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Abstract

Fuzzy Model Predictive Control. Complexity Reduction by Functional Principal
Component Analysis

Juan Manuel Escaño González

In Model-based Predictive Control, the controller runs a real-time optimisation to obtain

the best solution for the control action. An optimisation problem is solved to identify

the best control action that minimises a cost function related to the process predictions.

Due to the computational load of the algorithms, predictive control subject to restric-

tions is not suitable to run on any hardware platform. Predictive control techniques have

been well known in the process industry for decades. The application of advanced con-

trol techniques based on models is becoming increasingly attractive in other fields such

as building automation, smart phones, wireless sensor networks, etc., as the hardware

platforms have never been known to have high computing power.

The main purpose of this thesis is to establish a methodology to reduce the computa-

tional complexity of applying nonlinear model based predictive control systems subject

to constraints, using as a platform hardware systems with low computational power,

allowing a realistic implementation based on industry standards. The methodology is

based on applying the functional principal component analysis, providing a mathemat-

ically elegant approach to reduce the complexity of rule-based systems, like fuzzy and

piece wise affine systems, allowing the reduction of the computational load on model-

based predictive control systems, subject or not subject to constraints.

The idea of using fuzzy inference systems, in addition to allowing nonlinear or com-

plex systems modelling, endows a formal structure which enables implementation of

the aforementioned complexity reduction technique.

This thesis, in addition to theoretical contributions, describes the work done with real

plants on which tasks of modeling and fuzzy control have been carried out. One of the

objectives to be covered for the period of research and development of the thesis has

been training with fuzzy systems and their simplification and application to industrial

systems. The thesis provides a practical knowledge framework, based on experience.

http://www.us.es
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Resumen de la tesis
Control Predictivo basado en Modelos Borrosos. Reducción de la complejidad

mediante el Análisis de Componentes Principales Funcionales
Juan Manuel Escaño González

En el Control Predictivo basado en Modelo, el controlador ejecuta una optimización en

tiempo real para obtener la mejor solución para la acción de control. Un problema de

optimización se resuelve para identificar la mejor acción de control que minimiza una

función de coste relacionada con las predicciones de proceso. Debido a la carga com-

putacional de los algoritmos, el control predictivo sujeto a restricciones, no es adecuado

para funcionar en cualquier plataforma de hardware. Las técnicas de control predictivo

son bien conocidos en la industria de proceso durante décadas. Es cada vez más atrac-

tiva la aplicación de técnicas de control avanzadas basadas en modelos a otros muchos

campos tales como la automatización de edificios, los teléfonos inteligentes, redes de

sensores inalámbricos, etc., donde las plataformas de hardware nunca se han conocido

por tener una elevada potencia de cálculo.

El objetivo principal de esta tesis es establecer una metodologı́a para reducir la com-

plejidad de cálculo al aplicar control predictivo basado en modelos no lineales sujetos

a restricciones, utilizando como plataforma, sistemas de hardware de baja potencia de

cálculo, permitiendo una implementación basado en estándares de la industria.

La metodologı́a se basa en la aplicación del análisis de componentes principales fun-

cionales, proporcionando un enfoque matemáticamente elegante para reducir la com-

plejidad de los sistemas basados en reglas, como los sistemas borrosos y los sistemas

lineales a trozos. Lo que permite reducir la carga computacional en el control predictivo

basado en modelos, sujetos o no a restricciones.

La idea de utilizar sistemas de inferencia borrosos, además de permitir el modelado de

sistemas no lineales o complejos, dota de una estructura formal que permite la imple-

mentación de la técnica de reducción de la complejidad mencionada anteriormente.

En esta tesis, además de las contribuciones teóricas, se describe el trabajo realizado con

plantas reales en los que se han llevado a cabo tareas de modelado y control borroso.

Uno de los objetivos a cubrir en el perı́odo de la investigación y el desarrollo de la tesis

ha sido la experimentación con sistemas borrosos, su simplificación y aplicación a sis-

temas industriales. La tesis proporciona un marco de conocimiento práctico, basado en

la experiencia.

http://www.us.es
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Introduction

There are many applications of advanced control in industry. However, most of them are

based on PIDs. One of the reasons for this lack of technology transfer is the difficulty

of obtaining sufficiently accurate process models [1], since most of the modern tech-

niques are model-based. Also, the level of mathematics that is required to understand

the advanced control techniques, represents a drawback for the use of them by control

engineers in practice [2, 3]. In addition, the complexity associated with advanced con-

trol algorithms requires high computing power, i.e. more expensive budget in facing

the design of a control technique. This makes many complex industrial systems being

controlled poorly. Experience says that when the advanced control engineer provides

easy adjustment of the controllers designed, plant operators are more confident in using

them.

Industrial implementation of advanced control systems

The implementation of advanced control systems depends on the application field. It

can be found from redundant control systems of large computing capacity in process

plants to low cost embedded systems applied anywhere. Due to the necessary robust-

ness and reliability for the process industry, the implementation of advanced control is

performed through a hardware platform known as Distributed Control System (DCS).

A DCS is composed by different control units which are connected themselves to the

same network. The system is organised in several levels (see Fig. 1). Although they

are composed of different systems and networks, the DCSs are normally offered as

one single package. The first DCS were introduced in 1975 by Honeywell and Yoko-

gawa respectively. Historically DCSs were developed in the process industries and were

the technological evolution result of adding capabilities and communications to single

1
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FIGURE 1: Functional levels of a typical Distributed Control System [4]

loop PID controllers and using computers for Human-Machine Interface (HMI) func-

tions. Usually, many DCS systems used to use proprietary communications protocols

and programming languages, but currently they are more open and flexible. On other

hand, in the past it was the Programable Logic Controller (PLC) the preferred system

by automotive control and since then, has been robust and reliable choice for any au-

tomation system. It was introduced in 1968 by MODICONr. Initially, PLCs replaced

relay logic systems and were programmed from proprietary panels using ladder logic.

Today we find an extensive range of PLC ranging from small controllers with limited

useful capacity for simple automation, to powerful computing systems suited to support

many control loops. Due to developments that have suffered the hardware platforms,

there is an overlap between ranges of PLCs and DCSs many doubts about choosing

between them in some fields. Initially, PLC is a better choice for applications involv-

ing rapid production start using discrete I / O, while DCS has the built-in infrastructure

to perform advanced regulatory control on a plant-wide scale, but the truth is that the

differences today are not entirely clear. DCSs and PLCs are not mutually exclusive tech-

nologies. The classic control loops that allow stable operation of the plant are usually

implemented in the DCS (or PLC). The control and instrumentation engineers are often

responsible for tuning them. When an advanced control strategy is designed, the output

of this type of control often takes a cascade configuration with the basic controllers who

run the plant, leaving the choice of the advanced controller selection to the supervisor.

In the process industry, advanced control is typically deployed on servers running as

ASPENr software tools, etc. or other custom tools. Now days, there is an effort to get

normalised the platforms (software and hardware) used for control systems. IEC-61131



Introduction 3

[5–13]is the international standard for PLC and IEC-61499 [14–17] for DCS.

One of the paradigms of advanced control is Model-based Predictive Control (MPC)[18].

In MPC, the controller runs a real-time optimisation to obtain the best solution for the

control action. MPC uses a model of the process to predict the future evolution of the

system. Setting a period of time of prediction (prediction horizon), an optimisation

problem is solved to identify the best control action that minimises a cost function re-

lated to the process predictions. MPC control techniques are well known in the process

industry for decades. Other fields such as aerospace, has been and is often home to de-

velop advanced control schemes for many years. In this field, the hardware used, allows

high speed computer together with a rather high strength and reliability. Today, thanks

to the development of hardware platforms, advanced control is being carried out in more

and more fields. The development of techniques such as model-based distributed con-

trol or obtaining explicit optimisation solutions are enabling predictive control lead to

platforms low computational cost. Two important facts make it increasingly attractive

application of advanced control techniques based on models. On the one hand, control

of the processes associated with other fields such as building automation, smart phones,

wireless sensor networks, etc., where the hardware platforms have never been known

to have a high computing power, and on the other hand, increased control applications

running on embedded systems, thanks to the continuous advance in hardware integra-

tion.

In this scenario, there has been and there is a constant research effort to implement the

MPC hardware low capacity. The main problems affecting this purpose are on the one

hand, that the MPC strategies which must be taken into account constraints, an optimi-

sation must be solved in real time. This optimisation may require high computational

cost when the prediction horizon of the model is long. On the other hand, nonlinear

systems are difficult to model and the optimisation can be non-convex problem, making

the real time solution difficult.

Objectives of the thesis

The main purpose of this thesis is to establish a methodology to apply nonlinear model

based predictive control systems and/or subject to constraints, using as a platform, hard-

ware systems with low computational power, allowing a realistic implementation based
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on industry standards. The methodology is based on reducing the complexity of rule-

based systems using the functional principal component analysis, providing a mathe-

matically elegant approach to reduce the complexity of fuzzy systems and piece wise

affine systems, allowing to reduce the computational load on model-based predictive

control systems.

The proposal of using fuzzy inference systems, in addition to allowing nonlinear or

complex systems modeling, endows of a formal structure which enables implementa-

tion of the aforesaid complexity reduction technique. Although there are many contri-

butions made about mathematical methodology, yet heuristics and practical part of the

training in fuzzy control systems and modeling. This thesis, in addition to scientific

contributions discussed in the previous paragraph, describes the work done with real

plants on which have been carried out tasks of modeling and fuzzy control. One of the

objectives to be covered for the period of research and development of the thesis has

been training with fuzzy systems and its application to industrial systems. The thesis

provides a practical knowledge, based on experience. Throughout the document we can

see real examples performed.

Organization of the thesis

This thesis is organised as follows: Chapter 1 starts with an overview of Model-based

Predictive Control (MPC) and its application to low capability hardware systems. In

Chapter 2 an introduction to fuzzy inference systems will be described. Chapter 3 is de-

voted to fuzzy modelling and there will be several real examples described. Here a brief

description of the training techniques of fuzzy structures, choosing appropriate system

inputs and various training methods was made. It will introduce different techniques of

fuzzy modeling based on the experience of several years of work. Chapter 4 presents

the typical control strategies based on Fuzzy systems, showing real examples carried

out during the research process of the thesis. Chapter 5 presents the implementation of

the fuzzy model predictive control technique, based on an real application. Chapter 6

describes the complexity reduction technique developed for Fuzzy Inference Systems,

applying to real examples. This can be considered, in terms of scientific contributions,

as the central chapter of the thesis. Chapter 7 describes how to simplify the complexity

of predictive control systems using the techniques used in previous chapters. It shows
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how you can apply the same analysis of the previous chapter on piecewise linear sys-

tems. Practical applications of complexity reduction will be seen, laying the foundations

of a methodology applicable to the industry. Last chapter will conclude the thesis and

will propose further developments and research.

Main contributions

This thesis focuses on the following contributions:

• A novel complexity reduction technique for fuzzy systems based on functional

analysis has been study and proven experimentally.

• Application of simplification technique to allow model predictive control in low

capability hardware.

• The same technique has been applied successfully for piece wise affine systems.

• There has been an application of simplification technique to allow model pre-

dictive control subject to constraints in low capability hardware, permitting an

adjusting parameter at runtime.

• Transformation of inputs space for complex fuzzy models has been done in order

to reduce dimensionality and therefore, complexity.

• Experimental implementation of robust model predictive control (RMPC) subject

to constraints in low capability hardware. A wireless sensor network has been

used to implement a energy consumption control strategy in ambulatory environ-

ment.

• Inputs selection for fuzzy modelling. Methods based on the application of compo-

nent analysis and evolutionary algorithms have been carried out experimentally.

• Real applications of fuzzy control systems have been developed using standard

industrial languages.

• Industrial application of fuzzy model predictive control (FMPC) has been devel-

oped and trialling.



Chapter 1

Model predictive control and its
implementation

In this chapter, an overview of MPC is presented. It will not only review the formulation

of various control designs that are most commonly used in industries, but practical

examples will also be conducted during the investigation. The focus of this chapter is

thus mainly on the practical implementation of predictive control.

1.1 Model-based predictive control

MPC consists of a set of control strategies that began to be used in the industry since

the 80s [19]. The idea behind such control strategies is the optimisation of an objec-

tive function, calculating the appropriate sequence of inputs over a prediction horizon

based on a model of the plant. This calculation is repeated for each sampling instant to

obtain the updated information of the plant. Depending on the structure of the objec-

tive function and the type of model being used, there are several well known strategies

[18]. From 1973 [20],[18], it has been shown that one of the most popular algorithms is

Dynamic Matrix Control (DMC), developed by Cutler and Ramaker [21]. The process

model used in DMC is the step response of the control variable:

y(k) =
∞

∑
i=1

gi4u(k− i) (1.1)

6
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The one-step ahead prediction calculated at instant k is:

ŷ(k+1|k) = g14u(k)+ f (k+1), (1.2)

where f (k+ 1) is the response of y(k+ 1) if 4u(k) = 0, i.e. the free response. The

prediction over a horizon NP is:

ŷ(k+1|k) = g14u(k)+ f (k+1)

ŷ(k+2|k) = g24u(k)+ f (k+1)
...

ŷ(k+NP|k) =
NP

∑
i=NP−NC+1

gi4u(k+NP− i)+ f (k+NP). (1.3)

It can be written as a compact form,

ŷ = Gu+ f, (1.4)

where

G =



g1 0 . . . 0

g2 g1 . . . 0
...

... . . . ...

gNC gNC−1 . . . g1
...

... . . . ...

gNP gNP−1 . . . gNP−NC+1


(1.5)

is the dynamic matrix.

The objective of DMC is to obtain the minimum error between the reference w(k) and

the control variable y(k). Therefore, the manipulated variables are calculated in order

to minimize a functional such that:

J(Np,Nc,λ ) =
Np

∑
j=1

δ ( j) [ŷ(k+ j | k)−w(k+ j)]2 +
Nc

∑
j=1

λ [∆u(k+ j−1)]2 , (1.6)

where the control action u(k) is penalized by λ (known in the industry as move suppres-

sion). If there is no constraints, the sequence u= {u(k)} can be calculated by computing
4J
4k = 0, giving:

u = (GT G+λ I)−1GT (w− f). (1.7)
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Only the first control move u(1) is sent to the plant and the whole process is repeated

for the next sampling instant. Thus, a continuous feedback of the control variable is

obtained. The prediction horizon is always the same in each sample (common thing

in predictive control strategies). The difference is, with respect to any other optimal

control strategy, the MPC is a receding horizon optimal control.

Another popular algorithm is the generalised Predictive Control (GPC) [22]. The out-

put prediction in GPC is given by a CARIMA (Controlled Auto-Regressive Integrated

Moving Average) model of the plant:

A(z−1)y(t) = z−dB(z−1)u(t−1)+C(z−1)
ε(t)

∆
, (1.8)

where u(t) and y(t) are the control and output sequence of the system, d the dead time

of the plant, ε(t) is a zero mean white noise,

A(z−1) = 1+a1z−1 +a2z−2 + ...+anaz−na

B(z−1) = b0 +b1z−1 +b2z−2 + ...+bnbz−nb

C(z−1) = 1+ c1z−1 + c2z−2 + ...+ cncz−nc

with ∆ = 1− z−1.

For simplicity, in the following, C(z−1) is chosen to be 1. The sequence of future control

signals is calculated such that it minimizes a multistage cost function defined by:

J(N1,N2,Nu) =
N2

∑
J=N1

δ ( j) [ŷ(t + j | t)−w(t+ j)]2 +
Nu

∑
j=1

λ ( j) [∆u(t + j−1)]2 , (1.9)

where ŷ(t + j | t) is a j-step ahead prediction of the system output on data up to time

t, N1 and N2 are the minimum and maximum prediction horizon, δ ( j) and λ ( j) are

weighted sequences, and w(t+ j) is the future reference trajectory.

To solve the problem, we consider the following Diophantine equation:

1 = ∆e j(z−1)A(z−1)+ z− j f j(z−1), (1.10)

where e j(z−1), f j(z−1) are polynomials uniquely defined. They can be obtained recur-

sively in an easy way and they can be expressed as: e j(z−1) = e j,0+e j,1z−1+e j,2z−2+

...+ e j, j−1z−( j−1),

f j(z−1) = f j,0 + f j,1z−1 + f j,2z−2 + ...+ f j,nyz
−ny ,
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In order to obtain the predictive output, let us first define the following expression:

g j(z−1) = ∆e j(z−1)B(z−1), (1.11)

where g j(z−1) = g j,0 +g j,1z−1 +g j,2z−2 + ...+g j, j+Nu−1z−( j+Nu−1),

and let us multiply equation (1.8) by ∆z je j(z−1) to get

∆z je j(z−1)A(z−1)y(k) = ∆z je j(z−1)B(z−1)u(k−d)+ ξ̄ (k) (1.12)

where ξ̄ (k) = ∆z je j(z−1)
ε(t)

∆
. Therefore, by using (1.10) and (1.11), the following

predictive output is obtained:

ŷ(k+ j|k) = f j(z−1)y(k)+g j(z−1)∆u(k+ j−d). (1.13)

The horizon can be defined by N1 = d +1, N2 = d +N and Nu = N. To solve the GPC

problem, the set of control signals u = [u(t),u(t +1), ...,u(t +N)]T has to be obtained

in order to optimize (1.9). As the cost function is quadratic, optimum can be easily

obtained, assuming there are no constraints on the control signals, making the gradient

of J equal to zero. Considering δ ( j) and λ ( j) constants and grouping the terms of

equation (1.13) which depend on the past input and output, into f, this leads to

u = (GT G+λ I)−1GT (w− f), (1.14)

which is the same expression as (1.7). Here, G =
[
gd,0 gd+1,0 ... gNp,0

]T
and w = [w(t+d+1) w(t+d+2) ... w(t+d+N)]T . The control signal that is

sent to the process is the first element of u, given by:

∆u(t) = K(w− f) (1.15)

The previous control laws (1.15) and (1.7) are calculated when there is no any con-

straint is taken into account. The consideration of constraints allow the process to op-

erate closer to constraints and optimal operating conditions and may reduce the number

of constraint violations, hence reducing the number of costly emergency shutdowns.



Model predictive control and its implementation 10

However, an online optimisation is needed. The formulation of such constrained opti-

mal control problem can be expressed as, [18]:

min
u

{
J(u) =

1
2

uT Hu+bu+ f0

}
s.t.

Ru≤ r+Vz, (1.16)

where

H = 2(GT G+λ I)

bT = 2(f−w)T G

f0 = (f−w)T (f−w)

with R, r, V are parameters and signal bounds, and z is a vector composed of present

and past signals (in case of state space representation, z is x(t)). To solve this problem,

there are many available and reliable Quadratic Programming (QP) algorithms, e.g. Ac-

tive Set, Feasible Direction, Pivoting methods, etc. They all use an iterative algorithm,

which means that due to the computational burden they are not suitable for every hard-

ware platform. In [23], the implementation aspects are presented and the restriction of

the horizon on limited-resource hardware such as fixed-point arithmetics is addressed.

Faster on line optimisation technique is described in [24, 25].

1.2 Industrial implementation of MPC

MPC implementation has always been associated with commercial products in industry

[20, 26, 27]. Companies like Adersa, Aspen Tech., Honeywell, Shell Global, Invensys,

Continental Controls, DOT Products, Pavilion Technologies, etc., offer their platform

externally. Most of them use an objective similar to (1.16). However, for fast pro-

cess or large number of variables, QP may not be sufficient. Some of the commercial

platform offer suboptimal approximated optimisation algorithms for achieving that pur-

pose. In addition to the DMC and GPC (seen above), other algorithms are well known

and widely used in industry: Model Algorithmic Control (MAC)[28], Predictive Func-

tional Control (PFC)[29], Extended Prediction Self-Adaptive Control (EPSAC) [30],

Extended Horizon Adaptive Control (EHAC) [31].

Although DCS are adequate for the implementation of MPC controllers, nowadays,
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there are PLCs ready to run MPC algorithms, like Siemens (unconstraint DMC)[32]

and Schneider Electric (PFC)[33].

On the other hand, it is very important to offer the plant supervisors or instrumentation

engineers the adjustment parameters of the controllers. As we have seen in the pre-

vious sections, these parameters are the prediction horizon and control and weights in

the objective function. Several authors have proposed practical tuning methods based

on real experience [34–36], [37, 38] including some tuning techniques based on trial

and error. A method based on principal component selection is used in [39, 40]. [41]

shows a simplification of a DMC tuning. Tuning method focusing on stability [42–45]

and robustness [46, 47] are also proposed. Techniques to evaluate the performance of

the controllers are presented in [48–50]. A good review of the techniques is presented

in [51]. From the point of view of the implementation, prediction and control horizons

are not suitable for being used as setting parameters. They should be chosen, like the

sample time, depending on the process dynamic. The weights used in the formulation

of DMC and GPC modulate the error terms (δ ) and control action (λ ), respectively.

The parameter that mostly impacts the robustness is the move suppression (λ )[34]. In

practice, it is very important to give the plant supervisor and process instrumentation

and control engineers the chance to adjust this parameter.

1.3 MPC for low-cost hardware: a practical implemen-

tation perspective

For linearly constrained MPC problems of a low dimensional system, one can partially

avoid the computational burden by precomputing the solution of the optimisation us-

ing multi-parametric quadratic programming (mpQP) [52–55]. This leads to an offline

MPC. Examples can be found in [56, 57], where a constrained MPC problem is de-

veloped using a low range PLC. Also in [58], an explicit MPC is applied in building

controllers. Following this line, an application will be presented in this section regard-

ing to MPC that is implementable on a hardware with low capacity such as Wireless

Sensor nodes (motes). A constrained explicit generalised predictive control for ambula-

tory wireless sensor network power management will be described.
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1.3.1 Ambulatory sensor network description

This application is framed within a context that control engineering can aid in the energy

sensitive provision of vital biometric data, [59]. An ambulatory wireless sensor network

(WSN) scenario is considered within a typical ambient healthcare setting illustrated by

Figure 1.1[60–62]. This network consists of a set of low cost (in this particular case,

Mote type), communicating sensor nodes featuring low-power radios. In each health-

care unit, there is a remote base station that is used to aggregate biometric data and

to process the flow of information locally through wireless links. The base station is

expected to relay the data wirelessly to another base station, e.g., from base station 2

(BS2) to base station 1 (BS1), when a patient moves to an adjoining area in an ambulatory

fashion. It is anticipated that the sensor data will be routed from there via an Internet

connection to some higher supervisory level within the network, [63, 64]. The nodes

Hospital healthcare networkNon-acute healthcare network Doctor

Internet

Central
PC

Monitoring
and
control

Body sensor Base Station Wireless communication

Environmental sensor Hop Station Wired communication

x
1

x
1

x
2

x
2

x
3

x
3

Central PC

FIGURE 1.1: An ambulatory WSN in a general ambient healthcare environment.

are deployed in either a static or mobile manner. The variability in wireless link qual-

ity for a static network deployment, e.g., in environmental, agricultural, or structural

monitoring applications, has been shown (empirically) to place significant constraints

on information throughput, [65, 66]. The introduction of wearable devices, organized

within an ambulatory setting is well known to exacerbate this problem, [67–69]. The

communication link between any transceiver pair within such a network deployment is

known to be time-varying, non-linear; and can exhibit large, rapid deviations that are

dependent on placement and body movement, [70]. The resulting network must there-

fore be able to withstand complex radio dynamics such as fast and shadow fading, as

well as relatively variable antenna orientation between transceiver pairs [71, 72], that

can attenuate the received signal power at the base station, frequently leading to packet
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errors (vital health status information to be lost) or even total breakdown in communi-

cation. The loss of data during wireless transfer becomes particularly more significant

in this class of application than most other types of monitoring data. The primary per-

formance requirement in the healthcare application space is to reliably achieve a target

level, i.e., quality reference, on the received signal strength indicator (RSSI) metric,

[73], so that a health care provider can be assured that the link quality and continuous

link connectivity are sufficient to guarantee satisfactory levels of subject observation.

Commercial sensor node platforms are now generally available that support wearable

devices within a body sensor network setting. Examples include the MicaZ and Telos

motes used in the CodeBlue project [74] based at Harvard University, that operate with

low-power radios and are based on an adoption of the IEEE 802.15.4 standard, employ-

ing a carrier sense multiple access/collision avoidance (CSMA/CA) technique for data

transmission. However, the CSMA/CA mechanism does not work perfectly due to the

so called “hidden terminal” or multiple access interference (MAI) problem, [75]. This

interference due to the existence of multiple simultaneously transmitting nodes can un-

necessarily increase transmit power level and significantly degrade network capacity.

In addition, the phenomena of uncertain fading channel and interference means that

the question of dynamic energy management is a challenging component of any WSN

that is constrained by finite battery resources. Certainly, transmission at lower power

levels will compromise the quality of communication, and the desired quality of ser-

vice (QoS) might not be met. An outage-based QoS constraint is considered wherein

the received signal strength must be kept above a given threshold level so that no in-

stances of potentially catastrophic outage or disconnection due to deep fading occur

[76]. It is a particular objective of this work to highlight how dynamic control can aid

the development of practicable radio power control strategies that provide an intelligent

way of determining the optimal transmit power levels to be used by the sensor nodes

on a network. The result will be an improvement in overall network lifetime and the

maintenance of an acceptable received signal strength for all sensor nodes, while also

preserving a satisfactory QoS for as many nodes as possible on the network. Further-

more, the use of commercial sensor node platforms that characterises this work means

that only limited computational capacity and memory are available in the implementa-

tion stage of the radio power control law.

The sensor nodes are programmed to send sensor data framed in an 802.15.4 format,

[77–79]. Figure 1.2 illustrates the typical problem that has been considered. In this

testbed, a star topology is adopted: a Tmote Sky sensor node is connected to a personal

computer acting as the fixed base station or coordinator via the USB port, and there
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FIGURE 1.2: An experimental ambulatory test scenario containing two static and two
mobile nodes.

are four other Tmote Sky sensor nodes that are wirelessly connected to, (and randomly

located around), the base station within 200 cm distance. Reconfigurable obstacles that

highlight the practical phenomena influencing the loss of line-of-sight between the base

station and the sensor nodes are integrated to form part of the testbed as illustrated in

Figure 1.2. In addition, a selection of fully autonomous MIABOT Pro miniature mo-

bile robots are used to provide a controlled, ambulatory dimension to the experiment.

Each of the robots can be mounted with the sensor node in order to imitate various

activities performed by a patient. The data flow within the WSN testbed is depicted

in Figure 1.3. In this work, power control algorithms are directly implemented (via

nesC) on the Tmote Sky sensor node platform running the TinyOS operating system,

[80], that is identified a priori as the coordinator. We chose this environment, since

the TinyOS and the Tmote Sky architectures are de facto benchmark standards for com-

mercial and academic WSNs. An interface between Matlab and TinyOS has been estab-

lished using stable bridging tools written in Java for data management purposes. Upon

receipt of data packets from each sensor node at time sample t, the coordinator takes an

RSSI measurement and then performs the power control strategy, resulting in an optimal

power increment desired for updating the actual transmit power for the next sampling

instant. After the hardware constraints (i.e., quantisation and power limitation) of the

radio power amplifier are taken into account, the quantised power level is then transmit-

ted over a fading channel to the corresponding connected sensor, where the RF output

power level is adjusted accordingly.
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FIGURE 1.3: Data flow within the IEEE 802.15.4 WSN testbed.

1.3.2 Problem formulation

We consider an ambulatory sensor network composed of one base station and n sensor

nodes, labeled i = 1, . . . ,n, connected in a star topology, in which each sensor node

i transmits using a power level pi > 0, i = 1, . . . ,n. At the base station, the signal is

despread, demodulated, and decoded in order to get the source data. The achieved

signal-to-interference-plus-noise-ratio (SINR) at time k, for the generic transceiver pair

i, is given by

γi(k) =
gi(k)pi(k)

Ii(k)
=

gi(k)pi(k)
∑∀ j 6=i g j(k)p j(k)+η0

, (1.17)

where channel gain gi represents the attenuation in the radio link due to path loss, log-

normal shadowing, and Rayleigh fading between the i-th sensor node and the base sta-

tion, Ii denotes the MAI caused by other transmitting nodes plus the noise power at the

base station η0 > 0, which is assumed to be additive white Gaussian (AWG). Trans-

forming (1.17) into the logarithmic domain results in1

γ̄i(k) = p̄i(k)+ ḡi(k)− Īi(k). (1.18)

In general, wireless sensors, and in particular the Tmote Sky sensor nodes, do not pro-

vide an explicit SINR as a link performance metric, but instead an RSSI measurement

1Throughout the paper, the logarithmic (e.g. dB or dBm) value of a variable x in linear scale is
denoted by x̄, namely, x̄ = 10log10 x.
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FIGURE 1.4: A closed-loop decentralised power control system when applying the
general power control algorithm.

is given. The RSSI has been shown to have a strong relationship with the SINR in this

problem setting, see [81], and the use of the RSSI as a performance measure for com-

munication for power control purposes is now a feature of the literature, see [68, 81–83].

An estimate of the SINR in dB from the RSSI in dBm established in [81] is given by

γ̄i(k)≈ r̄i(k)−C−30, (1.19)

where r̄i denotes the RSSI of sensor node i, C represents measurement offset, and the

term 30 accounts for the conversion from dBm to dB.

Substituting the SINR γ̄i (1.18) in (1.19) yields the following relation,

r̄i(k) = p̄i(k)+ ḡi(k)− Īi(k)+C+30. (1.20)

At time k, the base station measures the RSSI upon receipt of data packets transmitted

by the i-th sensor node, r̄i. Once the RSSI is measured, it is used to compare with an

RSSI target r̄t for each node at the base station to obtain the RSSI tracking error ēi,

ēi(k) = r̄t− r̄i(k). (1.21)

The control error is fed into the power controller, which executes the power control

algorithm. The control law determines the power control update command ūi to force r̄i

to follow the target. Then, upon reception of ūi at the power multiplier, the power p̄i to

transmit the next data packets is set by

p̄i(k+1) = p̄i(k)+ ūi(k). (1.22)
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Before the updated transmit power is sent via the channel to the sensor node, it is quan-

tized to a finite discrete power level p̄′i, which is then used by the sensor node’s radio

power amplifier. In the transformation process, a quantisation error q̄i is introduced, i.e.,

p̄′i = p̄i + q̄i.2 In addition, the sensor node power level assigned by the base station that

is subject to the limitation of power amplifier output can be saturated3. The transmitted

signal is additionally corrupted by highly time-varying uncertain interference, noise,

and channel gain. Then, we have that the RSSI (1.20) can be rewritten as

r̄i(k) = p̄i(k)+ q̄i(k)+ s̄i(k)+ ḡi(k)− Īi(k)+C+30, (1.23)

where s̄i is the nonlinear effect of power amplifier saturation. A simplified closed-loop

interpretation of the proposed decentralised RSSI-based power control system is shown

in Fig. 1.4.

Combining (1.21)-(1.23), the uncertain linear system representation for the RSSI track-

ing error of sensor i is obtained as

ēi(k+1) = ēi(k)− ūi(k)+ w̄i(k), (1.24)

The disturbance w̄i accounts for the complex time-varying network dynamics of the

power control process. For now, consider perturbations null, taking as a nominal model:

x̄i(k+1) = x̄i(k)− ūi(k+1) (1.25a)

ēi(k) = x̄i(k), (1.25b)

where x̄i represents the state of the system. In order to introduce the effect of feedback in

the predictions, see e.g., [85, 86], we assume that the control input is defined as follows,

ū(k) =−Kx̄(k)+ v̄(k), (1.26)

where K is a linear gain. This implies that the control moves ū for updating the transmit

power are corrected by v̄ which are computed by the MPC controller.

2Empirical evidence suggests that the practical effect of such a quantization error in power control
of WSNs is in fact negligible with respect to the other sources of uncertainty, i.e., channel fading and
interference effects, [83].

3This hardware limitation is a fact of life for any commercial radio chipset such as CC2420, [84].
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1.3.3 MPC

The MPC will solve the following constrained optimisation problem:

J∗(x̄) =
Np−1

∑
j=0

[
x̄(k+ j|k)T Qx̄(k+ j|k)+ ū(k+ j|k)T Rū(k+ j|k)

]
+ x̄(k+Np|k)T Px̄(k+Np|k)

s.t. x̄(k+ j|k) ∈ X̄ , j = 0, · · · ,Np; ū(k+ j|k) ∈ Ū , j = 0, · · · ,Np−1 (1.27)

where Np is the prediction horizon, x̄(k|k) = x̄ is the initial state, x̄(k+ j|k) and ū(k+

j|k) are the predicted state and control input, respectively, v̄ = [v̄(k|k)T , · · · , v̄(k+Np−
1|k)T ]T is the sequence of correction control inputs,X̄ and Ū are polyhedra defined by

the state and input constraints respectively. Q ≥ 0, P ≥ 0, and R > 0 are weight to

permit adjustment of the controller. the explicit solution v̄∗(x̄) of the min-max mpQP

problem is defined as a continuous piecewise-affine (PWA) function characterised over

a polyhedral partition of the feasible set of state SF = {(x̄, v̄)|Fx̄+Gv̄≤ d},

v̄∗(x̄(k)) =


K1x̄(k)+q1, if x̄(k) ∈ X̄1

K2x̄(k)+q2, if x̄(k) ∈ X̄2
...

KNre j x̄(k)+qNre j , if x̄(k) ∈ X̄Nre j ,

(1.28)

with a polyhedral partition P = {X̄1, . . . ,X̄Nre j}, where

Ki and qi are respectively the control gain and offset for each region, and Nre j is the

number of regions. If the state lies outside the feasibility region, v̄ is set to zero, which

usually saturates the control input.

Therefore, the application of an explicit MPC for optimal power assignment is limited to

evaluating the piecewise-affine function and can be written as the following algorithm:

Algorithm:

1. At sample k, get the current state x̄(k).

2. Perform a sequential search: if x̄(k) ∈ X̄i, then v̄(k) = Kix̄(k)+qi is given for the

specific region i, i ∈ {1, . . . ,Nre j}.

3. Then, apply ū(k) =−Kx̄(k)+ v̄(k) for the power control update command.

4. Get new state measurement, and repeat the search at sample k+1.
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1.3.4 Robust MPC

Taking now into account uncertainties, the model (1.25) turns into:

x̄i(k+1) = x̄i(k)− ūi(k+1)+ w̄i(k) (1.29a)

ēi(k) = x̄i(k), (1.29b)

The disturbance w̄i that enters the power control loop cannot be measured and is also

difficult to estimate. A feature of the MPC design paradigm is that such disturbance

effects can be expressed using a so-called min-max formulation, [87], which can be

expressed as

J∗(x̄) = min
v̄

max
w̄∈WNp

V (x̄, v̄, w̄)

s.t. x̄(k+ j|k) ∈ X̄ , ∀w̄ ∈WNp, j = 0, · · · ,Np

ū(k+ j|k) ∈ Ū , ∀w̄ ∈WNp, j = 0, · · · ,Np−1, (1.30)

where w̄ = [w̄(k)T , · · · , w̄(k+Np−1)T ]T represents a possible sequence of input distur-

bances to the system, WNp ⊆RNp·nw̄ denotes the set of possible disturbance sequences

of length Np, WNp = W ×W × ·· · ×W , where × denotes the cartesian product and

V (x̄, v̄, w̄) is the objective function defined as

V (x̄, v̄, w̄) =
Np−1

∑
j=0

[
x̄(k+ j|k)T Qx̄(k+ j|k)

+ ū(k+ j|k)T Rū(k+ j|k)
]

+ x̄(k+Np|k)T Px̄(k+Np|k), (1.31)

Min-max optimisation problems in general exhibit a very high computational complex-

ity. In [88], it is shown that the min-max MPC problem (1.30) can be reformulated into

an mpQP problem, [88], Being able to solve as was seen in 7.30

The tuning parameters used for deriving the explicit min-max MPC controller are as fol-

lows: Np = 1, Q = P = R = 1, and K =−0.618. The state and control input constraints

are given as −15 ≤ x̄ ≤ 5 and |ū| ≤ 10, respectively. Note that the state constraints

are adopted from an explicit consideration of the RSSI threshold value that is required.

Such tuning parameters, i.e. the cost matrices, of the MPC controller were also obtained

by extensive simulations.
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FIGURE 1.5: One-step prediction error.

The model used by the controller is given by (1.29), in which the only parameter to esti-

mate is the uncertainty bounds. To characterise the uncertainty bounds, we have carried

out an experiment, in which four sensor nodes were deployed within an ambulatory set-

ting, i.e., two static and two mobile nodes, and performed a nominal MPC-based power

control (see below). The uncertainty bounds have been set according to the error com-

puted using the predicted state, which came from the prediction model (1.24), where

w̄ = 0. The errors4 computed using this model are shown in Fig. 1.5. The uncertainty

bounds have been set to -2.5 and 2.5, since 92.53% of the errors in the test set are within

these bounds.

The solution of the min-max MPC mpQP problem, obtained from the model (1.24), the

tuning parameters, the constraints, and the uncertainty bounds, provides a polyhedral

partition over the x̄-space, consisting of 3 regions. The algorithm that finds the optimal

control correction effort v̄∗(0) reduces to the following lookup table that depends on the

current state of the RSSI tracking error,

if

[
−0.071

1

]
x̄(k)≤

[
0.5

5

]
then

v̄∗(0) = 0.382∗ x̄(k)

else if

[
11.025

−0.559

]
x̄(k)≤

[
−78.125

6.875

]
then

4The errors plotted in Fig. 1.5 were chosen from the worst state prediction errors provided by one of
the two mobile nodes.
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FIGURE 1.6: Min-max MPC-based radio power control law.

v̄∗(0) =−0.059∗ x̄(k)−3.125

else if

[
2.236

−1

]
x̄(k)≤

[
−27.5

12.5

]
then

v̄∗(0) =−0.618∗ x̄(k)−10

else {problem is infeasible}

v̄∗(0) = 0

end if

It can be seen that when the optimal control law is saturated, the control correction input

v̄ has the same gain as the feedback law, i.e., K = 0.618, but is of inverted sign, so that

the applied input is therefore independent of the state of the system. As a result, the

min-max MPC-based radio power control law ū∗(0) generates the profile illustrated in

Fig. 1.6.

1.3.5 Experimental results

The min-max MPC mpQP solution computed requires a memory usage of only 285

bytes from an available 48 Kbytes of memory provided within a typical Tmote Sky
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TABLE 1.1: Summary of test scenarios.

Test Sensor nodes Motion of
scenarios deployment the mobile robot(s)

1
3 static nodes,

1 robot — straight path
1 mobile node

2
2 static nodes, 1 robot — straight path
2 mobile nodes 1 robot — circular path

3
1 static node, 2 robots — straight path

3 mobile nodes 1 robot — circular path

sensor node, [89]. There still exists space for various actual user level sensor node ap-

plications. Note that the number of regions depend on the complexity of the model and

the prediction horizon. In theory, the possible number of regions can grow exponen-

tially with the horizon dimension. However, for low order systems this number is much

lower because of the state constraints, [90, 91].

To benchmark the advantages of the proposed algorithm, the explicit min-max MPC-

based radio power controller (denoted henceforth as eMMMPC) is compared in each

scenario with the explicit nominal MPC approach seen before(denoted as eMPC), a

power control that utilizes a balanced adaptive scheme (denoted as Adaptive 1) and has

previously been shown to perform well in the WSN power control literature [68] as

well as a power control strategy with adaptive step-size (denoted as Adaptive 2), taken

from [92].

In order to benchmark the proposed control law with the other aforementioned designs,

three test scenarios, in which the sensor nodes are deployed in both a static and mobile

fashion, have been considered and the setup details are summarised in Table 1.1. Specif-

ically, in scenarios 2 and 3 the motion of robot is configured to move continuously in a

circular path about its initial position, along a short distance of 20 cm, so as to produce

a high variation in the observed RSSI feedback signal. The wireless channel can hence

be well described as exhibiting a Rayleigh fading distribution in this circumstance, [81].

For each scenario, the test has been iteratively performed for 4 runs with a duration of

140 sec and a sampling interval of 1 sec. For each run, different static nodes positions

and mobile nodes trajectories (either straight or circular path) are defined. Note that, for

consistency, the positions of static nodes and the trajectories of the mobile robots are not

changed while an experiment is repeated for each control law. During each experiment,

dynamic data, i.e., RSSI and the corresponding transmit power level of all nodes are

recorded to analyze the system performance according to the following three criteria:
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• Power consumption:

Pi(mW) =
Ns

∑
k=1

pi(k), (1.32)

where Ns is the total number of samples.

• Outage probability:

Poi(%) = Prob{r̄i < r̄th}. (1.33)

• Standard deviation of the RSSI tracking error:

σei(dBm) =
( 1

Ns

Ns

∑
k=1

(r̄t− r̄i(k))2
) 1

2
. (1.34)

The mean values of Pi, Poi , and σei of all nodes are calculated for each experiment

of each controller. The averages of these results for each test scenario are the final

performance metrics of each controller.
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FIGURE 1.7: Average values of outage probability, standard deviation of the RSSI
tracking error, and power consumption for different radio power controllers of all sen-

sor nodes.

Figure 1.7 and Table 1.2 present the summary of performance evaluation in terms of

the average power consumption P̃, the average outage probability P̃o, and the average

standard deviation of the RSSI tracking error σ̃e produced for different test scenarios

according to the performance criteria (1.32), (1.33), and (1.34), respectively. More

detail can be seen in [62].
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TABLE 1.2: Performance evaluation for different radio power controllers taking into
account all sensor nodes.

eMMMPC eMPC Adaptive 1 Adaptive 2

One mobile
P̃o (%) 2.10 4.36 18.12 29.65
σ̃e (dBm) 19.55 22.24 48.16 101.22
P̃ (mW) 13.11 14.77 15.65 48.66

eMMMPC eMPC Adaptive 1 Adaptive 2

Two mobiles
P̃o (%) 3.19 6.86 18.38 25.78
σ̃e (dBm) 26.11 38.12 58.84 106.20
P̃ (mW) 19.31 23.41 24.57 68.32

eMMMPC eMPC Adaptive 1 Adaptive 2

Three mobiles
P̃o (%) 6.18 9.48 21.93 26.46
σ̃e (dBm) 37.74 46.48 73.37 111.76
P̃ (mW) 28.05 36.72 35.53 75.68

1.4 Conclusion to the chapter

In this chapter, an introduction of MPC and its implementation have been presented.

An overview of tuning techniques for MPC commonly used in the industrial process is

also addressed. From a practical point of view, a RSSI-based explicit min-max MPC

approach has been presented to address the radio power control problem encountered

in ambulatory sensor networks. It has been shown that an explicit solution of the con-

strained min-max MPC problem can be computed for the WSN power control problem

by solving an mpQP. The feasibility of the proposed design and its performance has

been experimentally validated using a variety of test scenarios. The experimental re-

sults clearly show that the explicit min-max MPC-based power management strategy

performing optimal radio power assignments exhibits good performance for this partic-

ular problem. Moreover, the algorithm has been implemented on a reduced functionality

wireless sensor platform and the numerical overhead involved is relatively insignificant

from an implementation perspective. However, although the strategy is suitable for in-

dustrial processes (process industry, manufacturing, etc.), lack of on-line tuning param-

eters to the designed controller is a weakness in terms of implementation. One possible

solution is to design different PWA controllers for different settings parameters and lin-

early interpolating the longline action of the different controllers. The problem with this

is an increase in complexity. In the following chapters, we will address this problem by

using Fuzzy models and a complexity reduction technique.



Chapter 2

Implementation of fuzzy inference
systems

This introductory chapter will give an overview about the foundation of fuzzy logic (FL)

and its applications. Now days, FL is the paradigm of the Soft Computing, discipline

of computer science which integrates a set of techniques that deal with approximation,

imprecision, uncertainty and partial truth. (such as neural networks, evolutionary com-

putation, support vector machines, etc.). Many engineering applications have been de-

veloped based on the use of fuzzy logic [93]. Since 1965, when L. Zadeh published his

article about fuzzy sets, the count of publications containing the word “fuzzy” in title,

as cited in INSPEC database is 171.420 and in MathSciNet database, 27.201 (Compiled

on July 26, 2015). The total number of papers with “fuzzy” in title in Google Scholar

is 2.310.000. There are 29 journals with ”fuzzy” in the title (and 21 with ”soft comput-

ing”). And there are 1255 patents issued with ”fuzzy logic” into the title and 2.314 with

”fuzzy control”, according to The Lens (http://www.lens.org).

2.1 Fuzzy logic

FL is a logical system built on the basis of fuzzy sets, introduced by Lotfi A. Zadeh[93].

According to him, if X = {x} is a space of objects (points) a fuzzy sets A in X is charac-

terised by a function fA(x) : x→ [0,1], called membership function. In classic set theory

the membership function can take only two possible values: {0,1}. FL is, therefore,

a multivalued logic. Fuzzy and classic inference are to obtain a conclusion statement

25

http://www.lens.org
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from another (premise) by applying inference rules, they only differ on belonging to

sets of variables used in the antecedents and consequences. Fuzzy logic can handle in-

formation closer to the human way, ie, uncertain, vague or imprecise. A plant operator

is able to control a system using logic, running perfectly control actions not defined

by numbers, such as: close valve slightly, slightly slow down or set to a fairly high

temperature. The operator controls with significance more than accurately.

Modus Ponens inference rule is used in applications of logic in engineering because it

preserves the cause-effect. Modus Ponens or direct reasoning can be summarized as

follows:

• Premise 1: x is A

• Premise 2: IF x is A, THEN y is B

• Consequent: y is B

Modus Ponens is associated with the implication A→ B. As for the theory of fuzzy

sets, also the foundations of the theory of fuzzy logic depart and take the fundamental

concepts of classical logic. In fuzzy logic, modus ponens extends to generalised modus

ponens, where the antecedents (premise 1 and 2) and consequent are activated by a

degree of membership ∈ [0,1]. Generally, a fuzzy inference system (FIS) is structured

as shown in fig 2.1. The fuzzification is determined by the degrees of membership of the

inputs to the sets mentioned on the premises. In order to formulate mathematically the

fuzzy inference system a mechanism has to be defined for the operators, implication,

aggregation and defuzzification. There are two types of well known fuzzy systems:

Operator
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IF  x   IS A1 AND   y   IS   B1 THEN   z   IS   C1

IF  x   IS A1 AND   y   IS   B1 THEN   z   IS   C1

..
. {S

Fuzzification

FIGURE 2.1: Fuzzy inference system structure

Mamdani-type and Takagi-Sugeno type.
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2.1.1 Mamdani fuzzy systems

Mamdani System is a structure proposed by E. Mamdani [94] in 1975. A Mamdani

fuzzy system consists of fuzzy antecedent and consequent, a rule set, a inference en-

gine that processes the reasoning process using the rules set. The idea of this structure

is to carry out an approximation of the human reasoning. A set of conditional rules

(IF...THEN...) connects the inputs with the outputs. Those rules work with fuzzy predi-

cates. Given the inputs (non-fuzzy), the fuzzification is carried out by the evaluation of

prototypical memberships functions (fig. 2.2) The degree of membership (dm) is a value
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FIGURE 2.2: Common Membership functions

between 0 and 1 assigned to a non-fuzzy number and gives it the degree of belonging to

a particular fuzzy set represented by a membership function. In other words,

Definition 2.1. Let X be an universal set, and a fuzzy subset A of X . The membership

function of A is defined as:

µA : X → [0,1]
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the value µA(x) is the degree of belonging of x to the fuzzy set A. Once the fuzzification

is made and the dm to every fuzzy system are calculated, they will decide the degree

of activation of each rule. In case of multiple inputs, an operation between degrees of

membership must be performed in order to obtain the dm of the antecedent. Multipli-

cation or minimum of dm could be chosen if they are connected by AND operator, and

summation or maximum of dm if OR operator. The result of the operation, will decide

the degree of firing of the particular rule. A way to define the numerical firing of a rule

is by using α-cuts.

Definition 2.2. Let X be an universal set, and a fuzzy subset A of X . Let α ∈ R and

α ∈ [0,1]. then, the α-cut of A is defined as:

α(A) = {x ∈ X |µA(x)≥ α}

If the activation degree of rule i is µi and the fuzzy consequent is the fuzzy set Ui(x),

defined by the membership function µUi(x) , then, if αi is the α-cut of Ui(x), with

α = µi, the firing degree of such rule is defined by the function:

U i(x) =

{
µi i f x ∈ αi

µUi(x) i f x /∈ αi
(2.1)

Taking the U i(x) function for each rule, all of them are combined into a single fuzzy

set. Normally, set is formed by the union of the new membership functions of the

outputs u(x) =
⋃

U i(x), so called aggregated fuzzy set. There are several methods of

defuzzification to obtain the nonfuzzy real output. The most popular defuzzification

method for Mamdani systems is the centroid [95]. The idea of this method is to get the

centre of gravity of the aggregated fuzzy set. Let ci be the centre of the membership

function U i(x), the centre of gravity can be computed by:

COG =
∑i ci ·

∫
iU i(x)

∑i
∫

iU i(x)
(2.2)

The set of methods chosen to simulate the logic inference, is known as fuzzy inference

engine.



Implementation of fuzzy inference systems 29

2.1.2 Takagi-Sugeno fuzzy systems

Takagi-Sugeno (TS) fuzzy systems [96] have been applied successfully in non-linear

model based techniques [97] where the nonlinearity can be decomposed into multiple

linear regions defined by each rule. In TS models, the system may be described by j

rules by the following way:

Rule R j :

IF x1 is Ax1 j, ..., and xn(k) is Axn j,

THEN: f j = g0 j +g1 jx1 + ...+gn jxn

being xi,y j for each rule, the inputs and outputs of the system respectively, and Axi j

is the fuzzy set respective to xi(k) on the rule j, gi ∈ R, f j(k) is the output of the model

respective to the operating region associated to that rule. The structure of antecedents

describes fuzzy regions in the inputs space, and the one of consequents presents non-

fuzzy functions of the model inputs.

These models may be formulated as an adaptive neuro-fuzzy inference system (ANFIS)

[98]. In figure 2.3 an ANFIS is presented as an example with n input variables, one

output variable and five layers. The first layer is composed of membership functions of
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FIGURE 2.3: Fuzzy neural network [99]

each Ai j, defined by the membership degree

µAi j : xi ∈ R 7−→ µAi j(xi) ∈ R (2.3)

The output of each node i is µAi j(xi), the membership degree of xi. For the definition of

these membership functions, some standard types are used, like gaussian membership
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functions (see figure 2.2).

The second layer has nodes labelled with Π which implement fuzzy inference machine.

Logical operation AND may be carried out by multiplication or minimum value for

example, the output of each node j of this layer may be:

ω j(x) = µA1 j(x1)·µA2 j(x2)·...·µAn j(xn) (2.4)

Or

ω j(x) = min{µA1 j(x1),µA2 j(x2), ...,µAn j(xn)} (2.5)

The third layer normalises the inference motor. The output of each node of this layer is:

a j(x) =
ω j(x)

∑
N
j=1 ω j(x)

(2.6)

Where N is the number of rules of the system. The fourth layer has adaptive nodes:

a j(x)· f j(x) = a j(x)·(g0 j +g1 jx1 + ...+gn jxn) (2.7)

Finally, the fifth layer is the defuzzification node. For TS systems, the output will be:

N

∑
j=1

a j(x)· f j(x) =
∑

N
j=1 ω j(x)· f j(x)

∑
N
j=1 ω j(x)

(2.8)

We will call a j(x) antecedent functions and f j(x) consequent functions. The output of

the fuzzy complete model may be described by

f (x) =
N

∑
j=1

a j(x)
(
g0 j +g1 jx1 + ...+gn jxn

)
(2.9)

2.2 Industrial standardisation

Although the advanced control, in each and every one of his strategies, has been widely

used in many industrial applications, only some paradigms are defined by industry stan-

dards. Certainly the standard ISO/FDIS 15746-1 [100], about Automation systems and

integration -Integration of advanced process control and optimisation capabilities for
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manufacturing systems - in its Part 1: Framework and functional model, defines strate-

gies as Model Predictive Control (and as examples: Dynamic Matrix Control, Gener-

alised Predictive Control and Model Algorithmic Control), Fuzzy Control, Minimum

Variance Control, Learning Control, Logic Control, Neural Network Control, Opti-

mal Control and Statistical Process Control. However, there is a lack of standardis-

ation about the way to implement practically each of them in a real plant. Only the

fuzzy control has an industrial standard for deployment in industrial hardware platform:

IEC61131 [11].

Fuzzy control is the theory of fuzzy logic applied to control engineering. Fuzzy control

has emerged as a technology that can enhance the capabilities of industrial automation,

and is suitable for level control tasks are generally performed in Programmable Logic

Controllers (PLC).

The purpose of the standard IEC1131-7 is to provide manufacturers and users a com-

mon understanding well defined base, a means to integrate fuzzy control applications in

the languages of Programmable Controllers according to Part 3 [7], as well as the ability

to exchange fuzzy control portable programs between different programming systems.

The standard defines the following terms:

Accumulation, aggregation, activation, conclusion, condition, crisp set, defuzzification,

degree of membership, fuzzification, fuzzy control, fuzzy logic, fuzzy operator, fuzzy set,

inference, linguistic rule, linguistic term, linguistic variable, membership function, sin-

gleton, subcondition, rule base, weighting factor.

The main part of the standard is the definition of fuzzy control language (FCL). The idea

behind is to make the programmers be able to exchange fuzzy control projects between

different manufacturers. The standard defines hierarchical levels of conformance:

• Basic level. With mandatory characteristics, data type and Function block defini-

tions, etc that defines the minimum implementation.

• Extension level. Optional features for a more sophisticated implementation (more

operators, defuzzification methods, etc.)

• Open level. Additional features related to the membership definition

It establishes the integration into the PLC using function blocks or programs previously

defined in part 3[7]. The Standard calls also for the delivery of a defined data check list,

in order to facilitate the transfer of applications among the different platforms. The fig-

ure 2.4 shows a Functional Block Diagram (FBD) [7] of FCL following the standard. In
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it, basic level language functions blocks for fuzzification, operators and defuzzification

are shown. To read more about this particular manufacturer FCL library, see [101]. In

FIGURE 2.4: Example of FCL for a PLC [101]

Chapters 4 and 5, the standard IEC-61131-7 will be used for real applications.

2.3 Development of a FIS application for authentication

gestures

As an application of use of fuzzy systems, we describe here a commercial implemen-

tation: authentication gestures [102, 103] Non-textual authentication methods differ in

a number of ways from the classical username/password approach. Key among these,

and the factor that drives the work presented in this section is that successful authen-

tication follows not only from an exactly matching input, but from any one of the set

of sufficiently matching inputs. While the textual password must exactly match the

stored prototype, the non-textual input need only be sufficiently similar to the stored

prototype since the exact match is exceedingly unlikely. The requirement for a prox-

imity based match suggests that a fuzzy-based approach is appropriate. Since gestures

cannot be repeated with precision, but can convey sufficient information to consider

them almost equal to the stored prototype, fuzzy logic may be a suitable technique
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to check for similarity. Fuzzy logic has been widely used in matching techniques

[104]. Some techniques are based on Fuzzy Transforms [105],[106]. Others, on rel-

ative distance [107],[108],[109], on similarity measure [110],[111]. One of the typical

field for application of fuzzy matching is the string and signature recognition, due to

the ability of characters convey the same information using different graphical forms

([112],[113],[114],[115],[116]).

Given that the repeatability of a gesture lacks precision, but may contain sufficient ele-

ments to consider almost equal or not to the previously recorded, Fuzzy Logic may be

a suitable technique to check the correspondence between them.

To recognise faces, an extraction of features can be performed using a biometric algo-

rithm. Authentication based on a biometric factor is a widely used technique for mobile

devices (i.e. [117]). Fuzzy logic is also an established method for matching those fea-

tures [118]. A position of an image in a smart phone or tablet is composed of two

coordinates (xi,yi). The prototype will be composed of N points with the positions

P = {(x1,y1),(x2,y2), ...,(xN ,yN)}

A first prototype to be registered is built by the average of the position of several gestures

given by the registration process. The fuzzy matching engine (FME) will make an index

using the degree of membership of each pattern point to the prototype point.

There will be a fuzzy number defined for each prototype coordinate:

P̃ = {(x̃1, ỹ1),(x̃2, ỹ2), ...,(x̃N , ỹN)}

The fuzzy number b̃ will be defined for the couple {b,d} where b is the representative

ba c

1

m

FIGURE 2.5: Triangular membership function

crisp number of b̃ and d will be an adjusting parameter which defines the distance

d = |c−a| in the figure 2.5. In order to simplify the application, we will set it up with

the same value for all the fuzzy numbers, calling it the fuzziness parameter.

Using a rule like: IF xi IS x̃i THEN y = 1, the degree of membership µx̃i(xi) of the crisp
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number xi to the fuzzy number x̃i is obtained. Applying the rule to each coordinate gives

a set of {µx̃i(xi),µỹi(yi)}. Taking into account the sequence order and calculating each

degree of membership, the expression

µ =
∑

N
i=1 µx̃i(xi) ·µỹi(yi)

N
(2.10)

yields a matching index for the gesture and feature vector. A threshold value can then

be used to establish whether the index value represents a match or not. This parameter

is referred to as the sensitivity.

2.3.1 Result using the FME

Figures 2.6 and 2.7 show examples of matching (after adjusting fuzziness and sensi-

tivity) using the matching index (2.10). Before applying the FME, the gesture is nor-

malised to an image of the user’s face in terms of orientation and scale so that compar-

isons can be made. For instance, the vector formed by joining the center of the eyes is

a good reference. Figure 2.8 show how the gesture is matched with different orienta-

tions and sizes. The OpenCV library [119],was used for obtaining biometric markers
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FIGURE 2.6: Example of matching. Dot line: prototype; Solid lines: not matched
gestures; Thick solid line: matched gesture

on the face photographed by a camera connected or built-in to the device. The testing

was performed on Windows/Android devices only. The touchStart/mouseDown events

where used to capture the single-finger touch, the density of points captured depends

on the device and also the speed at which the user swipes their finger. Therefore, a

interpolation/extrapolation stage to produce 100 equidistant coordinates was used. Bio-

metric markers [120] are used to produce a feature vector, which is given to the FME

in order to identify the user. The testing results demonstrated so far that the FME can
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FIGURE 2.7: Examples of matching. Dot line: prototype; Solid line: not matched
gesture; Thick solid line: matched gesture

be used for biometric/gesture authentication despite restrictions posed by the technical

limitations of devices. Furthermore, a number of parameters such as the sensitivity (i.e.

the threshold score for successful authentication) can be used to fine-tune a specific

implementation. Figure 2.10 shows the distribution of scores for negative and positive

gestures. Positive means a deliberate attempt to repeat a registered gesture while neg-

ative means a deliberate attempt to draw a different gesture. Generally, the negative

gestures have a low score and the positive gestures have a high score. However, there is

some overlap. This means that regardless the value that is chosen for sensitivity, false

interpretations cannot be avoided. As it stands, the sensitivity is at 0.6, which leads to

some rejected positives but does not allow any authenticated negatives.

• Scores for negative gestures were in the range 0−0.43 (mean=0.12, median=0.73)
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FIGURE 2.8: Example of matching after normalisation. Dot line: prototype; Solid
line: not matched gesture; Thick solid line: matched gesture

FIGURE 2.9: Application working in a mobile device



Implementation of fuzzy inference systems 37

negative positive

0.
0

0.
2

0.
4

0.
6

0.
8

Distribution of Positives and Negatives

S
co

re

FIGURE 2.10: Distribution of positives and negatives

Distribution of Scores for Positive Gestures

Score

F
re

qu
en

cy

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0
2

4
6

8

FIGURE 2.11: Distribution of scores for positives gestures

• Scores for positive gestures were in the range 0.21−0.89 (mean=0.56, median=0.61)

In this case, the threshold could safely be lowered to 0.5. However, there would still

be no authenticated negatives but the number of rejected positives would have been

reduced to 18% and authenticated positives would increase to 45%. Figures 2.11 and

2.12 show the distribution of scores for positive and negative gestures respectively. As

expected, these are somewhat skewed to the left and right respectively. It should be

noted that these statistics were compiled by manually examining gestures. The human

operative would not know if a gesture was drawn from left to right or from right to

left. However the system would always reject a gesture that was drawn in the opposite

direction from its prototype. Consequently, some gestures labelled positive may, in fact,
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have been negative. This may account for the unexpectedly high prevalence of positive

gestures with a low score (the spike to the left on figure 2.11). Therefore, the system

may have performed somewhat better than these numbers suggest.

2.4 Conclusion to the chapter

This chapter provides an overview of fuzzy inference systems. The industrial imple-

mentation through the FCL for PLC, shows that the use of fuzzy logic in the industrial

world is well established, unlike other advanced control techniques. The standard pro-

vides manufacturers and users a common understanding well defined base, a means to

integrate fuzzy control applications in the languages of Programmable Controllers ac-

cording to the PLC standard languages, as well as the ability to exchange fuzzy control

portable programs between different programming systems. A real application of the

FIS has been described. It is a real example of commercial use of fuzzy techniques for

authentication gestures in smart phones and tablets. The application is commercialised

by the company Sensipassr. That application can be seen as a minor contribution for

this thesis, which shows a practical implementation of a FIS for embedded systems.



Chapter 3

Fuzzy modelling techniques and
applications

The use of models for prediction, simulation and control of systems is very common

in engineering. There is vast literature regarding the modeling of dynamic systems.

Obtaining a system model is not always an easy process. In many real cases, system

complexity due to the number of variables in play, the random nature of the process,

ignorance of the physics of the system, etc., makes it virtually impossible to obtain

equations that reflect the behavior of the real system. At other times, an accurate model

will consist of a large number of equations, which make the model impractical for use

in control applications. In many cases, fuzzy inference systems can be the solution to

the problem of modeling. Given that the behavior of systems can be described by rules

captured by the experts and described with human language, fuzzy logic is an appropri-

ate tool to to formulate that knowledge.

Despite fuzzy models being highly successful in industry, even today, many scientists

are reluctant to use fuzzy systems for modeling or control. This may be due to confusion

caused by its name. Paraphrasing Professor Zadeh, the father of fuzzy logic, ”There are

many misconceptions about fuzzy logic. Fuzzy logic is not fuzzy. Like traditional logical

systems and probability theory, fuzzy logic is precise. However, there is an important

difference. In fuzzy logic, the objects of discourse are allowed to be much more general

and much more complex than the objects of discourse in traditional logical systems and

probability theory.”[121].

The typical questions of the classical system identification community is: Why do we

use a fuzzy inference system (FIS) for approximating continuous functions instead of

more classical techniques, like regression, for performing this task? [122]. An answer

39
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may be that a FIS forms a collection of fuzzy rules which can be extracted from experts

knowledge, or from common sense. Moreover, each rule can represent a local model

that is easily interpretable and analysable. This local type of representation enables im-

proved approximation accuracy to be obtained [123]. One might object that Piece Wise

Affine (PWA) models [124] already exist for that reason. However the transition from

one region containing a linear model, to another region in which another linear model

prevails, is naturally smooth and not sharp, as is the case with the PWA systems. This

makes fuzzy systems more suitable than PWA models for describing nonlinear systems.

The goal of fuzzy modeling is to obtain a set of rules that describe the dynamics of the

system through experimental data. FIS are generic functional approximators, i.e., given

a certain level of error, you can find a FIS that approximates any function with less than

that fixed error. To do this, various techniques are used, some from the field of neural

networks (NN) and also from other fields such as statistics, genetic algorithms, etc.

This chapter will provide an introduction to the techniques of fuzzy modeling. In Sec-

tion 3.1, the mathematical formulation of fuzzy models is presented, considering the

problem of the choice of inputs and modeling error. In Section 3.2, the different groups

will be most popular methods to determine the structure and parametrisation of these

models. Finally, in section 3.3, several real applications made under this thesis will be

presented.

3.1 Fuzzy modelling

Most real applications require mathematical models as functional assignments, corre-

sponding actual inputs to outputs, where the aim is to approximate a function y = f (x)

in a limited area (compact) of input space x = (x1,x2, ...,xn). In this section, the func-

tional representation of fuzzy models will be described. As we mention in 2.1, there

are two kind of Fuzzy Inference Systems, called Mamdani and Takagi-Sugeno fuzzy

systems. Given a Mamdani system by rules of the form:

Rule R j :

IF x1 is A1 j AND x2 is A2 j, AND,..., AND xn is An j,

THEN: y j is B j

Where Ai j is a membership function (MF) of the input xi and B j the consequent of the

output y j. Using the product for the AND operator, the minimum for the implication,

the union for the aggregation and µi j(x) being the degree of membership of the input xi
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to the fuzzy set Ai j and ν j(y) represents the degree of membership of the output y j to

B j.

To obtain the output, we can use the centroid defuzzifier:

y =
∫

Y µ(y) · y ·dy∫
Y µ(y) ·dy

(3.1)

Where

µ(y) =
⋃

j

[
min

{(
n

∏
i=1

µi j(x)

)
,ν j(y)

}]
Once the rule base is set, the problem of approximation is reduced to find the parameters

that define each µi j(x) and ν j(y), which usually are chosen as prototypical functions.

Examples are:

• Triangular

m(x;a,b,c) = max
[

min
(

x−a
b−a

,
c− x
c−b

)
,0
]

Where a,b,c (with a < b < c) determine the x coordinates of the three corners of

the triangular MF

• Trapezoidal

m(x;a,b,c,d) = max
[

min
(

x−a
b−a

,1,
d− x
d− c

)
,0
]

a < b ≤ c < d determine the x coordinates of the four corners of the trapezoidal

MF

• Gaussian

m(x;c,σ) = e
−

1
2

(
x− c

σ

)2

Where c is the MFs centre and σ determines the MFs width

• Generalised bell

m(x;a,b,c) =
1

1+
∣∣∣∣x− c

a

∣∣∣∣2b

c determines the centre of the corresponding membership function; a is the half

width; and b
2a controls the slopes at the crossover points.
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3.1.1 Takagi-Sugeno models

Many methods can be found in the literature for the identification of a fuzzy model.

One of the most popular methods is the formulation of a Takagi-Sugeno Fuzzy sys-

tem as a NN [98], also called Adaptive Neuro Fuzzy Inference System (ANFIS). One

of the classical ways to model complex systems experimentally is by using artificial

NN. Models based on NN[125] are relatively easy to design, they often impose initial

assumptions (as a functional dependency), simulation responses are quick. It is true

that operators and engineers have a good insight into the operation of complex process,

achieved over many years of experience. However a problem often arises when this

knowledge is incomplete and imprecise, making the formulation of accurate mathemat-

ical equations very difficult. In general, all the training methods used in artificial NN

can be transferred to the field of fuzzy systems [98], so called NeuroFuzzy Systems,

which is an attempt to combine the learning ability of NN to the handling of uncertain

information of the fuzzy inference system (FIS). The rule basis of an FIS can be based

on expert knowledge, however, there are methods based on techniques that do not re-

quire a priori information about its structure.

FIS used for modeling, can handle nonlinear processes well, and provide knowledge of

the system that is impossible with the use of NN. The models based on ANFIS combine

the advantage of adaptive neural networks (ANN), such as the ability to learn and adapt,

and fuzzy logic, i.e. knowledge based on rules and management uncertainty and sig-

nificance of knowledge. Unlike ANNs based systems, ANFIS can incorporate a priori

knowledge in order to improve the model.

In the neurofuzzy model proposed by Takagi-Sugeno (TS)[96], the structure of an-

tecedent describes fuzzy regions in the inputs space, and the one of consequent presents

non-fuzzy functions of the model inputs. Recurrent Fuzzy Neural Networks (RFNN)

have demonstrated better results at identifying all the dynamics of nonlinear systems.

They are systems which have the same advantages as recurrent neural networks [126,

127]. RFNN are also named Fuzzy Dynamical Systems (see figure 3.1) and extend the

application domain of FNN to temporal problems. Feedback enables dynamics to be

captured and updated. If we use recurrent functions with NARMAX structure (Non-

linear Auto Regressive Moving Average with eXogenous input), of the kind: ŷ(k+1) =

f (y(k), ...,y(k−m),u(k), ...,u(k−n)), where u,y are the inputs and outputs of the sys-

tem, each rule of the system may be described by

R j :

IF x1(k) is F1 j, ..., and xn(k) is Fn j,



Fuzzy modelling techniques and applications 43

Outputs

Inputs

i

FIGURE 3.1: Dynamical Neurofuzzy System

THEN:

y j(k) = a j(z−1)y(k−1)+b j(z−1)u(k−d)+ξ (k)

Where a j(z−1)= a1 j+a2 jz−1+ ...+any jz−(ny−1) and b j(z−1)= b0 j+b1 jz−1+b2 jz−2+

...+bnu jz−nu

X(k) = [x1(k)x2(k)...xn(k)]
T is the inputs vector of the neurofuzzy system in the instant

k, Fi j is the fuzzy set respective to xi(k) on the rule j, y j(k) is the output of the model

respective to the operating region associated to the rule. If µi j(k) is the membership

degree of x j(k) in the fuzzy set Fi j and the number of implications or rules is L, the

Recurrent Fuzzy Neural Network (RFNN) complete model is described by

y(k) =
L

∑
j=1

w j(k)
[
a j(z−1)y(k−1)+b j(z−1)u(k−d)

]
+ξ (k) (3.2)

Where

w j(k) =
µ̄ j(k)

∑
L
j=1 µ̄ j(k)

, µ̄ j(k) =
n

∏
i=1

µi j(k)

and ξ (k) is a white noise sequence with zero mean.

Rewriting equation (3.2) as

ā(z−1)y(k) = b̄(z−1)u(k−d)+ξ (k) (3.3)

Where d is the delay and

ā(z−1) = 1− ā1z−1− ā2z−2− ...− ānyz
−ny (3.4)

b̄(z−1) = 1− b̄1z−1− b̄2z−2− ...− b̄nuz−nu (3.5)

āi =
L

∑
j=1

w j(k)ai jz−i (3.6)

b̄i =
L

∑
j=1

w j(k)bi jz−i (3.7)
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TS systems are computationally more efficient than Mamdani systems and work well

with optimisation and adaptive techniques, which makes them very attractive in control

problems, particularly for dynamic non linear systems [128].

3.1.2 Input selection

When establishing the structure ANFIS structure, one problem is to determine the mem-

bership functions. A large number will increase modelling accuracy, resulting in numer-

ous management rules. This problem of the explosion of rules as linguistic terms, can

be overcome with the application of clustering methods [129] seeking classification of

data into subsets. In addition to the proper choice of rules and membership functions

via a methodology, the choice of the input variables is important. In a simple applica-

tion, consisting of a few variables, it is easier to choose the inputs, observing causality.

When the system is composed of many variables, coupled with each other and hardly

visible to the naked eye, a method can be to choose the maximum number of variables

in the input FIS, and let any method from multivariate analysis decide the appropriate

subsets, including the input.

On the other hand, in many applications, it is important to catch the dynamics of a sys-

tem and predict it for a variable time horizon ahead. A model with previous samples

of the output as inputs, may be useless if it’s very sensitive to input errors, i.e., due

to modelling error, a recurrent scheme may yield poor results if used in model-based

control strategies with a large prediction horizon. For example, in figures 3.2, 3.3, 3.4

a comparison between a dynamical neurofuzzy model and the real data, in function of

prediction horizon (one, three and five-step ahead) is presented. The mean absolute er-

ror |e| is used as a measurement of validation. While there is a huge literature on the

modeling of fuzzy systems and its application to engineering, the literature reports few

instances of a systematic methodology to obtain good models. Most of the contributions

in this field refer to the methods for setting the parameters and the structure of fuzzy

systems, but there is little reference made to the proper selection of inputs. In [130], a

method based on testing models with different input selection is applied. The procedure

for input variable selection is systematised as:

1. Evaluate the performance of the initial model with all candidate input variables

in the model.

2. For each remaining input variable, evaluate the performance of the initial model

with this variable temporarily removed.
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FIGURE 3.2: One-step ahead model, |e|= 0.0142
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FIGURE 3.3: Three-step ahead model, |e|= 0.0284

3. Permanently remove the variable associated with the best model performance ob-

tained in step 2. Record the resultant reduced variable set and the associated

model performance.

4. If there are still variables remaining in the model, go back to step 2 to eliminate

another variable. Otherwise go to step 5.

5. Choose the best variable set from the sets recorded in step 3.
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FIGURE 3.4: five-step ahead model, |e|= 0.0412

The idea in [131] is to find the most relevant inputs by successively removing inputs

from the initial input data set and checking whether the reduced data set is still consis-

tent. Yen et al.[132] proposed using principal component analysis (PCA), a statistical

analysis technique, to reduce the number of inputs for fuzzy models. Principal com-

ponents are eigenvectors of the input variables’ covariance matrix; the first principal

component corresponds to a linear combination of the input variables that produces

maximum variance in the input value (i.e., maximum input excitation) [133]. After a

normalisation of the variables, the application of PCA will produce a new set of uncor-

related variables. However, it’s important to select variables with any correlation with

the output before PCA, because the selection is based on variability in the input value,

not based on whether the input actually affects the output. An input variable with large

variance may be completely unrelated to the output.

3.1.3 Fuzzy Time Series

The main objective of time series analysis is the construction of mathematical models

based on known past instances of a variable in order to predict future values of the

same. There are dynamic systems that exhibit repetitive dynamics in time or have a

profile that appears regularly. When a system is complex enough to define the causal

variables of dynamic effects, we have to resort to the study of time series to predict
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future performances. For instance, Mackey-Glass equation [134] defined by

ẋ = β
x(t− τ)

1+ xn(t− τ)
− γx(t) (3.8)

Where β ,τ,γ,n ∈ R+ Presents regularities as shown in figure 3.5 There are several
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A Mackey-Glass time serie (tau=17)

FIGURE 3.5: Mackey-Glass time serie equation. β = 0.2,γ = 0.1,τ = 17,x(0) =
1.2,n = 10

methods to deal with the time series prediction [135]. Functional trend models are

normally used, assuming that they are able to generate future values. This hypothesis

is not suitable for forecasting medium or long range. In fact, time series regression

analysis is widely used in economics, social science, biomedical data, etc. [136], [137],

[138], in order to predict one step ahead. In [139] and [140] Fuzzy Time series were

presented for first time. They can be used to deal with forecasting problems in which

historical data are linguistic values. The procedure presented by Song and Chissom

[139], [140], [141], and Santos and Arruda [142] presents a robust forecast even with

non accurate data. Also S.M. Chen has improved song’s method [143], [144], in [145]

a comparison between them can be seen. However, these methods are not suitable for

medium-long term predictions. Bocklisch and Päßler [146] propose a method based on

the evolution of the membership functions following a course of time. Their models are

suitable for short, medium and long range forecasts.
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3.2 Review of methods to build and train fuzzy systems

There are numerous algorithms applicable to ANFIS learning to update the parame-

ters of the layers. Notably, for example, Backpropagation(BP) [147] much used in NN.

There are other methods combined with BP, such as hybrid combination of least-squares

and backpropagation, [98], [148]. One of the advantages of fuzzy systems over NN is

the addition of rules. These rules are given by the expert knowledge and observation of

the system by the engineer. As discussed above, one of the most important properties

of the FIS is its ability to approximate nonlinear functions with bounded approximation

error. Improving accuracy causes an increase in the number of rules. It must be con-

sidered that a system based too many rules, is impractical as well as causing a loss of

understanding of the system. The multivariable extension case is direct and in that case,

the number of rules related to the defined number of MF’s for each of the variables:

N =
n

∏
k=1

nk (3.9)

The use of a clustering method, can avoid the rule explosion, getting the natural clusters

between input and output variables. In this section, some popular and widely used

techniques to obtain the structure and train the FIS to fit the real data are presented.

3.2.1 Clustering methods

Initially, in order to obtain the membership functions, it is useful to use a clustering

method. Many algorithms exit for clustering analysis [149],[150], [151], [152]. One

fast, one-pass algorithm for estimating the number of clusters and the cluster centers

in a set of data, is the Subtractive Clustering (SC) [129]. This technique, like any

clustering method is used to obtain the appropriate linguistic variables. The SC method

is a modification of another: Mountain Method. In this algorithm, each point is assigned

the potential

Pi =
N

∑
j=1

e−α‖zi−z j‖2
(3.10)

called mountain cluster, where α = 4/r2
a y ra > 0 defines the neighborhood radius for

each cluster (is chosen depending on the desired resolution for groups). Let P∗1 the

greatest potential, belonging to the point z∗1 chosen as the center of the cluster. Then,
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for each point zi reduced potential is calculated

Pi⇐= Pi−P∗1 e−β‖zi−z∗1‖2
(3.11)

The algorithm is as follows:

IF P∗k > εuP∗1
accept z∗k as a new cluster and continue;

ELSE

IF P∗k < εdP∗1
reject z∗k and exit;

ELSE

let dmin be the minimum distance between z∗k
and all centres found;

IF dmin
ra

+
P∗k
P∗1
≥ 1

Accept z∗k as the following cluster and continue;

ELSE

Reject z∗k and assign potential 0;

Select the point with highest potential

as a new z∗k;

Repeat the test;

ENDIF

ENDIF

ENDIF

Where εu specifies a threshold above which the point is selected as the center, and εd

specifies a threshold below which the point is rejected. Typically εu = 0.5 and εd =

0.15. The radius for the reduction potential should be a degree higher than the radius of

the neighborhood to prevent spaced clusters. Usually rb = 1.5 · ra

3.2.2 Back propagation algorithms

Back-propagation algorithm was proposed in 1974 by Paul J. Werbos[147] and is the

best known and popular feed-forward multi-layer NN method of learning. It is a itera-

tive gradient algorithm. The basic principle is the error minimisation by using a gradient

descent optimisation. Figure 3.6 illustrate the structure of a NN. Let ωk
i j be the weight
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FIGURE 3.6: Structure of a multi-layer NN

of the i-th neuron in the k-th layer for the j-th input. The new weight will be given by:

ω
k
i j(t +1) = ω

k
i j(t)+2ηδ

k
i (t)x

k
j(t) (3.12)

where

δ
k
i (t) = ε

k
i (t) f ′(sk

i (t)) (3.13)

and

ε
k
i (t) =

{
ŷL

i (t)− yL
i (t) k = L

∑
Nk+1
l=1 δ

k+1
l (t)ωk+1

li (t) k = 1, ...,L−1
(3.14)

ŷL
i is the desired output value, being the output given by the activation function f :

yk
i (t) = f (sk

i (t)) (3.15)

sk
i (t) =

Nk−1

∑
j=0

ω
k
i j(t)x

k
j(t) (3.16)

The value η > 0 is known as the learning rate, Nk is the number of neurons in the layer
k. The algorithm can be expressed as follows:
Initialise weight to small values and set η > 0 to small value

WHILE (stoping criterion reached)

{
Randomly select inputs and compute

the output for each neuron using eq.3.15 and 3.16
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Compute error using eq.3.14

Compute delta values using eq.3.13

Update weight according to eq.3.12

}
The evolution of the algorithm will obtain a set of weights which minimise:

NL

∑
i=1

(ŷL
i − yL

i )
2 (3.17)

To avoid overfitting [153], use a training set (on which the weights are adjusted) and a different

set for prediction error evaluation. The backpropagation algorithm was the major breakthrough

in the field of research of NN. However the algorithm is too slow for practical applications. To

accelerate the convergence of the algorithm, many improvements have been made, for example:

[154–159].

3.2.3 Evolutionary algorithms

Evolutionary algorithms (EA) are search and optimisation methods inspired by the principles

of biological evolution solutions. In them a set of entities that represent possible solutions re-

mains, which are mixed, and compete with each other, so that the fittest are able to prevail over

time, evolving into increasingly better solutions. They are mainly used in problems with large

spaces of variables and nonlinear relation among them, where other methods are not able to find

solutions in a reasonable time. The entities that represent solutions to the problem are called

individuals or chromosomes, and all of these together are called the population. Individuals are

modified by genetic operators, mainly crossing over, the mixture consisting of the information

of two or more individuals; mutation, which is a random change in individuals; and selection,

namely the choice of individuals who survive and form the next generation. Because individ-

uals that represent the most appropriate solutions are more likely to survive, the population is

gradually improving. Evolutionary algorithms and evolutionary computation, are considered a

branch of artificial intelligence. Genetic Algorithms (GA) are the common name used for EA for

many people. A single population genetic algorithm works following the scheme of the figure

3.7. The selection determines, which individuals are chosen for recombination and how many

offspring each selected individual produces. Recombination produces new individuals in com-

bining the information contained in the parents. After recombination every offspring undergoes

mutation. Offspring variables are mutated by small perturbations (size of the mutation step),

with low probability. Genetic algorithms have a common basic outline. They process the whole

set of solutions simultaneously. Individuals are named each potential solution to the problem.

The algorithm works with the set of all individuals in the population. The composition of the

population is modified along the iterations of the algorithm, called generations. From generation
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FIGURE 3.7: Structure of a single population genetic algorithm

to generation, in addition to varying the number of copies of a single individual in the popula-

tion, new individuals may also be generated through transformation operations on individuals

of the previous population. These operations are known as genetic operators. Each generation

includes a selection process, which gives the best individuals more likely to remain in the popu-

lation and participate in the reproduction operations. The best guys are those that minimise the

algorithm adaptation function. It is essential for the work of an evolutionary algorithm that this

process of selection has a random component, so that individuals with low adaptation also have

opportunities to survive, although the probability is less. It is this random component which

gives evolutionary algorithms ability to escape local optima and explore different areas of the

search space. Variants best known are:

• Genetic algorithms (GA) [160]: use a binary or integer representation.

• Evolution Programs [161]: individuals are any data structure of fixed size.

• Real Coding Genetic Algorithm ([162–164]); is evolved a population of real numbers that

encode the possible solutions of a numerical problem.

• Evolutionary Programming ([165, 166]); it evolves a population of ”programs” to solve

a problem in general. Evolving programs can take different forms, but the most usual is

a tree. In any case, these data structures of variable size, ie, not all individuals have the

same size. This type of EA presents a fundamental difference from the rest: do not seek

the solution to a particular instance of a problem, but a strategy to solve any instance of

this problem.

The use of GA for fuzzy systems, can not only generate the set of parameters required to train

the fuzzy system but also its structure. For example, taking Mackey-Glass time series equation

(3.8), an use a set of binary values to select which previous samples can be chosen as inputs,
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Thus, in the following string: 101100101, the samples xk−1,xk−3,xk−6,xk−7,xk−9 will be chosen

as inputs for the FIS. GA can use the binary strings as individuals to evaluate an objective

function, based on the model error between a FIS generated using that particular input structure

and the series. In figure 3.8 a Fuzzy time series is compared with the Mackey-Glass equation.

After the application of GA, the input set of the FIS is xk−4,xk−7,xk−17,xk−19,xk−20, being x̂k

the fuzzy time serie output, the Root Mean Squared Error (RMSE) one step ahead is:

RMSE =

√
N

∑
i

(xi− x̂i)2

N
= 3.6131 ·10−4 (3.18)
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FIGURE 3.8: Mackey-Glass Fuzzy Time Serie

3.3 Development and validation of fuzzy models in real

applications

In this section, three real applications carried out during the research work of the thesis are

presented. The first is an application of modelling using Takagi-Sugeno models, based on linear

models, which were determined from experimental data. The second one is also a TS model

but differs by changing the input space for the subspace of the principal components (Principal

Component Analysis). The third case study is an application of fuzzy time series for electrical

demand prediction in a building.
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3.3.1 Autoclave for food sterilization

Here an example of a fuzzy model being applied to a steam autoclave for the sterilization of food

is given. This unit is located in Spain, in the IIM-CSIC (Instituto de Investigaciones Marinas-

Consejo Superior de Investigaciones Cientı́ficas). The purpose of sterilization is to eliminate

health risks by the thermal destruction of microorganisms, and to achieve product stability over

long storage periods. The treatment is carried out at an elevated temperature (> 100oC) so that

FIGURE 3.9: Autoclave for food sterilization (IIM-CSIC, Vigo, SPAIN)

the process is relatively short and, thus, having a minimal effect on factors of quality and nutrient

retention. The unit uses a stream of saturated steam to heat the enclosed product. It has three

inputs (steam, air and water) and two outputs (draining and purging). The sterilisation process is

carried out in three stages: venting, heating and cooling. In the first stage, saturated steam passes

through the vessel in order to evacuate the air from the system. Once the pressure into the vessel

is equal to the saturated steam, the second stage starts. During the heating cycle, a fine control

strategy is needed in order to track the reference and reject disturbances. After a predefined time,

the third stage starts, cooling with water and controlling the pressure by injection of air. [167]

In order to identify the process in the heating stage, a series of steps, of opening of the steam

valve sequentially, have been done, for experimentally obtaining the temperature inside. Given

the same increase in step, different temperature increases are obtained, as Figure 3.10 shows.
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FIGURE 3.10: Autoclave experimental open loop test

The system can be described by a set of ordinary differential equations derived from mass and

energy balances. The following assumptions are made in the derivation of the model equations

of this unit:

• The steam, air and vapor-air mixture are considered ideal gases.

• The unit is heated homogeneously, i.e. the temperature is the same in all points of the

autoclave.

• Liquid water and steam are considered in balance throughout the process.

Using Mass and Energy balance equations [168], is obtained:

[mv(Cpv−Rv)+ma(Cpa−Ra)+mwCpw]
dT
dt

= F i
v
[
Cpv(T i

v −T )+RvT
]
+F i

a
[
Cpa(T i

a−T )+

RaT ]+F i
w
[
Cpw(T i

w−T )
]
−FpT [xvRv + xaRa]−λΨ− (Qrad +Qconv)−Qcarc−Qsol

(3.19)

Where m is the mass, Cp the specific heat, F is the flow rate, xy mass fraction of component y, Ry

is the relationship between the universal gas constant (R) and the molecular weight of y , λ latent

heat of water, Ψ water flow that is transferred between liquid and vapor phases, Qr,Qc,Qh,Qs,

radiant, convection, through the casing, and through the solid heat, respectively, T the tem-

perature. The subscripts v,a,w indicate vapor, air and water, respectively and the superscript i

indicates ”input”. Equation 3.19 describes a nonlinear system and the nonlinear behaviour is

evident in figure 3.10.

If we linearise at every equilibrium point, we will have different linear systems. In order to sim-

plify the control problem and taking into account the nonlinear behaviour, a FIS can be made

using the results of the experiment for identification. A set of rules formed by linear systems as

a consequents can be set by the operating point variable values for the antecedents. For example,

consider that T (z) represents the autoclave temperature (in discrete time), and Us(z) represents

the positions of the steam valve, and G(z) = T (z)
U(z) , we can formulate the rule-base of the FIS as:
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IF T (z) is 108oC THEN G1(z) =
0.09259z+0.09259

z−0.9259

IF T (z) is 112.5oC THEN G2(z) =
0.07121z+0.07121

z−0.9394

IF T (z) is 116oC THEN G3(z) =
0.06515z+0.06515

z−0.9394

IF T (z) is 118oC THEN G4(z) =
0.05405z+0.05405

z−0.9459

IF T (z) is 120.5oC THEN G5(z) =
0.03919z+0.03919

z−0.9459

IF T (z) is 121.5oC THEN G6(z) =
0.00303z+0.00303

z−0.9394

Where for the variable T (z), a set of memberships have been chosen as shown in figure 3.11.

Figure 3.12 shows the validation of the Fuzzy model vs the real data.
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FIGURE 3.11: Membership functions of the temperature of Autoclave

3.3.2 Gas Mixing Chamber

As an application of PCA for Fuzzy modelling, a gas mixing chamber is proposed. The process

is a part of Atlantic Copper Smelter facilities in Huelva (Spain), whose anual production is

around three hundred thousand tons of copper [3]. This plant includes a Flash Furnace and four

Pierce-Smith converters, two of them blowing simultaneously. The three gas streams generated

in these processes are mixed in the mixing chamber and sent to three acid plants operating

in parallel (see figure 3.14). It is very important to maintain the gas pressure in the mixing

chamber at a desired value, always bellow ambient pressure in order to avoid gas losses to

the atmosphere. That pressure depends on other variables of the production line and it is very

difficult to get an accurate prediction of it. On one hand, the causes of the pressure oscillations

are hard to detect. Moreover, since there are different control systems in the copper smelter and

the acid plant, no clock synchronization is possible, so there are considerable uncertainties when
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FIGURE 3.13: General view of the copper smelter [3]
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trying to measure cause-effect delays. A suitable model for one step ahead prediction has been

developed in [3]. Other models have been made in [169, 170]. All of them are prediction models,

because the actual pressure value at time k PMC(k) is used to predict PMC(k+ 1). Taking into

account that the converters operate on a batch mode, while those of the flash furnace and acid

plants are continuous, extremely high disturbances both in flow and SO2 concentration occur

at the acid plants inlet due to the converters’ operating schedule. The existing control strategy,

based on independent single loop PID controllers, is not able to cope with those disturbances

[3]. Advanced control schemes should be applied, but it would be interesting to have a model

suitable for simulation. In this case, it is difficult to derive a precise mathematical model, based

on first principles. Besides, the computation of the solution of models obtained through this

methodology may require a large computational effort making them useless for real time tasks,

such as control or optimisation. Neurofuzzy modeling, which permits an easy way to derive

successful models, is a good alternative which can be employed to overcome such limitations

[171–174].

After a preliminary study based on some experiments with steps on the variables, the evolution

of the pressure in the mixing chamber (PMC), is influenced by others that are divided into two

groups: control signals and disturbances. In table 3.1 a brief description of the considered

variables is given, whereas in figure 3.15 a scheme depicting each of them is presented.

Figure 3.17 presents the scheme followed to obtain the neurofuzzy model. The principal com-

ponent analysis obtains new set of variables which are linear combination of the original input

variables. Let X = [x1x2...xn] a set of variables. If the principal components are y1,y2, ...,yp We

can write

yi = ai1x1 +ai2x2 + ...+ainxn (3.20)

and if Y = [y1y2...yp], Y = AX The idea is to find A to maximise the variance of Y , subject to

< aik,a jk >= 1 if i = j and < aik,a jk >= 0 if i 6= j. This analysis will be studied in more detail

in chapter 6.
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TABLE 3.1: List of variables

Description Units Type
Pressure in mixing chamber mbar Output

Flow to plant 1 kNm3/h Manipulated
Flow to plant 2 kNm3/h Manipulated
Flow to plant 3 kNm3/h Manipulated

Dilution flow to plant 1 Nm3/h Manipulated
Dilution flow to plant 2 Nm3/h Manipulated
Dilution flow to plant 3 Nm3/h Manipulated

Reference for flash furnace feeding Ton/h Disturbance
Flow control valve for flash furnace % Disturbance

Fan speed in flash furnace rpm Disturbance
Reference for fan speed line 1 rpm Disturbance
Reference for fan speed line 2 rpm Disturbance
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The performance of the model can be seen in figure 3.16, where it is validated using a different

real data set from the process.
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FIGURE 3.16: Validation of the model used in [170]

An improvement of that model is proposed using a major number of inputs, including squares

of variables, to also provide a non linear dependence for each rule. A PCA has been used both

in a model used in [170] and the one proposed here. In the first, the analysis is concerned with

determining uncorrelated variables. In the second, further simplification is achieved in the FIS.

The addition of inputs does not complicate the model when PCA is applied. Figure 3.17 presents

FIS
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FIGURE 3.17: Model Scheme used in [170]
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the scheme followed to obtain the neurofuzzy model. The inputs are the variables presented in

table 3.1, including pressure in mixing chamber, their squares and the previous samples of all

of them. To carry out the PCA, data have been used for approximately three hours of operation,

sampled every 2 seconds. The first 7 components involve 99% of the variability of the data.

Using these new 7 uncorrelated variables as inputs to the fuzzy system, and the next sampling

pressure as output, an ANFIS is designed, using Subtractive clustering technique [172]. The

performance of the model can be seen in figure 3.18, where it is validated using a real data set

from the process. It is important to note that PMC(t−1) is generated using an independent model

output, that is, the model is not fed with measured data [29]. Looking at the figures, it is evident

that the error does not grow indefinitely, this fact makes the models appropriate to simulate the

process. In figure 3.16, the mean error is 0.4099 mbar, while for the new model proposed, the

mean error is 0.1469 mbar, obtaining a significant improvement of 64%.
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FIGURE 3.18: Validation of the proposed model used in [170]

3.4 Conclusion of the chapter

In this chapter, an overview of various fuzzy modeling techniques has been described. After a

general description, the experience of several years of work with fuzzy models was presented.

There have been two examples of modeling real industrial systems. The contributions to the
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modeling of fuzzy systems, include using PCA to reduce the input space, allowing the modeling

of complex systems. Accurate independent model outputs were obtained. In relation to the main

objective of the thesis, this chapter helps to define an effective methodology for modeling non-

linear and complex systems. Since MPC relies on accurate model predictions, the performance

and accuracy of the independent model outputs demonstrated in this chapter, ensures that these

models are suitable for predictive control.



Chapter 4

Fuzzy control systems: practical
implementation

Fuzzy systems have predominantly been applied to control systems. In simple terms, a fuzzy

control system executes control actions (outputs) using a rule base that evaluates some inputs

(errors between the control variables and references). Fuzzy controllers (FC) can process sim-

ulaneously several variables from the system, hence they can also be considered as belonging

to the class of multi-input–multi-output (MIMO) systems with interactions. The FC can be

considered as a multi-input controller (eventually, a multi-output one, too), similar to linear or

nonlinear state-feedback controllers [175]. Fig. 4.1 shows the classical diagram of a Mamdani

fuzzy controller, where r is the reference input, y the controller output and d, the disturbance

input.

Fuzzy control is not simply a technique of control. It is a general outline with room for multiple

FIGURE 4.1: Basic fuzzy control system structure [175]. (1):crisp inputs, (2):fuzzi-
fication module, (3):fuzzified inputs, (4):inference module, (5):fuzzy conclusions,

(6):defuzzification module, (7):crisp output

control configurations where a fuzzy inference system is involved. In the majority of applica-

tions a fuzzy controller is used for direct feedback control or on the low level in hierarchical

63
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control system structure. However, it can also be used on the supervisory level, for example in

adaptive control system structures. Nowadays fuzzy control is no longer only used to do model-

free control. A fuzzy controller can be calculated from a fuzzy model obtained in terms of

system identification techniques, and thus it can be regarded in the framework of model-based

fuzzy control [175]. Reviewing the current literature, we could classify the fuzzy controllers

in three groups: Direct fuzzy controllers, fuzzy model-based controllers and controllers with

adaptive fuzzy parameters.

4.1 Direct fuzzy controllers

The direct fuzzy controller is an example of a Mamdani fuzzy system. In [176–179] the method-

ology to apply fuzzy controllers in a similar way to classical PID controller has been provided.

Using a rule base, similar behaviour to that of classical linear controllers (P, PD, PI, PID) can

be obtained. For example, in a classic discrete proportional controller, the output is a linear

function of the input (error between the reference and the control variable)

Uk = Kp · ek (4.1)

Where Kp is the controller constant (gain).

E U

FIGURE 4.2: Fuzzy proportional direct controller

Using the structure shown in figure 4.2, with FIS being a representation of a fuzzy system, we

can say that

Uk = f (GE · ek) ·GU (4.2)

Where f (x) is the input-output function determined by the set of rules. If the function is linear,

such that uk = GE · ek, we have that Uk = GE · ek ·GU = Kp · ek. A set of two membership

functions can be established for the inputs and outputs to realise this relationship as figure 4.3

shows. The rule base for such controller would simply be:

IF ek is P, THEN Uk is P

IF ek is N, THEN Uk is N
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Negative Positive

FIGURE 4.3: Memberships functions of the fuzzy PD direct controller

Setting GE = 1, GU will have the same meaning as the gain for a proportional controller. In a

classical Proportional Derivative (PD) controller, the output can be given by

Uk = Kp

(
ek +Td

ek− ek−1

Ts

)
(4.3)

Where Td is the derivative time and Ts the sample time.

In the fuzzy control scheme presented in figure 4.4, the inputs will be the error ek and the error

E

CEce

U

FIGURE 4.4: Fuzzy derivative direct controller

change ∆ek, where

∆ek =
ek− ek−1

Ts
(4.4)

Thus, the output is given by

Uk = f (GE · ek,GCE ·∆ek) ·GU (4.5)

As before, assuming a linear surface for the fuzzy system,

Uk = (GE · ek +GCE ·∆ek) ·GU

= GE ·GU ·
(

ek +
GCE
GE

∆ek

)
Then, we have Td =

GCE
GE . The membership functions can be chosen, for example, to be equidis-

tant, with a range of 0 to 1, as is shown in figure 4.5. And the rule base for this controller

is:

IF ek is P AND ∆ek is P, THEN uk is Big

IF ek is P AND ∆ek is N, THEN uk is Medium

IF ek is N AND ∆ek is P, THEN uk is Medium
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FIGURE 4.5: Memberships functions of the fuzzy PD direct controller

IF ek is N AND ∆ek is N, THEN uk is Small

FIGURE 4.6: Fuzzy incremental direct controller

In order to include an integral action in a discrete controller, a summation of increments for

classic controllers is given by uk = uk−1 +∆u(k), where

∆u(k) = Kp

(
e(k)− e(k−1)+

1
Tie(k)

Ts

)
Using the design of the figure 4.6, the output of the fuzzy controller will be U(k)=∑i (∆ui(k)GCU ·Ts).

A linear approximation for this controller is

U(k) = GCU ·
k

∑
i=1

GE · e(i)+GCE ·Ts

Uk =
k

∑
i=1

[
GE · ei +GCE · ei− ei−1

Ts
a
]
·Ts

= GCU

[
GE

k

∑
i=1

eiTs +GCE
k

∑
i=1

(ei− ei−1)

]

= GCE ·GCU

[
GE

GCE

k

∑
i=1

eiTs + ek

]

Comparing the constants with the classical PI,

Kp = GCE ·GCU

1
Ti

=
GE

GCE
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Two triangular membership functions can be chosen, for each input vertices -1 and 1 respectively

and three for the output with vertices -1, 0 and 1 (Fig. 4.7)

Inputs Output

Negative NegativePositive Positive

Zero

FIGURE 4.7: Memberships functions of the fuzzy incremental direct controller

The universe of the inputs can be chosen as the previous one and the output also with a range of

-1 to 1. The basic rule base for this controller may be:

IF ek is P AND ∆ek is P, THEN ∆uk is Positive

IF ek is P AND ∆ek is N, THEN ∆uk is Zero

IF ek is N AND ∆ek is P, THEN ∆uk is Zero

IF ek is N AND ∆ek is N, THEN ∆uk is Negative

Due the output being an increment, this controller is known as fuzzy incremental controller

(FIC) A fuzzy proportional derivative and incremental controller combines the structure of the

above (FPD+FIC). Its basic arrangement is the one in Figure 4.8. Where the integral of the error

is calculated:

iek = ∑
i
(eiTs) (4.6)

IE

E

CEce

U

Edt

+

+

ie

FIGURE 4.8: Fuzzy PD and incremental direct controller

And the output will be:

U(k) = [ f (GE · ek,GCE ·∆ek)+GIE · iek]GU
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the linear approximation is

Uk = [GE · ek +GCE ·∆ek +GIE · iek] ·GU

= GE ·GU ·
[

ek +
GCE
GE

∆ek +
GIE
GE

iek

]
Comparing the constants with the classical PID:

Kp = GE ·GU

Td =
GCE
GE

1
Ti

=
GIE
GE

The rule base for this controller is that of a FPD

4.1.1 Illustrative application: pneumatic levitation system

An implementation of a direct fuzzy controller for a pneumatic levitation plant has been done.

As it is seen in section 4.1, the idea is to find the equivalence of the fuzzy controller’s parameters

and the parameters of a classical controller. Taking the error and its derivative as the inputs and

incremental output (see fig.4.6), the controller is comparable to a classical PI controller. In fact,

a way to adjust this controller would be to tune a PI first, and through its constants, calculate

the fuzzy controller’s parameters. The inputs are modulated by the constants GE and GCE (for

error and error derivative respectively). The output will be the derivative of the manipulated

variable that upon modulation with a constant GCU is integrated before acting. In a simple way,

two triangular membership functions for each input vertices -1 and 1 respectively and three for

output with vertices -1, 0 and 1 (Fig. 4.7) can be chosen.

The rule base for this type of controller may be that seen in section 4.1. To adjust the constants

(GE,GCE,GCU), the constants of a PI (Kp, Ti) must be adjusted first and then, the following

calculation is performed:

Kp = GCG ·GCU
1
Ti

=
GE

GCE

For instance, GE = 0.1 is chosen and GCE and GCU are calculated. Figure 4.9 shows the control

surface for this controller. Compared to a conventional PI controller, the surface is nonlinear. A

good use for this property is that it can treat nonlinear systems.

The system is shown in figure 4.10 [180]. The device consists of a centrifugal fan blower driven

by an AC motor connected to a variable-speed drive. The drive speed-reference is sent from

a commercial PLC, which receives the ball position measurement from a personal computer
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FIGURE 4.10: Pneumatic Levitation System [180]

linked to it through Ethernet using the MODBUS TCP/IP protocol. Finally, the ball position is

computed by means of a camera connected to the PC, which has an appropriate image process-

ing software available [181]. As noted in [180], there is a dependence of the air flow velocity,

v and the distance to the fan output, h. Although a wide zone where the velocity can be con-

sidered to be proportional to h−1 exists, if h is large enough (in this application, about 50 cm)

the flow velocity decreases drastically, making the system dynamics very complex. Moreover,

taking into account that other effects (such as lateral and rotational motions, lack of sphericity,

rugosity, etc...) have not been considered, it is easy to realise that the behaviour of this system

is subject to a nonlinear dynamics. Presumably a linear controller shall have adequate perfor-

mance, where the system shows a linear behavior. In order to compare, three control strategies

have been implemented. The first controller is a classical PI, which provided a good trade-off

between tracking and disturbance rejection as can be observed in fig. 4.11. A model-based H∞
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controller was also tried out (Fig. 4.12). Although a better behavior was achieved for tracking

experiments, this controller provided poor performance for disturbance rejection. This fact may

be explained taking into account the uncertainty of the system dominant mode, which is too

oscillatory. The direct fuzzy control test can be seen in (Fig. 4.13). Despite having only a few

rules, this controller has slightly improved performance over that attained by the PI controller.

The advantage of applying a direct fuzzy controller in this case, is clearly seen in the table 4.1,

where the Integral of Time Absolute Error (ITAE) index of the time responses are exposed.

FIGURE 4.11: Experimental results with the PID controller

TABLE 4.1: ITAE index for each controller

Controller Tracking Disturbance rejection
PID 19.42 10.88
H∞ 17.54 16.12

Fuzzy 18.66 9.72

This controller has been implemented on a industrial PLC following the standard IEC61131-7
[11], (see 2.2). The code of the fuzzy block, according with this standard is:

FUNCTION_BLOCK fuzzy1

VAR_INPUT

e REAL; (* RANGE(-1 .. 1) *)

de REAL; (* RANGE(-1 .. 1) *)
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FIGURE 4.12: Experimental results with the H∞ controller

FIGURE 4.13: Experimental results with the fuzzy controller
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END_VAR

VAR_OUTPUT

T_0 REAL; (* RANGE(0.7460 .. 0.9928) *)

END_VAR

FUZZIFY e

TERM e_m1 := (-1.0, 1) (1.0, 0);

TERM e_m2 := (-1.0, 0) (1.0, 1);

END_FUZZIFY

FUZZIFY de

TERM de_m1 := (-1.0, 1) (1.0, 0);

TERM de_m2 := (-1.0, 0) (1.0, 1);

END_FUZZIFY

DEFUZZIFY du

TERM du_m1 := -1.0 ;

TERM du_m2 := 0.0 ;

TERM du_m3 := 1.0 ;

METHOD: MoM;

END_DEFUZZIFY

RULEBLOCK No1

AND:MIN;

ACCU:MAX;

RULE 0: IF (e IS e_m1) AND (de IS de_m1) THEN (du IS du_m1);

RULE 1: IF (e IS e_m1) AND (de IS de_m2) THEN (du IS du_m2);

RULE 2: IF (e IS e_m2) AND (de IS de_m1) THEN (du IS du_m2);

RULE 3: IF (e IS e_m2) AND (de IS de_m1) THEN (du IS du_m3);

END_RULEBLOCK

END_FUNCTION_BLOCK

Where the inputs e and de have to be previously multiplied by the constants GE and

GCE respectively and the output du needs to be multiplied by GCU before being inte-

grated.

4.1.2 Stability analysis of fuzzy control systems

Lliterature about studies of stability of fuzzy control systems abound, e.g. for direct con-

trollers: [182–192], and for fuzzy model-based control systems: [193–204]. In [205]

and [206] a design algorithm is proposed in order to obtain stable fuzzy controllers.

Li-Xin Wang [207, 208], raised an interesting scheme based on adding a supervisory

control for fuzzy controller. Figure 4.14 shows the scheme proposed. The control ac-

tion is composed by u = uc + us with uc being the fuzzy controller action and us the
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FIGURE 4.14: Scheme of adaptive supervisory control[208]

supervisory controller action. The idea of this control scheme is to compute a term us

based on the structure of the controller and apply it to avoid violating stability limits

established by a Lyapunov function. Within the limits of stability us = 0.

4.2 Fuzzy model-based control

One of the well known techniques that provided a procedure to design a controller from

a TS fuzzy model is the Parallel Distributed Compensation (PDC). In [209], Kang and

Sugeno design a way to control a system using a TS model. In [210–212] a procedure

was developed, taking into account the stability of the system in the design. Using the

state space formulation, the ith rules of a TS fuzzy model will be [213]:

IF z1(t) is Mi1 and ... zp(t) is Mip THEN{
x(t +1) = Aix(t)+Biu(t)
y(t) = Cix(t)

Where zi(t) are the input premises of the system. They can be state variables or function

of the inputs or disturbances. Mi j are fuzzy sets defined for the variables z j(t). The

consequent is a linear system with outputs vector y(t) and state variables vector x(t)

If for each rule we design a linear fuzzy controller such that

IF z1(t) is Mi1 and ... zp(t) is Mip THEN

u(t) =−Fix(t) (4.7)
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The global state vector will be

x(t +1) =
r

∑
i=1

ai(z(t)){Aix(t)+Biu(t)} (4.8)

The overall fuzzy controller will be

u(t) =−∑
r
i=1 wi(z(t))Fix(t)

∑
r
i=1 wi(z(t))

=−
r

∑
i=1

ai(z(t))Fix(t) (4.9)

substituting 4.9 into 4.8,

x(t +1) =
r

∑
i=1

r

∑
j=1

ai(z(t))a j(z(t)){{Ai−BiF j}x(t) (4.10)

According to [214] and [210] we can state the following sufficient stability condition

[210]:

Theorem 4.1. The equilibrium of a fuzzy system is globally asymptotically stable if

there exists a common positive definite matrix P such that for all subsystem i,

AT
i PAi−P < 0 (4.11)

Finding a common P is a LMI problem. From equation 4.7 and theorem 4.1, the fol-

lowing theorem can be formulate [211, 215]:

Theorem 4.2. The equilibrium of a fuzzy control system is globally asymptotically sta-

ble if there exists a common positive definite matrix P such that the following two con-

ditions are satisfied:

{Ai−BiFi}T P{Ai−BiFi}−P < 0, i = 1,2, ...,r (4.12)

GT
i jPGi j−P < 0, i < j ≤ r,s.t. ai∩a j 6= φ (4.13)

The control design problem is to select Fi(i = 1,2, ...,r) such that conditions 4.12 and

4.13 are satisfied.

As seen in Chapter 1.1, the current paradigm of model-based control is the predictive

control. The use of fuzzy techniques in predictive control was proposed for the first time

by [216]. In the literature there are two approaches to conceive using fuzzy inference

systems on predictive control. One is based on the use of fuzzy optimisation to solve

the problem of predictive control, an approach that transparently translates objectives
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and constraints to predictive control by fuzzy multicriteria decision making [217–219].

Following this line, [220] a stable model-based fuzzy predictive control based on fuzzy

dynamic programming is proposed. Other approach is the use of fuzzy systems as a

prediction model for any MPC strategy, [221–225]. The use of fuzzy modeling for

predictive control is justified by the complexity of the system to be modeled, either

because the number of variables and their interactions, as the nonlinearities or hybrid

nature [226]. In chapter 5 a FMPC application will be studied in more detail.

4.3 Controllers with adaptive fuzzy parameters

The FIS are often used to modify controller parameters, following an adaptive control

scheme. In [227–230], a fuzzy system is used to adapt online the parameters of a PID.

This strategy has also been used to adjust the MPC parameters setting [231–234]. For

example, in [231], an evaporator process has been regulated by an MPC with a fuzzy

parameter adaptive system. In that work the idea was to establish a set of rules changing

the adjustments of the MPC parameters as a function of the degree of bound violation.

That reactive change gives the system a better performance as the fuzzy system will

provoke changes before the bounds are violated.

4.3.1 Air Separation Unit

Another application done for this thesis is an adjustment of the move suppression in

a MPC for one Air Separation Unit. The cryogenic process is comprised of unit op-

erations that compress, purify, and separate the air feed into the required gaseous and

liquid oxygen, nitrogen, and argon product flows 1[235]

The argon column gets its feed as an intermediate vapor stream from the low pressure

column which is mostly returned to the low pressure column as liquid condensed by that

crude oxygen stream. Clearly there is significant interaction (Fig.4.16) when almost

any of the manipulated variables are adjusted or a disturbance affects one of the column

controlled variables.1

In this process, one of the important variables is the mid point purity (MPP). This is the

gaseous oxygen plus argon product leaving the low pressure column. In a continuous

operation process, it is important to keep this value as stable as possible.
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FIGURE 4.15: Simplified process for the cryogenic production of oxygen and argon 1

FIGURE 4.16: Portion of the dynamic matrix for a cryogenic air separation plant 1
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There are several disturbances that affect this variable: input air to the high pressure col-

umn and the reflux from the high to the low pressure column. When the molecular sieve

changes, a disturbance affects the MPP. A fuzzy adaptive system has been designed to

modulate the move suppression in the MPC of the MPP control depending on the molec-

ular sieve operating stage, making the controller less aggressive during that disturbance.

An air separation plant supplying gaseous products is either connected to a large pipeline

system supplying multiple customers or it may be directly supplying product to a single

customer. Regardless, the product must be supplied to the customer when it is needed,

so the plant has to respond rapidly to the changing product demand. Given the long

time to steady state, it is possible that the plant may rarely ever settle into a steady state

condition. This requires that the control strategy handle both the dynamic and steady

state effects in order to achieve efficient operation. At the same time, the energy inten-

sive nature of cryogenic liquid production often requires changing production rates to

take advantage of variable power pricing or supply chain demands.1

A setting of a controller that allows a sufficiently aggressive action to changes in pro-

duction can lead to a greater sensitivity to the disturbance caused by changes sieves. The

designed fuzzy system takes into account the variation in demand, as measured by total

oxygen flow out of the plant. When the system is experiencing changes in production,

the rules cause a more aggressive driver, manipulating the main flow of air compressor

that affects the MPP, to keep control variable at the set-point. Decreasing the variation

in demand the fuzzy supervisor increases the move suppression, causing smoother con-

trol action, which will be not excited by the periodic disturbances created by changing

sieves. The action of this adaptive system provides better performance of the MPC,

achieving a reduction of about 10% in the standard deviation of the MPP regarding its

set-point.

Figure 4.17 shows the performance of this control scheme (b). Comparing with a

MPC with fix move suppression (a), the controller reacts smoothly with sieves changes

(periodic disturbances in the incoming air), but with more aggressive changes with the

oxygen demand. Although the change in the demand for oxygen is lower in the graph

(a), an improved performance compared to MPP control with fuzzy supervisor (b) can

be seen.
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FIGURE 4.17: MPP control without (a) and with fuzzy supervisory system (b). Nor-
malised variables

4.4 Conclusion of the chapter

In this chapter, the main fuzzy control techniques have been summarised . Fuzzy control

is a large field of study where many engineers have designed different control strategies

[175]. There are excellent books and articles related to fuzzy control Systems [175,

236], even surveys related to specific fields of applications [237, 238]. In addition to the

summary, the major contribution of the chapter is the actual implementation of control

strategies in real plants. A comparison of other drivers with a direct fuzzy controller

in air levitation plant has been made and an application of a supervisory fuzzy control

system in a real chemical plant in operation has been applied. In the next chapter we

will focus on a specific application of fuzzy model-based predictive control.
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Notes

1Reprinted from [235] with permission from Elsevier



Chapter 5

Fuzzy MPC for an industrial autoclave

In this chapter, Fuzzy Model-based Predictive Control (FMPC) will be described in

more detail. Fuzzy control techniques were introduced in chapter (4), and MPC was

described in chapter 1. As it was seen, in FMPC a fuzzy model is used in order to de-

sign an optimum controller for a prediction horizon, in order to minimize tracking error

and control action effort. Nowadays, as seen in chapter 1, Model Predictive Control is

considered a well established technology in many fields, especially in industrial process

applications. Its efficiency has been demonstrated over the last few years. In general,

most applications of predictive control are based on linear models, which yield good

results especially if they work around a duty point [18]. However, there are many appli-

cations where the region of operation and/or the degree of “non-linearity” of the system

reduce the prediction capabilities of linear models, thus leading to poor controller per-

formance. In such cases, Non Linear Model Predictive Control (NMPC) is a suitable

option.

Although the number of applications of NMPC is limited [239–241], its potential is

enormous. The possibility of dealing with nonlinear dynamics is the main advantage

over MPC. However, developing precise nonlinear models from first principles may be

a difficult task in many complex processes. Another disadvantage is that the optimiser

solution in non-linear Predictive Control is a non-convex problem and a large compu-

tational effort may be required to obtain the solution. This is especially relevant when

dealing with real time tasks.

Therefore, industrial control platforms with low computational power can not run non-

linear predictive control strategies.

Due to the nonlinear nature of the fuzzy system, there are different solutions given to

the FMPC optimisation problem. Branch and Bound [226, 242] or Genetic algorithms

80
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[226, 243] are used by several authors, others linearise the TS fuzzy model in the op-

erating point, solving a linear MPC problem [244–246]. A simpler scheme is used,

designing multi-model in the TS fuzzy model [244, 246]. A study and comparison of

fuzzy model based predictive control strategies will be covered in next sections. Two

strategies of NMPC using neurofuzzy models will be presented, which, due to its low

computational cost, will be suitable to implement in a typical industrial PLC of medium

range, which is very common in industry.

5.1 Developement and implementation of a FMPC for

an industrial autoclave

The sterilisation of solid food in steam retorts has been chosen as a benchmark be-

cause this system exhibits highly nonlinear behaviour. In addition, the operation needs

to be guided by the achievement of strict requirements on microorganisms thermal de-

struction while maintaining the product under acceptable organoleptic specifications.

Such goals must be attained despite a number of undesirable disturbances acting within

the process like sudden steam temperature shut down situations due to boiler overload

(excessive steam demand from different retorts). The process is also subject to a con-

siderable degree of parameter uncertainties and also, to some extent, a lack of accurate

dynamic models (structural uncertainty), because many simplifications like spatial ho-

mogeneity or isotropy assumptions are considered in order to obtain tractable models.

All these issues make the plant a good test bed for the illustration of the capabilities of

the nonlinear predictive control strategies based on fuzzy models quoted before. Two

different techniques have been developed using neurofuzzy models with GPC[22] and

applied to control the thermal sterilisation process in steam retorts.

A schematic representation of the pilot plant is depicted in Figure 5.1. This unit be-

longs to IIM-CSIC (Instituto de Investigaciones Marinas-Consejo Superior de Investi-

gaciones Cientı́ficas, Spain). The retort contains the product to be sterilised, usually

consisting of a number of cans with the same specifications (geometry, size and type of

food). Once in the retort, the load will be subjected to a time-temperature sterilisation

profile previously “designed” to ensure a given lethality (a parameter related to the de-

gree of reduction in a reference pathogen microorganism) while preserving the product

quality as much as possible. The specified profile is enforced by regulating the flow of

saturated steam produced by the boiler. This flow will first (in the venting stage, the

first of the three stages of a sterilisation cycle) be used to remove the air present in the
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retort, thus ensuring that the cans will be heated under the condition of saturated steam.

This part of the operation, which is where sterilisation is really carried out, is known as

heating. In real plants, during this stage, the product is usually kept at a given constant

working temperature for a certain (predefined) time that will ensure the desired micro-

biological lethality. At the critical point (the coldest point/point of least lethality inside

the product), lethality is defined as follows:

F0 =
∫ t

0
10

T k
re f−T (r0)

Z dt (5.1)

where z represents a kinetic parameter, T k
re f its associated temperature and T (r0) repre-

sents the temperature at the critical point. It is worth noting that due to the exponential

type relationship between temperature and lethality (equation 5.1), a fine temperature

control is needed along this stage in order to avoid small disturbances that could result

in a serious over-processing of the product.

Finally, and in order to avoid over-processing and therefore quality losses, the prod-

uct needs to be cooled as fast as possible. Cooling water is employed during this part

of the operation as a means of fast cooling while compressed air will be introduced

in the retort in order to compensate for sharp pressure drops. A complete description

of the sterilisation process and operation for different control schemes can be found

in [167, 247–249]. From a control point of view, the system can be described as a

MIMO plant, or more precisely, a set of MIMO plants representing the different stages

of the process namely venting, heating and cooling. In the first two situations, inputs

correspond with the positions of the steam, drain and purge valves, while the outputs

are temperature and pressure inside the retort. The transition from venting to heating

is detected by comparing current pressure measurements with the pressure correspond-

ing to saturated steam which can be easily estimated from temperature measurements

by applying the Antoine Law. In this way, when both variables (current pressure and

saturated steam pressure) become equal, no air is present in the retort and heating may

proceed. The system will be described by a set of ordinary differential equations, partial

differential equations and algebraic equations, derived from mass and energy balances

[167, 168].

5.1.1 Neurofuzzy model of the temperature inside the autoclave

In order to describe the temperature profile in the heating period, a neurofuzzy model

was created. A real operation data set has been used in addition to simulation data
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FIGURE 5.1: A prototype of thermal sterilisation in a steam retort [167]

obtained from a model derived from first principles and implemented in EcosimPror

[168, 250]. Inputs correspond with the positions of the steam valve (us), drain and

purge valves (ud,ub), temperature of steam (Ts) and past samples (T−1,T−2) for the

temperature inside the retort, while the output is the current temperature of autoclave.

The rules base obtained is:

• IF us IS in1mf1 AND Ts IS in2mf1 AND ub IS in3mf1 AND ud IS in4mf1 AND

T−2 IS in5mf1 AND T−1 IS in6mf1

THEN:

T = 0.385us−0.141Ts +0.0584ub +0.0875ud +0.125T−2 +0.732T−1 +0.116

• IF us IS in1mf2 AND Ts IS in2mf2 AND ub IS in3mf2 AND ud IS in4mf1 AND

T−2 IS in5mf2 AND T−1 IS in6mf2

THEN:

T = 0.0354us +0.002Ts +0.007ub +0.011ud−0.308T−2 +1.272T−1 +0.015

where inimfj are the membership functions presented in figure 5.2. In figure 5.3 the
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FIGURE 5.2: Membership functions of neurofuzzy system of autoclave

comparison between the model and the real data of the temperature in the autoclave is

shown. The fuzzy model accurately captures the system behavior.

5.1.2 Fuzzy generalised Predictive Control (FGPC) of the temper-
ature

As mentioned in the introduction, linear controllers may result in poor reference track-

ing when dealing with highly nonlinear systems. This fact will be illustrated in the fol-

lowing section by means of an experimental case study (the sterilisation of solid food in

steam retorts). In these cases other alternatives, in which non-linear models in predic-

tive control could be used, may result in suitable alternatives to the linear controllers.

There are several proposals in this field [18, 251–253]. An interesting option is to use
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FIGURE 5.3: Validation of neurofuzzy model of the industrial autoclave

neurofuzzy models [225, 254–259]. Perhaps, the main issue in non-linear Predictive

Control is how to obtain the optimiser solution, which consists in a non-convex prob-

lem and its resolution includes a high computational cost to solve in real time. During

the last few years, several techniques have arisen to avoid the problems associated to

determine the solution of the non-convex optimisation problem [18]. Moreover, closed

loop stability must be guaranteed.

Two strategies based on the neurofuzzy model obtained for the autoclave are applied

here. It is seen in chapter 2, the nonlinear model of the Takagi-Sugeno system, has a set

of linear models equal to the number of rules. In this case, the linear models equations

are:

T1(t) = 0.385u(t−1)−0.385u(t−2)+0.125T (t−3)+0.606T (t−2)+1.732T (t−1)

(5.2)

T2(t) = 0.035u(t−1)−0.035u(t−2)−0.308T (t−3)+1.580T (t−2)+2.273T (t−1)

(5.3)

where Ti(t) is the temperature of autoclave for the local model i, and u(t − j) is the

position of steam valve at j previous samples.

A strategy proposed in [252, 257, 259, 260] involves calculating as many GPC con-

trollers as linear models obtained in the neurofuzzy model, such that the controller

output be (3.2):

u(k) =
L

∑
j=1

w j(k)u j(k) (5.4)
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where L is the number of linear models and w j iss defined as

w j(k) =
µ̄ j(k)

∑
N
j=1 µ̄ j(k)

, µ̄ j(k) =
n

∏
i=1

µi j(k) (5.5)

This procedure will be referred to as the FGPC1. The advantage of this technique

is an easy and fast implementation and can be applied on a simple PLC. The main

disadvantage of this strategy is that global optimum is not always found. However a

local optimum is guarantied for each rule or implication [260].

Another non-linear strategy based on neurofuzzy models (FGPC2) is proposed in [254].

A recurrent neurofuzzy model could be rewritten as a Linear Time Variant (LTV):

ā(z−1)y(k) = b̄(z−1)u(k−d)+ξ (k) (5.6)

Where d is a transport delay, ξ (k) is a white noise sequence with null average and:

ā(z−1) = 1− ā1z−1− ā2z−2− ...− ānyz
−ny

b̄(z−1) = b̄1z−1 + b̄2z−2 + ...+ b̄nuz−nu

āi =
L

∑
j=1

w j(k)ai jz−i

b̄i =
L

∑
j=1

w j(k)bi jz−i

The cost function defined in (1.9) can be expressed like:

J(k) = (Fy(k)+G∆u(k)+Λ−ΦW )T (Fy(k)+G∆u(k)+Λ−ΦW )+(λ (z−1)∆u(k))2

(5.7)

Where:

F =
[

fd(z−1) fd+1(z−1) ... fNp(z
−1)
]T

,

Λ =

[
d+Nu−1

∑
ρ=1

gd,ρ∆u(k−ρ)
d+Nu

∑
ρ=1

gd+1,ρ∆u(k−ρ) ...
Np+Nu−1

∑
ρ=1

gNp,ρ∆u(k−ρ)

]T

Φ = diag{δd δd+1 ... δNp}

W = [w(k+d) w(k+d +1) ... w(k+Np)]
T
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The prediction horizon was chosen as Np = 3 and, to reduce computational cost, the

control horizon was reduced to Nu = 1. This leads to:

GT (Fy(k)+Λ−ΦW )+(GT G+λ (z−1)λ0)∆u∗(k) = 0 (5.8)

To be able to simplify the control law, λ 2
0 = λ > 0 is chosen. Values λ1,λ2, ...,λNp are

adjusted such that they meet:

∆u∗(k) =
GT (ΦW −Fy(k))

GT G+λ
. (5.9)

A stability study of this control strategy applied to neurofuzzy model was made in [254].

5.1.3 Experimental results

The pilot plant described in the introduction will be now be used a case study to illustrate

the performance of the different controllers derived in this work.

Using equal prediction and control horizons, based on a simulation tuning process, the

values chosen for the prediction and control horizons were

Np = Nu = 4

and the weighting parameter of the control action λ = 0.6, a GPC controller was ob-

tained with the following law:

u(k) = u(k−1)−12.01y(k−1)+21.68y(k−2)−12.85y(k−3)+2.30y(k−4)

+0.44w(k+1)+0.27w(k+2)+0.14w(k+3)+0.04w(k+4) (5.10)

Where a soft approximation of the future reference trajectory has been used with

α = 0.7

w(t + k) = αw(t + k−1)+(1−α)r(t + k),k = 1, ...,Np (5.11)

Figure 5.4 shows the closed loop response of the retort temperature (black line) with

this controller. Four different steps have been introduced in the set point (green line).

As illustrated in the figure 5.4, the controller is not only slow but it rarely reaches a

good approximation to the set point.

As mentioned in the introduction, good controller performance is required in this type of

process. In order to improve the closed loop response, the FGPC controllers have been
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implemented. To carry out FGPC controllers proposed here, first of all it is necessary to

change gaussian membership functions (see figure 5.2) to new triangular membership

function defined by IEC61131-7. In figure 5.5, the new equivalent functions are shown.

To have the output given in 5.4, FCL code is given in 5.1.4.
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The results for FGPC controller are represented in Figure 5.6. It is clear that this con-
Temperature (ºC)

Time (s)

FIGURE 5.6: Comparison between Predictive Control strategies Non-linear vs linear

trol scheme is able to approach the retort temperature (black line) to the set point (green

line) better than the GPC (turquoise line).

In a third test, the FGPC2 technique has also been applied to the pilot plant under the

same conditions than the GPC and FGPC1. The black line in figure 5.7 corresponds
Temperature (ºC)

Time (s)

FIGURE 5.7: Comparison between strategies

with the closed loop (FGPC2) temperature response. On initial examination, it seems

(although difficult to assertain) that it improves the FGPC1 results (orange line). In or-

der to obtain a more quantitative comparison between these two methods, the Integral

of Absolute Error (IAE) (as a measurement of the tracking error) has been computed

and presented in Table 5.1. The IAE for the FGPC2 is about a 20% lower than the IAE

for the FGPC1 asserting that its performance is better.

A previous control strategy using a PI-type controller parameterized by means of the

Internal Model Control (IMC) technique [261] has been presented in [167]. It is im-

portant to highlight that the FGPC2 presents a similar performance to the PI, but with
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GPC FGPC1 FGPC2
1.8688·104 8.2837·103 6.8766·103

TABLE 5.1: IAE comparison

a saving of approximately a 70% in the energy consumption computed by using the

index: Et =
∫

t
us(t)dt.

5.1.4 FLC code accomplishing IEC 61131-7

As we saw in Chapter 2, the IEC61131-7 standard defines the language of fuzzy control
for PLCs. The us1 and us1 variables, for FGPC1 strategy, must be previously calcu-
lated as the result of two GPC. Subsequently, the following code implements the fuzzy
controller:

FUNCTION_BLOCK fmpc

VAR_INPUT

us REAL; (* RANGE(0 .. 1) *)

Ts REAL; (* RANGE(0.7 .. 1) *)

ub REAL; (* RANGE(0 .. 1) *)

ud REAL; (* RANGE(0 .. 1) *)

T_2 REAL; (* RANGE(0.4 .. 1) *)

T_1 REAL; (* RANGE(0.4 .. 1) *)

END_VAR

VAR_OUTPUT

T_0 REAL; (* RANGE(0.7460 .. 0.9928) *)

END_VAR

FUZZIFY us

TERM us_m1 := (-0.3558, 0) (0.6463, 1) (1.6480, 0) ;

TERM us_m2 := (-0.3949, 0) (0.6016, 1) (1.5980, 0) ;

END_FUZZIFY

FUZZIFY Ts

Ts_m1 := (0.5273, 0) (0.6774, 1) (0.8275, 0) ;

Ts_m2 := (0.4507, 0) (0.9000, 1) (1.3490, 0) ;

END_FUZZIFY

FUZZIFY ub

TERM us_m1 := (-0.3038, 0) (0.6954, 1) (1.6950, 0) ;

TERM us_m2 := (-0.9986, 0) (-0.0005, 1) (0.9975, 0) ;

END_FUZZIFY
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FUZZIFY ud

TERM us_m1 := (-0.5639, 0) (0.4354, 1) (1.4350, 0) ;

TERM us_m2 := (-0.5664, 0) (0.4314, 1) (1.4290, 0) ;

END_FUZZIFY

FUZZIFY T_2

T2_m1 := (0.3081, 0) (0.9347, 1) (1.5610, 0) ;

T2_m2 := (0.4255, 0) (0.9885, 1) (1.5520, 0) ;

END_FUZZIFY

FUZZIFY T_1

T1_m1 := (0.3003, 0) (0.9335, 1) (1.5670, 0) ;

T1_m2 := (0.4376, 0) (0.9917, 1) (1.5460, 0) ;

END_FUZZIFY

DEFUZZIFY T0

T0_m1 := us1 ;

T0_m2 := us2 ;

METHOD: MoM;

END_DEFUZZIFY

RULEBLOCK first

AND:MIN;

ACCU:MAX;

RULE 0: IF (us IS us_m1) AND (Ts IS Ts_m1) AND (ub IS ub_m1) AND

(ud IS ud_m1) AND (T_2 IS T_2_m1) AND (T_1 IS T1_m1) THEN (T_0 IS T0_m1);

RULE 1: IF (us IS us_m2) AND (Ts IS Ts_m2) AND (ub IS ub_m2) AND

(ud IS ud_m2) AND (T_2 IS T_2_m2) AND (T_1 IS T1_m2) THEN (T_0 IS T0_m2);

END_RULEBLOCK

END_FUNCTION_BLOCK

5.2 FMPC with constraints. Implementation issues

One of the problems of NMPC when considering constraints is the heavy computational

burden associated with its implementation. On the other hand, it is also difficult to ana-

lyze the stability of the closed-loop system [262]. In [263] a Takagi-Sugeno (TS) fuzzy

model predictive controller, based on piecewise Lyapunov function (PLF), has been

proposed to solve the above problems with FMPC. However this method may lead to a

conservative performance of the controller. [264] presents an alternative way to reduce

the conservatism using fuzzy Lyapunov function (FLF) which only needs to find an in-

dependent positive definite matrix for each submodel. More recently, [262, 265] have

presented an extended-fuzzy Lyapunov function to improve the results. Notwithstand-

ing the foregoing, the computing load of these methods prevents the implementation in



Fuzzy MPC for an industrial autoclave 92

low-cost or industrial hardware as had been described in Chapter 1. There are some ap-

plications where the NN are adjusted to imitate the controller [266–268]. Once the NN

is trained from the MPC controller, the amount of computation required is very small

and can be compared to the online computation of the fast implementation methods.

In this thesis, we propose a FIS for the same purpose. The use of Fuzzy system will

permit the inclusion of adjusting parameters as another input variable. Let Fλi be a FIS

obtained from a NMPC tuned by λi, composed by Ni rules R j as was shown in 3.2:

R j :

IF x1(k) is F1 j, ..., and xn(k) is Fn j,

THEN:

y j(k) = a j(z−1)y(k−1)+b j(z−1)u(k−d)+ξ (k)

Figure 5.8 shows the procedure to adjust Fλi from the NMPC. Changing parameter λi to

reach several control performance modes, e.g. aggresive, moderate, slow, we will obtain

as many fuzzy systems as λi chosen. The union of fuzzy systems {Fλ1,Fλ2, ...,Fλp} will

result another fuzzy system with a new input variable λi with N = N1 +N2 + ...+Np

rules:

R j :

IF x1(k) is F1 j, ..., and xn(k) is Fn j, and λ j is Λr j

THEN:

y j(k) = a j(z−1)y(k−1)+b j(z−1)u(k−d)+ξ (k) (5.12)
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FIGURE 5.8: Scheme to obtain a fast FIS from another controller
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5.3 Conclusion of the chapter

In this chapter FNMPC has been presented as an alternative to NMPC, saving computa-

tional burden. Two different schemes have been implemented in a real industrial plant,

using low computational cost hardware with FCL. The results have been compared with

a linear GPC, obtaining better performance with no significant programming effort and

computational resources.

NMPC subject to constraint has also been introduced, and a new technique to carry out

a fast implementation providing an adjusting parameter has been proposed. Both the

complexity of the system and the requirement of a higher precision in the parameter

setting can cause an explosion of rules in the fuzzy model. Reasonably managing a

FIS for use in control, involves applying a rules reduction technique. In the following

chapters we will introduce a novel technique for complexity reduction in fuzzy systems

based on their structure.



Chapter 6

Complexity reduction in fuzzy systems
using Functional Principal Component
Analysis

In this chapter a novel technique to reduce complexity in fuzzy models will be de-

scribed. The aim of such reduction is the suitability to control systems which run on

low capability hardware platforms. Firstly, in section 6.1, the state of the art in com-

plexity reduction of fuzzy systems will be explored. Secondly in sections 6.2 and 6.3

the Functional Principal Component Analysis (FPCA) will be described. Section 6.4

will show the main contribution of this chapter: the application of FPCA to reduce

complexity of a fuzzy inference system structures. Section 6.5 will describe example

applications before drawing conclusions on this chapter.

6.1 Complexity reduction in fuzzy systems

The ability to build fuzzy logic applications for control problems has been hindered

by the well-known problem of combinatorial rules explosion, causing complexity in

modeling. The existence of redundant rules may also cause performance degradation of

the FIS [123].

There has been a increased interest in the issues of complexity of fuzzy systems over

recent years. There are a remarkable number of methods aimed at reducing the com-

plexity of fuzzy systems. Most of them are based on systematic and heuristic methods

94



Complexity reduction in fuzzy systems using FPCA 95

[269–272], others with analytic approach, are practically unapplicable when the number

of inputs is large, [269, 273–278]. In [279] there is a classification methods for Mam-

dani and TS systems. A simplification method for direct fuzzy controllers is presented

in [280, 281].

In this chapter, a new technique to reduce the number of rules will be presented. It is

based on FPCA, one of the methods of functional analysis. This method provides a

systematic approach to the rule reduction. After its application, the new FIS will have a

lower number of rules. We will demonstrate that the implementation of this technique

is at the detriment of interpretability of the system’s background. The new fuzzy sys-

tem will present a non-conventional antecedent set which won’t however be an issue for

deployment in control systems.

6.2 Principal Component Analysis

Principal Components Analysis (PCA) is well known in the field of multivariate statisti-

cal analysis. Using PCA, we reduce the dimensionality of the space variables. The idea

behind PCA is to find the subspace where the data have a high covariance. Supposing r

variables and N real samples, a real data set is represented by:

x11~e1 +x12~e2 + . . . +x1r~er

x21~e1 +x22~e2 + . . . +x2r~er
... . . .

xN1~e1 +xN2~e2 + . . . +xNr~er

(6.1)

Presenting the data in matrix format:

x =


x11 x12 . . . x1r

x21 x22 . . . x2r
...

... . . .
...

xN1 xN2 . . . xNr

 (6.2)

~ei are the vectors generators of subspace V . The aim is to find a new basis vector

(y1,y2, ...,ym) to define a new subspace containing the maximum information of the

actual data:
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y1 = w11x1 +w12x2 . . . +w1rxr

y2 = w21x1 +w22x2 . . . +w2rxr
...

ym = wm1x1 +wm2x2 . . . +wmrxr

(6.3)

Where m < r. If µy = E(y) is the expected value of y. It demonstrates that:

µy = E(wT x) = wT E(x) (6.4)

and the covariance matrix of y is equal to:

Cy = E{(y−µy)(y−µy)
T}= wT CxW (6.5)

To obtain the subspace with maximum variability in the data, we calculate the covari-

ance matrix of y (Cy), imposing the orthonormality constraint on it:

wT w = I (6.6)

Which we have to optimise:

wT Cxw−λ (wT w− I) (6.7)

differentiating and equating to zero:

(Cx−λ I)w = 0 (6.8)

The problem is reduced to calculating the eigenvectors of Cx. Those associated with the

most significant eigenvalues, which components will form the subspace where the data

have highest variability.

In order to choose the number of principal components, a criterion for choosing the

eigenvalues may be the use of an index of variability, defined as follows:
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FIGURE 6.1: Principal components: C1 and C2.

∑
l
i=1 λi

∑
n
i=1 λi

≥ v (6.9)

Where v is the degree of desired information, or variability index (1 value, means that

we use all the eigenvalues).

6.3 Functional Principal Component Analysis

The PCA works in a vector space. If we work in a space of functions, the analysis will

be the FPCA. Let f1(x), f1(x), ..., fn(x) be functions in separable Hilbert space endowed

with inner product:

〈 fi| f j〉=
∫ X

0
fi(x) f j(x)dx ∀ fi, j∈ L2[0,X ] (6.10)

If each function fi(x) may be decomposed in:

fi(x) =
L

∑
l=1

cilθl(x) = ci
T

Θ(x) (6.11)

The mean and covariance functions of fi, will be:

f̄ (x) = E( f (x)) = c̄T
Θ(x) (6.12)
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Cov[ f (x), f (s)] = Θ(x)T cov(C)Θ(s) (6.13)

Where C = {cil, i = 1, ...,n, l = 1, ...,L}.

We define the covariance operator as:

C( f (x)) =
∫ X

0
Cov[ f (x), f (s)] f (s)ds, ∀ f ∈ L2[0,X ],∀x,s ∈ [0,X ] (6.14)

Where the kernel Cov[ f (x), f (s)] is the covariance function.

The covariance operator is positive, selfadjoint and compact [282], thus, using Mercer’s

Theorem, we may write:

Cov[ f (x), f (s)] =
∞

∑
i=1

λiξi(x)ξi(s), ∀x,s ∈ [0,X ] (6.15)

where λ1 > λ2 > ...> 0 is an enumeration of the eigenvalues of C, and the corresponding

orthonormal eigenfunctions are ξ1,ξ2, .... Thus, they form a complete orthonormal set

of solutions of the Fredholm equation:

∫ X

0
Cov[ f (x), f (s)]ξi(s)ds = λiξi(x) (6.16)

We can formulate the expression 3.2 as:

y(x) = g̃0(x)+ g̃1(x)x1 + ...+ g̃n(x)xn (6.17)

Where:

g̃i(x) =
N

∑
j=1

a j(x) ·g ji (6.18)

And the vector of functions g̃ is:

g̃(x) =


g̃0(x)
g̃1(x)

...

g̃n(x)

=


g10 g20 . . . gN0

g11 g21 . . . gN1
...

g1n g2n . . . gNn

 ·


a0(x)
a1(x)

...

aN(x)


g̃(x) = G ·a(x) (6.19)
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The mean and covariance functions of g̃(x), are:

E[g̃(x)] = E[gT ] ·a(x) = ḡT ·a(x)

Cov[g̃(x), g̃(s)] = a(x)T cov(G)a(s) (6.20)

We have to solve the equation (6.16), to obtain the FPCA of these functions. We suppose

that the eigenfunctions are

ξ (x) = a(x)T ·b (6.21)

Thus, taking in account (6.20):

∫ X

0
Cov[g̃(x), g̃(s)] ·ξ (s)ds =

∫ X

0
a(x)T cov(G)a(s) ·a(s)T ·bds

= a(x)T cov(G) ·W ·b

cov(G) ·W ·b = λ ·b (6.22)

Where:

W =
∫ X

0
a(s) ·a(s)T ds (6.23)

The functions ξ (x) are orthogonals, then 〈ξi(x),ξ j(x)〉 = bT
i ·W · b j = 0. Matrix W is

symmetric by definition, thus, defining u = W
1
2 b,

W
1
2 · cov(G) ·W

1
2 ·u = λ ·u (6.24)

We are left with solving a symmetric eigenvalue problem. Afterward, using a variabil-

ity criteria, we can choose a new subspace using a new base of eigenfunction whose

eigenvalues have enough significance, for instance 6.9, where v ∈ [0,1] is the variability

index (v = 1 corresponding to the maximum variability obtained in the new space, i.e.

the new subspace has the same dimension of the original space). N is the dimension of

the original space and R is for the new reduced subspace.

6.4 FPCA for fuzzy systems

Having applied FPCA on 6.3, we obtained a new subspace of functions

γ(x) =
[
γ1(x) γ2(x) ... γn(x)

]T
(6.25)
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such that:

g̃(x) =


g̃0(x)

g̃1(x)
...

g̃n(x)

=


h10 h20 . . . hR0

h11 h21 . . . hR1
...

h1n h2n . . . hRn

 ·


ξ0(x)

ξ1(x)
...

ξR(x)


g̃(x) = H ·ξ (x) (6.26)

Comparing with (6.19), the new R rules (R < N) of the fuzzy system will be,

Rule R j :

IF x1 is Γx1 j, ..., and xn(k) is Γxn j,

THEN: y j = h0 j +h1 jx1 + ...+hn jxn

Where Γxi j is the fuzzy set respective to xi(k) on the rule j. And µΓi j(xi) will be the new

membership degree of xi to the set Γi j. For each rule, we must have:

σ j(x) = µΓ1 j(x1) ·µΓ2 j(x2) · ... ·µΓn j(xn) (6.27)

Or

σ j(x) = min{µΓ1 j(x1),µΓ2 j(x2), ...,µΓn j(xn)} (6.28)

And

ξi(x) =
σi(x)

∑
R
i=1 σi(x)

(6.29)

The new Γi j should be prototypical in order to be implemented in a controller, using the

standard Fuzzy Control Language (FCL), i.e. with membership functions showed in fig.

2.2. This implies that the ξi(x) should be 0 < ξi(x) < 1 and convex. The IEC61131-7

standard permits non-prototypical shapes for the membership function [11] defined by

a set of points. PLCs which use the norm (e.g. [101]) don’t, to this day, include this

functionality but they have functions to operate with the fuzzification result, permitting

calculation of the eigenfunctions (eq. 6.21).
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6.5 Illustrative examples

6.5.1 Pilot plant

To illustrate the ideas developed in this chapter we will examine two examples. The first

one is a pilot plant site in the Department of System Engineering and Automatic Control

of the University of Seville 6.2. The plant is used to emulate exothermic chemical

reactions based on temperature changes. It has previously been used as a benchmark

for control by researchers [283]. The main elements of the pilot plant are the reactor,

the heat exchanger, the cooling jacket and the valve to manipulate the flow rate through

the cooling jacket 6.3.

FIGURE 6.2: Pilot plant of the Department of System Engineering and Automatic
Control of University of Seville

The emulated chemical reaction represents a refinement process. At the same flow at

the inlet of the reactor outlet and a constant volume, the model of the chemical reaction
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FIGURE 6.3: Diagram of the pilot plant

TABLE 6.1: Parameters and variables of the mathematical model of the pilot plant

Parameter Value Unit
Cp (Specific heat capacity) 4.18 KJ/K·Kg
∆H (Molar reaction heat) −105.57 KJ/mol

V (Volume of the reactor content) 25 l
M (Mass of the reactor content) 25 Kg

CA,in (Reactan concentration in the feed) 1.2 mol/l
Fj (Cooling jacket flow rate) 0.05 l/s

k0 (Constant) 1.265x1017 l/mol
E/R (Constant) 13550 K

can be defined as:

dT
dt

=−
Fj

V
(Tj,in−Tj,out)+

(−∆H)V
M ·Cp

k0e−E/(RT )C2
A (6.30)

dCA

dt
=

Ff

V
(CA,in−CA)− k0e−E/(RT )C2

A (6.31)

Where T is the temperature into the reactor, Tj,in the inlet temperature of the cooling

jacket fluid, CA denotes the reactant concentration in the reactor. The other variables

and parameters can be seen in 6.1 Using real data, the system can be modeled by a

Neurofuzzy System. Being a discrete model, in order to capture the dynamics of the

system, two input variables have been chosen: The valve previous position V (k− 1)
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and the previous sampled temperature T (k− 1). The output is the actual temperature

T (k). Figure 6.4 shows the membership functions. Using a training learning method,

we obtain the following rules:
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FIGURE 6.4: Membership functions for the Pilot plant Fuzzy model

• if T (k−1) is LOW and V (k−1) is LOW

then T (k) = 1.0045T (k−1)+0.0005V (k−1)−0.0898

• if T (k−1) is LOW and V (k−1) is HIGH

then T (k) = 1.0006T (k−1)+0.0005V (k−1)−0.0571

• if T (k−1) is HIGH and V (k−1) is LOW

then T (k) = 1.0037T (k−1)−0.0005V (k−1)−0.3197

• if T (k−1) is HIGH and V (k−1) is HIGH

then T (k) = 1.0002T (k−1)−0.0020V (k−1)−0.0158

To perform the FPCA on the model, we proceed as follows:

FPCA algorithm: (6.5.1)

1. Calculation of W from eq.7.22
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2. W 1/2 obtained through Cholewsky decomposition

3. Solving the eigenvalue problem 6.24

4. Getting b =W−1/2u

The new system is:

g̃(x) =


−0.04154

0.00001

0.00531

 ·ξ (x) (6.32)

and

ξ (x) = a(x)T ·


−0.01020

−0.00998

−0.01149

−0.00976

 (6.33)

A comparison between systems is shown in figure 6.5.
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FIGURE 6.5: Pilot plant: Comparison between original, Fuzzy and simplified Fuzzy
system
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6.5.2 Mechanical system

Another interesting example is the mechanical system shown in figure 6.6. It could be

a simple manipulator with only one joint. The system is moved by an electrical motor

which provides a torque Tu in order to move a bar an angle θ . If we consider all the

mass (m) concentrated at the end of the bar, the equation that describes the system is:

mθ̈ l2 +Bθ̇ +mgsinθ = Tu (6.34)

For simulation the parameters will be: g = 9.8m/s2, l = 1m, B = 1Kgm2/s, m = 1Kg.

As we can observe in figure 6.6 the system has a non-linearity due to sinθ . Linearizing

q

Tu

m·g

l

B

FIGURE 6.6: Mechanical system

around an equilibrium point, we could model the system as

θ̈ =−aθ̇ −bθ +Tu (6.35)

Where a,b are parameters depending on the operating point (θ0). It is a second order lin-

ear system. In order to build a Fuzzy system, we use four variables in discrete mode, to

get the dynamics of a 2nd order system: Tu(k−2),Tu(k−1),θ(k−2),θ(k−1). Provid-

ing data sets for training and checking, the FIS obtained is defined by the membership

function depicted in figure 6.7. Taking small steps to the input (torque), we can model

the response as second order system 6.35, different for each operating point determined
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FIGURE 6.7: Membership functions for the mechanical system FIS

by the position of the mechanism. Doing this in nine areas, we have nine linear systems:

θ1(k) = 0.0037T (k−1)+0.0467T (k−2)−0.9705θ(k−1)+1.9705θ(k−2)

θ2(k) =−0.0016T (k−1)+0.0525T (k−2)−0.9704θ(k−1)+1.9645θ(k−2)

θ3(k) =−0.0001T (k−1)+0.0508T (k−2)−0.9704θ(k−1)+1.9628θ(k−2)

θ4(k) =−0.0003T (k−1)+0.0511T (k−2)−0.9704θ(k−1)+1.9621θ(k−2)

θ5(k) =−0.0003T (k−1)+0.0508T (k−2)−0.9705θ(k−1)+1.9619θ(k−2)

θ6(k) =−0.0003T (k−1)+0.0510T (k−2)−0.9704θ(k−1)+1.9621θ(k−2)

θ7(k) =−0.0002T (k−1)+0.0509T (k−2)−0.9704θ(k−1)+1.9629θ(k−2)

θ8(k) =−0.0008T (k−1)+0.0515T (k−2)−0.9704θ(k−1)+1.9650θ(k−2)

θ9(k) = 0.00065T (k−1)+0.0501T (k−2)−0.9704θ(k−1)+1.9705θ(k−2)

where θi(k) is the angle variation for the local model i, and T (k− j) is the variation of

the applied torque. establishing rules with variable angle as antecedent, we can model
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the mechanical system with minimum error, as is shown in fig 6.8, obtaining a RMSE

of ±0.1064◦ over 3334 samples. In order to simplify the system applying a FPCA, the
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FIGURE 6.8: Validation of the fuzzy model for the mechanical system

procedure seen in 6.5.1 will be used. It is observed that the first eigenvalue contents

almost all the variability of the system. Thus, the new simplified system will have just

one rule and its structure is given by:

g̃(x) =



0

0.0198

−0.3788

0.7669

−0.0034


·ξ (x) (6.36)

And

ξ (x) = a(x)T ·



0.0425

0.0433

0.0433

0.0433

0.0433

0.0433

0.0434

0.0435

0.0444



(6.37)
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In the figure 6.9 we can distinguish differences between the fuzzy and simplified fuzzy

models. However, with an RMSE of ±2.1692◦ over 3334 samples, it is reasonable to

use the simplified model for control or simulation.
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FIGURE 6.9: Mechanical system: Comparison between original, Fuzzy and simplified
Fuzzy system

6.6 Conclusion of the chapter

In this chapter a new analytic technique has been presented in order to reduce the com-

plexity of TS fuzzy systems. The main contribution of the thesis is the application of

FPCA to the Hilbert space of functions defined by the rule base. Defining a covariance

operator, the technique permits to reduce the space to a subspace where the operator’s

eigenvalues are bigger. There have been two examples where the technique has been

applied successfully.

The problem with this technique is the lack of interpretability in the fuzzy system, due to

the algebraic combination before aggregation. If we focus on the use in predictive con-

trol, this is not a problem. Even predictive controllers with explicit solutions that could

be implemented in industrial devices according to IEC61131-3 [7] and IEC61131-7

[11], there may be the possibility of non-prototypical membership functions or alge-

braic operations after fuzzification.



Chapter 7

FPCA to simplify MPC
implementation

Multivariate Statistics is used in control engineering for many years [284]. Singular

Value Decomposition (SVD) techniques such as PCA has been used in control engineer-

ing for sensor fault detection [285], variable decoupling [286] and modelling [287, 288].

Dimensionality reduction [289] is the main feature that takes advantage of these tech-

niques.

In this chapter, PCA and FPCA techniques studied in Chapter 6 will be used to sim-

plify the control implementation. The first section of this chapter will show a PCA

application for input space reduction, simplifying the control scheme. In section 7.2

the technique of the chapter 6 will be applied to simplify a FMPC and make it imple-

mentable in nonlinear systems with low capability hardware. The same technique will

be applied in section 7.3 and 7.4, in order to reduce complexity of PWA systems and

implement FMPC with constraints.

7.1 Dimensionality reduction of input variables space

In a Multiple Inputs Single Output (MISO) system with n inputs, the values that acquire

the inputs can be considered as vectors in a space of dimension n. The control problem

is to determine the sequence of vectors that produce the desired output. The application

of PCA may reduce the inputs space dimension, simplifying the control problem. If the

new input space has just 1 dimension, the system become Single Input Single Output

109
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(SISO), reducing the complexity of the control problem, using only one manipulated

variable

In the plant showed in section 3.3.2, after applying a PCA over the input variables, the

first principal component accounts by itself for almost 80% of the information. The idea

is to use this component as a new virtual input of the system keeping the pressure as the

controlled output (see Figure 7.1). The control action obtained using this technique is

then projected into the original axis in order to obtain all the real manipulable variables

needed to operate the plant. Therefore, only a SISO controller needs to be adjusted in

order to control this new system. The manipulated variable is

ξ = w0PMC +
[
w1 w2 w3 w4 w5 w6

]
·u+

[
w7 w8 w9 w10 w11

]
·d (7.1)

Where wi are the coordinates of the principal component, and the vectors u, d are the

manipulated variables and measurable disturbances, respectively. Then, having a mea-

sure of the disturbances and the current value of the pressure PMC, the virtual manipu-

lated variable ξ can be transformed in the new set of real control actions,

uT =

[
ξ −w0PMC−dT wd

]
wT

u

wuwT
u

(7.2)

Where wd =
[
w7 w8 w9 w10 w11

]T
and wu =

[
w1 w2 w3 w4 w5 w6

]T
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FIGURE 7.1: Control scheme

Tuning a PI controller experimentally over the new virtual SISO system and testing

in simulation using the neurofuzzy model described in section 3.3.2, using real data

from the plant for disturbances, a set point changes are applied to the pressure in the

mixing chamber, and the controller is able to follow the new operating point and reject
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disturbances, in spite of the nonlinear behavior of the plant and the dimension reduction.
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FIGURE 7.2: PI performance for pressure control. Normalised units

Also, using a first order model of the virtual plant obtained after applying the PCA

analysis, a model based control strategy can be applied. The resulting model is:

G(s) =
−0.49652
1+0.001s

(7.3)

In Figure 7.3, the performance of the linear model can be seen, being validated using

data from the real process. The input to the model is the new variable ξ while PMC is

taken as the output (y). A predictive controller (see sec.1.1) will be designed based on

the model above. The sequence of future control signals are calculated such that they

minimize a multistage cost function defined by:

J(N1,N2,Nu) =
N2

∑
J=N1

δ ( j) [ŷ(t + j | t)−w(t+ j)]2 +
Nu

∑
j=1

λ ( j) [∆ξ (t + j−1)]2 (7.4)
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FIGURE 7.3: Performance of the linear model

Where ŷ(t + j | t) is a j-step ahead prediction of the system output on data up to time

t, N1 and N2 are the minimum and maximum prediction horizon, δ ( j) and λ ( j) are

weighted sequences, and w(t+ j) is the future reference trajectory.

To solve this problem, as we saw in section 1.1, we use equations 1.10 and followings.

The horizon can be defined by N1 = d +1, N2 = d +N and Nu = N. To solve the GPC

problem, the set of control signals ξ = [ξ (t),ξ (t +1), ...,ξ (t +N)]T has to be obtained

in order to optimize expression (7.4). As the cost function is quadratic, its optimum can

be easily obtained, assuming there are no constraints on the control signals, by making

the gradient of J equal to zero. Considering δ ( j) and λ ( j) are constants and grouping

the terms of equation (1.13) which depend on the past, into f, it leads to:

ξ = (GT G+λ I)−1GT (w− f) (7.5)

where G=
[
gd,0 gd+1,0 ... gNp,0

]T and w= [w(t+d+1) w(t+d+2)...w(t+d+N)]T .

The control signal that is sent to the process is the first element of ξ , given by:

∆ξ (t) = K(w− f) (7.6)

The GPC tuning parameter (move suppression λ , has been adjusted experimentally,

and the controller have been tested in simulation as the previous PI, using real data

from the plant for disturbances. The controller performance can be seen in figure Both

controllers show similar performance. This analysis helps, through a modelling simpli-

fication technique, to simplify the control scheme.
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FIGURE 7.4: GPC performance for pressure control. Normalised units

7.2 Application of FPCA to FMPC without constraints

In section 6.5.2 an example of a mechanical system was presented. Following the same

procedure presented in secion 5.1.2, for each of the consequents of the fuzzy system

used for the model, a linear GPC controller can be designed. The advantage of this

techniques is the simplistic natural way of translating the GPC (or DMC) to linear

spaces (consequent of each rule). In this particular example, only 9 controllers must

be designed. However, the problem arises when the number of rules increases. The

complexity reduction technique shown in chapter 6, can overcome this problem in an

efficient manner. Expression 6.37 shows the principal component containing the max-

imum variability and 6.36 the combination of the new consequent and the principal

component. Based on the new consequent, just one GPC design is required. A compar-

ison between three control strategies will be carry out over the mechanical system. The

first is a clasical PID, adjusted to work around an operation point, the second is a linear

GPC designed over the same point, based on a linear model and the third is a Fuzzy

GPC with the reduction of complexity produced by FPCA in the model (6.5.2). Figure
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7.5 shows a regular performance, independent of the operating point is observed for the

FGPC. This scheme can be seen as a linear controller uL(k) (consequent) modulated by

a nonlinear factor ψ(k)(antecedent).

u(k) = ψ(k)uL(k) (7.7)

The controller uL(k) is designed using 6.17, and applying FPCA,

g̃(x) = G ·a(x) = H ·ξ (x) (7.8)

Where H is the new consequent and ξ (x) the antecedent. Knowing 6.21,

G ·a(x) = H ·a(x) ·bT

G ·a(x) ·bT = H ·a(x) ·bT ·bT

G = H ·bT

H =
G ·b
bT b

(7.9)

1
bT b can be written as 1

bT b = ε ·η , having:

g̃(x) = H ·ξ (x) = η ·G ·b · ε ·ξ (x) (7.10)

using η ·G · b as a linear model to design a GPC and modulating the nonlinear term

ε ·ξ (x), a stable solution can be found as Figure 7.5 shows.

7.3 FPCA applied to PWA systems

As discussed in section 1.3, an implementation of MPC in low-capability hardware is

getting an explicit Optimizer solution [52–55]. Using mpQP a controller is defined as a

PWA, generally formulated as:

IF x ∈Θ1 THEN u = f1(x)
ELSIF x ∈Θ2 THEN u = f2(x)
...

ELSIF x ∈ΘN THEN u = fN(x)
ENDIF
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FIGURE 7.5: Mechanical system position control comparison

Each region Θi is defined by a polythope. Let δi be functions defined as:

δi(x) =

{
1 i f x ∈Θi

0 else
(7.11)

If N is the number of regions, the piece wise affine system can be expressed by:

u =
N

∑
i=1

δi(x) fi(x) (7.12)

and ∑
N
i=1 δi = 1.

Obtaining a PWA system as a MPC controller solves the problem of real-time compu-

tation of MPC optimisation, but if the PWA needs a large number of regions to obtain a

good solution, the programming effort and memory capacity of the hardware platform,
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can cause the non-applicability of this methodology, preventing predictive control for

fast and / or low cost systems. There have been studies in this field, where methods

reduce the number of regions of PWA, allowing for some loss of optimality. [290]

derives a exploration strategy for subdividing the parameter space, which avoids un-

necessary partitioning, [291] presents a technique by relaxing the Karush-Kuhn-Tucker

(KKT) conditions for optimality. A rotation of the state space, obtaining a suboptimal

control action is presented in [292]. In [293], T. Johansen proposes a method to reduce

complexity, if in the formulation of the optimisation problem:

J(U,x) =
1
2

UTU + xT FU +
1
2

xTY x

s.t. GU ≤W +Ex (7.13)

A SVD analysis is applied in order to replace the terms Ex and FT x with approximated

linear terms defined on a subspace of the state space. Another approach for reducing

complexity will be presented in this thesis. Following the formulation presented in

Chapter 6 and developing equation 7.12 as:

u =
N

∑
i=1

δi(x)(ρ0i +ρ1ix1 + ...+ρnixn) (7.14)

Where n is the number of inputs. Thus, the expression 7.14 may take a form similar to

6.17:

u(x) = g̃0(x)+ g̃1(x)x1 + ...+ g̃n(x)xn (7.15)

Where:

g̃i(x) =
N

∑
j=1

δ j(x) ·ρ ji (7.16)

And for all the regions g̃ is:

g̃(x) =


g̃0(x)
g̃1(x)

...

g̃n(x)

=


ρ10 ρ20 . . . ρN0

ρ11 ρ21 . . . ρN1
...

ρ1n ρ2n . . . ρNn

 ·


δ0(x)
δ1(x)

...

δN(x)

 (7.17)

g̃(x) = R ·∆(x) (7.18)
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The covariance functions of g̃(x), are:

Cov[g̃(x), g̃(s)] = ∆(x)T cov(R)∆(s) (7.19)

Supposing that the eigen functions are:

Γ(x) =


γ1(x)

γ2(x)
...

γh(x)

= ∆(x)T ·b (7.20)

Thus, taking in account (7.19):

∫ X

0
Cov[g̃(x), g̃(s)] · γ(s)ds =

∫ X

0
∆(x)T cov(R)∆(s) ·∆(s)T ·bds

= ∆(x)T cov(R) ·W ·b

cov(R) ·W ·b = λ ·b (7.21)

Where:

W =
∫ X

0
∆(s) ·∆(s)T ds (7.22)

Being γ(x) orthogonal, then 〈γi(x),γ j(x)〉= bT
i ·W ·b j = 0. As it was seen in 6.24:

W
1
2 · cov(R) ·W

1
2 ·p = λ ·p (7.23)

A symmetric eigenvalue problem now remains to be solved. Since only one region will

be active in each state vector, equation 7.20 will give only one of the values within b
parameter,

γi(x) ∈ {bi1,bi,2, ...,biN} (7.24)

It may be that there are repeated bi j values, in such case, the regions associated to those

values can be merged, reducing the number of regions, i.e. If bi j = bik with j 6= k, then

γi(x) = bi1δ1(x)+ ...+bi j(δi(x)+δ j(x))+ ...+biNδN(x), being:

δi(x)+δ j(x) =

{
1 i f x ∈Θi

⋃
Θ j

0 else
(7.25)
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7.3.1 Example: distillation column

To illustrate the performance of a reduced PWA system, a high purity distillation col-

umn, like the example in section 4.3.1 will be given. The distillation process typically

works around an operating point, being identifiable by a linear model. The example will

be carried out using the model shown in [294], where the linear model in an operational

point is defined as:[
ẋ1

ẋ2

]
=

[
−0.0133 0

0 −0.0133

][
x1

x2

]
+

[
0.0117 0.0115

0.0144 0.0146

][
u1

u2

]
,[

y1

y2

]
=

[
x1

x2

]
(7.26)

Where y1 and y2 are the top and bottom product compositions, respectively, and the

inputs, u1 and u2, are the reflux flow rate and the boil-up, respectively, as is shown in

the Figure 7.6 Considering the reference tracking problem, i.e., the problem of driving

FIGURE 7.6: Distillation Column [295]

the output (Product composition) y to track a given reference signal r ∈R p by adjust-

ing the control inputs (reflux and boiler flow rates) u under the control input and control

increment constraints. For the current x, the constrained MPC solves the following opti-

misation problem such that the optimal control increment ∆u is found at each sampling
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instant,

min
u

{
J (u,r,y(k))

}
s.t. umin ≤ u(k+ j|k)≤ umax, j = 0, . . . ,Nu−1,

x(k+ j+1|k) = Ax(k+ j|k)+Bu(k+ j), j ≥ 0,

y(k+ j|k) =Cx(k+ j|k)+Du(k+ j), j ≥ 0,

u(k+ j) = u(k+ j−1)+∆u(k+ j), j ≥ 0, (7.27)

where the cost function to be minimised is given by:

J (u,r,y(k)) =
Ny−1

∑
j=0

[
y(k+ j|k)− r(k)

]T Q[
y(k+ j|k)− r(k)

]
+

Nu−1

∑
j=0

∆u(k+ j)T R∆u(k+ j), (7.28)

and u , [∆u(k)T , . . . ,∆u(k+Nu−1)T ]T , x(k+ j|k) is the predicted state at time step k,

Ny and Nu are the prediction and control horizons, and Q≥ 0, R > 0.

The above MPC optimisation problem (7.27) can be described in the standard QP

form, [18], and as shown in [53] such an MPC QP problem can be transformed into:

min
u

{
J (u,θ(k)) =

1
2

uT Hu+θ(k)T FT u
}

s.t. Gu≤W +Sθ(k), (7.29)

where u is defined as in (7.28), and θ is the vector of parameters defined as:

θ(k) = [x(k), u(k−1), r(k)]T

The MPC mpQP problem (7.29) is solved explicitly, off-line, for all the feasible values

of θ of interest, resulting in the solution u∗(θ), which is a continuous piecewise-affine

function defined over a polyhedral partition in the θ -space represented as:

∆u(k) = f (θ(k)) =


K1θ(k)+ k1, if θ(k) ∈Θ1

K2θ(k)+ k2, if θ(k) ∈Θ2
...

KNre jθ(k)+ kNre j , if θ(k) ∈ΘNre j ,

(7.30)
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with a polyhedral partition P = {Θ1, . . . ,ΘNre j}, where the polyhedral sets are repre-

sented by linear inequalities (hyperplanes),

Θi = {θ(k)|Liθ(k)≤ li}, i = 1, . . . ,Nre j. (7.31)

Here, Ki and ki are the control gain and offset for each region respectively, and Nre j is the

number of regions. Consequently, the on-line temperature control algorithm is reduced

to a look-up table: the region associated with the current state θ is first determined, and

then the optimal control law valid for that region is applied.

The tuning parameters used for deriving the explicit MPC controller are as follows:

Ny = 20, Nu = 3, Q = R = I, with a sampling time of 10 min. The control input con-

straints are given as −2 ≤ u ≤ 2 and −1 ≤ u ≤ 2, respectively. The number of regions

obtained for the control law is 140. Applying the FPCA above to this application, with

the same tuning, just 5 consequents are obtained for the first manipulate variable and 6

for the second,

g̃1(x) =



0.0177 −0.1947 0.1562 0.0036 0.0096

−0.0207 0.2275 −0.1822 0.0075 −0.0103

−0.1298 0.8182 0.4014 −0.0068 −0.0012

−0.0003 0.0035 −0.0027 −0.0007 −0.0004

−0.0302 0.3351 −0.2730 −0.0245 0.0031

0.0336 −0.3704 0.3005 −0.0195 −0.0085

1.6627 0.2191 0.0795 −0.0067 −0.0013


·∆(x)

g̃2(x) =



−0.0271 0.1330 −0.1683 −0.0030 0.0074 0.0045

−0.0322 0.1575 −0.1992 0.0083 0.0092 0.0027

−0.0006 0.0027 −0.0033 −0.0029 −0.0003 0.0032

−0.4149 0.8620 0.2987 0.0018 0.0062 0.0035

0.0455 −0.2331 0.2968 0.0203 0.0060 0.0038

0.0504 −0.2562 0.3258 −0.0136 0.0088 0.0033

1.3315 0.4020 0.1321 0.0018 0.0062 0.0035


·∆(x)

Associating regions with the same parameter as it has been seen in 7.25, the arithmetic

operations of antecedents are reduced from 140 to 68. In Figure 7.7 it can be observed

that the proposed transformation has a similar performance as the system.
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FIGURE 7.7: Controllers performance for distillation column

7.4 Simplified FMPC with constraints

The idea indicated in 1.4 about the lack of parameter setting in the MPC with explicit

solution and constraints, can be addressed by the application of a fuzzy controller hav-

ing the control actions of the various PWA designed for different parameter values as

inputs, and setting the parameter itself. Figure 7.8 shows the scheme of this structure.

This scheme requires more memory capacity and programming time. If greater accu-

PWA1

PWA2

PWA3

l

F
IS

u

FIGURE 7.8: FMPC with explicit solution subject to contraints
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racy is desired, there should be more PWA controller programmed into the system. For

example, in the previous application, three different PWA for three values of lambda

are designed, giving the number of regions and the performance shown in the figure

7.9 Once the FPCA is applied, a huge reduction in the number of consequents can be
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FIGURE 7.9: PWA controllers depending on λ

observed (see table 7.1), and following 7.25, an association of regions can be done,

reducing the antecedents between 45 and 51%. Following the structure of the system

proposed above (see Figure 7.8), the parameter λ (move suppression) can be changed

in order to give more or less aggressiveness to the system. Figure 7.10 shows the per-

formance of the controller when λ takes different values between those which are in the

table 7.1.
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TABLE 7.1: Controllers structure using FPCA

parameter Variable Rules number

Reduced
consequents
number/
reduction(%)

Reduced
antecedents
number/
reduction(%)

λ = 1 u1 140 5 (96%) 68 (51%)
λ = 1 u2 140 6 (95%) 71 (49%)
λ = 5 u1 162 7 (95.6%) 89 (45%)
λ = 5 u2 162 5 (97%) 87 (46%)
λ = 10 u1 161 5 (97%) 88 (45%)
λ = 10 u2 161 6 (96%) 87 (46%)
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7.5 Conclusion to the chapter

In this chapter three methods to reduce complexity have been seen. Firstly, reducing the

dimension of the space of manipulated and disturbance variables to one, has permitted

to reduce a MISO system to SISO. The second way is the application of the technique

studied in chapter 6, reducing the number of rules of a fuzzy system and designing

GPC controllers from the new consequents. An example has been a position control of

a mechanism, reducing complexity just to one rule, designing one GPC to control the

nonlinear system. The third way is the application of the FPCA to a PWA system to

reduce its complexity. This last way permits to reduce complexity of the explicit solu-

tion of the optimisation problem subject to constraints, using an adjusting parameter. In

order to use MPC with constraints on a system, we have to consider several issues: The

computational load, which is determined by the number of operations performed. The

use of on-line optimisation can become limited by the speed of the microprocessor in

computing with a high number of variables. The explicit calculation of the optimisation

solution solves this problem but a memory shortage may sometime limit its implementa-

tion, especially when is necessary to have a fitting parameter. Furthermore, in the actual

implementation of a system, the time spent in programming, which is not negligible,

must be taken into account, considering the lack of tools to automatically generate the

appropriate code from the design and choice of industrial PLC and embedded systems.

In this chapter a combination of the reduction technique showed in Chapter 6 applied on

PWA systems and, together with the use of a fuzzy system, has succeeded in designing

a MPC scheme with constraints and adjustment parameter, with drastically reducing the

number of regions of consequents, improving programming time (down 96%) without

excessive increase in the computational load. The technique applied to the PWA also

allows a new merge of regions (not necessarily adjacent), opening the door to future

research on reducing their complexity.



Conclusion and future work

In this chapter, some very general concluding remarks and future work is presented.

This thesis has focused on developing a new methodology for complexity reduction in

rule based systems.

The main contribution of the thesis is in Chapter 6, i.e. the application of Functional

Principal Components Analysis to the Hilbert space of functions defined in a rule base.

Defining a covariance operator, the technique permits the reduction of the space to a

subspace where the operator’s eigenvalues are bigger. It has been published in [296].

A second contribution, shown in Chapter 7, is the application of the technique described

in Chapter 6, to permit the structure reduction of the controller internally, either reduc-

ing the number of rules of a fuzzy system and designing GPC controllers from the new

consequents, or reducing the rules of a PWA controllers which are the application of

model predictive control, subject to constraints with explicit solution. As examples, a

position control of a mechanism, reducing complexity just to one rule, designing one

GPC to control the nonlinear system and a high distillation column, applying a linear

GPC subject to constraints, with explicit solution of the optimisation problem, using a

tuning parameter.

Other derived contribution from the PCA application the reduction of a MISO system to

SISO, which simplifies the complexity of the control system, by reducing the dimension

of the space of the manipulated and disturbance variables to one, as is shown in section

7.1.

Many practical applications of MPC implementation in low capability hardware and

fuzzy systems which can be viewed as minor contributions of this thesis. The general

fuzzy modelling methodology requires a considerable amount of empirical knowledge

and experience [297]. The practical implementation of MPC and fuzzy systems, has

resulted in several publications and the acquisition of experience needed to model and

control systems in industrially feasible manner.

A practical contribution of RSSI-based explicit GPC and a min-max MPC approach has

125



Conclusion and future work 126

been presented to address the radio power control problem encountered in ambulatory

sensor networks. The results have been published already in [60], [61] and [62]. It has

been shown that an explicit solution of the constrained min-max MPC problem can be

computed for the WSN power control problem by solving an mpQP. The feasibility of

the proposed design and its performance has been experimentally validated.

A basic real contribution of a FIS has been a real software application for commercial

purposes using fuzzy techniques. The application belongs to the company Sensipassr

and two articles have been published in [102] and [103]. A contribution of fuzzy mod-

elling been presented in section 3.2.3, applying GA to chose the input field structure

for a fuzzy model, using the Mackey-Glass chaotic series as an example of prediction.

Others contributions have been several real application of modelling published in [298]

and [? ] for an industrial autoclave and [169], [299] and [300] for an industrial gas mix-

ing chamber. An application of a supervisory fuzzy control system in a real chemical

plant in operation has been applied. A comparison of other strategies with a direct fuzzy

controller in an air levitation plant has been made and published in [301] and [180]. In

Chapter 5, two different schemes have been implemented in a real industrial plant, us-

ing low computational cost hardware with FCL. The results have been compared with

a linear GPC, obtaining better performance with no significant programming effort and

computational resources. The results have been published in [298] and [? ].

Future works

The application of the reduction technique presented in Chapter 6 may result in a lack

of interpretability in the fuzzy system, due to the algebraic combination before ag-

gregation. If we focus on the use in predictive control, this is not a problem. Even

predictive controllers with explicit solutions that could be implemented in industrial de-

vices according to IEC61131-3 [7] and IEC61131-7 [11], there may be the possibility

of non-prototypical membership functions or algebraic operations after fuzzification.

Therefore, a future work may be to focus to obtain interpretable antecedents using a

proper transformation of the input space, getting a simpler way to implement the reduc-

tion technique.

The technique applied to the PWA also allows a new merge of regions (not necessarily

adjacent), opening the door to future research on reducing their complexity when an

explosion of rules arises due the accuracy of modelling.
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Sánchez Peña, VicençPuig Cayuela, and JosebaQuevedo Cası́n, editors, Identifi-

cation and Control, pages 63–85. Springer London, 2007. ISBN 978-1-84628-

898-2. doi: 10.1007/978-1-84628-899-9 3. URL http://dx.doi.org/10.

1007/978-1-84628-899-9_3.

[4] Daniele Pugliesi. Functional levels of a Distributed Control System. Licensed

under CC BY-SA 3.0. URL http://commons.wikimedia.org/wiki/File:

Functional_levels_of_a_Distributed_Control_System.svg.

[5] CENELEC. Programmable controllers - Part 1: General information, ed 2.0.

CENELEC, 2003.

[6] CENELEC. Programmable controllers - Part 2: Equipment requirements and

tests. ed 2.0. CENELEC, 2007.

[7] CENELEC. Programmable controllers - Part 3: Programming languages. ed

3.0. CENELEC, 2013.

[8] CENELEC. Programmable controllers - Part 4: User guidelines. ed 2.0. CEN-

ELEC, 2004.

[9] CENELEC. Programmable controllers - Part 5: Communications. ed 1.0. CEN-

ELEC, 2000.

127

http://dx.doi.org/10.1007/978-1-84628-899-9_3
http://dx.doi.org/10.1007/978-1-84628-899-9_3
http://commons.wikimedia.org/wiki/File:Functional_levels_of_a_Distributed_Control_System.svg
http://commons.wikimedia.org/wiki/File:Functional_levels_of_a_Distributed_Control_System.svg


Bibliography 128

[10] CENELEC. Programmable controllers - Part 6: Functional safety. ed 1.0. CEN-

ELEC, 2012.

[11] CENELEC. Programmable controllers - Part 7: Fuzzy Control programming. ed

1.0. CENELEC, 2000.

[12] CENELEC. Programmable controllers - Part 8: Guidelines for the application

and implementation of programming languages. ed 2.0. CENELEC, 2003.

[13] CENELEC. Programmable controllers - Part 9: Single-drop digital communica-

tion interface for small sensors and actuators (SDCI). ed 1.0. CENELEC, 2013.

[14] CENELEC. Function blocks -Part 1: Architecture. ed 2.0. CENELEC, 2012.

[15] CENELEC. Function blocks -Part 2: Software tool requirements. ed 2.0. CEN-

ELEC, 2012.

[16] CENELEC. Function blocks for industrial-process measurement and control

systems - Part 3: Tutorial information. ed 1.0. CENELEC, 2004.

[17] CENELEC. Function blocks - Part 4: Rules for compliance profiles. ed 2.0.

CENELEC, 2013.

[18] E.F. Camacho and C. Bordons. Model Predictive Control. Advanced Textbooks

in Control and Signal Processing. ISBN 978-1-85233-694-3.

[19] S.Joe Qin and Thomas A. Badgwell. A survey of industrial model pre-

dictive control technology. Control Engineering Practice, 11(7):733 – 764,

2003. ISSN 0967-0661. doi: http://dx.doi.org/10.1016/S0967-0661(02)

00186-7. URL http://www.sciencedirect.com/science/article/pii/

S0967066102001867.

[20] S. Joe Qin and Thomas A. Badgwell. A survey of industrial model predictive

control technology. Control engineering practice, 11(7):733–764, 2003.

[21] C. Cutler and B. Ramaker. Dynamic matrix control–a computer control algo-

rithm. In Automatic Control Conference, 1980.

[22] D.W. Clarke, C. Mohtadi, and P.S. Tuffs. Generalized predictive con-

trol&mdash;part i. the basic algorithm. Automatica, 23(2):137–148, March

1987. ISSN 0005-1098. doi: 10.1016/0005-1098(87)90087-2. URL http:

//dx.doi.org/10.1016/0005-1098(87)90087-2.

http://www.sciencedirect.com/science/article/pii/S0967066102001867
http://www.sciencedirect.com/science/article/pii/S0967066102001867
http://dx.doi.org/10.1016/0005-1098(87)90087-2
http://dx.doi.org/10.1016/0005-1098(87)90087-2


Bibliography 129

[23] P. Zometa, M. Kogel, T. Faulwasser, and R. Findeisen. Implementation aspects of

model predictive control for embedded systems. In American Control Conference

(ACC), 2012, pages 1205–1210, June 2012. doi: 10.1109/ACC.2012.6315076.

[24] Yang Wang and S. Boyd. Fast model predictive control using online optimiza-

tion. Control Systems Technology, IEEE Transactions on, 18(2):267–278, March

2010. ISSN 1063-6536. doi: 10.1109/TCST.2009.2017934.

[25] Juan Luis Jerez, Paul J. Goulart, Stefan Richter, George A. Constantinides,

Eric C. Kerrigan, and Manfred Morari. Embedded online optimization for

model predictive control at megahertz rates. CoRR, abs/1303.1090, 2013. URL

http://arxiv.org/abs/1303.1090.

[26] S. Joe Qin and Thomas A. Badgwell. An overview of industrial model predictive

control technology. AIChE Symposium Series, 93(316):232–256, 1997.

[27] D. Hrovat, S. Di Cairano, H.E. Tseng, and I.V. Kolmanovsky. The development

of model predictive control in automotive industry: A survey. In Control Ap-

plications (CCA), 2012 IEEE International Conference on, pages 295–302, Oct

2012. doi: 10.1109/CCA.2012.6402735.

[28] J. Richalet, A. Rault, J.L. Testud, and J. Papon. Model predictive heuris-

tic control: Applications to industrial processes. Automatica, 14(5):413 –

428, 1978. ISSN 0005-1098. doi: http://dx.doi.org/10.1016/0005-1098(78)

90001-8. URL http://www.sciencedirect.com/science/article/pii/

0005109878900018.
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max model predictive control approach to robust power management in ambu-

latory wireless sensor networks. Systems Journal, IEEE, 8(4):1060–1073, Dec

2014. ISSN 1932-8184. doi: 10.1109/JSYST.2013.2271388.

[63] Sarangapani. Wireless Ad Hoc and Sensor Networks Protocols Performance and

Control. CRC Press, 2007.

[64] Jennifer Yick, Biswanath Mukherjee, and Dipak Ghosal. Wireless sensor net-

work survey. Comput. Netw., 52(12):2292–2330, August 2008. ISSN 1389-1286.

doi: 10.1016/j.comnet.2008.04.002. URL http://dx.doi.org/10.1016/j.

comnet.2008.04.002.

http://dx.doi.org/10.1080/00207170801983109
http://dx.doi.org/10.1080/00207170801983109
http://dx.doi.org/10.1080/00207179.2011.605909
http://dx.doi.org/10.1080/00207179.2011.605909
http://dx.doi.org/10.1016/j.comnet.2008.04.002
http://dx.doi.org/10.1016/j.comnet.2008.04.002


Bibliography 134

[65] Gang Zhou, Tian He, Sudha Krishnamurthy, and John A. Stankovic. Impact of

radio irregularity on wireless sensor networks. In Proceedings of the 2Nd In-

ternational Conference on Mobile Systems, Applications, and Services, MobiSys

’04, pages 125–138, New York, NY, USA, 2004. ACM. ISBN 1-58113-793-1.

doi: 10.1145/990064.990081. URL http://doi.acm.org/10.1145/990064.

990081.

[66] Wei Zhuang, Xi Chen, Jindong Tan, and Aiguo Song. An empirical analysis for

evaluating the link quality of robotic sensor networks. In Wireless Communica-

tions Signal Processing, 2009. WCSP 2009. International Conference on, pages

1–5, Nov 2009. doi: 10.1109/WCSP.2009.5371588.

[67] Guang-Zhong Yang. Body Sensor Networks. Computer Science. Springer Lon-

don, 2014. ISBN 978-1-4471-6373-2. URL http://www.springer.com/

computer/hci/book/978-1-4471-6373-2.

[68] Shuo Xiao, A. Dhamdhere, V. Sivaraman, and A. Burdett. Transmission power

control in body area sensor networks for healthcare monitoring. Selected Areas

in Communications, IEEE Journal on, 27(1):37–48, January 2009. ISSN 0733-

8716. doi: 10.1109/JSAC.2009.090105.

[69] Hande Alemdar and Cem Ersoy. Wireless sensor networks for healthcare:

A survey. Computer Networks, 54(15):2688 – 2710, 2010. ISSN 1389-

1286. doi: http://dx.doi.org/10.1016/j.comnet.2010.05.003. URL http://www.

sciencedirect.com/science/article/pii/S1389128610001398.

[70] Theodore Rappaport. Wireless Communications: Principles and Practice.

Prentice Hall PTR, Upper Saddle River, NJ, USA, 2nd edition, 2001. ISBN

0130422320.

[71] Dimitrios Lymberopoulos, Quentin Lindsey, and Andreas Savvides. An empiri-

cal characterization of radio signal strength variability in 3-d ieee 802.15.4 net-

works using monopole antennas. In Kay Römer, Holger Karl, and Friedemann
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Diseño de sistemas de control borroso: modelado de la planta. RIAII, 3(1):75–81,

2010.

[207] L. X. Wang. Stable adaptive fuzzy control of nonlinear systems. Trans. Fuz

Sys., 1(2):146–155, May 1993. ISSN 1063-6706. doi: 10.1109/91.227383. URL

http://dx.doi.org/10.1109/91.227383.

[208] Li-Xin Wang. Adaptive Fuzzy Systems and Control: Design and Stability Analy-

sis. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1994. ISBN 0-13-099631-

9.

http://dx.doi.org/10.1109/FUZZY.2008.4630481
http://dx.doi.org/10.1109/FUZZY.2008.4630481
http://dx.doi.org/10.1016/j.fss.2007.11.012
http://dx.doi.org/10.1109/FUZZY.2009.5277416
http://dx.doi.org/10.1109/FUZZY.2009.5277073
http://dx.doi.org/10.1007/978-3-642-17844-3
http://dx.doi.org/10.1007/978-3-642-17844-3
http://dx.doi.org/10.1109/91.227383


Bibliography 151

[209] M. Sugeno and G.T. Kang. Fuzzy modelling and control of multilayer incin-

erator. Fuzzy Sets and Systems, 18(3):329 – 345, 1986. ISSN 0165-0114.

doi: http://dx.doi.org/10.1016/0165-0114(86)90010-2. URL http://www.

sciencedirect.com/science/article/pii/0165011486900102. Dedi-

cated to the memory of Richard E. Bellman.

[210] Kazuo Tanaka and Michio Sugeno. Stability analysis and design of fuzzy con-

trol systems. Fuzzy Sets and Systems, 45(2):135 – 156, 1992. ISSN 0165-

0114. doi: http://dx.doi.org/10.1016/0165-0114(92)90113-I. URL http://

www.sciencedirect.com/science/article/pii/016501149290113I.

[211] H.O. Wang, K. Tanaka, and M. Griffin. Parallel distributed compensation of

nonlinear systems by takagi-sugeno fuzzy model. In Fuzzy Systems, 1995. In-

ternational Joint Conference of the Fourth IEEE International Conference on

Fuzzy Systems and The Second International Fuzzy Engineering Symposium.,

Proceedings of 1995 IEEE Int, volume 2, pages 531–538 vol.2, Mar 1995. doi:

10.1109/FUZZY.1995.409737.

[212] H.O. Wang, K. Tanaka, and M. Griffin. An analytical framework of fuzzy mod-

eling and control of nonlinear systems: stability and design issues. In American

Control Conference, Proceedings of the 1995, volume 3, pages 2272–2276 vol.3,

Jun 1995. doi: 10.1109/ACC.1995.531376.

[213] Kazuo Tanaka and Hua O. Wang. Fuzzy Control Systems Design and Analysis:

A Linear Matrix Inequality Approach. John Wiley & Sons, Inc., New York, NY,

USA, 2002. ISBN 0471224596.

[214] K. Tanaka and M. Sugeno. Stability analysis of fuzzy systems using lyapunov’s

direct method. pages 133–136, 1990.

[215] K. Tanaka and M. Sano. A robust stabilization problem of fuzzy control systems

and its application to backing up control of a truck-trailer. Fuzzy Systems, IEEE

Transactions on, 2(2):119–134, May 1994. ISSN 1063-6706. doi: 10.1109/91.

277961.

[216] Seiji Yasunobu and Shoji Miyamoto. Automatic train operation system by pre-

dictive fuzzy control. Industrial applications of fuzzy control, 1(18):1–18, 1985.

[217] R. E. Bellman and L. A. Zadeh. Decision-making in a fuzzy environment.

Management Science, 17(4):pp. B141–B164, 1970. ISSN 00251909. URL

http://www.jstor.org/stable/2629367.

http://www.sciencedirect.com/science/article/pii/0165011486900102
http://www.sciencedirect.com/science/article/pii/0165011486900102
http://www.sciencedirect.com/science/article/pii/016501149290113I
http://www.sciencedirect.com/science/article/pii/016501149290113I
http://www.jstor.org/stable/2629367


Bibliography 152

[218] Joao Miguel da Costa Sousa. Fuzzy model-based control of complex processes.

The Annals of the Marie Curie Fellowship Association, 1(1):2000, 1999.

[219] J.M. da Costa Sousa and U. Kaymak. Model predictive control using fuzzy deci-

sion functions. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Trans-

actions on, 31(1):54–65, Feb 2001. ISSN 1083-4419. doi: 10.1109/3477.907564.

[220] K. Belarbi and F. Megri. A stable model-based fuzzy predictive control based

on fuzzy dynamic programming. Fuzzy Systems, IEEE Transactions on, 15(4):

746–754, Aug 2007. ISSN 1063-6706. doi: 10.1109/TFUZZ.2006.890656.
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