
Conventional Verification for Unconventional
Computing: a Genetic XOR Gate Example

Savas Konur1, Marian Gheorghe1, Ciprian Dragomir1, Florentin Ipate2,
Natalio Krasnogor3

1 Department of Computer Science, University of Sheffield, UK
{s.konur,m.gheorghe,c.dragomir}@sheffield.ac.uk

2 Department of Computer Science, University of Bucharest
florentin.ipate@ifsoft.ro

3 School of Computing Science, Newcastle University, UK
natalio.krasnogor@newcastle.ac.uk

Summary. As unconventional computation matures and non-standard programming
frameworks are demonstrated, the need for formal verification will become more preva-
lent. This is so because “programming” in unconventional substrates is difficult. In this
paper we show how conventional verification tools can be used to verify unconventional
programs implementing a logical XOR gate.

1 Introduction

Unconventional computing, with many aspects including implementations in vivo,
vitro and silico, models and methods, programming paradigms and tools, is a
rapidly growing research area with results, promises and huge hope in building
new computational devices and tools for solving better or/and faster increasingly
complex problems than current machines, models and tools, which either produce
inefficienct results or are just unable to solve them.

One specific class of models and experiments related to unconventional comput-
ing, often called natural computing, is inspired by natural processes occurring in
biology or produces in vitro (DNA strands) or in vivo (bacteria) experiments sim-
ulating different computational devices. A thorough account of the developments
in the area can be found in [1], but we also mention some specific demonstrations
of unconventional computing using liposomes [2], programmable polymers [3] and
photochromic molecules [4].

XOR gate is a classic computer science concept with various unconventional
computing incarnations. More recently some implementations have been provided
[5, 6] and solutions using synthetic biology computational tools have been proposed
[7].

222 S. Konur et al.

In this paper we aim to reconsider this problem and to provide a set of uncon-
ventional computing models based on the P systems computational paradigm [8].
Here, we consider stochastic P systems [9] and kernel P systems [10] as representa-
tive classes of such models. These models are associated with verification methods
using model checking approaches.

The key contributions of the paper are: the introduction of a set of unconven-
tional models based on P systems, which naturally describe the genetic XOR gate
problem, and the use of some model checkers for verifying properties of the models.
This approach is complementary to the previous investigations and highlights new
perspectives for investigating these systems.

2 Stochastic and Non-deterministic P Systems: Basic
Concepts and Tools

Membrane computing [8] is a branch of natural computing inspired by the
hierarchical structure of the living cell. The central model, called P system, consists
of a membrane structure, the regions of which contain rewriting rules operating
on multisets of objects [8]. The P system evolves by repeatedly applying rules,
mimicking chemical reactions and transportation across membranes or cellular
division or death processes, and halts when no more rules can be applied. The
most recent developments in this field are reported in [11].

The closeness of this model to the biology makes it highly suited as a specifica-
tion vehicle for representing biological systems, especially (multi-)cellular systems
and molecular interactions taking place in different locations of living cells [12].
Different simple molecular interactions or more complex gene expressions, com-
partment translocation, as well as cell division and death are specified using mul-
tiset rewriting or communication rules, and compartment division or dissolution
rules. In the case of stochastic P systems, constants are associated with rules in
order to compute their probabilities and time needed to be applied, respectively,
according to the Gillespie algorithm [13]. This approach is based on a Monte Carlo
algorithm for stochastic simulation of molecular interactions taking place inside a
single volume or across multiple compartments.

Definition 1. A stochastic P system (SP system) is a model consisting of a
tissue P system with a stochastic semantics [13]:

SP = (O,L, µ,M1, . . . ,Mn, R1, . . . , Rn) (1)

where O is a finite set of objects, called alphabet, denoting the entities involved
in the system; L is a finite set of labels naming compartments; µ is a membrane
structure composed of n ≥ 1 membranes defining the regions or compartments
of the system and their connections, forming an arbitrary graph; Mi = (li, wi),
1 ≤ i ≤ n, is the initial configuration of the compartment or region defined by
the membrane i, where li ∈ L is the label of the compartment and wi ∈ O∗

Conventional Verification for Unconventional Computing: XOR Gate 223

is a finite initial multiset of objects; Ri = {ri1, . . . , rimi
}, 1 ≤ i ≤ n, is a set of

multiset rewriting rules, of the form: rik : [x
ck→ y]li , where x and y are

multisets of objects (y might be empty) over O, representing the molecular species
consumed and produced in the corresponding molecular interaction occurring in
the compartment labelled li. An application of a rule of this form changes the
content of the membrane with label li by replacing the multiset x with y. The
stochastic constant ck is used by the Gillespie algorithm [14] in order to compute
the probabilities associated with the rules [13].

The model has been used as a basis for a specification language [13, 15] and
applied, among others, in unconventional computing using liposomes [2] and spec-
ifying a synthetic biology pulse generator [16].

The model also includes communication rules, but these are not discussed in
this paper as the system we deal with consists of one single compartment with-
out communication rules. In this case the label of the compartment will be also
dropped.

Certain systems can be modelled with P systems which do not require prob-
abilistic features. In [12] some types of P systems without probabilities are pre-
sented. These variants are utilised for specifying biological systems. Kernel P
systems (kP systems) have been introduced as a unifying framework allowing
to express within the same formalism many classes of non-deterministic P systems
[10, 17]. In this paper we use this class of systems only for very limited purposes,
obtaining them directly from the stochastic ones and making use of some tools
associated with them. The kP systems derived from SP systems use the same al-
phabet and rules without kinetic constants. In general, each kP system model has
explicitly defined execution strategies for its components. In this paper the execu-
tion strategy consists of executing one single rule per step, non-deterministically
chosen from the set of rules that can be applied.

The Infobiotics Workbench (Ibw) tool [16, 15] has been built for modelling
and prototyping biological systems exhibiting molecular interactions. It allows to
define such systems using the above mentioned formalism, SP systems, providing
support for the simulation, verification, analysis and optimisation of these mod-
els. The experiments to be discussed later have been performed using Ibw. The
XOR gate will be modelled using SP systems and then simulated and formally
verified. The formal verification is performed with third party tools, Prism [18]
and MC2 [19] (integrated in this framework). The corresponding kP model will be
verified using Spin [20].

Prism [18] is a very popular and widely used probabilistic model checker. It
allows probabilistic properties, supporting PCTL [21] (a probabilistic extension
of temporal logic) and Continuous Stochastic Logic (CSL [22]). Both languages
make use of special operators to express quantitative information which is useful
for a precise, fine grain analysis. The property languages also allow describing
reward -based properties to express quantitative expressions. Prism suffers from
the same problem exhibited by all model checkers, namely state space explosion

224 S. Konur et al.

and consequently cannot cope with very large state spaces. This is overcome by
an alternative model checking approach, statistical model checking.

MC2 [19] is a statistical model checker, where properties are analysed against
a finite set of simulation traces using statistical methods, e.g. Monte Carlo. Unlike
symbolic and numerical methods, e.g. those employed in Prism, statistical model
checkers do not analyse the system exhaustively, which increases the performance
significantly. In MC2, properties are expressed using PLTLc [19], a probabilistic
extension of LTL with constraints. PLTLc allows properties with some functions
returning maximum/minimum values of a species and “derivative of the concen-
tration of species at each time point” [19].

The kP Workbench (kPW) tool [17] has been built to support kP systems
formalism, allowing simulation and formal verification. It uses a specific language,
based on kP systems, kP-lingua, allowing to specify non-deterministic rule-based
systems. The formal verification is performed using a model checking approach
based on Spin, which is incorporated into the framework. The models written in
kP-lingua are automatically translated into Spin. The non-deterministic version of
the XOR gate model will be specified using kP systems and the formal verification
will be provided in Spin.

Spin [20] is a widely used model checking tool with many applications in
concurrent and distributed systems verification. A high level modelling language,
Promela, suitable for describing concurrent processes and interprocess communi-
cation, is at the core of this tool. Spin provides complete support for Linear-time
Temporal Logic (LTL) and on the fly verification procedures which avoid the
necessity to generate the global state space prior to performing a search.

3 XOR Gate and Unconventional Models

In this section we consider a genetic XOR logic gate. This has been designed in
various papers, including [5, 6]. The construction used in this paper is taken from
[7] where it is defined in GEC, a language for synthetic biology. The gate expresses
the green fluorescent protein (GFP) if either of aTc or IPTG molecules are present,
but not both. Figure 1 illustrates the genetic construction and the corresponding
network.

The XOR device comprises two mechanisms. Each mechanism leads to the
production of GFP, when it is activated; but two mechanisms cannot be activated
at the same time. Namely, while one is active, the other one is inhibited by some
protein.

In this system, the transcription factors LacI and TetR are expressed by a gene
controlled by the same promoter. The LacI and TetR proteins work in the opposite
way. LacI represses the first mechanism, but promotes the other one. On the other
hand, TetR promotes the first mechanism, while inhibiting the second. In other
words, both proteins serve as inhibitor and promoter in a complementary fashion.
In each mechanism, while one protein is an inhibitor, the other one is promoter.
When either of the proteins works as an inhibitor, it binds to the corresponding

Conventional Verification for Unconventional Computing: XOR Gate 225

Promoter RBS lacI tetR

LacI

TetR

aTc

aTcTetR

IPTGLacI

IPTG

Prom1 RBS gfp RBS

GFP

Prom2 RBS gfp RBS

GFP

RBS RBS

Fig. 1: The genetic parts and design of the XOR gate (redrawn from [7]).

promoter which upregulates the expression of GFP. The XOR device receives two
input signals: aTc and IPTG. The aTc and IPTG signals bind to TetR and LacI,
respectively, to prevent them interacting with the promoters producing GFP.

Two mechanisms together ensure that the production of GFP will be low when
both input signals are set to very low or very high concentrations at the same time.
In the former case, LacI and TetR will be produced in abundance, which will then
repress the GFP expression. In the latter case, the LacI and TetR concentration
will be very low, which is not sufficient to express GFP. On the other hand, if one
signal is set to high and the other one is set to low, the device will produce high
amount of GFP, hence will act as a Boolean XOR gate.

3.1 Stochastic model

The stochastic model comprises a single compartment with initial concentrations
of aTc and IPTG molecules and a set of SP system rules, which govern the kinetic
and stochastic behaviour of the system. The initial values are those illustrated
in Figures 3. The rewriting rules and the kinetic constants, provided in Table
1, describe the model provided in [7]. A gene controlled by the same promoter
expresses LacI and TetR (rules r1 to r3). Rules r7a and r15a describe the inhibition
of the two mechanisms leading to the GFP production by binding to the promoters
that upregulates the production process; r7b and r15b define the debinding process.
The activation of the first mechanism by the transcription factor TetR binding to
the promoter and the activation of the second mechanism by LacI, are modelled by
rules r9a, r10, r11 and r13a, r14, r17, respectively. Rules r9b and r13b are debinding
reactions. Rules r4 and r5 define the binding process involving LacI and IPTG and
TetR and aTc, respectively. The degradation process of various molecular species
is defined by rules r18 to r23.

226 S. Konur et al.

Table 1: XOR reaction rules.

Rule
Stochastic
constant

r1 : gene LacI TetR
k1→ gene LacI TetR + protein LacI TetR k1 = 0.12

r2 : protein LacI TetR
k2→ protein LacI TetR + LacI k2 = 0.1

r3 : protein LacI TetR
k3→ protein LacI TetR + TetR k3 = 0.1

r4 : LacI + IPTG
k4→ LacI-IPTG k4 = 1.0

r5 : TetR + aTc
k5→ TetR-aTc k5 = 1.0

r6 : gene GFP1
k6→ gene GFP1 + protein GFP1 k6 = 0

r7a : gene GFP1 + LacI
k7a→ gene GFP1-LacI k7a = 1.0

r7b : gene GFP1-LacI
k7b→ gene GFP1 + LacI k7b = 0.01

r8 : gene GFP1-LacI
k8→ gene GFP1-LacI + protein GFP1 k8 = 0

r9a : gene GFP1 + TetR
k9a→ gene GFP1-TetR k9a = 1.0

r9b : gene GFP1-TetR
k9b→ gene GFP1 + TetR k9a = 0.5

r10 : gene GFP1-TetR
k10→ gene GFP1-TetR + protein GFP1 k10 = 0.1

r11 : protein GFP1
k11→ protein GFP1 + GFP k11 = 0.1

r12: gene GFP2
k12→ gene GFP2 + protein GFP2 k12 = 0

r13a : gene GFP2 + LacI
k13a→ gene GFP2-LacI k13a = 1.0

r13b : gene GFP2-LacI
k13b→ gene GFP2 + LacI k13b = 0.5

r14 : gene GFP2-LacI
k14→ gene GFP2-LacI + protein GFP2 k14 = 0.1

r15a : gene GFP2 + TetR
k15a→ gene GFP2-TetR k15a = 1.0

r15b : gene GFP2-TetR
k15b→ gene GFP2 + TetR k15b = 0.01

r16 : gene GFP2-TetR
k16→ gene GFP2-TetR + protein GFP2 k16 = 0.0

r17 : protein GFP2
k17→ protein GFP2 + GFP k18 = 0.1

r18 : GFP
k18→ k18 = 0.01

r19 : LacI
k19→ k19 = 0.01

r20 : TetR
k20→ k20 = 0.01

r21 : protein GFP1
k21→ k21 = 0.001

r22 : protein GFP2
k22→ k22 = 0.001

r23 : protein LacI TetR
k23→ k23 = 0.001

Given certain initial values for aTc and IPTG, different output values are
obtained for the GFP products, as shown above.

3.2 Non-deterministic model

The rules of the non-deterministic model are obtained directly from the set of
SP system rules given in Table 1, by removing the kinetic constants. Some of
the rules that do not contribute to the model, with kinetic constants equal to 0
(r6, r8, r12, r16), are completely removed. The initial values are kept the same as
in the stochastic case. The rules are executed in a non-deterministic manner, as

Conventional Verification for Unconventional Computing: XOR Gate 227

described earlier in this paper. This non-deterministic model allows to describe
all chains of reactions, observe various interactions between species and determine
various dependencies between molecules. It will be used in this respect as the basic
model for qualitative analysis. As in this case we are interested in an efficient
behaviour of the system, some simplifications will be made to the model, whereby
the number of molecules will be bounded.

4 Experiments

In this section, we will provide a computational analysis to infer the system dy-
namics of the genetic XOR gate. This approach complements previous in vitro or
in silico implementations of this unconventional computational problem [5, 6, 7]
with a set of qualitative and quantitative properties and results. The stochastic
model introduced in Section 3.1 and non-deterministic model from Section 3.2
will be used as specifications for the experiments that follow. We note that the
complete model and experimental results of the XOR gate can be accessed at4.

4.1 Non-deterministic Model

The non-deterministic model, discussed in Section 3.2 and obtained from the SP
system described in Table 1, will form the basis for translation into Spin.

Model checking results.

The experiments made and reported in this section refer to relationships between
species occurring on various reaction pathways. First we verify generic relationships
between species. The property

“The GFP is preceded by the production of at least one of LacI or TetR”

is formally expressed as

F (GFP > 0) → ¬((LasR = 0 ∧ TetR = 0) U GFP > 0),

and the result of this property is true.
We cannot make any direct connections between the signal molecules aTc and

IPTG, and the GFP produced, as the system is non-deterministic and any combi-
nation of the signal molecules may lead to GFP. However, we can be more specific
with respect to the above relationships and refer to the production of a transcrip-
tion factor and its role as a repressor. More specifically, we verify the property

“When there is no TetR in the system and the LacI represses gene GFP1
then GFP is produced only by the activation of gene GFP2”

4 http://www.dcs.shef.ac.uk/∼konur/models/xor

228 S. Konur et al.

Fig. 2: Simulation of the stochastic model.

which is formally expressed as

F (GFP > 0 ∧ gene GFP1-LacI > 0) → ¬((TetR = 0 ∧ gene GFP2-LacI = 0)
U (GFP > 0 ∧ gene GFP1-LacI > 0)).

The result of this property is true. We can formulate a similar property for TetR.

4.2 Stochastic Model

For the stochastic analysis, we have constructed a system model based on SP
systems, the modelling language of the Ibw system, using the set of rules discussed
in Section 3.1. Below, we summarise some of the experiments that we have carried
out using the computational tools integrated into Ibw.

Simulation results.

Figure 2 illustrates the simulation results of the XOR system, performed using the
Ibw’s Mcss tool, a simulator for multi-compartment SP system models [9]. Ibw
provides a GUI to view the simulation results in various formats, e.g. time series,
bars, histograms and 3D heat-map animations.

Figure 2 comprises the screen shots of the 3D animation at different time
instants. At the top and bottom corners of the lattice both input signals (i.e. aTc

Conventional Verification for Unconventional Computing: XOR Gate 229

(a) Expected GFP (b) Expected aTc

(c) Expected LacI (d) Expected TetR

Fig. 3: Expected amount of some species based on different initial amounts of aTc
and IPTG.

and IPTG) are simultaneously set to very low (i.e. 0) and very high concentrations
(i.e. 10000), respectively. Meanwhile, at the left and right corners, one signal is set
to very high while the other one is set to very low. As illustrated in the figure, only
left and right corners yield a sharp increase in the GFP concentration, ensuring
that the designed circuit shows an XOR gate behaviour.

Model checking results.

As discussed above, Ibw also permits formal verification of a system using model
checking techniques. Since the SP systems allow modelling stochastic models, Ibw
uses probabilistic model checking tools, currently Prism and MC2.

Prism results:

We first analyse the amounts of different species over time with four combinations
of inputs. The informal property

230 S. Konur et al.

0

10000

0

10000

0

0.2

0.4

0.6

0.8

1

Pr
ob
ab
ilit
y

Time=100

aTc
IPTG 0

10000

0

10000

0

0.1

0.2

0.3

aTc

Time=200

IPTG

Pr
ob
ab
ilit
y

0

10000

0

10000

0

0.2

0.4

0.6

0.8

1

aTc

Time=500

IPTG

Pr
ob
ab
ilit
y

0

10000

0

10000

0

0.2

0.4

0.6

0.8

1

aTc

Time=1000

IPTG

Pr
ob
ab
ilit
y

Fig. 4: Probability that GFP exceeds the threshold.

“What is the expected concentration of X at the time instant t?”

is formally expressed as a reward-based formula,

R{“X”}=? [I = t] .

Figure 3 illustrates the expected amounts of GFP, aTc, LacI and TetR. As shown
in Figure 3a, the input combinations aTc=0 – IPTG=10000 and aTc=10000 –
IPTG=0 result in a sharp increase in the GFP concentration, whereas the com-
binations aTc=0 – IPTG=0 and aTc=10000 – IPTG=10000 cause the GFP con-
centration to stay in low levels, confirming the behaviour of the XOR gate.

Figure 3b shows that if the aTc concentration level is initially set to high,
the concentration reduces until it becomes 0. As can be seen in Figure 3d, aTc
suppresses the TetR protein by binding to it. After aTc molecules are totally
consumed, the TetR concentration starts increasing. We can observe a similar be-
haviour to Figure 3b, when the IPTG concentration is set to high. IPTG molecules
suppress the LacI protein as shown in Figure 3c. These results are inline with the
system behaviour, described in Section 3.1.

We now measure the likelihood that the GFP concentration exceeds a certain
threshold in any input combination. The property

“What is the probability that GFP exceeds Thr within t seconds?”

is formally expressed as
P=?

[
F≤t GFP > Thr

]
.

Figure 4 illustrates the probability values calculated for a threshold value of 100
over different time instants. Clearly, it is almost certainly that GFP exceeds the
threshold value for the input combinations aTc=0 – IPTG=10000 and aTc=10000
– IPTG=0. This confirms the desired behaviour.

We now consider a more complex property. Assume that GFPij (where i, j ∈
{0, 1} represents the state of aTc and IPTG, respectively) denotes the GFP concen-
tration for different input combinations. Namely, if i=0 (resp. j=0), then aTc=0
(resp. IPTG=0), and if i=1 (resp. j=1), then aTc=10000 (resp. IPTG=10000).
Then, the property

Conventional Verification for Unconventional Computing: XOR Gate 231

10
15

20

0

5

10

0.7

0.8

0.9

1

k1

Probability vs k1 and k2

k2

Pr
ob

ab
ilit

y

0.65

0.7

0.75

0.8

0.85

0.9

Fig. 5: Parametrised probability formula.

What is the probability that GFP01 and GFP10 are at least k1 times more
than GFP00 and GFP11, and GFP01 is within the range of GFP10 ±k2

10

is formally specified as

P=?[F
≤t GFP01 ≥ k1 ∗GFP00 ∧ GFP01 ≥ k1 ∗GFP11 ∧

GFP10 ≥ k1 ∗GFP00 ∧ GFP10 ≥ k1 ∗GFP11 ∧
GFP01 ≥ (1− k2

10) ∗GFP10 ∧ GFP01 ≤ (1 + k2

10) ∗GFP10].

Figure 5 shows the plot based on different k1 and k2 values. As expected, the
probability becomes higher when k1 is lower and k2 is higher, because the formula
becomes less strict.

MC2 results:

We now consider a property describing the behaviour in Figure 3a. We want to
query

“What is the probability that GFP10 reaches a concentration level of at least
l1 times more than the maximum concentrations of GFP00 and GFP11;
the concentration then starts decreasing and reduces until it becomes one
l2 ration of its maximum level.”

This formula is expressed in PLTLc as follows:

232 S. Konur et al.

P=?[F ([GFP10] ≥ l1 ∗max[GFP00] ∧ [GFP10] ≥ l1 ∗max[GFP11] ∧
(F (d[GFP10] ≤ 0 ∧ (F [GFP10] ≤ max[GFP10]/l2))))].

We have analysed the property for l1 = l2 = 5, and the probability value returned
is 1.0, confirming the behaviour in Figure 3a. We can verify the same property for
GFP01, which returns the same result.

5 Conclusions

In this paper we have presented a stochastic P systems model and a non-
deterministic one for specifying and studying the behaviour of a genetic XOR
gate. These two models are formally analysed using model checking methods re-
vealing qualitative aspects, like expected chain of reactions and dependencies of
various species, as well as the quantitative aspects regarding the concentration of
certain products with respect to the amount of signal molecules, time to reach cer-
tain concentration of molecules or comparisons between maximum concentration
achieved for certain species. Our approach is orthogonal to many other unconven-
tional computational investigations or implementations of genetic Boolean gates.

In this line of research, we aim to expand to some other unconventional models,
starting with the two genetic XOR gate approaches already mentioned in [5, 6]. We
aim also to clarify better the role of various model checkers and types of properties
with respect to various systems.

In [23] an interesting prediction and programmability problem for non-DNA
molecular self-assembly using porphyrin tiles is investigated. In one of the investi-
gated cases, the self-assembly process is defined as a simple two state probabilistic
automaton. The diagonals of a lattice are written with red symbols in one state
and blue symbols in the other state, with a small error. This model can be directly
represented in Prism and properties regarding the distribution of the two colours
on each diagonal or across the lattice are verified. In a forthcoming paper we will
be investigating in more details this problem.

Acknowledgements. SK and MG acknowledge EPSRC (EP/I031812/1)
support; NK’s work is supported by EPSRC (EP/I031642/1, EP/J004111/1,
EP/L001489/1). MG and FI are partially supported by CNCS UEFISCDI (PN-
II-ID-PCE-2011-3-0688). CD acknowledges an EPSRC studentship.

References

1. Rozenberg, G., Bäck, T., Kok, J.N., eds.: Handbook of Natural Computing. Springer
(2012)

2. Smaldon, J., Romero-Campero, F.J., Fernandez Trillo, F., Gheorghe, M., Alexan-
der, C., Krasnogor, N.: A computational study of liposome logic: Towards cellular
computing from the bottom up. Systems and Synthetic Biology 4(3) (2010) 157 –
179

Conventional Verification for Unconventional Computing: XOR Gate 233

3. Pasparakis, G., Vamvakaki, M., Krasnogor, N., Alexander, C.: Diol-boronic acid
complexes integrated by responsive polymers - a route to chemical sensing and logic
operations. Soft Matter 4(20) (2009) 3839 – 3841

4. Chaplin, J.C., Russell, N.A., Krasnogor, N.: Implementing conventional logic uncon-
ventionally: Photochromic molecular populations as registers and logic gates. Biosys-
tems 109(1) (2012) 35 – 51

5. Tamsir, A., Tabor, J.J., Voigt, C.A.: Robust multicellular computing using geneti-
cally encoded NOR gates and chemical ’wires’. Nature 469(7329) (2011) 212–215

6. Regot, S., Macia, J., Conde, N., Furukawa, K., Kjellen, J., Peeters, T., Hohmann,
S., de Nadal, E., Posas, F., Sole, R.: Distributed biological computation with multi-
cellular engineered networks. Nature 469(7329) (2011) 207–211

7. Beal, J., Phillips, A., Densmore, D., Cai, Y.: High-level programming languages for
biomolecular systems. In: Design and Analysis of Biomolecular Circuits. Springer
New York (2011) 225–252

8. Păun, G.: Computing with membranes. Journal of Computer and System Sciences
61(1) (2000) 108–143

9. Romero-Campero, F.J., Twycross, J., Camara, M., Bennett, M., Gheorghe, M.,
Krasnogor, N.: Modular assembly of cell systems biology models using P systems.
International Journal of Foundations of Computer Science 20(3) (2009) 427–442

10. Gheorghe, M., Ipate, F., Dragomir, C., Mierlă, L., Valencia-Cabrera, L., Garćıa-
Quismondo, M., Pérez-Jiménez, M.J.: Kernel P Systems - Version 1 (2013)

11. Păun, G., Rozenberg, G., Salomaa, A., eds.: The Oxford Handbook of Membrane
Computing. Oxford University Press (2009)

12. Frisco, P., Gheorghe, M., Pérez-Jiménez, M.J., eds.: Applications of Membrane Com-
puting in Systems and Synthetic Biology. Springer (2014)

13. Romero-Campero, F.J., Twycross, J., Cao, H., Blakes, J., Krasnogor, N.: A multiscale
modeling framework based on P systems. In: Membrane Computing. Volume 5391
of LNCS. Springer (2009) 63–77

14. Gillespie, D.: A general method for numerically simulating the stochastic time evo-
lution of coupled chemical reactions. Journal of Computational Physics 22(4) (1976)
403–434

15. Blakes, J., Twycross, J., Romero-Campero, F.J., Krasnogor, N.: The Infobiotics
Workbench: An integrated in silico modelling platform for systems and synthetic
biology. Bioinformatics 27(123) (2011) 3323 – 3324

16. Blakes, J., Twycross, J., Konur, S., Romero-Campero, F.J., Krasnogor, N., Gheorghe,
M.: Infobiotics Workbench: A P systems based tool for systems and synthetic biology.
In: [12]. Springer (2014) 1–41

17. Dragomir, C., Ipate, F., Konur, S., Lefticaru, R., Mierlă, L.: Model Checking Kernel
P Systems systems. In: 14th International Conference on Membrane Computing.
Volume 8340 of LNCS., Springer (2013) 151–172

18. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for auto-
matic verification of probabilistic systems. In: Proc. TACAS. Volume 3920 of LNCS.
Springer (2006) 441–444

19. Donaldson, R., Gilbert, D.: A Monte Carlo model checker for probabilistic LTL with
numerical constraints. Technical report, Bioinformatics Research Centre, University
of Glasgow, Glasgow (2008)

20. Holzmann, G.J.: The model checker SPIN. IEEE Transactions on Software Engi-
neering 23(5) (1997) 275–295

234 S. Konur et al.

21. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing 6 (1994) 102–111

22. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.: Model-checking algorithms for
continuous-time Markov chains. IEEE Transactions on Software Engineering 29(6)
(2003) 524–541

23. Terrazas, G., Lui, L.T., Krasnogor, N.: Spatial computation and algorithmic infor-
mation content in non-DNA based molecular self-assembly. In: 6th International
Workshop on Spatial Computing. (2013) 85–90

