considering as done previously, we have that

$$
|E(H)| \geq 3(q-3)+4+1+s=3 q-4+s \geq 3 q-2
$$

Taking into account that $k \leq q-5$, it is verified that $|E(H)|>2 q+k+2$, and this is a contradiction.

We consider $m=3$. Let $A=\left\{e_{i_{1}}, e_{i_{2}}, e_{i_{3}}\right\}$ be a subset of vertices of X with $1 \leq i_{1}<i_{2}<i_{3} \leq s$. If $|\Gamma(A)| \leq 2$, then there exists $i \in\{q-2, \ldots, q\}$ in such a way that v_{i} is not adjacent to any vertex of the set A in the graph B. Hence, by applying property (2) of the definition of \mathcal{C}_{q}^{q}, we have that $\delta_{H_{q-3}}\left(v_{q-2}\right) \geq 3$. Thus,

$$
|E(H)| \geq 3(q-2)+2+s \geq 3 q-1>2 q+k+2
$$

since $k \leq q-4$.
In general, if $4 \leq m \leq s$, then we consider A as the set of vertices $\left\{e_{i_{1}}, \ldots, e_{i_{m}}\right\} \subseteq\left\{e_{1}, \ldots, e_{s}\right\}$ with $i_{1}<i_{2}<\cdots<i_{m}$. If $|\Gamma(A)| \leq m-1$, then there exists $i \in\{q-(m-1), \ldots, q\}$ in such a way that v_{i} is not adjacent to any vertex of the set A in the graph B. Hence, as in the proof of Lemma 4.4, we have that $\delta_{H_{q-m}}\left(v_{q-(m-1)}\right) \geq m$ and, therefore,

$$
|E(H)| \geq m(q-(m-1))+m-1+s \geq m q-m^{2}+3 m-1
$$

But $|E(H)|=2 q+k+2 \leq 3 q-3$ for $k \leq q-5$. Thus, $3 q-3 \geq m q-m^{2}+3 m-1$ and, thereby, $q \leq m-\frac{2}{m-3}<m$, but this is not possible.

Thus, using Hall's condition, there exists a complete matching in B, and consequently, G contains a subgraph homeomorphic to K_{n-q}, but this is not possible. Hence, $H \notin \mathcal{C}_{q}^{q}$ and the result follows.

The next result is devoted to proving the existence of nonadjacent triangles in graphs with maximum degree 2 and the prescribed number of vertices of maximum degree.

Lemma 5.5. Let r be a nonnegative integer, and let H be a graph with maximum degree 2. If H has $3 r+3$ vertices of degree 2 and $r+1$ of them form an independent set, then H contains $r+1$ nonadjacent triangles.

Proof. We apply induction on r. For $r=0$ the result is obvious, because the triangle is the unique graph formed by 3 vertices of degree 2 and all of them are adjacent among themselves.

Now suppose that $r+1 \geq 2$ and the result holds for r. Let H be a graph with $3(r+1)+3=3(r+2)$ vertices of degree 2 , and let w_{1}, \ldots, w_{r+2} be $r+2$ nonadjacent vertices of H.

If there exist $i, j \in\{1, \ldots, r+2\}$ with $i \neq j$ such that $\Gamma\left(w_{i}\right) \cap \Gamma\left(w_{j}\right) \neq \emptyset$, then $\left|\bigcup_{k=1}^{r+2}\left\{\Gamma\left(w_{k}\right) \cup w_{k}\right\}\right|<3(r+2)$. Thus, there exists $w \in H$ with degree 2 nonadjacent to w_{i} for all i. Hence, $\left\{w, w_{1}, \ldots, w_{r+2}\right\}$ is a set of $r+3$ nonadjacent vertices of degree 2, but this is a contradiction. Therefore, $\Gamma\left(w_{i}\right) \cap \Gamma\left(w_{j}\right)=\emptyset$ for all $i \neq j$. Furthermore, if $w \in H$ is adjacent to any w_{i} for $i \in\{1, \ldots, r+2\}$, then w has degree 2 ; otherwise, since the number of vertices of degree 2 is $3(r+2)$, there exists $v \in H$ with degree 2 nonadjacent to w_{i} for all i, and we have seen above that this is not possible.

Now, let a and b be the vertices adjacent to w_{r+2}. If the edge (a, b) does not belong to H, we have that $\left\{w_{1}, \ldots, w_{r+1}, a, b\right\}$ is a set of $r+3$ nonadjacent vertices of degree 2. Thus, the vertices w_{1}, a, and b form a triangle.

Denote by H^{*} the graph obtained from H, removing the previous triangle. Therefore, H^{*} is a graph with $3 r+3$ vertices of degree 2 , and $r+1$ of them are nonadjacent; by induction hypothesis, H^{*} contains $r+1$ nonadjacent triangles. Thus, H contains $r+2$ nonadjacent triangles.

To finish this section, we give the proof of Theorem 5.1, using the previous results.
Proof of Theorem 5.1. It is equivalent to show that

$$
E X\left(n ; T K_{n-q}\right)=\left\{\mathcal{H}\left(n ; T K_{n-q}\right)\right\}
$$

for $n=4 q-k+1$ with $q \geq 5,0 \leq k \leq q-5$.
Let G be a graph belonging to the set $\left\{\mathcal{H}\left(n ; T K_{n-q}\right)\right\}$. By checking the structure of this graph G, it is easy to prove that G does not contain a subgraph homeomorphic to K_{n-q}. Since $|E(G)|=e x\left(n ; T K_{n-q}\right)=\binom{n}{2}-(2 q+k+2)$, we have that $G \in E X\left(n ; T K_{n-q}\right)$.

In order to show that $E X\left(n ; T K_{n-q}\right) \subseteq\left\{\mathcal{H}\left(n ; T K_{n-q}\right)\right\}$, let G be a graph belonging to $E X\left(n ; T K_{n-q}\right)$. We denote by $H=\bar{G}$. By Theorem 5.3, $|E(H)|=2 q+k+2$. First, we will prove that $\Delta(H) \leq 2$. Suppose the contrary, that $\Delta(H) \geq 3$.

By applying Lemma 5.4, we have $H \in \mathcal{C}_{q}^{q+1}-\mathcal{C}_{q}^{q}$. Hence, there exists a subset of vertices $\left\{v_{1}, \ldots, v_{q}\right\}$ of H guaranteeing this property. Furthermore, $\left|E\left(H_{q}\right)\right|=q+1$. We claim there exists $j \in\{1, \ldots, q\}$ such that $\Delta\left(H_{j-1}\right) \geq 3$ and $\Delta\left(H_{j}\right) \leq 2$, because otherwise we have $\delta_{H_{i-1}}\left(v_{i}\right) \geq 3$ for each $1 \leq i \leq q$, and

$$
|E(H)| \geq 3 q+(q+1)>2 q+k+2
$$

but this is not possible. Now we distinguish the cases $j \geq k+1$ and $j \leq k$.
For $j \geq k+1$, we consider the fact that $\Delta\left(H_{j-1}\right) \geq 3$ and $\Delta\left(H_{j}\right) \leq 2$. Taking into account property (2) of the definition of \mathcal{C}_{q}^{q+1} and $\left|E\left(H_{q}\right)\right|>0$, we have $\delta_{H_{i-1}}\left(v_{i}\right) \geq 3$ for $1 \leq i \leq j$ and $\delta_{H_{i-1}}\left(v_{i}\right) \geq 1$ for $j+1 \leq i \leq q$. Hence,

$$
\left|E\left(H_{q}\right)\right| \leq 2 q+k+2-(3 j+(q-j)) \leq q-j+1 \leq q .
$$

But this is not possible since $\left|E\left(H_{q}\right)\right|=q+1$.
For $j \leq k$, we have that $\delta_{H_{i-1}}\left(v_{i}\right) \geq 3$ for $1 \leq i \leq j$. If $\Delta\left(H_{k}\right) \leq 1$, then $2\left|E\left(H_{k}\right)\right| \leq\left|V\left(H_{k}\right)\right|$ and

$$
4 q-2 k+1=\left|V\left(H_{k}\right)\right| \geq 2\left|E\left(H_{k}\right)\right| \geq 2(q-k+q+1)=4 q-2 k+2,
$$

and this is a contradiction. Thus, $\Delta\left(H_{k}\right)=2$ and $\delta_{H_{i-1}}\left(v_{i}\right) \geq 2$ for $j+1 \leq i \leq k$. Hence,

$$
\left|E\left(H_{q}\right)\right| \leq 2 q+k+2-(3 j+2(k-j+1)+(q-k+1))=q-j+1 \leq q,
$$

and this not possible. Thus, $\Delta(H) \leq 2$.
Since $2|E(H)|>|V(H)|$, we have $\Delta(H) \geq 2$ and, consequently, $\Delta(H)=2$.
Next we are going to study the structure of H. On the one hand, if H has at least $3(k+1)+1$ vertices of degree 2 , then by Lemma 5.2 we have that $k+2$ of those vertices $\left\{w_{1}, \ldots, w_{k+2}\right\}$ are nonadjacent. Let w_{k+3}, \ldots, w_{q} be $q-(k+2)$ vertices of H such that the set $\left\{w_{1}, \ldots, w_{k+2}, w_{k+3}, \ldots, w_{q}\right\}$ verifies properties (1) and (2) of the definition of \mathcal{C}_{q}^{s}. For this set of vertices, we have that

$$
\left|E\left(H_{q}\right)\right| \leq 2 q+k+2-(2(k+2)+q-(k+2))=q,
$$

and therefore, $H \in \mathcal{C}_{q}^{q}$, a contradiction. Thus, H has at most $3 k+3$ vertices of degree 2. On the other hand, if we denote by n_{i} the number of vertices of degree i in H, we have that

$$
\left.\begin{array}{rl}
2 n_{2}+n_{1} & =2(2 q+k+2) \\
+n_{1}+n_{0} & =4 q-k+1
\end{array}\right\} .
$$

Thus, $n_{2}=3 k+3+n_{0} \geq 3 k+3$ and the number of vertices of degree 2 in H is $n_{2}=3 k+3$.

Furthermore, as we have shown previously, H may not have $k+2$ nonadjacent vertices of degree 2 . Since H has $3 k+3 \geq 3 k+1$ vertices of degree 2 , by Lemma 5.2 we have that H has at least $k+1$ nonadjacent vertices. Hence, H has maximum degree 2 and $3 k+3$ vertices of degree 2 , and $k+1$ of them are nonadjacent. Therefore, by applying Lemma $5.5, H$ contains $k+1$ nonadjacent triangles. Additionally, $n_{0}=0$, $n_{1}=4 q-4 k-2$, and the result follows.

Acknowledgment. The authors thank the referees for their helpful comments and suggestions.

REFERENCES

[1] B. Bollobas, Extremal Graph Theory, Academic Press, London, 1978.
[2] M. Cera, A. Dí́nez and A. MÁrquez, The size of a graph without topological complete subgraphs, SIAM J. Discrete Math., 13 (2000), pp. 295-301.
[3] G. A. Dirac, In abstrakten Graphen vorhandene vollständige 4-Graphenund ihre Unterteilungen, Math. Nachr., 22 (1960), pp. 61-85.
[4] G. A. Dirac, Homeomorphism theorem for Graphs, Math. Ann., 153 (1964), pp. 69-80.
[5] P. Hall, On representatives of subsets, J. London Math. Soc., 10 (1935), pp. 26-30.
[6] W. Mader, Homomorphieegenshaften und mittlere Kantendichte von Graphen, Math. Ann., 174 (1967), pp. 265-268.
[7] W. Mader, Hinreichende Bedingungen für die Existenz von Teilgraphen, diezu einem vollständigen Graphen Homömorph sind, Math. Nachr., 53 (1972), pp. 145-150.
[8] W. Mader, Graphs without a Subdivision of K_{5} of Maximum Size, preprint, 1998.
[9] W. Mader, $3 n-5$ edges do force a subdivision of K_{5}, Combinatorica, 18 (1998), pp. 569-595.
[10] C. Thomassen, Some homomorphism properties of graphs, Math. Nachr., 64 (1974), pp. $119-$ 133.

[^0]: *Received by the editors September 28, 2000; accepted for publication (in revised form) July 1, 2004; published electronically December 9, 2004. This research was partially supported by the Ministry of Science and Technology, Spain, Research Project BMF2001-2474.
 http://www.siam.org/journals/sidma/18-2/37867.html
 ${ }^{\dagger}$ E.U.I.T. Agrícola, Universidad de Sevilla, Ctra. Utrera s/n, 41013-Sevilla, Spain (mcera@us.es).
 ${ }^{\ddagger}$ E.T.S. Arquitectura, Universidad de Sevilla, Reina Mercedes 2, 41012-Sevilla, Spain (anadianez@ us.es).
 ${ }^{\S}$ E.T.S.I. Informática, Universidad de Sevilla, Reina Mercedes s/n, 41012-Sevilla, Spain (almar@ us.es).

