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Abstract. We prove that every triangle-free planar graph is the graph
of intersection of a set of segments in the plane. Moreover, the segments
can be chosen in only three directions (horizontal, vertical and oblique)
and in such a way that no two segments cross, i.e., intersect in a common
interior point.

1 Introduction

Given a set S of segments in the plane, its intersection graph has a vertex for
every segment and two vertices are adjacent if the corresponding segments in-
tersect. Intersection graphs of segments and other geometrical objects have been
widely studied in the past.

For instance, if the segments are contained in a straight line then we have
the interval graphs [4], a well-known family of perfect graphs. If the segments
are chords of a circle then the intersection graph is called a circle graph, see for
instance [6,8].

In the general case, there is no satisfactory characterization, but some results
are known for planar graphs. The most interesting one is due to de Fraysseix,
Osona de Mendez and Pach [3], and independently to Ben-Arroyo Hartman,
Newman and Ziv [2], which says that every planar bipartite graph is the inters-
ection graph of a set of horizontal and vertical segments (on the other hand, it
is known that the recognition of such graphs is an NP-complete problem [5]).

This result provides a partial answer to a question of Scheinerman [7]: is
every planar graph the intersection graph of a set of segments in the plane?

The main result in this paper, which is a significant extension of [3], is that
every triangle-free planar graph is the intersection graph of a family of segments.
Moreover, the segments can be drawn in only three directions and in such a way
that they do not cross. This particular class of intersection graphs is also known
as contact graphs. We call such a representation a segment representation of the
graph.
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A key point in our proof is Grötszch’s Theorem [9], which guarantees that eve-
ry planar triangle-free graph is 3-colorable. The sketch of the proof is as follows.
Given a triangle-free plane graph G, adding new vertices and (induced) paths
between the vertices of G we can obtain a new triangle-free plane graph which
is a subdivision of a 3-connected graph. Starting with a 3-coloring, a segment
representation in three directions is obtained for this new graph using several
technical lemmas. Finally, removing the dummy vertices and paths, we obtain
a segment representation of the graph G. The three directions considered are
horizontal, vertical and oblique (parallel to the bisector of the second quadrant
of the plane).
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Fig. 1. A segment representation of a planar graph.

2 Convex Faces with Three Directions

Let IG be a segment representation of a plane graph G. A segment path of length
n is a sequence of segments P = {s1, . . . , sn} such that segment si is adjacent to
si−1 and si+1 for 1 < i < n. The representation IG divides the plane into regions
that we call faces of the representation and which correspond to the faces of G.
A face F of a segment representation is convex if its boundary can be divided
into four paths (clockwise) P1, P2, P3 and P4 such that if s is a segment with
extremes in the points (x1, y1) and (x2, y2) then:

1. if s is in P1, then x1 < x2 if s is horizontal, y1 > y2 if s is vertical and
x1 < x2 and y1 > y2 if s is oblique;

2. if s is in P2, then x1 > x2 if s is horizontal, y1 > y2 if s is vertical and
x1 > x2 and y1 < y2 if s is oblique;

3. if s is in P3, then x1 > x2 if s is horizontal, y1 < y2 if s is vertical and
x1 > x2 and y1 < y2 if s is oblique;

4. if s is in P4, then x1 < x2 if s is horizontal, y1 < y2 if s is vertical and
x1 < x2 and y1 > y2 if s is oblique.
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It can be seen that the partition of a convex face into P1, P2, P3 and P4 is
not unique, for instance in the example of Figure 2 the first segment of P1 could
be in P4. If the segments s1, . . . , sn are the intersection between two convex faces
F and G, we will assign those segments to only one path in each face, following
the newt rule: if this segments belongs to P1 in F , then they belongs to P3 in G
and reciprocally. Analogously if they belongs to P2 in F , then they are in P4 of
G and reciprocally. This rule alow us to fix the partition of a convex face into
the four paths depending on the adjacent faces if the partition is not unique.
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Fig. 2. The four paths of a convex face.

Lemma 1. Let IG be a segment representation of a plane graph G such that all
its faces are convex, let k be a positive real number and let s be a segment of
length l in a face F of IG. Then, IG can be transformed into another segment
representation I ′

G satisfying:

1. IG and I ′
G have the same faces and face boundaries as G, and the faces of

I ′
G are convex;

2. the length of s in I ′
G is k + l;

3. at most two segments of F (other than s) have different length in IG and I ′
G.

Proof. Let P1, P2, P3 and P4 denote the paths which make F convex. Call the
upper part (the lower part) of the face the union of the paths P4 and P1 (P2 and
P3, respectively). Similarly, the right part (the left part) is the union of the paths
P1 and P2 (P3 and P4, respectively).

The proof is by induction on the number of faces of the graph G. Suppose
that IG is just the cycle F and let s be the segment of F we want to enlarge.
Without loss of generality we can suppose that s is a horizontal segment.

If s is in the upper part of F , we seek another horizontal segment s′ in
the lower part of F . If there exists such a segment, we enlarge s and s′ by the
same amount and we make a translation of all the segments between s and s′,
transforming F into other convex face (see Figure 3). Otherwise, there must exist
a vertical segment s′ and an oblique segment s′′ in the lower part of F , because
the boundary of F is a closed path. In this case, we increase the length of s, s′

and s′′ and we make a translation of the rest of the segments (see Figure 3).
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According to the above remark, we suppose in the rest of the proof that there
exists a segment parallel to s in the opposite part of F .

Suppose now that IG has two convex faces F and F ′ sharing the segments
s1, . . . , sn. First of all, by the convexity of F and F ′, observe that if s1, . . . , sn

are segments of P1 (P2), then s1, . . . , sn form part of P ′
3 (P ′

4, respectively). Thus,
suppose that s1, . . . , sn belong to P1 in F and to P ′

3 in F ′. If s is in the upper
part of F , we seek another horizontal segment s′ in the lower part of F and we
proceed as before, increasing the length of s and s′.

(a)
(b)

Fig. 3. How to enlarge a segment of a convex face by any amount, (a) using parallel
segments or (b) using three segments.

Obviously, if s is not one of the si, the transformation in F does not affect
the segments of F ′. But, if s is one of the si then, on account of the first case, we
consider a horizontal segment s′ in the lower part of F and a horizontal segment
s′′ in the upper part of F ′. Increasing the length of s, s′ and s′′, and making
a translation of all the segments of F between s and s′, and all the segments
of F ′ between s and s′′, we obtain a new segment representation with the same
convex faces as IG.

Suppose now that IG has n convex faces, F1, . . . , Fn, and let s be a segment
of a face F 6= Fn, where Fn lies in the outer face of IG, i.e., the vertices v1, . . . , vk

of G, corresponding to the segments s1, . . . , sk of Fn, lie on the outer face, and
v2, . . . , vk−1 are of degree two. Let us consider the graph G1 = G−{v2, . . . , vk−1}.
Removing the segments of IG corresponding to v2, . . . , vk−1, we obtain a segment
representation IG1 of G1.

Since IG1 has n − 1 faces, we can transform its segment representation into
another representation which has the same convex faces, enlarging in any amount
some of the segments. To obtain this new representation, we have to enlarge
other segments in IG1 besides s, but we have preserved the structure of the
segments in the representation, so we are able to represent again the segments
corresponding to v2, . . . , vk−1 enlarging the length of one (or two) of them if
necessary, obtaining a segment representation of G. ut
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3 Triangle-Free Graphs

Using the results of Barnette in [1], it can be deduced easily that every planar
triangle-free graph which is a subdivision of a 3-connected graph can be reduced,
by deleting edges and paths with internal vertices of degree two, to a subdivision
of the complete graph K4 in such a way that in each step we have a subdivision of
a 3-connected graph. Moreover, if we fix a subgraph of G which is a subdivision of
K4, G can be reduced, by deleting edges and paths, to this subgraph. This result
will allow us to build a segment representation in three directions of subdivisions
of 3-connected graphs as follows. Firstly we build a segment representation of
a subdivision of K4 and then insert, in reverse order, the edges and paths that
were removed to obtain from G the subdivision of K4.

In order to do this, we need two basic operations: (1) insert a path between
two segments of the same face and (2) join two segments of the same face. The
second operation is, at least, as difficult as the first one, so we will concentrate
only in the second operation.

We can see, using Lemma 1, that by enlarging some segments, a segment
representation with convex faces can be transformed into another one preserving
the topology of the embedding. But this is not sufficient to carry on the second
operation, so we need another kind of transformation. Fixing an index i and
changing the drawing of the segments of the path Pi of a face F , it is possible
to draw a new convex face F ′ where the segments that were in Pi belong now
to P ′

i+1 or P ′
i−1. The rest of the paths of F ′ only change in the length of some

of the segments (see Figure 4).

P1

P2
P3

P4

F

P1'

P2'
P3'

P4'

F'a
b

c

a
b

c

Fig. 4. How to restructure a face through the path P1.

In the segment representation, the change of the face F to F ′ produces some
changes in the faces adjacent to F along the path Pi, and we obtain another
segment representation with convex faces as in the proof of Lemma 1 (see Fi-
gure 5). When we change the drawing in the manner described above, we say
that the face F is restructured through the path Pi.

We need at this point some new definitions. Given a 3-colored plane graph
G with colors {h, o, v}, a path P = {u1, . . . , un} of G is rare if it verifies one of
the following conditions:
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Fig. 5. How to restructure the faces adjacents to the restructured face F .

Case 1. u1 is colored as h, u2 as o, and un as v.
Case 2. u1 is colored as v, un−1 as h, and un as o.
Case 3. u1 is colored as h, u2 as o, un−1 as h, and un as o.
Case 4. u1 is colored as o, u2 as v, un−1 as v, and un as h.

A face of a graph is called rare if there exists a path Pi, with i = 1, . . . , 4,
containing a rare subpath. We say that a rare face is repaired if we subdivide its
rare path with a new vertex colored as v between u1 and u2 in the first and the
third case, and between un−1 and un in the second case, or a new vertex colored
as h between u1 and u2 in the fourth case.

On the other hand, notice that the vertical segments (except the last segment
of P1 and the last of P3) can be extended to the interior of a convex face F , the
horizontal segments too if they are in P1 or P3 (except the first of P1 and the
first of P3), and the oblique segments if they are in P2 or P4 (except the first one
of P1 and P3, and the last one of P1 and P3). Moreover, the horizontal segments
in P2 or P4 can be extended to the interior of F if there is a vertical segment to
the right or an oblique segment to the left of them; and the oblique segments in
P1 or P3 can be extended to the interior of F if there is a horizontal segment to
the right or a vertical to the left of them (see Figure 2). So, restructuring the
paths and applying Lemma 1, we can transform the face F in such a way that
these transformations allow us to extend two segments inside F to produce a
new adjacency between them.

In the following lemma, when we say that two segments s and t can be joined
by a path length k, it means a path s, s1, s2, . . . , sk, t.

Lemma 2. Let IG be a segment representation of a plane graph G and let s1
and s2 be two distinct segments in a convex non-rare face F . Then IG can be
transformed into another segment representation I ′

G satisfying

1. IG and I ′
G have the same faces and face boundaries as G, and the faces of

I ′
G are convex;

2. s1 can be joined to s2 by a segment path of length k, for all k > 0, or
directly if s1 and s2 have not the same direction inside the convex face F ′,
corresponding to F .
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Proof. The proof falls naturally into two cases: the segments have the same
direction, or they do not. In both cases, we have divided the proof in a sequence
of subcases.
Case 1: s1 and s2 have not the same direction.
In this case, we can suppose that s1 is vertical and s2 is horizontal (similar
arguments apply to the other configurations on the directions of the segments
s1 and s2). The subcases are the following:

1. s1 and s2 are in the same path Pi.
a) s1 and s2 are in P2 (respectively in P4).

i. s1 appears (clockwise) before s2. If an oblique segment precedes s2,
by Lemma 1 the segments can be joined directly. Otherwise, the face
must be restructured transforming P2 into P ′

3 (respectively, P4 into
P ′

1).
ii. s2 appears (clockwise) before s1. Since the face is not rare, s2 pre-

cedes a vertical segment. Then, by Lemma 1, the segments can be
joined directly.

b) s1 and s2 are in P1 (respectively in P3). If s1 appears (clockwise) before
s2, by Lemma 1 the segments can be joined directly. If s2 appears (clock-
wise) before s1, the face must be restructured transforming P1 into P ′

2
(respectively, P3 into P ′

4).
2. s1 and s2 are in different paths. If s2 is in P2 (respectively in P4) and it

precedes an oblique segment and s1 is in P3 (respectively P1), the face must
be restructured transforming P2 into P ′

1 (respectively, P4 into P ′
3). Otherwise,

by Lemma 1 the segments can be joined directly.

Case 2: s1 and s2 have the same direction.
In this case, it suffices to join the segments by a path of length 1, because this
path can be substituted by any other of length greater than 1. Again there are
several subcases:

1. Both are vertical segments. In this case, the segments can be joined by a
path of length 1 directly using Lemma 1.

2. Both are horizontal segments. If the segments are in P2 (respectively in
P4) and the first one precedes an oblique segment, and a vertical segment
precedes the second one, then the face must be restructured transforming P2
into P ′

3 (respectively, P4 into P ′
1). Otherwise, using Lemma 1 the segments

can be joined directly.
3. Both are oblique segments. If the segments are in P1 (respectively in P3), the

first one precedes a vertical segment, and a horizontal segment precedes the
second one, then the face must be restructured transforming P1 into P ′

2 (re-
spectively, P3 into P ′

4). Otherwise, they can be joined directly by Lemma 1.
ut

Now we prove:

Lemma 3. Any triangle-free plane graph which is a subdivision of a 3-connected
graph can be represented by segments in three directions.
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Proof. As G is a triangle-free plane graph, in virtue of Grötzsch’s Theorem [9], G
admits a 3-coloring with the colors h, v and o (horizontal, vertical and oblique,
respectively). Since G is a subdivision of a 3-connected graph, we can find a
vertex, not in the outer face of G, connected by three disjoint paths to three
vertices in the outer face. These paths and the outer face determine a graph K,
which is a subdivision of K4.

Using Barnette’s results in [1] it is possible to build a sequence of graphs
G1, . . . , Gn and a sequence of paths Q1, . . . , Qn such that G1 = G, Gi is a
subdivision of a 3-connected plane graph, Gi is obtained from Gi−1 by deleting
the path Qi−1, and the graph obtained from Gn deleting Qn is K.

When the path Qi is deleted, a new face F appears in Gi+1 as the union of
two faces in Gi. The boundary of F can be divided into two paths; on the one
hand the path beginning in the first vertex of Qi and ending in the last one and,
on the other hand, the rest of the boundary. If one of them is rare, we must repair
F subdividing an edge with a new vertex (that we label as a repaired vertex),
to make the face F non-rare. So, we can construct another sequence G′

1, . . . , G
′
n

where G′
i is Gi with a new repaired vertex, if necessary.
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Fig. 6. How to remove the repaired vertex u in the four cases.

It is easy to give a segment representation of K ′ with all its faces convex. It
suffices to represent convexly the outer face of K ′ and proceed according to the
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above remark. Using Lemma 2 it is possible to add the path Qi to the segment
representation of G′

i+1 to obtain a convex face representation of G′
i. In order to

obtain a segment representation of the graph G, we must remove the repaired
vertices. These vertices cannot be removed directly, so it is necessary to modify
the representation. The four possible cases are illustrated in Figure 6.

Notice that we could not remove the repaired vertices if the rare path would
have exactly three segments u1, u2 and u3, but this case it is not possible because
joining u1 with u3 it will be form a triangle, and G was a triangle-free graph. ut

We can now formulate our main result as follows:

Theorem 1. Every triangle-free planar graph is the intersection graph of a set
of segments in three directions.

Proof. Let G be a triangle-free plane graph. Since G has no triangles, we can
obtain a 3-coloring of G using Grötszch’s Theorem [9]. The colors will be labeled
as h, v and o (horizontal, vertical and oblique, respectively). We can build a new
triangle-free plane graph G1, subdivision of a 3-connected graph, which contains
G as a subgraph, adding new vertices and edges joining the blocks of G, possibly
subdividing some edges of the blocks of G using new vertices. If this is the case,
these vertices are labeled as dummy vertices. When an added edge produces
a triangle, we subdivide it, and when a new edge joins two vertices with the
same color, we subdivide it too. We call these new vertices and edges virtual.
All the new vertices (dummy and virtual) can be colored so that the 3-coloring
is preserved .

By Lemma 3, G1 admits a segment representation. Out of this segment re-
presentation we must remove all the vertices and edges added.

A virtual edge (or a path built with virtual edges and vertices) in the segment
representation of G1 is an adjacency between two segments (or a virtual path
joining two segments). It suffices to break this adjacency and to shorten these
segments (note that the segments do not cross, they only contact). The dummy
vertices are removed as the repaired vertices in Lemma 3. ut

4 Concluding Remarks

The hypothesis that the graph has no triangles can be relaxed in some cases.
No doubt there exist planar graphs with triangles that admits segment repre-
sentations (see Figure 1). The problem lies in the fact that we have followed
a constructive proof to obtain a segment representation using the convex faces
representation of a subdivision of a 3-connected graph. This construction would
not be possible in general if the graph contains triangles, because if we fix the
three directions of the segments we can observe that the graph in Figure 7 cannot
be represented by non-crossing segments.

In this example we see that a segment representation contains faces that
do not correspond to faces of the embedding of the graph. So, the topology of
the embedding of the plane graph cannot be preserved. This problem admits a
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Fig. 7. Two segments must cross.

partial solution as follows. A 3-coloring of a plane graph G with colors {h, v, o}
is good if all the triangles of G are colored, in clockwise order, as h − v − o.

The proof of Theorem 1 can be adapted yielding the following result:

Theorem 2. Let G be a 3-colored plane graph. The coloring is good if and only
if exists a segment representation IG verifying that the faces of G correspond to
faces of IG, and the boundaries of the faces are preserved.
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