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EXTREMAL GRAPHS WITHOUT TOPOLOGICAL COMPLETE
SUBGRAPHS∗

M. CERA† , A. DIÁNEZ‡ , AND A. MÁRQUEZ§

Abstract. The exact values of the function ex(n;TKp) are known for � 2n+5
3

� ≤ p < n
(see [Cera, Diánez, and Márquez, SIAM J. Discrete Math., 13 (2000), pp. 295–301]), where ex(n;TKp)
is the maximum number of edges of a graph of order n not containing a subgraph homeomorphic to
the complete graph of order p. In this paper, for � 2n+6

3
� ≤ p < n− 3, we characterize the family of

extremal graphs EX(n;TKp), i.e., the family of graphs with n vertices and ex(n;TKp) edges not
containing a subgraph homeomorphic to the complete graph of order p.
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1. Introduction. The study of the function ex(n;TKp)—i.e., the maximum
number of edges of a graph of order n not containing a subgraph homeomorphic
to Kp, where Kp is the complete graph with p vertices—is one of the most general
extremal problems, as pointed out by Bollobas in [1]. Exact values for this function
are known only in some cases, as can be seen in Table 1.1.

Table 1.1

Exact values of the function ex(n;TKp).

p ex(n;TKp) Reference

3 n− 1
4 2n− 3 [3]
5 3n− 6 [4], [8], [9]

...
...

...

⌈
2n+5

3

⌉
≤ p <

⌈
3n+2

4

⌉ (
n
2

)
− (5n− 6p + 3) [2]

⌈
3n+2

4

⌉
≤ p < n

(
n
2

)
− (2n− 2p + 1) [2]

The aim of this work is to characterize a family of extremal graphs EX(n;TKp)
for appropriate values of n and p, i.e., the set of graphs of order n, with ex(n;TKp)
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EXTREMAL TOPOLOGICAL SUBGRAPHS 389

edges and not containing any subgraph homeomorphic to Kp. Actually, we character-
ize the family EX(n;TKp) for � 2n+6

3 � ≤ p < n− 3:

EX(n;TKp) =

⎧⎨
⎩

(3n− 4p + 2)K3 + (6p− 4n− 3)K2 for
⌈

2n+6
3

⌉
≤ p <

⌈
3n+2

4

⌉
,

K4p−3n−2 + (2n− 2p + 1)K2 for
⌈

3n+2
4

⌉
≤ p < n− 3.

2. Definitions and notation. Given a graph H and a set {v1, . . . , vq} of ver-
tices of H, we denote by H0 = H and by Hk for k = 1, . . . , q the induced subgraph
in H by the set of vertices V (H) − {v1, . . . , vk}. We denote by ∆(H) the maximum
degree of the graph H and by δH(v) the degree of the vertex v in the graph H. The
complement graph of H will be denoted by H.

Let q and s be a pair of nonnegative integers; Cs
q denotes the set of graphs H such

that there exists a set {v1, . . . , vq} of vertices of H verifying the following:

(1) δHj−1(vj) ≥ δHj (vj+1) for j = 1, . . . , q − 1.
(2) For each positive integer h, if there exists k ∈ {1, . . . , q} and v ∈ Hk such

that δHk
(v) ≥ h, then δHj

(vj+1) ≥ h for all j = 1, . . . , k.
(3) Hq has at most s edges (i.e., |E(Hq)| ≤ s).

The next results show different conditions to guarantee that a graph belongs to
the family described above (see [2]).

Lemma 2.1 (see [2]). Let H be a graph with n vertices. Then, for any q ≤ n,
there exists s such that H is in Cs

q .

When s = q, we know sufficient conditions for the edges of a graph to belong to
the class Cq

q .

Lemma 2.2 (see [2]). Let n and q be two positive integers, with q < n. If H is a
graph with n vertices and 2q edges, then

1. H ∈ Cq
q ,

2. δHq (v) ≤ 1 for v ∈ V (Hq).

Lemma 2.3 (see [2]). Let q and k be two positive integers with k ≤ q − 2. Let H
be a graph with 4q − k + 1 vertices and 2q + k + 1 edges. Then H ∈ Cq

q .

Notation and terminology not given here can be found in [1] and [2].

3. The family of extremal graphs. In this section, we will characterize the
family EX(n;TKp) for � 2n+6

3 � ≤ p < n − 3. This problem is equivalent to charac-
terizing EX(n;TKn−q) for n ≥ 4q + 2 with q ≥ 4 (case � 3n+2

4 � ≤ p < n − 3) and
n = 4q − k + 1 with q ≥ 5, 0 ≤ k ≤ q − 5 (the case � 2n+6

3 � ≤ p < � 3n+2
4 �).

In order to avoid excessive repetition, we define the graphs H(n;TKn−q):

H(n;TKn−q) =

⎧⎨
⎩

Kn−(4q+2) + (2q + 1)K2 for n ≥ 4q + 2,

(k + 1)K3 + (2(q − k) − 1)K2 for n = 4q − k + 1, 0 ≤ k ≤ q − 5.

For n ≥ 4q + 2, a graph G belongs to the family {H(n;TKn−q)} if G has n vertices
and G is formed by 2q + 1 nonadjacent edges (see Figure 3.1).

For n = 4q− k+1 with q ≥ 5 and 0 ≤ k ≤ q− 5, a graph G belongs to the family
{H(n;TKn−q)} if it has 4q − k + 1 vertices and G is formed by k + 1 nonadjacent
triangles and 2(q − k) − 1 nonadjacent edges, as Figure 3.2 shows.

In the next two sections, we will prove the following theorem.

Theorem 3.1. EX(n;TKp) = {H(n;TKp)} for � 2n+6
3 � ≤ p < n− 3.
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390 M. CERA, A. DIÁNEZ, AND A. MÁRQUEZ
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2q + 1 nonadjacent edges
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n− (4q + 2)

isolated vertices

Fig. 3.1. Structure of G for n ≥ 4q + 2.

� �

� �

� �

� �

�

� � �

�

� � �

� � � �

� �
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k + 1 triangles 2(q − k) − 1 nonadjacent edges

Fig. 3.2. Structure of G for n = 4q − k + 1.

4. Case �3n+2
4

� ≤ p < n− 3. The aim of this section is to prove Theorem 3.1

when n and p are related by the expression � 3n+2
4 � ≤ p < n− 3.

Proposition 4.1. Let n and p be two positive integers such that � 3n+2
4 � ≤ p <

n− 3. It is verified that

EX(n;TKp) = {H(n;TKp)}.

In order to provide this proposition, we need some previous results. First, we
recall the following results about the function ex(n;TKn−q) (see [2]).

Theorem 4.2 (see [2]). Let n and q be two positive integers. If n ≥ 4q + 2, then

ex(n;TKn−q) =

(
n
2

)
− (2q + 1).

Also, we recall that, given a graph H and v ∈ H, the set of vertices adjacent to
v in H is denoted by Γ(v) (see [1]). Given a bipartite graph B whose classes are X
and Y with |X| ≤ |Y |, we say that B has a complete matching if there exists a set
of nonadjacent edges in B with cardinality |X|. If we need to show the existence of a
complete matching in a bipartite graph, then we can use Hall’s condition.

Theorem 4.3 (see [5]). Given a bipartite graph with classes X and Y , if |Γ(A)| ≥
|A| for all A ⊆ X, where Γ(A) =

⋃
v∈A Γ(v), then there exists a complete matching.

The next result asserts that for any graph G ∈ EX(n;TKn−q) its complement
graph G is extremal for Cq+1

q in the sense that G ∈ Cq+1
q and G �∈ Cq

q .
Lemma 4.4. Let n and q be two nonnegative integers with q ≥ 4 and n ≥ 4q + 2.

For every graph G from the family of graphs EX(n;TKn−q), we have

G ∈ Cq+1
q − Cq

q .

Proof. Let G be a graph such that G ∈ EX(n;TKn−q). The graph G does not
contain a subgraph homeomorphic to Kn−q, so by Theorem 4.2, we know that

|E(G)| =

(
n
2

)
− (2q + 1).

D
ow

nl
oa

de
d 

01
/2

2/
16

 to
 1

50
.2

14
.1

82
.8

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



EXTREMAL TOPOLOGICAL SUBGRAPHS 391

Hence, |E(H)| = 2q + 1, where H = G.
By Lemma 2.1, there exists an integer s such that H ∈ Cs

q . This means that
there exists a subset {v1, . . . , vq} of vertices of G verifying |E(Hq)| ≤ s, where Hq =
H − {v1, . . . , vq}. If s ≤ q + 1, then H ∈ Cq+1

q . Otherwise (s > q + 1), let H∗ be the
graph obtained from H by removing one of the edges of the subgraph Hq. The graph
H∗ has n ≥ 4q+2 vertices and 2q edges, and applying Lemma 2.2 results in H∗ ∈ Cq

q .
Furthermore, by the construction of the graph H∗, the set of vertices chosen to prove
that H∗ belongs to the class of graphs Cq

q is the same as the one we chose previously
in H; thus |E(Hq)| ≤ q + 1 and H ∈ Cq+1

q .
Now we will prove that the number of edges of Hq may not be equal to or less

than q, i.e., H �∈ Cq
q . Suppose that H ∈ Cq

q . This means there exists a set of vertices
{v1, . . . , vq} guaranteeing this assertion. Let e1 = (a1, b1), . . . , es = (as, bs) be the
edges of Hq with 1 ≤ s ≤ q.

We consider the bipartite graph B whose classes are X = {e1, . . . , es} and
Y = {v1, . . . , vq} such that ei is adjacent to vj in B if the path aivjbi exists in
G. We note that if there exists a complete matching in B, then we have that G con-
tains a subgraph homeomorphic to Kn−q. Now Hall’s condition implies the existence
of a complete matching. Thus, we will prove that |Γ(A)| ≥ |A| for each A ⊆ X.

Let A = {ei} be a subset of X with |A| = 1 for i ∈ {1, . . . , s}. If |Γ(A)| = 0,
then ei is nonadjacent to any vertex of the set {vq−2, vq−1, vq} in B. Hence, no vertex
v ∈ {vq−2, vq−1, vq} is adjacent to both ai and bi in G. Consequently, δHq−1

(ai) ≥ 2 or
δHq−1

(bi) ≥ 2 and, furthermore, δHq−3
(ai) ≥ 3 or δHq−3

(bi) ≥ 3. Thus, using property
(2) of the definition of Cq

q , we obtain that δHj−1(vj) ≥ 3 for j = 1, . . . , q − 2 and
δHj−1

(vj) ≥ 2 for j = q − 1, q. Therefore, since s ≥ 1 we have that

|E(H)| ≥ 3(q − 2) + 2 · 2 + s ≥ 2q + 2

for q ≥ 3. But this is not possible since |E(H)| = 2q + 1.
We consider A = {ei, ej} ⊆ X for i, j ∈ {1, . . . , s} with i �= j, and we suppose

|Γ(A)| ≤ 1. This means that at least three vertices of the set {vq−3, vq−2, vq−1, vq} are
nonadjacent to ei and to ej in B. Taking into account property (2) of the definition of
Cq
q , we have that δHj−1

(vj) ≥ 3 for j = 1, . . . , q − 3, δHj−1(vj) ≥ 2 for j = q − 2, q − 1
and δHq−1

(vq) ≥ 1 (see Figure 4.1). Hence,

|E(H)| ≥ 3(q − 3) + 2 · 2 + 1 + s ≥ 2q + 2

for q ≥ 4, and this is a contradiction, as in the previous case.
Let m be an integer with 3 ≤ m ≤ s. Let A be the set of vertices

{ei1 , . . . , eim} ⊆ {e1, . . . , es} with i1 < i2 < · · · < im. If |Γ(A)| ≤ m − 1, then there

� � � � � � �

��� �

�

�
�
�
�
�
��

�
�
�
�
�
��

�
�
�
�
�
��

�
�

�
�

�
��

�
�
�
�
�
��

�
�
�
�
�
��

v1 vq−3 vq−2 vq−1 vq

ai bi aj bj

Fig. 4.1. Possible structure of H for the most unfavorable case for A = {ei, ej}.
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392 M. CERA, A. DIÁNEZ, AND A. MÁRQUEZ

� � � � � � � � �

� � � � � � � � � � � � � �

v1 vq−m vq−(m−1) vj vq

ei1 ei2 eim

�
�

�
�

�
��

�
�

�
�

�
��

�
�

�
�

�
��

Fig. 4.2. Possible structure of H for the most unfavorable case for 3 ≤ m ≤ s.

exists i ∈ {q − (m− 1), . . . , q} in such a way that vi is not adjacent to any vertex of
the set A in the graph B. By applying condition (2) of the definition of Cq

q , we obtain
that δHq−m(vq−(m−1)) ≥ m and, therefore, δHj−1(vj) ≥ m for 1 ≤ j ≤ q− (m−1) (see
Figure 4.2). Furthermore, δHj−1(vj) ≥ 1 for q−(m−2) ≤ j ≤ q and |E(Hq)| = s ≥ m.
Consequently,

|E(H)| ≥ m(q − (m− 1)) + m− 1 + s
≥ mq −m2 + 3m− 1.

Since E(H) = 2q + 1, we have that 2q + 1 ≥ mq − m2 + 3m − 1 and, therefore,

q ≤ m2−3m+2
m−2 ≤ m − 1 < m ≤ s, but this is not possible. Therefore, |Γ(A)| ≥ |A|

for each A ⊆ X. Thus, by Hall’s condition, there exists a complete matching in B
and, thereby, the graph G contains a subgraph homeomorphic to Kn−q. This is not
possible, and the result follows.

Now we can prove Proposition 4.1.
Proof of Proposition 4.1. It is equivalent to prove that

EX(n;TKn−q) = {H(n;TKn−q)}

for q ≥ 4 and n ≥ 4q + 2.
Let G be a graph belonging to {H(n;TKn−q)} with n ≥ 4q + 2. It is easy to

check that G does not contain a subgraph homeomorphic to Kn−q. Furthermore, by
denoting |E(G)| as the number of edges of G, we have that

|E(G)| = ex(n;TKn−q) =

(
n
2

)
− (2q + 1).

Thus, by Theorem 4.2, G is maximal on edges and

{H(n;TKn−q)} ⊆ EX(n;TKn−q).

In order to prove that EX(n;TKn−q) ⊆ {H(n;TKn−q)}, let G be a graph
belonging to EX(n;TKn−q), and we set H = G. By Theorem 4.2 we have that
|E(H)| = 2q + 1. By Lemma 2.1, we know there exists s such that H ∈ Cs

q . Let
{v1, . . . , vq} be a set of q vertices guaranteeing this property. We know that there ex-
ists a vertex v ∈ Hq such that δHq (v) ≥ 1, because otherwise Hq is empty and H ∈ Cq

q .
But this is not possible because, by Lemma 4.4, we know that H �∈ Cq

q . If δ(v1) ≥ 2,
then |E(Hq)| ≤ 2q + 1 − (2 + q − 1) = q and therefore H ∈ Cq

q , a contradiction.
Therefore, δ(v1) ≤ 1.

Thus, as v1 is the vertex of maximum degree in H, we have that δ(v) ≤ 1 for all
v ∈ H, and then the graph H is formed by 2q + 1 nonadjacent edges. Therefore, the
result follows.
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EXTREMAL TOPOLOGICAL SUBGRAPHS 393

5. Case �2n+6
3

� ≤ p < �3n+2
4

�. In this section, we will characterize the family
of extremal graphs EX(n;TKn−q) for n = 4q − k + 1 with 0 ≤ k ≤ q − 5 in such a
way that we will show that EX(n;TKn−q) = {H(n;TKn−q)}, applying techniques
based on the same ideas as in the previous section.

Theorem 5.1. Let n and p be two positive integers with � 2n+6
3 � ≤ p < � 3n+2

4 �.
Then

EX(n;TKp) = {H(n;TKp)}.

In order to prove this result, we also need to recall some results about the function
ex(n;TKn−q) (see [2]).

Lemma 5.2 (see [2]). Let k be a nonnegative integer and H be a graph with
maximum degree 2 and at least 3k + 1 vertices of maximum degree. Then there exist
at least k + 1 nonadjacent vertices with degree 2.

Theorem 5.3 (see [2]). Let n, k, and q be three nonnegative integers with 0 ≤
k ≤ q − 4 and n = 4q − k + 1. It is verified that

ex(n;TKn−q) =

(
n
2

)
− (2q + k + 2).

Now we will show, as in Lemma 4.4, that if G ∈ EX(n;TKn−q) with n = 4q−k+1,
then G ∈ Cq+1

q but G �∈ Cq
q .

Lemma 5.4. Let k, n, and q be three nonnegative integers such that q ≥ 5,
0 ≤ k ≤ q − 5, and n = 4q − k + 1. If G ∈ EX(n;TKn−q), then

G ∈ Cq+1
q − Cq

q .

Proof. Let G be a graph belonging to EX(n;TKn−q). This graph does not contain
a graph homeomorphic to Kn−q, and by Theorem 5.3 we know that

|E(G)| =

(
n
2

)
− (2q + k + 2).

Thus, H = G has 2q + k + 2 edges.
Let H∗ be the graph obtained from H by removing one edge, similar to what

we have done in Lemma 4.4. Since H∗ is a graph formed by 4q − k + 1 vertices and
2q + k + 1 edges, then applying Lemma 2.3 yields H∗ ∈ Cq

q , and then

H ∈ Cq+1
q .

Now we will show that H �∈ Cq
q . To the contrary, suppose H ∈ Cq

q and let
{v1, . . . , vq} be a set of vertices of H guaranteeing that H ∈ Cq

q . Let e1 = (a1, b1), . . . ,
es = (as, bs) be the edges of Hq with s ≤ q. We consider the bipartite graph B
constructed as in Lemma 4.4, i.e., the graph whose classes are X = {e1, . . . , es} and
Y = {v1, . . . , vq} in such a way that ei is adjacent to vj if the path aivjbi exists in the
graph G. In this case, if we show the existence of a complete matching in B, then we
would have that G contains a subgraph homeomorphic to Kn−q. Therefore, we will
show that |Γ(A)| ≥ |A| for each A ⊆ X.

If |A| = m = 1, by reasoning as in the proof of Lemma 4.4, we have that

|E(H)| ≥ 3(q − 2) + 4 + s = 3q + s− 2 ≥ 3q − 1.
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394 M. CERA, A. DIÁNEZ, AND A. MÁRQUEZ

Since k ≤ q− 4, it is verified that 3q− 1 ≥ 2q + k + 4− 1 > 2q + k + 2, but this is not
possible.

For m = 2, by considering as done previously, we have that

|E(H)| ≥ 3(q − 3) + 4 + 1 + s = 3q − 4 + s ≥ 3q − 2.

Taking into account that k ≤ q − 5, it is verified that |E(H)| > 2q + k + 2, and this
is a contradiction.

We consider m = 3. Let A = {ei1 , ei2 , ei3} be a subset of vertices of X with
1 ≤ i1 < i2 < i3 ≤ s. If |Γ(A)| ≤ 2, then there exists i ∈ {q − 2, . . . , q} in such a way
that vi is not adjacent to any vertex of the set A in the graph B. Hence, by applying
property (2) of the definition of Cq

q , we have that δHq−3
(vq−2) ≥ 3. Thus,

|E(H)| ≥ 3(q − 2) + 2 + s ≥ 3q − 1 > 2q + k + 2

since k ≤ q − 4.
In general, if 4 ≤ m ≤ s, then we consider A as the set of vertices

{ei1 , . . . , eim} ⊆ {e1, . . . , es} with i1 < i2 < · · · < im. If |Γ(A)| ≤ m − 1, then
there exists i ∈ {q − (m − 1), . . . , q} in such a way that vi is not adjacent to any
vertex of the set A in the graph B. Hence, as in the proof of Lemma 4.4, we have that
δHq−m

(vq−(m−1)) ≥ m and, therefore,

|E(H)| ≥ m(q − (m− 1)) + m− 1 + s ≥ mq −m2 + 3m− 1.

But |E(H)| = 2q + k + 2 ≤ 3q − 3 for k ≤ q − 5. Thus, 3q − 3 ≥ mq −m2 + 3m − 1
and, thereby, q ≤ m− 2

m−3 < m, but this is not possible.
Thus, using Hall’s condition, there exists a complete matching in B, and con-

sequently, G contains a subgraph homeomorphic to Kn−q, but this is not possible.
Hence, H �∈ Cq

q and the result follows.
The next result is devoted to proving the existence of nonadjacent triangles in

graphs with maximum degree 2 and the prescribed number of vertices of maximum
degree.

Lemma 5.5. Let r be a nonnegative integer, and let H be a graph with maximum
degree 2. If H has 3r + 3 vertices of degree 2 and r + 1 of them form an independent
set, then H contains r + 1 nonadjacent triangles.

Proof. We apply induction on r. For r = 0 the result is obvious, because the
triangle is the unique graph formed by 3 vertices of degree 2 and all of them are
adjacent among themselves.

Now suppose that r + 1 ≥ 2 and the result holds for r. Let H be a graph with
3(r+1)+3 = 3(r+2) vertices of degree 2, and let w1, . . . , wr+2 be r+2 nonadjacent
vertices of H.

If there exist i, j ∈ {1, . . . , r + 2} with i �= j such that Γ(wi) ∩ Γ(wj) �= ∅, then

|
⋃r+2

k=1{Γ(wk)∪wk}| < 3(r + 2). Thus, there exists w ∈ H with degree 2 nonadjacent
to wi for all i. Hence, {w,w1, . . . , wr+2} is a set of r+3 nonadjacent vertices of degree
2, but this is a contradiction. Therefore, Γ(wi)∩Γ(wj) = ∅ for all i �= j. Furthermore,
if w ∈ H is adjacent to any wi for i ∈ {1, . . . , r + 2}, then w has degree 2; otherwise,
since the number of vertices of degree 2 is 3(r + 2), there exists v ∈ H with degree 2
nonadjacent to wi for all i, and we have seen above that this is not possible.

Now, let a and b be the vertices adjacent to wr+2. If the edge (a, b) does not
belong to H, we have that {w1, . . . , wr+1, a, b} is a set of r + 3 nonadjacent vertices
of degree 2. Thus, the vertices w1, a, and b form a triangle.
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EXTREMAL TOPOLOGICAL SUBGRAPHS 395

Denote by H∗ the graph obtained from H, removing the previous triangle. There-
fore, H∗ is a graph with 3r+3 vertices of degree 2, and r+1 of them are nonadjacent;
by induction hypothesis, H∗ contains r + 1 nonadjacent triangles. Thus, H contains
r + 2 nonadjacent triangles.

To finish this section, we give the proof of Theorem 5.1, using the previous results.
Proof of Theorem 5.1. It is equivalent to show that

EX(n;TKn−q) = {H(n;TKn−q)}

for n = 4q − k + 1 with q ≥ 5, 0 ≤ k ≤ q − 5.
Let G be a graph belonging to the set {H(n;TKn−q)}. By checking the structure

of this graph G, it is easy to prove that G does not contain a subgraph homeomor-
phic to Kn−q. Since |E(G)| = ex(n;TKn−q) = (n2 ) − (2q + k + 2), we have that
G ∈ EX(n;TKn−q).

In order to show that EX(n;TKn−q) ⊆ {H(n;TKn−q)}, let G be a graph belong-
ing to EX(n;TKn−q). We denote by H = G. By Theorem 5.3, |E(H)| = 2q + k + 2.
First, we will prove that ∆(H) ≤ 2. Suppose the contrary, that ∆(H) ≥ 3.

By applying Lemma 5.4, we have H ∈ Cq+1
q − Cq

q . Hence, there exists a subset of
vertices {v1, . . . , vq} of H guaranteeing this property. Furthermore, |E(Hq)| = q + 1.
We claim there exists j ∈ {1, . . . , q} such that ∆(Hj−1) ≥ 3 and ∆(Hj) ≤ 2, because
otherwise we have δHi−1(vi) ≥ 3 for each 1 ≤ i ≤ q, and

|E(H)| ≥ 3q + (q + 1) > 2q + k + 2,

but this is not possible. Now we distinguish the cases j ≥ k + 1 and j ≤ k.
For j ≥ k+1, we consider the fact that ∆(Hj−1) ≥ 3 and ∆(Hj) ≤ 2. Taking into

account property (2) of the definition of Cq+1
q and |E(Hq)| > 0, we have δHi−1(vi) ≥ 3

for 1 ≤ i ≤ j and δHi−1(vi) ≥ 1 for j + 1 ≤ i ≤ q. Hence,

|E(Hq)| ≤ 2q + k + 2 − (3j + (q − j)) ≤ q − j + 1 ≤ q.

But this is not possible since |E(Hq)| = q + 1.
For j ≤ k, we have that δHi−1(vi) ≥ 3 for 1 ≤ i ≤ j. If ∆(Hk) ≤ 1, then

2|E(Hk)| ≤ |V (Hk)| and

4q − 2k + 1 = |V (Hk)| ≥ 2|E(Hk)| ≥ 2(q − k + q + 1) = 4q − 2k + 2,

and this is a contradiction. Thus, ∆(Hk) = 2 and δHi−1
(vi) ≥ 2 for j + 1 ≤ i ≤ k.

Hence,

|E(Hq)| ≤ 2q + k + 2 − (3j + 2(k − j + 1) + (q − k + 1)) = q − j + 1 ≤ q,

and this not possible. Thus, ∆(H) ≤ 2.
Since 2|E(H)| > |V (H)|, we have ∆(H) ≥ 2 and, consequently, ∆(H) = 2.
Next we are going to study the structure of H. On the one hand, if H has at

least 3(k+ 1) + 1 vertices of degree 2, then by Lemma 5.2 we have that k+ 2 of those
vertices {w1, . . . , wk+2} are nonadjacent. Let wk+3, . . . , wq be q − (k + 2) vertices of
H such that the set {w1, . . . , wk+2, wk+3, . . . , wq} verifies properties (1) and (2) of the
definition of Cs

q . For this set of vertices, we have that

|E(Hq)| ≤ 2q + k + 2 − (2(k + 2) + q − (k + 2)) = q,
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396 M. CERA, A. DIÁNEZ, AND A. MÁRQUEZ

and therefore, H ∈ Cq
q , a contradiction. Thus, H has at most 3k+3 vertices of degree

2. On the other hand, if we denote by ni the number of vertices of degree i in H, we
have that

2n2 + n1 = 2(2q + k + 2)
n2 + n1 + n0 = 4q − k + 1

}
.

Thus, n2 = 3k + 3 + n0 ≥ 3k + 3 and the number of vertices of degree 2 in H is
n2 = 3k + 3.

Furthermore, as we have shown previously, H may not have k + 2 nonadjacent
vertices of degree 2. Since H has 3k+3 ≥ 3k+1 vertices of degree 2, by Lemma 5.2 we
have that H has at least k + 1 nonadjacent vertices. Hence, H has maximum degree
2 and 3k + 3 vertices of degree 2, and k + 1 of them are nonadjacent. Therefore, by
applying Lemma 5.5, H contains k + 1 nonadjacent triangles. Additionally, n0 = 0,
n1 = 4q − 4k − 2, and the result follows.
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