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Abstract

In this work we study the modeling of one-dimensional avalanche flows
made of a moving layer over a static base, where the interface between the
two can be time dependent. We propose a general model, obtained by look-
ing for an approximate solution with constant velocity profile to the incom-
pressible Euler equations. This model has an energy dissipation equation
that is consistent with the depth integrated energy equation of the Euler sys-
tem. It has physically relevant steady state solutions, and, for constant slope,
it gives a particular exact solution to the incompressible hydrostatic Euler
equations. Then, we propose a simplified model, for which the energy conser-
vation holds only up to third-order terms. Its associated eigenvalues depend
on the mass exchange velocity between the static and moving layers. We show
that a simplification used in some previously proposed models gives a non-
consistent energy equation. Our models do not use, nor provide, any equation
for the moving interface, thus other arguments have to be used in order to
close the system. With special assumptions, and in particular small veloc-
ity, we can nevertheless obtain an equation for the evolution of the interface.
Furthermore, the unknown parameters of the model proposed by Bouchaud,
Cates, Ravi and Edwards (BCRE model [7]) can be derived. For the quasi-
stationary case we compare and discuss the equation for the moving interface
with Khakhar’s model [13].
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1 Introduction

This work focuses on the mathematical modeling of erosion processes in granular
flows. Granular avalanches generally involve flowing zones and zones at rest. Static
particles can be put into motion by the flowing particles (i.e. erosion) whereas flow-
ing particles may suddenly stop (i.e. deposition). This static/flowing transition is
typical of granular matter. Many industrial or geophysical applications are related
to this problem. For example, when granular materials are mixed for industrial pur-
poses, the presence of static and flowing zones could significantly affect the efficiency
of the mixing process. This is a major issue in particular when rotating cylinders are
used to deal with mixing of cereals or pills. In geophysics, erosion processes are ex-
pected to play a key role in the dynamics of snow or rock avalanches in mountainous
and volcanic context [Sovilla et al., 2006; Pudasaini and Hutter, 2007]. Mangeney
et al., 2007b show that erosion processes may change drastically the dynamics of
an avalanche flowing over an erodible bed. Actually, when entrainment of granular
material lying on the erodible bed is effective, a decelerating avalanche could become
a surge moving at constant velocity along the slope.

The theoretical description and physical understanding of these processes are
still challenging open problems. In some applications, e.g. avalanches in silos or
surface flows over a pile of granular material, the no-flow and flowing zones can be
fairly clearly separated into a granular layer flowing over a static layer of grains.
The interface between the static and the flowing material changes with time due to
the exchange of grains between the static and the flowing layers.

In the numerical modeling of avalanche dynamics, the existence of mass exchange
between the no-flow and flowing zones is generally not taken into account. The
models used in geophysics are based on the pioneering work of Savage and Hutter
[22] where the whole column of granular material is assumed to be flowing. The mass
and momentum equations are averaged over the depth of the granular material and
a scaling analysis is performed with respect to the aspect ratio of the flowing mass,
considered to be small. Under this hypothesis the avalanche is modeled by a Saint
Venant type system derived in a reference frame linked to an inclined plane. The
unknowns are the thickness and the mean (depth-averaged) velocity of the flowing
mass. A constitutive relation based on Mohr-Coulomb plasticity theory is imposed,
making it possible to relate the normal stresses through a coefficient involving the
so-called basal and internal friction angles and to deduce a friction term at the
base of the flow. The resulting system, derived for granular flows over an inclined
plane, will be denoted here as the S-H model (for Savage-Hutter). Wieland et al.
[24] generalized the S-H model for granular flows over surfaces with small lateral
curvature (Pudasaini and Hutter [21]). More recently Bouchut et al. proposed two
more general one-dimensional Savage-Hutter models [5]. The first one is valid for
small variations of the local slope angle and makes it possible to derive an exact
energy equation. The second model is developed for general slopes. In [6], Bouchut
and Westdickenberg generalize the previous models for small or for general slope
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variation in two dimensions.
The S-H model has been successfully applied to simulate a wide range of labo-

ratory experiments [21], as complex as well as self-channeling flows and the levee-
channel morphology of their deposit [19]. However when applied to the collapse of
granular columns [18], several limitations of the model have been detected. Actually,
experimental results and discrete element simulations show that a static/flowing in-
terface appears and changes with time during the collapse. Taking into account this
static/flowing transition in a depth-averaged model requires the determination of
an equation for the evolution of the moving interface. In other words, one has to
specify the entrainment/deposition rate, which is the velocity perpendicular to the
interface of mass that changes from the static to the flowing side or vice versa of
the interface. Its parametrization is insufficiently known owing to the currently un-
known appropriate physical or mechanical processes that govern the static/flowing
transition. In order to avoid prescribing the evolution of the interface by ad-hoc
physical or mechanical considerations, several attempts have been made to close
the equations by imposing a given profile of the horizontal velocity and/or a given
velocity at the static/flowing interface.

The purpose of this work is to derive mathematically accurate S-H type models
for a one-dimensional flow of a layer made of a granular material moving over a
static layer made of the same material. The closure relation making it possible to
derive an equation for the static/flowing interface will be discussed and compared
with different previously proposed models ([7], [8], [2], [13], [12]). In particular, the
existence of an energy equation for the different systems will be investigated.

The proposed models will be discussed using the following notation (see Figure
1). The horizontal coordinate is denoted by x and time by t. By b(t, x) we denote
the vertical thickness of the static layer (i. e. the position of the static/flowing
interface), by h(t, x) the thickness of the moving layer, measured perpendicularly
to the unknown interface, and by θ(t, x) the angle between the horizontal and the
tangent vector to the interface, according to Figure 1 (indeed, tan θ = ∂xb). The

variable Z is a coordinate normal to the interface, attached to a point ~X in the
moving layer.

One of the first models devoted to this erosion problem, proposed by Bouchaud,
Cates, Ravi and Edwards (BCRE model, see [7], [8]), is simply based on the principle
of mass conservation for density preserving materials. The variation of h is driven
by an advection equation with a volume exchange E(t, x) between the static and the
flowing layer, while the time variation of b compensates the volume exchange, and
is equal to −E . The volume exchange E(t, x) and the horizontal velocity component
of the moving grains, Vd, are both parameters of the model,





∂t

(
h

cos θ

)
+ ∂x(hVd) = E(t, x),

∂tb = −E(t, x).
(1.1)
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Figure 1: Interface between the static and the moving layers, and change of variable

Physically, E(t, x) is a volume exchange per unit time and unit horizontal line ele-
ment. Although the BCRE model does not ensure conservation of momentum, it
has been applied to a lot of practical problems. A difficulty of this model is to adjust
the parameters E(t, x) and Vd. Phenomenological relations have been proposed for
E(t, x), defined as a function of the angle θ minus a neutral angle θn (if θ > θn then
erosion occurs, deposition otherwise), see [7]. The exchange term reads

E(t, x) = γh(θ − θn), (1.2)

where γ is an empirical constant (see also [1], [2]). The model proposed by Boutreux,
Raphaël and DeGennes (BRDG model, see [8]) differs in the form of the exchange
term, where h is replaced by a thickness λ smaller than h,

E(t, x) = γλ(θ − θn). (1.3)

The idea is that only a very thin layer, of the order of the grain diameter, is involved
in the exchange between the static and moving layers. Both expressions (1.2) and
(1.3) can be written as

E(t, x) = Vup(θ − θn), (1.4)

where Vup is a parameter of the model that has the dimension of a velocity.
In [2] the BCRE and BRDG models are derived from the Saint-Venant equations,

making it possible to deduce the parameters involved in these models when the
velocity profile is assumed to be linear with a constant slope. From this assumption,
an equation for the change in time of b and h can be deduced. Concretely, Vd

is simply obtained from the mass conservation equation when a velocity profile is
assumed and Vup is shown to depend on the specific velocity profile when a quasi-
stationary assumption is made (θ ≈ θn). Khakhar et al. in [13], [14] derive a model
based on the Saint Venant equations by also assuming a linear velocity profile. The
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equations are closed by assuming continuity of the shear stress at the static/flowing
interface (this is only in conformity with the jump conditions of momentum, if
E ≡ 0). Based on experimental data, the friction term in the flowing layer at the
interface is written as the sum of a Coulomb term plus a Bagnold term whereas
the friction is assumed to reduce to the Coulomb friction in the static layer at the
same interface. From the equality of both expressions the value of the slope of the
velocity profile can be deduced,

U = U1Z with U1 = f(θ, θs, θm), (1.5)

where θs is the static angle of repose and θm the ”maximum angle of repose” (see
[13]).

Note that in [13] and [2], the pressure term ∂x(gh2/2) arising in the Saint Venant
systems has been neglected.

In [12], Gray deduces a S-H type model for the erosion problem in avalanches in
the case of rotating drums. He uses similar arguments as in the original S-H model,
but by depth-averaging the equation only within the moving layer. The system of
coordinates is fixed over an inclined plane with a fixed angle. For the kinematic
condition he supposes that the particles on the surface that separates the moving
and the static layers move with a velocity which is the sum of the velocity of the
particles in the moving layer and an exchange velocity (db) in the normal direction
to the surface. From this kinematic condition he deduces the exchange velocity db

for granular flows in rotating drums. For avalanches over an inclined plane one has
db = cos θ ∂tb. After depth integration, a source term depending on db appears in
the mass balance equation. Moreover, a term proportional to U|b∂tb arises in the
momentum equation, where U|b is the velocity of the grains in the moving layer at the
static/flowing interface. This term corresponds to the impulse of the entrained mass
that must instantly assume the velocity of the moving avalanche at the interface.

In [13] the authors suppose that the velocity profile is linear with the velocity
equal to zero at the static/moving interface, i.e. U|b = 0. Instead, by referring to
experimental data, Gray in [12] sets U|b = u, the averaged velocity over the moving
layer. The question is whether these closure arguments, in particular using the ve-
locity profile and/or the velocity U|b, are justified. A possible way to address this
problem is to look for an approximate solution to the Euler equations that satisfies
the required conditions. When simple solutions cannot be calculated, another crite-
rion is to check that the assumptions lead to a system of equations which exhibits
good mathematical properties, i.e. to have the right steady states and to satisfy
an energy dissipation inequality. The main model that we propose, (3.8)-(3.9) or
its simplified version (3.20)-(3.21), is coherent with these two criteria and is based
on the assumption of a uniform velocity profile. We have not been able to offer
such a justification for a model that is based on the assumption of a linear profile
of the velocity. In Subsection 3.6 we nevertheless discuss the energy equation ob-
tained for the different models by introducing a coefficient δ in front of the term
u∂tb that appears in the momentum equation in conservative form. The value of
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this coefficient depends on the assumptions related to the velocity profile and/or the
velocity at the static/flowing interface. The associated energy equation is shown to
be fully energy conservative (i.e. has a neutral balance independently of b(t, x)) only
if δ = 1/2. However, the only value that we have been able to justify in terms of
mathematical properties is δ = 1. Moreover, we show that if the term u∂tb in the
momentum equation is neglected (i.e. δ = 0), as is for most models proposed in the
literature, the associated energy equation is not consistent with the depth-averaged
energy equation of the Euler equations.

In order to close depth-averaged avalanche models, the ”partial fluidization
model” proposed in [3] could be a good candidate avoiding the difficulties encoun-
tered in the methods discussed above. Actually, Aranson and Tsimring present a
theory based on the introduction of an order parameter ρ that describes the transi-
tion between the static and the moving phases without any particular assumption
on the velocity profile and/or the velocity at the static/flowing interface. This pa-
rameter is introduced in the hydrodynamic equation and a coupled equation for ρ
is proposed following the theory of phase transition of Ginzburg and Landau, as
presented by Landau and Lifshitz in [16]. Based on this theory, Mangeney et al. in
[20] succesfully simulate laboratory experiments of granular flows over erodible bed.

The remainder of the paper is organized as follows. In Section 2 we perform a
change of variables, starting from the incompressible Euler equations over a moving
bottom. Actually, two variable transformations are needed in order to avoid the
difficulty that the variation in time of the local coordinates is not known. Moreover,
the mass and energy equations associated to the Euler system are written down.
In Section 3 we show how an approximate solution to the Euler system can be
built in new coordinates, by assuming a constant velocity profile. We deduce a
new model that satisfies a conservative energy inequality without any error term,
in the sense that for regular solutions the energy equation is exactly obtained by a
combination of the equations of the model. Moreover, it gives the expected steady-
states corresponding to zero velocity (material at rest). For constant slope, the
model gives an exact solution to the hydrostatic Euler equations. Friction terms
can also be introduced in the model. An interesting observation is that this new
model contains first-order terms that do not appear in previously proposed models.
Then, we introduce a simplified model which is energy conservative only up to third-
order terms in the aspect ratio. Its associated characteristic velocities depend on
the exchange velocity between the layers ∂tb. Finally, the developed models are
compared to previously considered models in Section 4. The arguments proposed
in the former studies are used in our model to derive an evolution equation for the
interface b. In particular, we show that the parameters of the BCRE model found
by [2] through the derivation of the Saint-Venant equations change by a factor 3/2 if
the term U|b∂tb, usually neglected in the momentum equation, is taken into account.
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2 Change of variables

In this section we perform a change of variables from Cartesian coordinates to the co-
ordinates related to the interface. This enables us to reformulate the incompressible
Euler equations in a more suitable form. We also reformulate the energy equation
associated to the Euler equations in order to be able to compare the integrated
energy with the energy associated to any integrated model.

We consider a one-dimensional flow comprising a moving layer over a static one,
with a time-dependent interface between them. Time is denoted by t, the horizontal
coordinate is denoted by x, b(t, x) is the vertical thickness of the static layer, h(t, x)
is the thickness of the moving layer, measured perpendicularly to the unknown
interface. The angle between the horizontal and the tangent vector to the interface
is denoted by θ(t, x), and we notice that

tan θ = ∂xb. (2.1)

Let ~X be an arbitrary point in the avalanche domain bounded by the basal and
free surfaces. We consider the coordinate Z that measures the position of ~X inside
the moving layer, in the direction normal to the interface, as displayed on Figure 1.
Thus,

0 < Z < h(t, x). (2.2)

Then the relations between the Cartesian coordinates (t, ~X) and the coordinates
(t, x, Z) related to the interface is

~X =
(
x − Z sin θ(t, x), b(t, x) + Z cos θ(t, x)

)
. (2.3)

Notice that (x, b(t, x)) is a point on the interface. We consider also a curvilinear
variable X(t, x) measuring the arc length along the interface. Thus at fixed t, the
mapping x 7→ X is a change of variable with

∂xX =
1

cos θ(t, x)
, (2.4)

which, together with (2.1) yields the relation (at fixed t) (db/dx)2+1 = (dX/dx)2, as
illustrated in Figure 1. However, since there are several ways to choose the origin on
the curve, that could make different dependencies with respect to time, we cannot
say a priori what is the value of ∂tX. Nevertheless, from (2.1) we get

∂tθ = cos2 θ ∂2
txb, ∂Xb|t = sin θ, (2.5)

where the notation |t means that the derivative is taken at fixed t.
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2.1 Transformation of the incompressible Euler equations

We denote the velocity field of the moving layer by ~U . Then the Euler equations for
the moving layer can be written in Cartesian coordinates (t, ~X) as

∇ ~X · ~U = 0, (2.6)

∂̂t
~U + ~U · ∇ ~X

~U + ∇ ~X · P = −∇ ~X(~g · ~X), (2.7)

where ∂̂t = ∂t| ~X , ~g = (0, g) and g is the gravity constant. By P we denote the
pressure tensor, the negative of the stress tensor, divided by density,

P =

(
px x px z

pz x pz z

)
, (2.8)

with px z = pz x. Here we allow a full matrix, but later on we shall consider only the
”true Euler” case where P is isotropic, e.g. P is a scalar times the identity tensor.
This system is completed with a kinematic law for the evolving free surface,

the free surface is advected by the material velocity ~U, (2.9)

and with dynamic boundary conditions. At the free surface we just set

P~ν = 0 at Z = h(t, x), (2.10)

where ~ν is a unit vector normal to the free surface.
For the bottom interface, the incompressibility of the fluid comes into play, and

we have to give precise assumptions on the fluid density, that we have not introduced
yet. We assume that the moving part of the fluid is incompressible with uniform
density ρm, while the part of the fluid that is at rest is also incompressible, with
uniform density ρr. Having different densities ρm and ρr, the model allows more
generality, and it is physically more relevant, since experimental observations indi-
cate that ρr > ρm. The physical interpretation of these assumptions is the following.
On the one hand, when ρm = ρr, the whole fluid (comprising the moving part and
the part at rest) is incompressible with uniform density. On the other hand, when
ρr > ρm, the fluid that is deposited (e.g. stops moving and stays at rest) has to
increase its density from ρm to ρr, thus is being compressed through the interface;
while the fluid that is eroded (e.g. starts moving), has to diminish its density from
ρr to ρm, thus is being decompressed through the interface.

The dynamic condition at the interface corresponding to this situation with two
densities ρm, ρr is deduced from the mass conservation, that can be written

∂̂tρ + ∇ ~X · (ρ~U) = 0, (2.11)

where ρ takes the value ρm in the moving part of the fluid, and ρr in the part at rest.
The velocity ~U is set to 0 in the part at rest. Writing down the Rankine-Hugoniot
condition through the interface gives the boundary condition

(
[ρ], [ρ~U ]

)
· ~N = 0, (2.12)
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where [. . .] denotes the jump of a quantity through the interface, and ~N denotes a
time-space normal to the interface. Since the interface is defined by z − b(t, x) = 0,

one can take ~N = (−∂tb,−∂xb, 1) = (− cos θ ∂tb,− sin θ, cos θ)/ cos θ. Denoting by
~n = (− sin θ, cos θ) the space unit vector normal to the interface, oriented upwards,
the interface dynamic boundary condition (2.12) can be written

ρm
~U · ~n = −(ρr − ρm) cos θ ∂tb at Z = 0. (2.13)

For completeness, let us mention that from (2.6)-(2.7) one classically deduces the
energy equation, valid if P is isotropic, e.g. P is a scalar times the identity tensor,

∂̂t

(
|~U |2
2

+ ~g · ~X

)
+ ∇ ~X ·

(
|~U |2
2

~U + P ~U + (~g · ~X) ~U

)
= 0. (2.14)

In what follows we perform a change of variables from Cartesian coordinates (t, ~X)
to coordinates attached to the interface, first to the variables (t, X, Z), and then
to the variables (t, x, Z). The velocity components in the frame associated to the
interface will be denoted by (U, W ),

(
U
W

)
=

(
cos θ sin θ
− sin θ cos θ

)
~U. (2.15)

The new stress tensor is

P =

(
cos θ sin θ
− sin θ cos θ

)
P

(
cos θ − sin θ
sin θ cos θ

)
=

(
PXX PXZ

PZX PZZ

)
. (2.16)

We observe that, as pxz = pzx, then PXZ = PZX .
Let us consider first the variables (t, X, Z). In order to avoid confusion in dif-

ferentiations, we shall denote the time in these variables by τ , so that ∂/∂τ means
that we differentiate with respect to time at X and Z fixed. We first compute the
Jacobian matrix of the transformation ∇τ,X,Z(t, ~X). According to (2.3), (2.4) and
(2.5) we have

∇X,Z
~X =

(
J cos θ − sin θ
J sin θ cos θ

)
, J = 1 − Z∂Xθ = det

(
∇X,Z

~X
)

. (2.17)

Thus,

∇ ~X(X, Z) = (∇X,Z
~X)−1 =

1

J

(
cos θ sin θ

−J sin θ J cos θ

)
. (2.18)

Then

∇τ,X,Z(t, ~X) =

(
1 0

B ∇X,Z
~X

)
, B = ∂τ

~X, (2.19)

and by inversion

∇t, ~X(τ, X, Z) =

(
1 0

−(∇X,Z
~X)−1B (∇X,Z

~X)−1

)
. (2.20)
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We deduce from (2.19) that

det
(
∇τ,X,Z(t, ~X)

)
= det

(
∇X,Z

~X
)

= J, (2.21)

and from (2.20) that

∂̂t(X, Z) = −(∇X,Z
~X)−1B. (2.22)

In order to go to the variables (t, x, Z) we shall need the Jacobian matrix between
(τ, X) and (t, x), thus we compute

∇t,x(τ, X) =

(
1 0

∂tX 1/ cos θ

)
, ∇τ,X(t, x) =

(
1 0

− cos θ∂tX cos θ

)
. (2.23)

Therefore we deduce the following rule, for any function f(t, x, Z),

∂τf = ∂tf − cos θ(∂tX)∂xf, (2.24)

where
∂t ≡ ∂t|x,Z, ∂̂t ≡ ∂t| ~X , ∂τ ≡ ∂t|X,Z . (2.25)

Notice that this definition for ∂t is coherent with the previous notations whenever
f only depends on t and x, and also that cos θ ∂xf = ∂Xf . With the rule (2.24), we

can deduce a formula for B = ∂τ
~X. Using (2.3) and (2.1), we get

B =

(
− cos θ∂tX

∂tb − sin θ∂tX

)
− Z(∂tθ − (∂tX)∂Xθ)

(
cos θ
sin θ

)
. (2.26)

Using (2.5), we can also rewrite B as

B =
(
−Z cos2 θ ∂2

txb − ∂tX(1 − Z∂Xθ)
)(

cos θ
sin θ

)
+

(
0

∂tb

)
. (2.27)

With this formula we get according to (2.22) and (2.18)

∂̂tX = −J−1(cos θB1 + sin θB2) = J−1(J∂tX + Z cos2 θ ∂2
txb − sin θ ∂tb), (2.28)

∂̂tZ = sin θB1 − cos θB2 = − cos θ ∂tb. (2.29)

In order to perform the change of variables in the governing equations (2.6)-(2.7),
let us recall the classical divergence chain rule formula.

Lemma 2.1 (Divergence chain rule) Let ~ξ 7→ ~Y (~ξ) be a change of variables,

and define the Jacobian matrix by A−1 = ∇~ξ
~Y , and its Jacobian determinant by

J = detA−1. Then for any vector field ~Φ one has

J∇~Y · ~Φ = ∇~ξ · (JA~Φ). (2.30)
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We notice also that with the same notation we have for any scalar f

∇~Y f = At ∇~ξf, (2.31)

where we use the notations At for the transpose of a matrix A.

In order to be complete, let us give a simple proof of (2.30).

Proof of Lemma 2.1. Fix a point ~ξ0, and consider a small ball B containing ~Y (~ξ0),

and a smooth function ϕ(~Y ) vanishing outside of B. Then, applying usual rules of
calculus such as Gauss’s law without boundary term (because ϕ vanishes on the
boundary) and changes of variables under an integral, we get

∫
ϕ(~Y )∇~Y · ~Φ d~Y

= −
∫

∇ϕ(~Y ) · ~Φ d~Y

= −
∫

∇ϕ(~Y (~ξ)) · ~Φ |J |d~ξ

= −
∫

At∇~ξ

(
ϕ(~Y (~ξ))

)
· ~Φ |J |d~ξ

= −
∫

∇~ξ

(
ϕ(~Y (~ξ))

)
· A~Φ |J |d~ξ

=

∫
ϕ(~Y (~ξ))∇~ξ · (A~Φ|J |) d~ξ

=

∫
ϕ(~Y )∇~ξ · (A~Φ|J |) d~Y

|J | .

(2.32)

This identity holds for any function ϕ(~Y ), thus

∇~Y · ~Φ = ∇~ξ · (A~Φ|J |) 1

|J | in B. (2.33)

Since J has a constant sign, this proves the claim. �

2.2 Incompressibility condition

By applying Lemma 2.1 with ~ξ = (X, Z) and ~Y = ~X, we readily obtain from the
incompressibility equation (2.6) and with (2.21) that

∇X,Z ·
(
J∇ ~X(X, Z)~U

)
= J∇ ~X · ~U = 0. (2.34)

But according to (2.18) and (2.15),

J∇ ~X(X, Z)~U =

(
cos θ sin θ

−J sin θ J cos θ

)
~U =

(
U

JW

)
. (2.35)

11



We deduce that
∂XU + ∂Z(JW ) = 0. (2.36)

Notice that we could also use Lemma 2.1 in the time and space variables, by writing

∇τ,X,Z ·
(
J∇t, ~X(τ, X, Z)(0, ~U)

)
= J∇t, ~X · (0, ~U) = 0, (2.37)

which gives (2.36) since by (2.20) and (2.18)

J∇t, ~X(τ, X, Z) =




J 0 0

J∂̂tX cos θ sin θ

J∂̂tZ −J sin θ J cos θ


 . (2.38)

In the same spirit, writing down

∇τ,X,Z ·
(
J∇t, ~X(τ, X, Z)(1, 0)

)
= J∇t, ~X · (1, 0) = 0, (2.39)

we get the identity
∂τJ + ∂X(J∂̂tX) + ∂Z(J∂̂tZ) = 0, (2.40)

where ∂̂tX and ∂̂tZ can be expressed by (2.28)-(2.29). Notice that (2.40) is an
identity related to the change of variables, and does not involve the unknowns U ,
W . Adding (2.40) and (2.36), this yields

∂τJ + ∂X

(
J∂̂tX + U

)
+ ∂Z

(
J∂̂tZ + JW

)
= 0. (2.41)

In the sequel we shall use either (2.36) or (2.41) as incompressibility equation. They
are of course equivalent.

2.3 Momentum equations

In order to obtain the equations for U and W , we multiply (2.7) on the left by the
matrix (

cos θ sin θ
− sin θ cos θ

)
, (2.42)

that appears in (2.15). The result for the first component, multiplied by J , gives an
equation for U ,

J
(
∂̂tU + ~U · ∇ ~XU

)
+ J(∇ ~X(~g · ~X)) ·

(
cos θ
sin θ

)

= JW
(
∂̂tθ + ~U · ∇ ~Xθ

)
− J∇ ~X ·

(
P

(
cos θ
sin θ

))
+ J(∇ ~Xθ)tP

(
− sin θ
cos θ

)
.

(2.43)
Then, according to the incompressibility condition (2.6), we can use for any scalar

function f the identity ∂̂tf + ~U · ∇ ~Xf = ∇t, ~X · (f, f ~U). Applying Lemma 2.1 with
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~ξ = (τ, X, Z), ~Y = (t, ~X), ~Φ = (f, f ~U) and using (2.38), we get for any scalar
function f

J
(
∂̂tf + ~U · ∇ ~Xf

)
= J ∇t, ~X · (f, f ~U) = ∇τ,X,Z ·




Jf

J(∂̂tX)f + fU

J(∂̂tZ)f + JfW


 . (2.44)

We choose successively f = U and f = θ in (2.44) and insert the results in (2.43).

We use also Lemma 2.1 as above, but with ~Φ = (0, P (cos θ, sin θ)). With the help
of formula (2.31) for the two remaining terms, (2.43) yields

∇τ,X,Z ·




JU

J(∂̂tX)U + U2

J(∂̂tZ)U + JUW


+ ∂X(~g · ~X)

= W∇τ,X,Z ·




Jθ

J(∂̂tX)θ + θU

J(∂̂tZ)θ + JθW




−∇X,Z ·
((

1 0
0 J

)(
cos θ sin θ
− sin θ cos θ

)
P

(
cos θ
sin θ

))

+ (∇X,Z θ)t

(
1 0
0 J

)(
cos θ sin θ
− sin θ cos θ

)
P

(
− sin θ
cos θ

)
.

(2.45)

In order to obtain the equation for W , we multiply the first equation of (2.7) by
− sin θ, and the second one by cos θ. Multiplying the sum by J , we get

J
(
∂̂tW + ~U · ∇ ~XW

)
+ J(∇ ~X(~g · ~X)) ·

(
− sin θ
cos θ

)

= −JU
(
∂̂tθ + ~U · ∇ ~Xθ

)
− J∇ ~X ·

(
P

(
− sin θ
cos θ

))
− J(∇ ~Xθ)tP

(
cos θ
sin θ

)
.

(2.46)
Proceeding as above, we obtain

∇τ,X,Z ·




JW

J(∂̂tX)W + WU

J(∂̂tZ)W + JW 2


 + J∂Z(~g · ~X)

= −U∇τ,X,Z ·




Jθ

J(∂̂tX)θ + θU

J(∂̂tZ)θ + JθW




−∇X,Z ·
((

1 0
0 J

)(
cos θ sin θ
− sin θ cos θ

)
P

(
− sin θ
cos θ

))

− (∇X,Z θ)t

(
1 0
0 J

)(
cos θ sin θ
− sin θ cos θ

)
P

(
cos θ
sin θ

)
.

(2.47)

13



At this point, we would like to simplify somewhat the equations (2.45) and (2.47).
Taking into account (2.41) and the fact that θ does not depend on Z, we have

Q ≡ ∂τ (Jθ) + ∂X

(
J(∂̂tX)θ + θU

)
+ ∂Z

(
J(∂̂tZ)θ + JθW

)

= J∂τθ +
(
J∂̂tX + U

)
∂Xθ.

(2.48)

Then, using (2.24), (2.5), expression (2.17) of J and (2.28), we get

Q

cos θ
=

J

cos θ
∂tθ +

(
J(∂̂tX − ∂tX) + U

)
∂xθ

= (1 − Z cos θ ∂xθ) cos θ ∂2
txb + (Z cos2 θ ∂2

txb − sin θ ∂tb + U)∂xθ
= ∂x(cos θ ∂tb) + U∂xθ.

(2.49)

2.4 System of equations in (τ, X, Z)

Writing down the incompressibility equation (2.36) and the momentum equations
(2.45), (2.47) in the variables (τ, X, Z) gives the system

∂XU + ∂Z(J W ) = 0, (2.50)

∂τ (J U) + ∂X

(
(J∂̂tX + U) U

)
+ ∂Z

(
J(∂̂tZ + W )U

)
+ ∂X(g(b + Z cos θ))

= W
(
J∂τθ +

(
J∂̂tX + U

)
∂Xθ

)
− ∂XPXX − ∂Z(JPZX) + PXZ∂Xθ,

(2.51)

∂τ (J W ) + ∂X

(
(J∂̂tX + U) W

)
+ ∂Z

(
J (∂̂tZ + W ) W

)
+ J∂Z(g(b + Z cos θ))

= −U
(
J∂τθ +

(
J∂̂tX + U

)
∂Xθ

)
− ∂XPXZ − ∂Z(JPZZ) − PXX∂Xθ,

(2.52)

where ∂̂tX and ∂̂tZ can be expressed by (2.28)-(2.29). Notice that according to
expression (2.17) for J , one has ∂ZJ = −∂Xθ, thus

−∂Z(JPZZ) − PXX∂Xθ = −J∂ZPZZ + (PZZ − PXX)∂Xθ. (2.53)

2.5 System of equations in (t, x, Z)

We now choose the horizontal coordinate x. We shall see that with this choice, the
unknown quantity ∂tX from (2.28) disappears. In order to perform the change of
variable to the variables (t, x, Z), we use (2.24) and the identity cos θ∂x = ∂X that
comes from (2.4). Moreover, we still use the notations (2.25).

At first, since θ does not depend on Z, we can write the incompressibility equa-
tion (2.50) as

∂xU + ∂Z

(
J W

cos θ

)
= 0. (2.54)
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This equation can also be obtained from (2.50) by using Lemma 2.1. Indeed, take
~Y = (τ, X, Z), ~ξ = (t, x, Z). Then, according to (2.23), the matrix JA in (2.30) is

JA =




(cos θ)−1 0 0
−∂tX 1 0

0 0 (cos θ)−1


 . (2.55)

Multiplying this matrix by the vector ~Φ = (0, U, JW ) appearing in (2.50) gives
the vector (0, U, JW/ cos θ). Writing that the divergence in (t, x, Z) of this vector
vanishes gives (2.54). Similarly, we can transform identity (2.40) to get

∂t

(
J

cos θ

)
+ ∂x

(
−J∂tX + J∂̂tX

)
+ ∂Z

(
J∂̂tZ

cos θ

)
= 0, (2.56)

or more explicitly, according to (2.28)-(2.29)

∂t

(
J

cos θ

)
+ ∂x

(
Z cos2 θ ∂2

txb − sin θ ∂tb
)

+ ∂Z (−J∂tb) = 0. (2.57)

Indeed, (2.57) can also be checked directly by using expression (2.17) of J and
relation (2.1) relating θ to b. The identity (2.57) is true for any function b(t, x), and
does not involve the unknowns U , W . Finally, adding (2.54) and (2.57), we obtain
the combined incompressibility equation

∂t

(
J

cos θ

)
+ ∂x

(
Z cos2 θ ∂2

txb − sin θ ∂tb + U
)

+ ∂Z

(
J

cos θ
(− cos θ ∂tb + W )

)
= 0.

(2.58)
Next, consider equation (2.51) for U . Applying again the divergence chain rule, and
with the use of (2.49), it takes the form

∂t

(
JU

cos θ

)
+ ∂x

(
(J(∂̂tX − ∂tX) + U) U + g(b + Z cos θ) + PXX

)

+∂Z

(
J

cos θ
(∂̂tZ + W )U +

JPZX

cos θ

)
= W

(
∂x(cos θ ∂tb) + U∂xθ

)
+ PXZ∂xθ.

(2.59)
Combining it with (2.58), we may derive its nonconservative analogue

J

cos θ
∂tU + (Z cos2 θ ∂2

txb − sin θ ∂tb + U)∂xU + J
( W

cos θ
− ∂tb

)
∂ZU

+ ∂x

(
g(b + Z cos θ) + PXX

)
+ ∂Z

(
JPZX

cos θ

)

= W
(
∂x(cos θ ∂tb) + U∂xθ

)
+ PXZ∂xθ.

(2.60)
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A similar computation for W , again with the aid of Lemma 2.1, transforms (2.52)
into

∂t

(
JW

cos θ

)
+ ∂x

(
(J(∂̂tX − ∂tX) + U) W + PXZ

)

+ ∂Z

(
J

cos θ
(∂̂tZ + W ) W +

JPZZ

cos θ

)
+

J

cos θ
∂Z

(
g(b + Z cos θ)

)

= −U
(
∂x(cos θ ∂tb) + U∂xθ

)
− PXX∂xθ.

(2.61)

If we combine this again with (2.58) as before and use (2.53), we obtain the non-
conservative equation

J

cos θ
∂tW + (Z cos2 θ ∂2

txb − sin θ ∂tb + U)∂xW + J
( W

cos θ
− ∂tb

)
∂ZW

+ ∂xPXZ +
J

cos θ
∂Z

(
g(b + Z cos θ) + PZZ

)

= −U
(
∂x(cos θ∂tb) + U∂xθ

)
+ (PZZ − PXX)∂xθ.

(2.62)

In summary, the governing equations, comprising all the balance laws of mass and
momentum and referred to the independent variables (t, x, Z) is defined: (i) in con-
servative form by (2.54), (2.59), (2.61), and (ii), in nonconservative form by (2.54),
(2.60), (2.62).

2.6 Energy equation

In what follows we consider the case where P is isotropic, P = pzzI. Then we have
also P = pzzI, and for simplicity we shall denote pzz by P .

Starting from the energy equation (2.14) written in Cartesian coordinates ~Y =

(t, ~X), we perform the change of variables to ~ξ = (τ, X, Z). Applying Lemma 2.1

with (2.38) and appropriate choices for ~Φ leads to

∂τ

(
J
(U2 + W 2

2
+ ~g · ~X

))
+ ∂X

(
(J∂̂tX + U)

(U2 + W 2

2
+ ~g · ~X

)
+ PU

)

+∂Z

(
J(∂̂tZ + W )

(U2 + W 2

2
+ ~g · ~X

)
+ PJW

)
= 0.

(2.63)

Then, applying Lemma 2.1 again with ~Y = (τ, X, Z), ~ξ = (t, x, Z), and using (2.55),
we obtain the balance equation for the energy referred to the (t, x, Z) coordinates
as follows,

∂t

(
J

cos θ

(U2 + W 2

2
+ g(b + Z cos θ)

))

+∂x

(
(Z cos2 θ ∂2

txb − sin θ ∂tb + U)
(U2 + W 2

2
+ g(b + Z cos θ)

)
+ PU

)

+∂Z

(
J

cos θ
(− cos θ ∂tb + W )

(U2 + W 2

2
+ g(b + Z cos θ)

)
+

PJW

cos θ

)
= 0.

(2.64)
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2.7 Integration and kinematic boundary condition

In this subsection we provide formulas for quantities which are integrated with
respect to Z. Moreover, we derive the kinematic boundary condition associated to
the free surface, that gives the evolution of h(t, x).

According to (2.9), the free surface is advected by the material velocity ~U . Con-

sider a material point ~X(s), where s is the time, that is moving with the flow, and
that stays on the free surface. Then

d ~X

ds
(s) = ~U(s, ~X(s)). (2.65)

In the variables (t, x, Z), the free surface is characterized by Z = h(t, x). Thus

Z(s, ~X(s)) = h(s, x(s)), (2.66)

where (s, x(s)) are the (t, x) coordinates corresponding to (s, ~X(s)). Differentiating
(2.66) with respect to s gives

∇t, ~XZ(s, ~X(s))

(
1

~U(s, ~X(s))

)
= ∂th(s, x(s)) + ∂xh(s, x(s))

dx

ds
(s). (2.67)

We compute
dx

ds
= ∂τx + (∂Xx)

dX

ds
,

dX

ds
= ∇t, ~XX(s, ~X(s))

(
1

~U(s, ~X(s))

)
.

(2.68)

Using (2.18) and (2.23), equation (2.67) yields

∂̂tZ + W = ∂th +
(
− cos θ ∂tX + cos θ (∂̂tX + U/J)

)
∂xh. (2.69)

With (2.28), (2.29) we get

− cos θ ∂tb + W = ∂th +
cos θ

J
(Z cos2 θ ∂2

txb − sin θ ∂tb + U)∂xh. (2.70)

This must hold at any point on the free surface, therefore the kinematic condition
is that for any (t, x),

J|h

cos θ
∂th + (h cos2 θ ∂2

txb − sin θ ∂tb + U|h)∂xh =
J|h

cos θ
(− cos θ ∂tb + W|h), (2.71)

where |h means that we take the value at Z = h(t, x).
Now, taking into account the boundary condition (2.13), which can be written

as

WZ=0 = −
(

ρr

ρm
− 1

)
cos θ ∂tb, (2.72)
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integrating of the incompressibility equation (2.58) for Z between 0 and h(t, x), and
using the kinematic condition (2.71), gives

∂t

∫ h

0

J

cos θ
dZ + ∂x

∫ h

0

(Z cos2 θ ∂2
txb − sin θ ∂tb + U)dZ = − ρr

ρm
∂tb. (2.73)

More explicitly, the mass conservation reads

∂t

(
h

cos θ
− h2

2
∂xθ

)
+ ∂x

(h2

2
cos2 θ ∂2

txb − h sin θ ∂tb + h U
)

= − ρr

ρm
∂tb, (2.74)

where

U =
1

h

∫ h

0

UdZ. (2.75)

Notice that with known (2.58) and (2.72), the mass conservation (2.74) is equivalent
to the kinematic condition (2.71).

We can proceed similarly for the energy equation. Assuming that P is isotropic,
we integrate the energy equation (2.64) for Z between 0 and h(t, x). Using the
kinematic condition (2.71) and the boundary conditions (2.72) and (2.10), we obtain
the depth-integrated energy equation

∂t

∫ h

0

J

cos θ

(U2 + W 2

2
+ g(b + Z cos θ)

)
dZ

+ ∂x

∫ h

0

(
(Z cos2 θ ∂2

txb − sin θ ∂tb + U)
(U2 + W 2

2
+ g(b + Z cos θ)

)
+ P U

)
dZ

= −
(

1

2
U2

Z=0 +
1

2

((
ρr

ρm

− 1

)
cos θ ∂tb

)2

+ g b

)
ρr

ρm

∂tb −
(

ρr

ρm

− 1

)
PZ=0 ∂tb.

(2.76)
It is not possible to obtain an explicit formula for this integrated equation, unless a
particular profile of the velocity in Z is assumed.

The right-hand sides in (2.74) and (2.76) deserve some comments. For the mass
conservation law (2.74), the term ρr

ρm
∂tb can be put on the left-hand side. Then,

multiplying the result by ρm, what one obtains is the time variation of the mass of
moving fluid plus the mass of fluid at rest, which is the total mass of the fluid. For
the energy equation (2.76), one can similarly put the term ρr

ρm
gb∂tb = ∂t(

ρr

ρm
gb2/2)

on the left-hand side, since after multiplication by ρm, the term ρrgb2/2 represents
the potential energy of the static part of the fluid. However, even when ρm = ρr,
there remains the term − 1

2
U2

Z=0∂tb on the right-hand side, that cannot be put in
conservative form. This term represents the variation of the kinetic energy attached
to the displacement of the interface b(t, x). When ρm 6= ρr, the kinetic energy at
the interface is completed with the normal term W 2

Z=0, which is non zero, and an
additional term involving PZ=0 remains on the right-hand side, related to the mass
exchanges through the interface.
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2.8 Hydrostatic model

Classically, the hydrostatic assumption consists in removing the normal acceleration
in the momentum equation. Since W is the normal velocity to the bottom interface,
doing this means to remove the first line in (2.62). Therefore, the hydrostatic model,
formulated with respect to the coordinates (t, x, Z), comprises equations (2.54),
(2.60), and

∂xPXZ +
J

cos θ
∂Z

(
g(b + Z cos θ) + PZZ

)

= −U
(
∂x(cos θ∂tb) + U∂xθ

)
+ (PZZ − PXX)∂xθ.

(2.77)

The kinematic and boundary conditions remain unchanged for this system. If we
assume that P is isotropic, one can directly combine (2.54), (2.60) and (2.77) to
obtain a hydrostatic energy equation. More explicitly, we can proceed as follows.
We first transform the equation ∂̂t(~g · ~X) +∇ ~X · 0 = 0 to the (t, x, Z) variables; this
yields the identity

∂t

(
J

cos θ
g(b + Z cos θ)

)
+ ∂x

(
(Z cos2 θ ∂2

txb − sin θ ∂tb)g(b + Z cos θ)
)

+∂Z

(
−J∂tb g(b + Z cos θ)

)
= 0,

(2.78)

that can also be checked directly. Then, we add up (2.60) times U plus (2.77) times
W plus (2.54) times U 2/2 + g(b + Z cos θ) + P plus (2.57) times U 2/2 plus (2.78).
This gives the hydrostatic energy equation

∂t

(
J

cos θ

(U2

2
+ g(b + Z cos θ)

))

+∂x

(
(Z cos2 θ ∂2

txb − sin θ ∂tb + U)
(U2

2
+ g(b + Z cos θ)

)
+ PU

)

+∂Z

(
J

cos θ
(− cos θ ∂tb + W )

(U2

2
+ g(b + Z cos θ)

)
+

PJW

cos θ

)
= 0,

(2.79)

the only difference with (2.64) being that the term W 2/2 has disappeared. Indeed,
the same computation for the non-hydrostatic model gives (2.64). Therefore, for
the hydrostatic model, the mass conservation still reads (2.74), while the integrated
energy equation takes the form

∂t

∫ h

0

J

cos θ

(U2

2
+ g(b + Z cos θ)

)
dZ

+ ∂x

∫ h

0

(
(Z cos2 θ ∂2

txb − sin θ ∂tb + U)
(U2

2
+ g(b + Z cos θ)

)
+ P U

)
dZ

= −
(

1

2
U2

Z=0 + g b

)
ρr

ρm
∂tb −

(
ρr

ρm
− 1

)
PZ=0 ∂tb.

(2.80)
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3 A new erosion model for avalanches

In this section we propose a new erosion model for avalanches, derived from our
formulation (2.54), (2.60), (2.62) for the incompressible equations subject to the
boundary conditions (2.72), (2.10) and the mass conservation (2.74). We first deal
with the case where the stress tensor P is isotropic, then in Section 3.3 non-diagonal
terms are considered in order to include friction effects.

Our procedure consists, as usual, in assuming for the velocity U(t, x, Z) a partic-
ular profile in Z. An approximate solution to the incompressible system is searched
for with this particular profile, retaining only lower order terms relatively to the
aspect ratio characterizing the shallowness of the moving mass. Indeed, we retain
all first and second-order terms, and some third-order terms that are necessary to
obtain a model that verifies exactly an energy inequality. Interestingly, the result-
ing model contains some first-order terms that do not appear in previously proposed
models.

3.1 Formal derivation

In what follows we consider a moving layer over a given variable bottom interface
b(t, x), as described at the beginning of Section 2. Thus, according to (2.1), θ is also
known. We denote by ε the aspect ratio between the characteristic lengths normal
and parallel to the interface, which is supposed to be a small parameter. Thus we
have the shallowness assumption

h = O(ε). (3.1)

We look for a solution with a velocity profile almost constant in Z,

U(t, x, Z) = u(t, x) + O(ε2). (3.2)

Moreover, we assume a small variation in space of the angle θ and a small variation
in time of b,

∂xθ = O(ε), ∂tb = O(ε). (3.3)

Under these hypotheses, we make the following approximations. We assume that
there are no singularities in time or space; i.e. ∂t and ∂x are formally bounded
operators. On the other hand, the shallowness assumption leads to ∂Z = O(1/ε).
At first, since 0 < Z < h, (3.1) ensures that Z = O(ε). Notice that (2.54), together
with (2.72), can be used to define W (t, x, Z), once U(t, x, Z) is known. From this
we deduce that W = O(ε), ∂tW = O(ε), ∂xW = O(ε). With (3.3) we have J =
1 + O(ε2), and (2.62), (3.3) give

∂Z

(
gZ cos θ + P

)
= O(ε), (3.4)

implying together with (2.10) the near hydrostatic pressure

P = g cos θ(h − Z) + O(ε2). (3.5)
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Substituting this expression into (2.60), we obtain, on using (3.2),

1 − Z cos θ ∂xθ

cos θ
∂tu + (Z cos2 θ ∂2

txb − sin θ ∂tb)∂xu + ∂x(
u2

2
+ gh cos θ + gb) = O(ε2).

(3.6)
We observe that the terms depending on Z, i.e. Z cos θ ∂xθ and Z cos2 θ ∂2

txb, are
second-order terms, according to (3.3). Therefore, they can be neglected; thus we
get an equation in the variables (t, x) only. This justifies the compatibility of the
choice (3.2) with the Euler system. However, although the two previously mentioned
terms depending on Z can be neglected, we keep them because they are necessary
in order to obtain a system which verifies exactly an energy inequality as will be
discussed in the following section. Indeed, in order to remove the dependence in Z,
we can take Z = h/2 in (3.6) without changing the order of approximation. We
close the system by rewriting (2.74), where U = u + O(ε2). This gives an error in
O(ε3) in (2.74). Finally, by expanding (2.76) we obtain the following equation for
the energy,

∂t

(( h

cos θ
− h2

2
∂xθ
)(u2

2
+ gb

)
+ g

h2 + ρr

ρm
b2

2
− g

h3

3
cos θ ∂xθ

)

+∂x

((u2

2
+ gh cos θ + gb

)
hu +

(h2

2
cos2 θ ∂2

txb − h sin θ ∂tb
)(u2

2
+ gb

)

+g
h3

3
cos3 θ ∂2

txb − g
h2

2
sin θ cos θ ∂tb

)

= −u2

2

ρr

ρm
∂tb −

(
ρr

ρm
− 1

)
gh cos θ ∂tb + O(ε3).

(3.7)

3.2 Properties of the model

In this subsection we study the properties of the model obtained as explained above,
and dropping the error terms. The model is defined by the two mass and momentum
equations coming from (2.74) and (3.6) (with Z = h/2),

∂t

(
h

cos θ
− h2

2
∂xθ

)
+ ∂x

(h2

2
cos2 θ ∂2

txb − h sin θ ∂tb + hu
)

= − ρr

ρm
∂tb, (3.8)

( 1

cos θ
−h

2
∂xθ
)
∂tu+

(h

2
cos2 θ ∂2

txb−sin θ ∂tb
)
∂xu+∂x

(u2

2
+gh cos θ+gb

)
= 0. (3.9)

Notice that when ∂tb = 0, the system differs slightly from the model proposed in
[5]. As usual, (3.9) is valid for smooth solutions, but for possibly discontinuous
solutions, one should rather write the momentum equation in conservative form

∂t

((
h

cos θ
− h2

2
∂xθ

)
u

)
+ ∂x

((h2

2
cos2 θ ∂2

txb − h sin θ ∂tb + hu
)
u + g

h2

2
cos θ

)

= −g sin θ

(
h

cos θ
− h2

2
∂xθ

)
− ρr

ρm
u∂tb,

(3.10)
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obtained by multiplying (3.8) by u, (3.9) by h and adding the results. The term
g h2

2
sin θ ∂xθ on the right-hand side of (3.10) was introduced by Bouchut et al. in

[5]. Here it plays the same role, to maintain a conservative energy balance and to
have the lake at rest solution.

Theorem 3.1 System (3.8)-(3.9) has the following properties.

(i) It admits an energy dissipation inequality

∂t

(( h

cos θ
− h2

2
∂xθ
)(u2

2
+ gb

)
+ g

h2 + ρr

ρm
b2

2
− g

h3

3
cos θ ∂xθ

)

+∂x

((u2

2
+ gh cos θ + gb

)
hu +

(h2

2
cos2 θ ∂2

txb − h sin θ ∂tb
)(u2

2
+ gb

)

+g
h3

3
cos3 θ ∂2

txb − g
h2

2
sin θ cos θ ∂tb

)
≤ −u2

2

ρr

ρm
∂tb −

(
ρr

ρm
− 1

)
gh cos θ ∂tb

(3.11)
which is an identity for smooth solutions,

(ii) it has the lake-at-rest solution u = 0, h cos θ + b = Cst, for arbitrary given
b(t, x) if ρm = ρr, or for b satisfying ∂tb ≡ 0 if ρm 6= ρr,

(iii) under assumptions (3.1), (3.3), it provides in the limit ε → 0 an approximation
up to error terms of order ε3 in (3.8) and of order ε2 in (3.9), with constant
velocity profile in the normal variable, to the free surface incompressible Euler
equations (2.54), (2.60), (2.62), (2.72), (2.10), (2.74),

(iv) for constant slope (∂tθ = 0, ∂xθ = 0), system (3.8)-(3.9) gives an exact solu-
tion to the free surface incompressible Euler system with hydrostatic assump-
tion (2.54), (2.60), (2.77), (2.72), (2.10), (2.74).

Proof. For (i), a long calculation shows that for smooth solutions, by multiplying
(3.8) by u2/2+gh cos θ+gb, (3.9) by hu and adding the results, using (2.1), (2.5), we
obtain exactly the equality in (3.11). Since the details of the computation are very
tedious, we prefer to omit them, and rather give an abstract argument. Consider a
solution (h, u) to (3.8)-(3.9). Set U(t, x, Z) = u(t, x), define W by (2.54) with the
boundary condition (2.72), and take P = g cos θ(h−Z), that satisfies the boundary
condition (2.10). Then, the mass conservation (2.74) holds, and only the velocity
equations for U and W fail to hold in order to have a solution to the Euler equations.
We have the equation ∂Z(g(b+Z cos θ)+P ) = 0, thus we can say that the hydrostatic

equation (2.77) holds modulo the term −U
(
∂x(cos θ∂tb) + U∂xθ

)
. For U , we can

say that (2.60) holds modulo the term W
(
∂x(cos θ∂tb) + U∂xθ

)
, with a right-hand

side
(h/2 − Z)

(
∂xθ ∂tu − cos2 θ ∂2

txb ∂xu
)
, (3.12)
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just because (3.9) has been obtained by taking Z = h/2 in (2.60). Performing the
same computation as for the hydrostatic model, we can derive an energy equation.
We observe that the terms involving ∂x(cos θ∂tb) + U∂xθ simplify, thus we get the
energy equation (2.79) with the right-hand side u times (3.12). Integrating this
equation for Z between 0 and h then gives (2.80), since the integral in Z of (3.12)
vanishes. Finally the evaluation of (2.80) gives (3.11).

The property (ii) can be obtained as follows. We have to prove that if u = 0
and h cos θ + b = C independent of x and t, then we have a solution to (3.8)-
(3.9), provided that ( ρr

ρm
− 1)∂tb ≡ 0. The second equation (3.9) holds trivially,

thus we just have to prove the first, (3.8). We first observe that ~U = 0, P =

gC −~g · ~X gives a solution to (2.6)-(2.7). Since the free surface is defined by h(t, x)
such that h cos θ + b = C, it is horizontal. Thus (2.9) is satisfied. The boundary
condition (2.13) holds according to the assumption, and the pressure P also vanishes
at the free surface, ensuring that (2.10) holds. Therefore, we have a solution to the
incompressible Euler equations with boundary conditions. Formulating this solution
in the (t, x, Z) coordinates reads in particular as equation (2.74), proving the result.
Another proof is to differentiate the relation h cos θ + b = C with respect to t and x,
and to put the results directly in (3.8). Notice that when ρm = ρr with b depending
on time, the lake-at-rest solution is not strictly speaking a steady state, since h also
depends on time. This is due to the fact that in this case, the interface is artificial
and does not have a physical meaning, since the parts of the fluid above and below
it are both at rest.

The property (iii) follows directly from the derivation above.
For (iv), consider a solution (h, u) to (3.8)-(3.9). As in the proof of (i), let

U(t, x, Z) = u(t, x), define W by (2.54) with the boundary condition (2.72), and
take P = g cos θ(h − Z). According to the assumptions that ∂tθ = 0 and ∂xθ = 0
(but without assuming that ∂tb = 0), the terms ∂x(cos θ∂tb) + U∂xθ and (3.12) van-
ish. Thus the computations made in the proof of (i) show that we have an exact
solution to the hydrostatic Euler system. �

3.3 Friction terms

In this subsection we explain how from the incompressible system with non-isotropic
stress tensor we can derive friction terms in the proposed model (3.8)-(3.9).

In the system (2.54), (2.60), (2.62), the stress tensor P needs to be defined.
Making the same scale analysis as previously performed for (2.62) to obtain (3.4),

we obtain ∂Z

(
gZ cos θ + PZZ

)
= O(ε), provided that PXZ = O(ε). Thus,

PZZ = g cos θ(h − Z) + O(ε2). (3.13)

In order to specify PXX it is necessary to give a constitutive law. With the purpose
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of simplicity in this work we set PXX = PZZ, although the case PXX = KPZZ can
be considered, K = Kact/pass following the Savage-Hutter model [22]. The friction
effects are introduced in the shear stress PZX . Following the works of Savage-Hutter
[22] and Gray [12], and in line with (2.10), we impose as boundary condition PZX

to vanish at the free surface, and a Coulomb friction term at the flowing edge of the
interface,

(PZX)|Z=h
= 0, (PZX)|Z=0

= −µ sgn(U)(PZZ)|Z=0
, (3.14)

where µ = tan θs and θs is the basal friction angle. Now, if we assume that µ = O(ε),
we obtain PZX = O(ε2). Arguing as in the beginning of Section 3, the only new
term appearing in (2.60) is ∂Z(JPZX/ cos θ). Thus, averaging (2.60) between Z = 0
and Z = h, we are led to

( 1

cos θ
− h

2
∂xθ
)
∂tu +

(h

2
cos2 θ ∂2

txb − sin θ ∂tb
)
∂xu + ∂x

(u2

2
+ gh cos θ + gb

)

=
PZX |Z=0

h cos θ
+ O(ε2).

(3.15)
However, according to (3.14) and (3.13), we have PZX |Z=0 = −µgh cos θ sgn(u) +
O(ε3). Therefore, neglecting terms in ε2 in (3.15), we obtain together with (2.74)
the system

∂t

(
h

cos θ
− h2

2
∂xθ

)
+ ∂x

(h2

2
cos2 θ ∂2

txb − h sin θ ∂tb + hu
)

= − ρr

ρm
∂tb, (3.16)

( 1

cos θ
− h

2
∂xθ
)
∂tu +

(h

2
cos2 θ ∂2

txb − sin θ ∂tb
)
∂xu

+∂x

(u2

2
+ gh cos θ + gb

)
= −gµ sgn(u).

(3.17)

A more precise argument is indeed to say that taking into account the conditions
on PZX , a possible ansatz is

PZX = −µ sgn(u)g cos θ(h − Z) + O(ε3). (3.18)

Then we obtain

∂Z

(JPZX

cos θ

)
= gµ sgn(u) + O(ε2). (3.19)

Substituting in (2.60) gives (3.17), up to terms of order ε2.

3.4 Simplified model

The model (3.8)-(3.9) is a bit complicated, thus it is tempting to try to simplify it,
by dropping small terms. However, doing this, we break the nice properties stated
in Theorem 3.1. However, it is worthwhile to state the result. The simplified system
is defined as

∂t

(
h

cos θ

)
+ ∂x

(
− h sin θ ∂tb + hu

)
= − ρr

ρm
∂tb, (3.20)
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1

cos θ
∂tu +

(
− sin θ ∂tb

)
∂xu + ∂x

(u2

2
+ gh cos θ + gb

)
= 0. (3.21)

The corresponding conservative momentum equation is

∂t

(
h

cos θ
u

)
+ ∂x

((
− h sin θ ∂tb + hu

)
u + g

h2

2
cos θ

)

= −g sin θ

(
h

cos θ
− h2

2
∂xθ

)
− ρr

ρm

u∂tb,
(3.22)

obtained by multiplying (3.20) by u, (3.21) by h and adding the results.

Theorem 3.2 The system (3.20)-(3.21) has the following properties.

(i) It admits an energy dissipation inequality

∂t

(
h

cos θ

(u2

2
+ gb

)
+ g

h2 + ρr

ρm
b2

2

)

+∂x

((u2

2
+ gh cos θ + gb

)
hu +

(
−h sin θ ∂tb

)(u2

2
+ gb

)

−g
h2

2
sin θ cos θ ∂tb

)
≤ −u2

2

ρr

ρm

∂tb −
(

ρr

ρm

− 1

)
gh cos θ ∂tb

+
1

2
gh2

(
∂xθ ∂tb − ∂xb ∂tθ

)

(3.23)

which is an identity for smooth solutions,

(ii) it has the lake-at-rest solution u = 0, h cos θ + b = Cst, whenever ∂tb ≡ 0,

(iii) under assumptions (3.1), (3.3), it provides in the limit ε → 0 an approximation
up to error terms of order ε3 in (3.20) and of order ε2 in (3.21), with constant
velocity profile in the normal variable, to the free surface incompressible Euler
equations (2.54), (2.60), (2.62), (2.72), (2.10), (2.74),

(iv) for constant slope (∂tθ = 0, ∂xθ = 0), system (3.20)-(3.21) gives an exact
solution to the free surface incompressible Euler system with hydrostatic as-
sumption (2.54), (2.60), (2.77), (2.72), (2.10), (2.74).

Proof. Property (iii) follows from the fact that we only dropped terms of order ε3 in
(3.20) and ε2 in (3.21) as compared to (3.8)-(3.9). Property (iv) is also obvious since
there is no difference between (3.20)-(3.21) and (3.8)-(3.9) when ∂tθ = 0, ∂xθ = 0.
For (ii), we observe that ∂tb = 0 implies that ∂tθ = 0. Thus, differentiating the
identity h cos θ + b = Cst with respect to time yields ∂th = 0. We deduce obviously
that (3.20)-(3.21) hold.
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In order to prove (i), one multiplies (3.20) by u2/2 + gh cos θ + gb, (3.21) by hu
and add the results. This gives

gh cos θ ∂t

( h

cos θ

)

︸ ︷︷ ︸
(∗1)

+∂t

( h

cos θ

u2

2
+

ρr

ρm

gb2

2

)
+ gb ∂t

( h

cos θ

)
+ gh cos θ ∂tb

︸ ︷︷ ︸
(∗2)

+ (
u2

2
+ gb)∂x

(
−h sin θ ∂tb

)
− h sin θ ∂tb ∂x(

u2

2
)

︸ ︷︷ ︸
(∗3)

+ gh cos θ ∂x

(
−h sin θ ∂tb

)

︸ ︷︷ ︸
R1

+∂x

(
(
u2

2
+ gh cos θ + gb)hu

)
= −u2

2

ρr

ρm
∂tb −

(
ρr

ρm
− 1

)
gh cos θ ∂tb.

(3.24)
Then, according to (2.1), (2.5), one sees that

(∗1) = ∂t

(gh2

2

)
+ gh2 sin θ cos θ ∂2

txb︸ ︷︷ ︸
R2

, (∗2) = ∂t

(
gb

h

cos θ

)
−gh sin θ ∂xb ∂tb︸ ︷︷ ︸

(∗4)

.

(3.25)
Moreover, we observe that

(∗3) + (∗4) = ∂x

(
− h sin θ(

u2

2
+ gb)∂tb

)
, (3.26)

while a computation gives

R1 + R2 = ∂x

(
−g

h2

2
sin θ cos θ ∂tb

)
+

1

2
gh2(sin θ cos θ ∂2

txb − ∂xθ ∂tb). (3.27)

Putting the results together, we obtain (3.23). �

We remark that compared to the original model (3.8)-(3.9), the simplified model
(3.20)-(3.21) has weaker properties (i) because there is a right-hand side proportional
to h2 (but of order ε3), and (ii) because that property holds only when ∂tb = 0. We
can also observe that keeping the terms involving − sin θ ∂tb in (3.20) and (3.21) is
essential in order to maintain an accuracy of second order.

3.5 Hyperbolicity

In this subsection we study the hyperbolicity of the simplified model (3.20)-(3.21).
We show that it is a hyperbolic system with eigenvalues depending of the exchange
velocity between the static and the moving layers ∂tb.

We choose the conservative variables

H =
h

cos θ
, Q =

hu

cos θ
, (3.28)
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and assume that b(t, x) is a given smooth function. Then, according to (3.22), the
system can be written as a conservative system with source term

∂tV + ∂x(F (t, x, V )) = G(t, x, V ), (3.29)

with V =

(
H
Q

)
and

F (t, x, V ) =




−H sin θ cos θ ∂tb + Q cos θ
Q2

H
cos θ − Q sin θ cos θ ∂tb +

1

2
gH2 cos3 θ


 , (3.30)

G(t, x, V ) =




− ρr

ρm
∂tb

−gH sin θ + g
H2

2
sin θ cos2 θ ∂xθ −

ρr

ρm

Q

H
∂tb


 . (3.31)

We can compute the eigenvalues of the jacobian matrix ∂V F . They are given by

λ± = cos θ
(
u − sin θ ∂tb ± cos θ

√
gH
)

. (3.32)

The corresponding eigenvectors are

X± =

(
1

u ± cos θ
√

gH

)
. (3.33)

If we compare this result with the classical Saint Venant system, we see that the
difference in the expression of the eigenvalues comes from the velocity u − sin θ ∂tb.
We observe that the term sin θ ∂tb appears because ∂tb is the vertical exchange
velocity between the moving and the static layers (see [12]). Indeed, sin θ ∂tb is the
projection of this velocity in the same direction as u, i.e. parallel to the interface.

3.6 Comparison with other models

In this subsection we compare the proposed simplified model (3.20)-(3.21) with
other well-known previously proposed models. We observe that some models have
a non-consistent energy equation.

At first, the model (3.20)-(3.21) deserves a comment concerning the energy bal-
ance. Indeed, one could think of a modified model

∂t

(
h

cos θ

)
+ ∂x

(
− h sin θ ∂tb + hu

)
= − ρr

ρm
∂tb, (3.34)

1

cos θ
∂tu − sin θ ∂tb ∂xu + ∂x

(u2

2
+ gh cos θ + gb

)
= (1 − δ)

ρr

ρm

u

h
∂tb, (3.35)
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for some parameter δ (δ = 1 for the original model). Then this δ-model has the
associated energy equation

∂t

(
h

cos θ

(u2

2
+ gb

)
+ g

h2 + ρr

ρm
b2

2

)

+∂x

((u2

2
+ gh cos θ + gb

)
hu +

(
−h sin θ ∂tb

)(u2

2
+ gb

)

−g
h2

2
sin θ cos θ ∂tb

)
≤ (

1

2
− δ)

ρr

ρm
u2∂tb −

(
ρr

ρm
− 1

)
gh cos θ ∂tb

+
1

2
gh2

(
∂xθ ∂tb − ∂xb ∂tθ

)
.

(3.36)

If we use the variables H, Q as in Subsection 3.5, the only difference between these

models is the last term of the second component of G: the term − ρr

ρm
u∂tb is replaced

by −δ
ρr

ρm
u∂tb. Thus the δ-model can be written as (3.29), where F is defined by

(3.30) and

G(t, x, V ) =




−∂tb

−gH sin θ + g
H2

2
sin θ cos2 θ ∂xθ − δ

ρr

ρm

Q

H
∂tb


 . (3.37)

The particular value δ = 1/2 has the property to give a conservative energy equation
(3.36), up to third-order terms, independently of the choice of b(t, x). We could think
that this model comes from a profile of U(t, x, Z) that vanishes at Z = 0, making
the corresponding term on the right-hand side of (2.80) vanish. However, we have
not been able to find such a profile, solution to (2.60). Therefore, for now, only the
model δ = 1 is justified.

Differences with other models

At first we observe that the most usual way to write erosive avalanche models is in
the t, X, Z variables (see for example [12], [13]). Moreover, it is generally assumed
that the axis along which the X variable is defined corresponds to a fixed constant
angle over all the domain. Here we include the case where θ can vary in time and
space. Other differences are the following.

To our knowledge, the terms involving sin θ ∂tb in (3.20), (3.21) do not appear
in any other model. This has at least two consequences:

i) If a model does not take into account these terms, then it has equations valid
only up to first-order, but not to second-order terms in ε (or one has to assume
that ∂tb = O(ε2)).
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ii) The eigenvalues of the Jacobian matrix are only cos θ(u ± cos θ
√

gH), and do
not depend on the exchange velocity between the moving and the static layers
∂tb.

Concerning the value of δ, in [12], Gray deduces a model which corresponds
to δ = 1, as in our model. However, in most other papers related to erosion in

avalanches, the authors neglect the term in
Q

H
∂tb in (3.37), leading to the case δ = 0.

We have not found in the literature any model corresponding to δ = 1/2. In order
to understand the influence of the value of δ, we can focus on the associated energy
equation. We observe that for δ = 0 or δ = 1 the right-hand side ( 1

2
− δ) ρr

ρm
u2∂tb in

(3.36) has either positive or negative sign according to the sign of ∂tb. Intuitively,
when ∂tb > 0 for example, part of the fluid that was moving comes to rest. Thus the
effect of ∂tb > 0 is to remove some kinetic energy, leading to a negative right-hand
side in the energy equation. This indicates that the value δ = 0 is not compatible
with reasonable energy considerations. Another argument is to observe that since
the model is related to integrals of the solution to the Euler system, the associated
energy equation must be consistent with the integrated energy equation of the Euler

system. Comparing the right-hand side −U(Z=0)2

2
ρr

ρm
∂tb in the integrated energy

equation (2.80) to ( 1
2
−δ) ρr

ρm
u2∂tb, we conclude that only the value δ = 1 is consistent

if U(Z = 0) = u. With δ = 0 we get 1
2

ρr

ρm
u2∂tb, which cannot be obtained with any

definition of U(Z = 0) in (2.80).

4 Models with small velocity and equation for b

In this section we show how it is possible to relate our model to previously proposed
systems that are closed with an equation for b. These models assume a small velocity.

4.1 Linear velocity profile

In [2], [9] and [13], the authors obtain an equation that describes the evolution of b
in the case of a linear profile of the velocity, U(t, x, Z) = U1(t, x) Z + O(ε2). Since
U1 is assumed to be bounded, this implies that U = O(ε). The linearity assumption
is related to the assumption U(Z = 0) = 0, which seems reasonable when friction
occurs at the interface (but not satisfactory according to K. Hutter). The model
with friction, as described in Subsection 3.3, is considered here. The profile of U
is introduced in equation (2.60) and the terms corresponding to different powers
of Z are put together. To close the equation, a parametrization of the value of
∂Z(PZX/ cos θ) is needed. Let us consider a linear or parabolic profile for the shear
stress

PZX = C + AZ + B
Z2

2
+ O(ε3). (4.1)
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Then, substituting (4.1) into (2.60) and grouping together the terms that are con-
stant and linear in Z, respectively, we deduce the following two equations,

∂x(gh cos θ + gb) − U1∂tb =
−A

cos θ
+ O(ε2), (4.2)

1

cos θ
∂tU1 − sin θ ∂tb ∂xU1 =

−B

cos θ
+ O(ε). (4.3)

If we consider a linear profile of PZX (i.e. B = 0), the boundary conditions (3.14)
give

C = −µ sgn(U)(PZZ)|Z=0
, A =

µ sgn(U)(PZZ)|Z=0

h
. (4.4)

Moreover, recalling that ∂xθ = O(ε) and ∂tb = O(ε) and neglecting second-order
terms (if U1 is bounded), we obtain the system

∂x(gh cos θ + gb) − U1∂tb = −gµ sgn(U1), (4.5)

∂tU1 = 0. (4.6)

It is completed by the mass conservation equation obtained from (2.74),

∂t

(
h

cos θ
− h2

2
∂xθ

)
+ ∂x

(h2

2
cos2 θ ∂2

txb − h sin θ ∂tb +
1

2
h2U1

)
= − ρr

ρm

∂tb. (4.7)

We observe that the system (4.5)-(4.7) has the lake at rest solution

U1 = 0, b + h cos θ = Cst, (4.8)

for arbitrary b(t, x) if ρr = ρm, or for ∂tb = 0 otherwise.

4.2 Khakhar’s model

Khakhar et al. in [13] propose an equation for the change of b with time. In his model
the effect of pressure gradient is neglected. Thus, in order to compare their with
our model, we neglect first-order terms in (4.5). Keeping in mind that ∂xb = tan θ
and µ = tan θs, we obtain from (4.5)

∂tb =
g

U1
(tan θ + sgn(U1) tan θs). (4.9)

If we consider that 0 ≤ θ < π/2 then sgn(U1) = −1 and we obtain

∂tb =
g

U1
(tan θ − tan θs) =

g sin(θ − θs)

U1 cos θ cos θs
. (4.10)
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However, we do not have any expression for U1. Khakhar et al. [13] study this
quasi-stationary case, and they obtain an expression for U1,

U1 = ±
√

g cos θ sin(θm − θs)

c d cos θm cos θs
. (4.11)

This expression is deduced from the assumptions on the friction term. Following
experimental results, the friction term in the flowing layer is assumed to be the sum
of a Bagnold term and a Coulomb term,

(PZX)|Z=0
= −sgn(U)

(
c d h

(
∂U

∂Z

)2

+ gh cos θ tan θs

)
, (4.12)

where c ≈ 1.5 is a parameter of the model, d is the diameter of the particles and θs

is the static angle of repose (for more details see [13]). They identify this expression
with the stress of the flowing particles in the upper layer, which is supposed to be

(PZX)|Z=0
= g(h + d) cos θ tan θm, (4.13)

where θm, as described by Khakhar et al. in [13], is the ”maximum angle of repose”.
Indeed, tan θs is the effective coefficient of dynamic friction and tan θm the effective
coefficient of static friction. From (4.12) and (4.13), equation (4.11) can be deduced.

With the above definition of the velocity profile, Khakhar et al. study the quasi-
stationary case, and deduce the following equation for b,

∂tb =
g

U1
(tan θ − tan θm). (4.14)

If we compare this with equation (4.10) obtained for b in our model, θm is replaced
by θs. However, we have only considered a Coulomb friction term. If we consider
PZX defined by (4.12) we also obtain (4.14).

4.3 The BCRE model

In [2] the Saint Venant model is compared with the BCRE phenomenological model.
The BCRE model reflects the exchange of mass and the advection of particles in
the upper layer. As described in the introduction, the BCRE model reads





∂t

(
h

cos θ

)
+ ∂x(hVd) = E(t, x),

∂tb = −E(t, x),
(4.15)

with E the mass exchange between the flowing and static layer. In this subsection
we consider θ to be almost constant, and we assume that ρm = ρr. By Vd we denote
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the velocity of grains in the upper layer (see [2], [7], [8]). Owing to equation (1.4),
the BCRE model can be written as





∂tb = −Vup(θ − θn),

∂t

(
h

cos θ

)
+ ∂x(hVd) = Vup(θ − θn),

(4.16)

where Vup(θ−θn) is the exchange term between the static and the mobile layers. By
θn one denotes a neutral angle, which separates the erosion and deposition profile.
The factor Vup has the dimension of a velocity and is a parameter of the model. For
more details see [2], [7], [8]. In [2], Aradian et al. relate this model to the Saint
Venant model to derive the parameters Vup and Vd involved in the BCRE model.
Nevertheless, as usual, they neglect the term U|b∂tb in the momentum equation. We
show here that including this term can change the determination of the parameter
Vup by a factor 3/2.

Let us start as in the derivation of the friction proposed in Subsection 3.3, but
instead of a constant velocity profile, we rather take, as in [2],

U = −Γ0Z, (4.17)

where Γ0 =
√

g/d and d is the grain diameter. Thus U < 0 which is coherent with
the situation, when 0 ≤ θ < π/2. Observe that (4.17) gives ∂tU = 0, ∂xU = 0.
Then, since u ≡ U = −Γ0h/2, averaging (2.60) between Z = 0 and Z = h gives

∂x

(
gh cos θ + gb

)
+ Γ0∂tb =

PZX |Z=0

h cos θ
+ (1 − δ)

u

h
∂tb + O(ε2), (4.18)

with
PZX |Z=0 = −µ sgn(U)gh cos θ. (4.19)

In the above, δ is a parameter, formally inserted to identify (4.18) with (3.35). This
has to be completed by the mass conservation equation obtained from (2.74),

∂t

(
h

cos θ
− h2

2
∂xθ

)
+ ∂x

(h2

2
cos2 θ ∂2

txb − h sin θ ∂tb − Γ0
h2

2

)
= −∂tb. (4.20)

Neglecting second-order terms gives

∂t

(
h

cos θ

)
+ ∂x

(
− Γ0

h2

2

)
= −∂tb + O(ε2). (4.21)

Combining (4.21) and (4.18) where we neglect the term ∂x(gh cos θ), we obtain





∂t

(
h

cos θ

)
+ ∂x

(
−Γ0

h2

2

)
=

g

Γ0 cos θ(3 − δ)/2
(sin θ − µ cos θ),

∂tb =
−g

Γ0 cos θ(3 − δ)/2
(sin θ − µ cos θ).

(4.22)
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If µ = tan θs then

sin θ − µ cos θ =
1

cos θs

sin(θ − θs). (4.23)

Then, if θ ≈ θs the following system is obtained,




∂t

(
h

cos θ

)
+ ∂x

(
−Γ0

h2

2

)
=

g

Γ0 cos2 θs(3 − δ)/2
(θ − θs),

∂tb =
−g

Γ0 cos2 θs(3 − δ)/2
(θ − θs).

(4.24)

If we compare (4.16) and (4.24), following [2], we obtain the identifications

Vd = −Γ0
h

2
, θn = θs, Vup =

g

Γ0 cos2 θs(3 − δ)/2
. (4.25)

We observe that since u = −Γ0h/2, we have Vd = u. Finally, we observe that Vup,
the uphill velocity of exchange from the static to the mobile layers, is modified by
the choice of δ. In fact, one has (Vup)δ=1 = 3

2
(Vup)δ=0.
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