
Labeling Subway Lines�

Mari Ángeles Garrido1, Claudia Iturriaga2, Alberto Márquez1, José Ramón
Portillo1, Pedro Reyes1, and Alexander Wolff3

1 Dept. de Matemática Aplicada I, Universidad de Sevilla, Spain
{vizuete,almar,josera,preyes}@us.es

2 Faculty of Computer Science, University of New Brunswick, Canada
citurria@unb.ca

3 Institut für Mathematik und Informatik, Universität Greifswald, Germany
awolff@uni-greifswald.de

Abstract. Graphical features on map, charts, diagrams and graph draw-
ings usually must be annotated with text labels in order to convey their
meaning. In this paper we focus on a problem that arises when labeling
schematized maps, e.g. for subway networks. We present algorithms for
labeling points on a line with axis-parallel rectangular labels of equal
height. Our aim is to maximize label size under the constraint that all
points must be labeled.
Even a seemingly strong simplification of the general point-labeling prob-
lem, namely to decide whether a set of points on a horizontal line can
be labeled with sliding rectangular labels, turns out to be weakly NP-
complete. This is the first labeling problem that is known to belong to
this class. We give a pseudo-polynomial time algorithm for it.
In case of a sloping line points can be labeled with maximum-size square
labels in O(n log n) time if four label positions per point are allowed and
in O(n3 log n) time if labels can slide. We also investigate rectangular
labels.

1 Introduction

Label placement is one of the key tasks in the process of information visual-
ization. In diagrams, maps, technical or graph drawings, features like points,
lines, and polygons must be labeled to convey information. The interest in algo-
rithms that automate this task has increased with the advance in type-setting
technology and the amount of information to be visualized. Due to the compu-
tational complexity of the label-placement problem, cartographers, graph draw-
ers, and computational geometers have suggested numerous approaches, such
as expert systems [1], zero-one integer programming [16], approximation algo-
rithms [7,12,13,14], simulated annealing [5] and force-driven algorithms [9] to
name only a few. An extensive bibliography about label placement can be found
at [15]. The ACM Computational Geometry Impact Task Force report [4] de-
notes label placement as an important research area. Manually labeling a map
is a tedious task that is estimated to take 50% of total map production time.
� Partially supported by PAI project FQM—0164

P. Eades and T. Takaoka (Eds.): ISAAC 2001, LNCS 2223, pp. 649–659, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

650 Mari Ángeles Garrido et al.

When producing schematized maps [3], e.g. for road or subway networks, an
interesting new label-placement problem has to be solved: that of labeling points
on a line, e.g. stations on a specific subway line. We assume that all labels are
parallel to each other and contain text of the same font size, so we can model
labels by axis-parallel rectangles of equal height. We investigate two different
labeling models, 4P and 4S, that were introduced in [7] and [14], respectively.
In the fixed-position model 4P a label must be placed such that one of its four
corners coincides with the point site to be labeled. The slider model 4S is less
restrictive in that a label can be placed such that any point of its boundary
coincides with the site. See Figure 1 for a variety of point-labeling models that
have been studied previously [14,12]. In that figure, each rectangle stands for
a feasible label position. An arrow between two rectangle indicates that addi-
tionally all label position are feasible that arise when moving one rectangle on
a straight line onto the other.

1P 2PH
2PV 4P

1SH
1SV 2SH 2SV 4S

Fig. 1. Each model has an abbreviation of the form xMD where M ∈ {P, S}
stands for fixed-position model (P) or slider model (S), x ∈ {1, 2, 4} refers to
the number of fixed positions or sliding directions, and D ∈ {∅,H,V} indicates
the horizontal or vertical direction in which fixed-position labels are arranged or
labels can slide

While most point-labeling problems are computationally hard [7], one would
expect to be in a better situation if the input points are not scattered all over
the plane but lie on a line. We show, however, that this is not necessarily true:
labeling points on a horizontal line with sliding rectangles remains NP-hard.
We do give a pseudo-polynomial time algorithm for that problem and show that
several simplifications—square labels or no sliding—all have efficient algorithms.
Other point-labeling problems that are not NP-hard include labeling points with
maximum-size rectangles in one of two positions [7] or with maximum-size rect-
angles of aspect ratio 1:2 in one of four special positions [13]. There is also a
polynomial-time algorithm that decides whether points on the boundary of a
rectangle can be labeled with so-called elastic labels, i.e. rectangular labels of
fixed area but flexible length and height [10]. Last but not least the problems
1d-kPH and 1d-1SH of labeling points on a horizontal line with labels in a con-
stant number of positions and with sliding labels, respectively, have been studied
under the restriction that all labels must be placed on top of the line [11,12].

Our paper is structured as follows. In Section 2 we investigate the problem
of labeling points on a horizontal line with axis-parallel rectangular labels that

Labeling Subway Lines 651

touch the line. In Section 3 we consider labeling points on sloping lines with
squares and sketch how some of these can be extended to rectangular labels.
Throughout the paper we consider labels topologically open, i.e. they may touch
other labels or input points. An M -labeling maps each input point to a label
position that is allowed in labeling model M such that no two labels intersect.
For a variety of labeling models, refer to Figure 1. In our paper the names of
the models in Figure 1 are prefixed with “1d-” or “Slope-”, in order to refer to
the corresponding problems where all input points lie on a horizontal or sloping
line, respectively. An optimal labeling will refer to a labeling where all labels are
scaled by the same factor and this factor is maximum (prefix “Max-”).

2 Points on a Horizontal Line

So far only Poon et al. have explicitely given algorithms for labeling points on
a horizontal line [12]. They assume points with weights and investigate algo-
rithms for maximizing the weighted sum of points that can be labeled above
the line. Their aim actually is to label points with unit-height labels in the
plane, but they reduce the difficult two-dimensional rectangle-placement prob-
lem into simpler one-dimensional interval-placement problems by means of line
stabbing. Solving the 1d-problems (near-) optimally then gives approximation
algorithms for the 2d-problem. See Figure 1 for the labeling models Poon et
al. consider. The discrete case 1d-kPH, where each point has only a constant
number of feasible label positions, is a special case of maximum-weight inde-
pendent set (MWIS) on interval graphs. They use a MWIS algorithm to solve
1d-kPH in O(kn log n) time. In the weighted case the problem 1d-1SH where
labels can slide horizontally above the given line (see Figure 1) is equivalent
to a job scheduling problem, namely single-machine throughput maximization.
It is not known whether a polynomial-time algorithm for 1d-1SH exists in the
weighted case. Poon et al. modify a fully polynomial-time approximation scheme
(FPTAS) for single-machine throughput maximization to approximate 1d-1SH:
for each ε > 0 they obtain a factor-(1+ ε) approximation algorithm that runs in
O(n2/ε) time and uses O(n/ε) space. They also give an exact pseudo-polynomial
time algorithm based on dynamic programming for 1d-1SH with a bounded num-
ber of different weights and an exact O(n2 logn)-time algorithm for the special
case of square labels (i.e. intervals of fixed length). A similar approach can be
used to approximate 1d-2SH (and, equivalently 1d-4S) in the weighted case:
there is a factor-(1.8 + ε) approximation algorithm for 2-machine throughput
maximization that runs in O(n2/ε) time [2].

Kim et al. have investigated algorithms for labeling axis-parallel line segments
with sliding maximum-width rectangles [11]. They also consider the 1d-case first
and show that 1d-1SH can be decided in linear time for unit squares (unit-length
intervals) in the unweighted case if points are given in left-to-right order. In the
same paper they also give a linear-time algorithm for the problem Max-1d-1SH,
where the label length is maximized under the restriction that all labels have
the same length.

652 Mari Ángeles Garrido et al.

In this section we will investigate a problem that is more difficult than
1d-1SH: we allow to place labels both above and below the horizontal line, say
the x-axis, on which the input points are given. Let us start by introducing some
notions that we will use throughout the paper, both for horizontal and sloping
lines. We will direct the line from left (bottom) to right (top) and process the
points in this linear order.

Definition 1. Given a set P = {p1, . . . , pn} of n points on a line � in lexico-
graphical order, we refer to � as the input line and direct it according to the order
on P . Given an axis-parallel label Li for each pi ∈ P and a labeling model M ,
a k-tuple R = (r1, . . . , rk) is a k-realization of P if each entry ri encodes a
position of Li that is valid in M and no two labels intersect.

For the 4P-model an entry of a k-realization is simply an integer ri ∈
{1, 2, 3, 4} that specifies in which of the four quadrants (in canonical order) Li lies
relative to a coordinate system with origin pi. For the 4S-model we take ri ∈ [1, 5[
with the obvious meaning that e.g. 2.5 is half way in between position 2 and 3. In
order to express minimality among realizations we need at least a partial order on
the set of possible k-realizations and thus on the label positions ri. Intuitively,
a minimum k-realization should be a k-realization that leaves the maximum
amount of freedom for the placement of label Lk+1. This leads to the concept of
the shadow of a k-realization—space that cannot be used for placing Lk+1. Our
definition depends on the fact that our labels are always axis-parallel rectangles.

Definition 2. The foremost vertex of a label L is the point on the boundary of L
that is furthest in the direction of the input line �. In case of a tie a point on �
wins. The shadow s(L) of a label L is the quadrant of the plane that contains L
and is defined by the foremost vertex of L and the two adjacent edges of L.
The shadow of a k-realization R is s(R) = ∪k

i=1s(Li). Two k-realizations are
equivalent if they have the same shadows.

For shadows of labels, see Figure 2. A shadow of a k-realization given a
sloping line is depicted in Figure 5. Let us now focus on horizontal lines.

Definition 3. If � is a horizontal line, the dual of a k-realization R is the k-
realization R∗ with r∗i = 5−ri for i = 1, . . . , k. We write R ≤ R′ if s(R) ⊆ s(R′)
or s(R∗) ⊆ s(R′). R = (r1, . . . , rk) is a minimum k-realization if (r1, . . . , ri) ≤
R′ for all i-realizations R′ and for each i = 1, . . . , k.

If � is horizontal, the shadow of a realization R can be denoted by (t, b)
where t (b) is the x-coordinate of the right edge of the rightmost label in R above
(below) �. The dual R∗ of R is obtained by mirroring R at �. For a minimum
and a non-minimum 4-realization, see Figure 3.

Lemma 1. If there is a k-realization R of P then there is also a minimum k-
realization R′ of P .

Labeling Subway Lines 653

foremost vertex

p

Ls(L)
p

�

L �

s(L)

a)

b)

1
3

2 4

1
2

3
4

Fig. 2. Shadows of labels Fig. 3. A minimum (a) and a
non-minimum realization (b)

Proof. Let R|i be the i-realization (for i = 1, . . . , k − 1) obtained from R by
removing its k− i last entries (i.e. labels). Our proof is by induction over k. The
claim is certainly valid for k = 1: in this case R′ = (2) or R′ = (3), i.e. place
the label of p1 leftmost. For k > 1 if R|k is not a minimum k-realization then
by our induction hypothesis we have a minimum (k− 1)-realization R′′. Clearly
R′′ ≤ R|k−1, thus adding the label Lk of R to R′′ gives a k-realization R′. To
make sure that R′ is in fact minimum, we push Lk as far left as possible, checking
positions both below and above �. If this new R′ was not a minimum k-realization
we would have a contradiction to the minimality of R′′. 	

Thus it is enough to keep track of minimum k-realizations to solve the de-
cision problem. Among these only non-equivalent k-realizations are of interest.
Their number can be bounded as follows.

Lemma 2. Given 1d-4P there are at most two non-equivalent minimum k-
realizations for k = 1, . . . , n.

This is proved by induction over k and by going through all different possibil-
ities according to the position of pk. The duality of two realizations is important
here.

Theorem 1. If points are given in left-to-right order, 1d-4P with rectangles can
be decided in linear time and space.

Proof. We label points in the given order starting with the two minimum 1-
realizations that we get from labeling p1 leftmost, i.e. in positions 2 and 3. Then
in each step we only have to combine each minimum (k − 1)-realization R with
the two leftmost placements of label k that R allows (if any) and compare the
resulting at most four realizations with each other. According to Lemma 2 at
most two of these are minimum and have to be kept. If at some point label k
cannot be combined with any of the minimum (k−1)-realizations, then Lemma 1
guarantees that no k-realization exists. In this case the algorithm outputs “no”,
otherwise it returns a minimum n-realization. 	

654 Mari Ángeles Garrido et al.

The maximization version Max-1d-4P of this problem is the following: given
a set P of n points p1 = (x1, 0), . . . , pn = (xn, 0) each with a label of length li and
unit height, find the largest stretch factor λmax such that there is a 1d-4P-labeling
of P with labels of length λmaxl1, . . . , λmaxln and determine the corresponding
labeling.

Theorem 2. Max-1d-4P can be solved in O(n2 logn) time using O(n2) space
or in O(n3) time using linear space.

Proof. First we sort the input points lexicographically. Let ∆xi,j = |xj − xi|.
Since at least two labels must touch each other in an optimal labeling, λmax must
be in the list L = {∆xi,j/li, ∆xi,j/lj, ∆xi,j/(li + lj) : 1 ≤ i < j ≤ n} of all
potentially optimal stretch factors. We compute L, sort L, and do a binary
search on L calling our decision algorithm in each step. This takes O(n2 logn)
time and uses quadratic space for L. Instead we could also compute the elements
of L on the fly and test them without sorting. 	

The problem becomes much harder when we allow labels to slide horizontally.
We will show this by reducing a special variant of Partition to 1d-4S. Actually
sliding vertically does not help when the input line is horizontal, so 1d-4S is
equivalent to 1d-2SH, where only horizontal sliding is allowed. For the same
reason the problem 1d-2SV, where only vertical sliding is allowed, is equivalent
to 1d-4P, see Figure 1.

Theorem 3. 1d-4S is NP-complete.

Proof. The problem is in NP since we have the following non-deterministic
polynomial-time decision algorithm. First guess an n-tuple c with entries ci ∈
{a, b} that encode whether label Li lies above or below the input line in the
solution. Then go through the points from left to right and place Li at position
1 if ci = a and at position 4 if ci = b. Push Li left until it either hits a previ-
ously placed label or is in its leftmost position. If Li cannot be placed without
intersection, there cannot be a solution that conforms to c. However, if there is
a 1d-4S-labeling of the given points, it is found with non-zero probability.

To show the NP-hardness we reduce the following NP-hard variant of Par-
tition [8] to 1d-4S. Given positive integers a1, . . . , a2m is there a subset I of
J = {1, . . . , 2m} such that I contains exactly one of {2i− 1, 2i} for i = 1, . . . ,m
and

∑
i∈I ai =

∑
i∈J\I ai? We will reduce an instance A of this problem to an

instance (P,L) of 1d-4S such that A can be partitioned if and only if there is a
1d-4S-labeling of P with the corresponding labels from L.

First let C be a very large and c a very small number, e.g. C = 1000
∑

i∈J ai

and c = mini∈J ai/1000. Our point set P consists of 4 stoppers and 2m usual
points a, b, p1, p2, . . ., p2m, y, z from left to right with distances ab = yz = c,
bp1 = p2my = C/2, p2i−1p2i = (a2i−1+a2i)/2, and p2ip2i+1 = C, thus by = mC+∑

i∈J ai/2, see Figure 4. The corresponding labels have length la = lb = ly =
lz = by and li = C + ai, thus

∑
i∈J li = 2mC +

∑
i∈J ai = 2by. Due to the long

labels of the stoppers, the other points must be labeled between these stoppers.

Labeling Subway Lines 655

p2i

a2i−1+a2i

2

b yp1 p2m

p2i−1

C

p2i+1

a z

C
2

C
2

c c

�

Fig. 4. Instance of 1d-4S to which Partition is reduced

The total space available above and below the input line is by + az = 2by + 2c
and thus just slightly more than the total length of the labels.

If there is a labeling for this instance then it must be tight (neglecting the
2c extra space) and the number of labels above and below the input line � must
be equal. Due to its length a label is attached to its point roughly in its center.
Thus the labels of p2i−1 and p2i lie on opposite sides of �. Therefore the indices
of the points whose labels lie above � give the desired partition I of J .

On the other hand if there is a partition I of J then we can label P as
follows. For each pi with i ∈ I we place its label with the lower left corner
at xb +

∑
j∈I,j<i lj , where xb is the x-coordinate of b. The labels of the other m

points are placed analogously below �. 	

We needed extremely long labels and point distances to construct the re-

duction from Partition to 1d-4S above. In practice such labels are not common,
which makes it worthwhile to design a pseudo-polynomial time algorithm whose
running time depends not only on n, the size of the input, but also on lmax, the
length of the longest label. Pseudo-polynomial time algorithms have been sug-
gested for point labeling before. There is a scheduling algorithm that can be used
for weight maximization given 1d-1SH and runs in O(dn log log d) time, where
d = xn + ln [2]. Another example is an approximation algorithm that labels
points with circles of radius at least R∗/3.6 in O(n log n + n logR∗), where R∗

is the maximum label radius [6].

Theorem 4. If the input consists exclusively of integers and points are sorted
from left to right, 1d-4S can be solved in O(nl2max) time and space, where lmax is
the length of the longest label.

Proof. We will use dynamic programming with a table T of size (n+1)×(2lmax+
1)× (2lmax +1). Let a k-realization be leftmost if all its labels are pushed as far
left as possible. Note that a leftmost realization is not necessarily minimum. Now
an entry T [k, t, b] is a boolean that answers the question “Is (t, b) the shadow of
a leftmost k-realization?” where t, b ∈ {−lmax, . . . , lmax} are measured relative
to xk+1 assuming xn+1 = xn + ln. Initially all table entries are false except
T [0,−lmax,−lmax]. The entries of level k are computed from those in level k− 1
as follows. Let fk(x) = max{−lmax, x − ∆xk,k+1} be the function that maps
a point x measured relative to xk to a point fk(x) measured relative to xk+1

with a lower bound of −lmax. For each level-(k − 1) entry T [k − 1, t, b] that

656 Mari Ángeles Garrido et al.

is true we switch at most two entries in level k to true: if t ≤ 0 we generate a
new leftmost k-realization by placing Lk leftmost above �. If additionally t ≥ −lk
then the new label touches the last label above � and we set T [k, fk(t+ lk), fk(b)]
to true, otherwise T [k, fk(0), fk(b)]. The case b ≤ 0 is symmetric. The algorithm
returns true if and only if there is an entry of value true at level n.

It is not difficult to modify the algorithm within the time and space bound
of O(nl2max) such that it actually computes a labeling if one exists. The proof of
correctness is by induction over k. 	

3 Points on a Sloping Line with Square Labels

In this section we will investigate labeling problems where the input line has
positive slope and labels are equal-size squares. We will give decision and label-
size maximization algorithms for both the discrete and the continuous versions
Slope-4P and Slope-4S, respectively. We allow labels to intersect the input line,
otherwise only two label positions per point would be valid, and the decision
version could simply be reduced to 2-SAT and solved in linear time [7]. We start
with the more difficult problem Slope-4S and later show how it can be simplified
to Slope-4P. Since we do not have the notion of duality for sloping lines as in
Definition 2, we redefine minimality as follows.

Definition 4. Let R, R′ two k-realizations. We write R ≤ R′ if s(R) ⊆ s(R′).
R = (r1, . . . , rk) is a minimum k-realization if (r1, . . . , ri) ≤ R′ for all i-
realizations R′ and for each i = 1, . . . , k. A (k + 1)-realization is the child of
a k-realization if their first k entries agree.

Lemma 3. A k-realization has at most two children that are minimum.

Proof. Given a k-realization R and a point pk+1 with a square label L, R has
a child iff pk+1 �∈ s(R). In this case place L in position 1. There are two paths
in which L can be slid towards its optimal position 3, either left-down on a
path via position 2 or down-left on a path via position 4. Here optimality refers
to the resulting (k + 1)-realization, and sliding means that the label is moved
continuously from one position to the other while touching pk+1. All shadows
of L on one path are comparable to each other, while no shadow of L on one
path is comparable with a shadow of L on the other path except for the two
endpoints. Thus sliding L as far as possible without intersecting s(R) on each
of the two paths gives minimum shadows for L, see Figure 5. Appending these
positions of L to R yields at most two children that can be minimum (k + 1)-
realizations. 	

We will continue to use the terms left-down and down-left from the previous
proof. We will say that a k-realization R = (r1, . . . , rk) is of type LD if rk ≤ 3
and of type DL if rk ≥ 3. Extending this notation, we will say that R is of type
X-X if the last two entries of R are both at most 3 or both at least 3, X-Y
otherwise. The following two lemmas are easy to prove.

Labeling Subway Lines 657

Lemma 4. The shadow of a realization is determined by its last two labels.

Lemma 5. Two k-realizations of type DL-DL are comparable to each other, and
their minimum can be determined in constant time.

Due to symmetry the same holds for k-realizations of type LD-LD.

Theorem 5. Given unit-square labels, Slope-4S can be solved in quadratic time
and space.

Proof. We sort the input points lexicographically and process them in this order.
In each step we maintain a superset R of the set of minimum k-realizations. The
idea to bound the size ofR is the following. In step k+1 each of the k-realizations
inR yields at most two (k+1)-realizations according to Lemma 3, one of type LD
and one of type DL. Of these (k+1)-realizations at most |R| will be of type X-Y.
All (k+1)-realizations of type DL-DL are comparable to each other according to
Lemma 5. Finding the minimum among them takes linear time, analogously for
those of type LD-LD. Thus we keep at most |R| (k+1)-realizations of type X-Y
and 2 of type X-X. According to Lemma 3, the minimum (k + 1)-realizations
must be among them. Since the number of realizations increases by two in each
step, the total running time and space consumption are quadratic. 	

There are point sets with a linear number of minimum n-realizations of type
X-Y, for an example see Figure 6, so one cannot hope to do better using the
concept of minimum realizations.

The following lemma is shown in a similar way as Lemma 1 in [11]. The idea
is that in an optimal solution there are paths of labels that touch each other,
and among these paths there is a path whose first and last label touch input
points—either with their top and bottom edge or with their left and right edge.
Otherwise all labels could be slid and enlarged by a small factor.

Lemma 6. Given Max-Slope-4S the maximum label size lies in the set L =
{∆xi,j/m,∆yi,j/m : 1 ≤ i < j ≤ n, 1 ≤ m ≤ j − i}.

This immediately yields an algorithm for Max-Slope-4S using binary search
on the list L of potential label sizes and the decision algorithm of Theorem 5.

Corollary 1. Given square labels, Max-Slope-4S can be solved in O(n3 logn)
time using O(n2) space.

As expected the discrete version Slope-4P can be solved faster.

Theorem 6. Given unit-square labels and points sorted lexicographically,
Slope-4P can be solved in linear time and space.

Proof. Lemma 4 holds in the discrete case Slope-4P as well. Here, however this
immediately implies that there are at most 42 = 16 (a case analysis reduces this
to 2) different shadows in each step. When placing label Lk+1 we get at most
32 (k + 1)-realizations by Lemma 3, but of these at most 16 can have different
shadows and must be kept. Filtering these out can be done in constant time,
which yields a linear-time algorithm. 	

658 Mari Ángeles Garrido et al.

Corollary 2. Given square labels, Max-Slope-4P can be solved in O(n log n)
time using linear space.

Proof. It is not hard to see that in an optimal solution of Max-Slope-4P only
labels of neighboring points or points that have a common neighbor can touch,
see Figure 7. Thus there is a list L = {∆xi,j/m,∆yi,j/m : 1 ≤ i ≤ n, j ∈
{i+1, i+2}, m ∈ {1, 2}} of linear length that contains the maximum label size.
The algorithm is as follows: first sort P , then compute L, sort L, and finally do
a binary search on L. 	

R

pk+1

L is LD

s(R)

L
is
DL ∆x1,3

p1

p3p2

Fig. 5. The two
paths of label L
given 4S

Fig. 6. Three incomparable
shadows of type LD-DL

Fig. 7. Touch-
ing 4P-labels

The problem Slope-4P can be solved similarly for unit-height rectangles in
linear time. The maximization version, however, takes longer, namelyO(n2 logn)
time, since there is a quadratic number of possibly optimal stretch factors.

4 Conclusions

In this paper we have studied problems that arise when labeling schematic maps
such as subway networks where the points to be labeled lie on a line. Even among
these seemingly strong simplifications of the general point-labeling problem there
are cases that remain weakly NP-hard.

There are plenty of open problems left in 1d-labeling. First of all we would
like to see the time complexity of our algorithm for Max-Slope-4S reduced. Then
it would be interesting to see how much the reduction to one dimension helps
to solve the label-number or label-weight maximization problem. Given a set of
points in the plane, each with its own label length but fixed height, there is a
PTAS for finding the largest subset of points that can be labeled [14], while for
weight maximization only a factor-(1

2−ε) approximation algorithm is known [12].

Labeling Subway Lines 659

References

1. J. Ahn and H. Freeman. AUTONAP—an expert system for automatic map name
placement. In Proceedings International Symposium on Spatial Data Handling,
pages 544–569, 1984. 649

2. P. Berman and B. DasGupta. Multi-phase algorithms for throughput maximization
for real-time scheduling. Journal of Combinatorial Optimization, 4(3):307–323,
Sept. 2000. 651, 655

3. S. Cabello, M. de Berg, S. van Dijk, M. van Kreveld, and T. Strijk. Schemati-
zation of road networks. In Proceedings of the 17th Annual ACM Symposium on
Computational Geometry (SoCG’01), 2001. To appear. 650

4. B. Chazelle and 36 co-authors. The computational geometry impact task force re-
port. In B. Chazelle, J. E. Goodman, and R. Pollack, editors, Advances in Discrete
and Computational Geometry, volume 223, pages 407–463. American Mathematical
Society, Providence, 1999. 649

5. J. Christensen, J. Marks, and S. Shieber. An empirical study of algorithms for
point-feature label placement. ACM Transactions on Graphics, 14(3):203–232,
1995. 649

6. S. Doddi, M. V. Marathe, and B. M. Moret. Point set labeling with specified
positions. In Proc. 16th Annu. ACM Sympos. Comput. Geom. (SoCG’00), pages
182–190, Hongkong, 12–14 June 2000. 655

7. M. Formann and F. Wagner. A packing problem with applications to lettering
of maps. In Proc. 7th Annu. ACM Sympos. Comput. Geom. (SoCG’91), pages
281–288, 1991. 649, 650, 656

8. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, New York, NY, 1979. 654

9. S. A. Hirsch. An algorithm for automatic name placement around point data. The
American Cartographer, 9(1):5–17, 1982. 649

10. C. Iturriaga and A. Lubiw. Elastic labels around the perimeter of a map. In
Proceedings of the 8th International Workshop on Algorithms and Data Structures
(WADS’99), volume 1663 of Lecture Notes in Computer Science, pages 306–317,
Vancouver, B. C., Canada, 12–14 Aug. 1999. Springer-Verlag. 650

11. S. K. Kim, C.-S. Shin, and T.-C. Yang. Labeling a rectilinear map with slid-
ing labels. International Journal of Computational Geometry and Applications,
11(2):167–179, Apr. 2001. 650, 651, 657

12. S.-H. Poon, C.-S. Shin, T. Strijk, and A. Wolff. Labeling points with weights.
In Proc. 12th Annual International Symposium on Algorithms and Computation
(ISAAC’01), Lecture Notes in Computer Science, Christchurch, 19–21 Dec. 2001.
Springer-Verlag. To appear. 649, 650, 651, 658

13. Z. Qin, A. Wolff, Y. Xu, and B. Zhu. New algorithms for two-label point labeling.
In Proc. 8th Annu. Europ. Symp. on Algorithms (ESA’00), volume 1879 of Lecture
Notes in Computer Science, pages 368–379, Saarbrücken, 5–8 Sept. 2000. Springer-
Verlag. 649, 650

14. M. van Kreveld, T. Strijk, and A. Wolff. Point labeling with sliding labels. Com-
putational Geometry: Theory and Applications, 13:21–47, 1999. 649, 650, 658

15. A. Wolff and T. Strijk. The Map-Labeling Bibliography.
http://www.math-inf.uni-greifswald.de/map-labeling/bibliography/,
1996. 649

16. S. Zoraster. The solution of large 0-1 integer programming problems encountered
in automated cartography. Operations Research, 38(5):752–759, 1990. 649

	Labeling Subway Lines
	Introduction
	Points on a Horizontal Line
	Points on a Sloping Line with Square Labels
	Conclusions
	References

