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Abstract. In [4], given a binary 26-adjacency voxel-based digital vo-
lume V , the homological information (that related to n-dimensional
holes: connected components, ”tunnels” and cavities) is extracted from
a linear map (called homology gradient vector field) acting on a polyhe-
dral cell complex P (V ) homologically equivalent to V . We develop here
an alternative way for constructing P (V ) based on homological algebra
arguments as well as a new more efficient algorithm for computing a ho-
mology gradient vector field based on the contractibility of the maximal
cells of P (V ).

1 Introduction

In [4], a polyhedral cell complex P (V ) homologically equivalent to a binary 26-
adjacency voxel-based digital volume V is constructed. The former is an useful
tool in order to visualize, analyze and topologically process the latter.The contin-
uous analogous P (V ) is constituted of contractile polyhedral blocks installed in
overlapping 2×2×2 unit cubes. Concerning visualization, the boundary cell com-
plex ∂P (V ) (in fact, a triangulation) of P (V ) is an alternative to marching-cube
based algorithms [7]. The complex P (V ) is obtained in [4] suitably extending to
volumes the discrete boundary triangulation method given in [8]. Nevertheless,
the main interest in constructing P (V ) essentially lies in the fact that we can
extract from it homological information in a straightforward manner. More pre-
cisely, by homological information we mean here not only Betti numbers (number
of connected components, ”tunnels” or ”holes” and cavities), Euler characteristic
and representative cycles of homology classes but also homological classification
of cycles and higher cohomology invariants. Roughly speaking, for obtaining this
homological acuity, we use an approach in which the homology problem is posed
in terms of finding a concrete algebraic “deformation process” φ (so-called chain
homotopy in Homological Algebra language [6] or homology gradient vector field
as in [4]) which we can apply to P (V ), obtaining a minimal cell complex with
exactly one cell of dimension n for each homology generator of dimension n.
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Fig. 1. Zoom of the polyhedral cell complex associated to a digital volume

Collaterally, homology groups can be deduced in a straightforward manner from
φ. This idea of describing homology in terms of chain homotopies is not new and
comes back to Eilenberg-MacLane work [2] on Algebraic Topology and it has
been developed later in algebraic-topological methods like Effective Homology
and Homological Perturbation Theory and in discrete settings as Discrete Morse
[3] and AT-model [5] theories. In this paper, working in the field of general cell
complexes embedded in R3 and using discrete Morse theory notions, we con-
struct a homology gradient vector field starting from any initial gradient vector
field on a cell complex and, in the setting of the polyhedral cell complexes asso-
ciated to digital volumes we design an efficient homology computation algorithm
based on addition of contractile maximal cells. We work with coefficients in the
finite field F2 = 0, 1, but all the results here can be extended to other finite field
or integer homology.

2 Homological Information on Cell Complexes

We deal with here the homology problem for finite cell complexes. Throughout
the paper, we consider that the ground ring is the finite field F2 = {0, 1}. Let
K be a three-dimensional cell complex. A q–chain a is a formal sum of simplices
of K(q) (q = 0, 1, 2, 3). We denote σ ∈ a if σ ∈ K(q) is a summand of a. The
q–chains form a group with respect to the component–wise addition; this group
is the qth chain complex of K, denoted by Cq(K). There is a chain group for
every integer q ≥ 0, but for a complex in R3, only the ones for 0 ≤ q ≤ 3 may
be non–trivial. The boundary map ∂q : Cq(K) → Cq−1(K) applied to a q–cell
σ gives us the collection of all its (q − 1)–faces which is a (q − 1)–chain. By
linearity, the boundary operator ∂q can be extended to q–chains. In the concrete
case of a simplicial complex, the boundary of a q-simplex defined in terms of
vertices σ = 〈v0, . . . , vq〉 is defined by: ∂q(σ) =

∑〈v0, . . . , v̂i, . . . , vq〉, where the
hat means that vertex vi is omitted. In our case, taking into account that the
3-cells of our cell complexes can automatically be subdivided into tetrahedra, its
boundary map can directly be derived from that of the component tetrahedra.
It is clear that ∂q−1∂q = 0. From now on, a cell complex will be denoted by
(K, ∂), being ∂ : C(K) → C(K) its boundary map. A chain a ∈ Cq(K) is called
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a q–cycle if ∂ q (a) = 0. If a = ∂ q + 1(a′) for some a′ ∈ Cq+1(K) then a is
called a q–boundary. Define the qth homology group to be the quotient group of
q–cycles and q–boundaries, denoted by Hq(K). The homology class of a chain
a ∈ Cq(K) is denoted by [a]. It is clear that the Homology Problem for cell
complexes (K, ∂) can be reduced to solving up to boundary the equation ∂ = 0.
Two main approaches can be used:

The differential approach. Classically, in Algebraic Topology, this last ques-
tion has mainly been understood in terms of obtaining the different equivalence
classes (H0(K), H1(K), H2(K)). In an informal way, the homology groups de-
scribe in an algebraic way the maximal different disjoint set of cycles such that
two cycles belonging to the same set can be deformed (using a boundary) to
each other. For a 3D object, the ranks of the free part of the groups H0(K),
H1(K) and H2(K), called Betti numbers, measure the corresponding number
of connected components, ”holes” or ”tunnels” and cavities of this object. The
homology groups are ”computable” (up to isomorphism) global properties for
the most of object representation models, they are strongly linked to the ob-
ject structure (they do not depend on the particular subdivision you use), they
are free groups up to dimension three and the main topological characteristics
exhaustively used at to now in Digital Imagery (Euler characteristic and Betti
numbers) can directly be obtained from them. There are two main strategies for
computing homology groups for cell complexes: (a) the classical matrix ”reduc-
tion algorithm” [9], mainly based on the Smith normal form diagonalization of
the incidence matrices corresponding to the boundary map in each dimension;
(b) the incremental technique of Delfinado-Edelsbrunner [1] in which homology
is updated in each one-cell processing step, until the object is completely covered.

The integral approach. The solution to the Homology Problem can also be
described in the following terms: to find a concrete map φ : C∗(K) → C∗+1(K),
increasing the dimension by one and satisfying that φφ = 0, φ∂φ = φ and
∂φ∂ = ∂. In [4], a map φ of this kind have been called homology gradient
vector field. This datum φ is, in fact, a chain homotopy operator on K (a purely
homological algebra notion) and it is immediate to establish a strong algebraic
link between the cell complex associate to K and its homology groups (H0(K),
H1(K), H2(K)), such that it is possible to ”reconstruct” the object starting
from its homology. For example, we need to specify a homological integral ope-
rator in order to homologically classifying any cycle or computing cohomology
ring numbers. An algorithms using this integral approach can be classified into
one of these two main groups: (a) starting from a zero integral operator, the
idea is to save more algebraic information for constructing a homology gradient
vector field φ (cost negligible in time but not in space) during the execution of
the previous homology computation algorithms (matrix and incremental); (b)
processes generating first a non-zero initial gradient vector field φ0 (using, for
example, Discrete Morse Theory techniques via Morse functions), constructing
a reduced cell complex K’ resulting from the application of the deformation φ0,
and finally applying algorithms of kind (a) to K’. Let us emphasize that this
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description of ”homology” as a pure algebraic deformation process is classical
and comes from Eilenberg-Mac Lane work on Algebraic Topology in the sixties
of the last century. Nevertheless, its use in the context of Digital Imagery is
relatively recent [4,5,10].

Summing up, differential approach can be seen as a sort of minimal (and
classical) solution in the sense that only the final result is considered while inte-
gral approach is a ”maximal” solution in which all the homological deformation
process is codified in an efficient way.

We are here now ready for defining homological information for an object K:
any feature or characteristic extracted in a straightforward manner from a (non
necessarily homological) gradient vector field for K. In that way, homological
information includes not only Euler characteristic, Betti numbers, topological
skeletons, Reeb graphs, representative cycles of homology generators and relative
homology groups but also homological classification of cycles, homology and
cohomology operations, cohomology ring, induced homomorphisms in homology.

Our choice within the context of Digital Imagery between differential or in-
tegral approach for the Homology Problem will mainly depend on the concrete
application we are involved and can be ”modulated” (from minimal-differential
to maximal-integral approach) mainly in terms of the input, output and the ho-
mological elementary process for gradually constructing an homology gradient
vector field on a cell complex.

In order to be understandable, the following definitions are needed.

Definition 1. [3] Let (K, d) be a finite cell complex. A linear map of chains
φ : C∗(K) → C∗+1(K) is a combinatorial gradient vector field (or, shortly,
combinatorial gvf) on K if the following conditions hold: (1) For any cell a ∈ Kq,
φ(a) is a q + 1-cell b; (2) φ2 = 0.

If we remove the first condition, then φ will be called an algebraic gradient vector
field. If φ is a combinatorial gvf which is only non-null for a unique cell a ∈ Kq

and satisfying the extra-condition φdφ = φ, then it is called a (combinatorial)
integral operator [10]. An algebraic gvf satisfying the condition φdφ = φ is called
an algebraic integral operator. An algebraic gvf satisfying the conditions φdφ = φ
and dφd = d will be called a homology gvf [4]. A gvf is called strongly-nilpotent if
it satisfies the following property: given any u ∈ Kq, and being φ(u) =

∑r
i=1 vi,

then φ(vi) = 0, ∀i. We say that a linear map f : C∗(K) → C∗(K) is strongly
null over an algebraic gradient vector field φ if given any u ∈ Kq, and being
φ(u) =

∑r
i=1 vi, then f(vi) = 0, ∀i.

Using homological algebra arguments, it is possible to deduce that a ho-
mology gvf φ determines a strong algebraic relationship connecting C(K) and
its homology vector space H(K). Let us define a chain contraction (f, g, φ) :
(C, ∂) => (C′, ∂′) between two chain complexes as a triple of linear maps such
that f : C∗ → C′

∗, g : C′
∗ → C∗ and φ : C∗ → C∗+1 and they satisfy the following

conditions: (a) idC − gf = ∂φ + φ∂; (b)f g = idC′ ; (c) f φ = 0; (d) φ g = 0; (e)
φφ = 0.

Proposition 1. Let (K, ∂) be a finite cell complex. A homology gvf φ : C∗(K) →
C∗+1(K) give raise to a chain contraction (π, incl, φ) from C(K) onto a chain
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subcomplex of it isomorphic to the homology of K. Reciprocally, given a chain
contraction (f, g, φ) from C(K) to its homology H(K), then φ is a homology gvf.

Let incl : Imπ → C(K) be the inclusion map. Let π = idC(K) − ∂φ − φ∂. This
chain map describe for each cell a representative cycle of the homology class asso-
ciated to this cell and satisfies that π2 = π. If Imπ = {x ∈ C(K), such that x =
φ(y) for some y} and Kerπ = {x ∈ C(K) such that φ(x) = 0}, then C(K) =
Imπ ⊕ Kerπ). Let f : C(K) → Im(π) be the corestriction of π to Im(π) (that
is, π : C(K) → Im(π)) and g : Im(π) → C(K) be the inclusion. Let d̃ be the
boundary operator of Im(π). We now prove that d̃ = 0. Taking into account that
idC(K) + gf = φ∂ + ∂φ, ∂∂ = 0 and ∂φ∂ = ∂, we then obtain ∂ − ∂gf = ∂.
Therefore, ∂gf = gd̃f = 0. Since f is onto and g is one-to-one, we deduce that
d̃ = 0. That means that the Morse complex Mφ = Imπ is a graded vector space
with null boundary operator isomorphic to the homology H(K).

The homology computation process we apply in this paper is that given in [4],
in which the incremental homology algorithm of [1] is adapted for getting a
homology gradient vector field.

Given a cell complex (K, ∂), the ordered set of cells K = 〈c1, . . . , cm〉 is a filter
if ci is a face of cj for i < j. It is possible to ”filter” K by first considering all
the 0-cells in a certain order, then an order on all the 1-cells, and so on.

Algorithm 1. Let (K, ∂) be a filtered finite cell complex with filter Km = 〈c0, . . . ,
cm〉. We represent the cell complex K up to filter level i by Ki = 〈c0, . . . , ci〉, with
boundary map ∂i. Let Hi the homology chain complex (with zero boundary map)
associated to Ki.

H0 := {c0}, φ0(c0) := 0, π0(c0) := c0.
For i = 1 to m do

πi(ci) = ci = ci + φi−1∂i(ci),
Hi := Hi−1 ∪ {ci}, φi(ci) := 0,
If (∂i + ∂i−1φi−1∂i)(ci) = 0, then

For j = 0 to i− 1 do,
φi(cj) := φi−1(cj).

If (∂i + ∂i−1φi−1∂i)(ci) is
a sum of a kind

∑r
j=1 πi−1(esj ) =

∑r
j=1 uj �= 0 (ui ∈ Hi−1), then:

Let us choose a summand uk and define φ̃(uk) := ci
and zero for the rest of elements of Hi−1.
then For j = 0 to i− 1 do,

φi(cj) = (φi−1 + φ̃(1Ki + φi−1∂i−1 + ∂i−1φi−1)(cj),
πi(cj) = [1Ki − φi∂i + ∂iφi](cj)

Hi := Hi \ {uk, ci}
Output: a homology gradient vector field φm for K.

Sketch of the proof
It can be proved by induction on i that φm is a homology gvf and, in conse-
quence, it naturally produces a chain contraction (πm, incl, φm) from C(K) to its
homology H(K). The number of elementary operations involved in this process
is O(m3).
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Fig. 2. Figure showing a 3D digital object V , an simplicial continuous analogous K(V ),
and an homology gradient vector field φ on K(V ) using the filter {1, 2, 3, 4, ...}. For
example, φ(5) = (11) + (10) + (9) + (8), φ(14) = 0, φ(15) = (16).

Fig. 3. Combinatorial gvf (a) and algebraic gvf (b)

Morevoer, it is not difficult to prove in that the resulting homology gvf φm of
Algorithm 1 is a strongly nilpotent algebraic gvf and πm is a strongly null map
over φm.

Using Discrete Morse Theory pictorial language, combinatorial gvfs can be
described in terms of directed graphs on the cell complex. For example, let us
take an integral operator φ such that φ(a) = c, a ∈ K0 and being a and b
the vertices of the 1-cell c. It is clear that φ can be represented by a directed
tree consisting in the edge c together with its vertices, such that the arrow on
c goes out from vertex a. Of course, the previous properties of a homology gvf
φi : Ci(K) → Ci+1(K) (i = 0, 1, 2) help us to suitably express all the φi in terms
of graphs.

Proposition 2. If φ : C(K) → C(K) is a homology gvf for a cell complex
(K, ∂) and we denote by H∂(K) and Hφ(K) the homology groups of K tak-
ing respectively ∂ and φ as boundary maps on K (both satisfy the 2-nilpotency



320 P. Real and H. Molina-Abril

condition). Then, H∂(K) and Hφ(K) are isomorphs. The maps h : H∂(K) →
Hφ(K) defined by h([c]∂) = [c + ∂φ(c)]φ and k : Hφ(K) → H∂(K) defined by
h([c]φ) = [c+ φ∂(c)]φ specify this isomorphism.

3 Polyhedral AT-Model for a Digital Volume

Let V be a binary 26-adjacency voxel-based digital volume. A cell AT-model for
V is a pair ((P (V ), ∂), φ), such that (P (V ), ∂) is a polyhedral cell complex (for
example, that specified in [4]) homologically equivalent to V and φ : C(P (V )) →
C(P (V )) is a homology gvf for P (V ). To obtain the cell complex P (V ) we do
as follows. Each black voxel can be seen as a point (0-cell) of our complex. The
algorithm consist of dividing the volume into overlapped (its intersection being a
”square” of four voxels mutually 26-adjacent) unit cubes formed by eight voxels
mutually 26-adjacent, and to associate each unit cube configuration with its
corresponding cell. We scan the complete volume, always taking as elementary
step a unit cube.

The cell associated to a unit cube configuration is a 0-cell if there is a single
point. If there are two points, the complex is a 1-cell which is the edge con-
necting both of them. With three or four coplanar points on the set, the 2-cell
associated is a polygon. If there are four non coplanar points or more, the 3-cell
is a polyhedra. In other words, the cell associated to a unit cube configuration
is just the convex hull of the black points and all its lower dimension faces. Note
that for 3-cells, their 2-dimension faces are either triangles or squares.

Once we have covered all the volume and joined all the cells, we build the
complete cell complex without incoherences.

The idea here is to design an incremental algorithm for computing the ho-
mology of P (V ) taking into account the contractibility of the cells (that is, the
fact that they are homologically equivalents to a point). First at all, we develop
a method for determining a homology gvf for any cell or polyhedral block R for
P (V ) installed in a 2 × 2 × 2 unit cube Q, which also provides an alternative
method for constructing P (V ).

Let us start by describing the contractibility of a unit cube Q by a particular
homology gvf. In the figure 4, it is visualized this vector field φQ : C(Q) →
C(Q) by colored arrows. For example, φQ(< 3, 4, 5, 6 >) =< 1, 2, 3, 4, 5, 6, 7, 8 >

Fig. 4. A unit cube with labeled vertices (a) and arrows describing the contractibility
of the cube (b)
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Fig. 5. The maximal cell R′ (a) and its corresponding homology gvf (b)

(shown in yellow), φQ(< 5, 6 >) =< 5, 6, 7, 8 > + < 1, 2, 7, 8 > (shown in green)
and φQ(< 6 >) =< 1, 2 > + < 2, 7 > + < 6, 7 > (shown in red). Obviously, the
boundary map ∂Q : C(Q) → C(Q) is defined in a canonical way (no problems
here with the orientation of the cells, due to the fact we work over F2). For
instance, ∂Q(< 1, 2, 3, 4 >) =< 1, 2 > + < 2, 3 > + < 3, 4 > + < 4, 1 > and
∂Q(< 1, 8 >) =< 1 > + < 8 >.

Now, an alternative technique to the modified Kenmochi et al. method [8] for
constructing P (V ) is sketched here. In order to determine a concrete polyhedral
configurationR as well as a concrete homology gvf for it (to determine its bound-
ary map is straightforward in F2), we use a homological algebra strategy which
amounts to take advantage of the contractibility of Q for creating a homology gvf
forR, by means of integral operators acting onQ. For avoiding to overburden with
too much notation, we only develop the method in one concrete cases.

First, let us take the convex hull of eight black points showed in figure 4.
Applying the integral operator given by ψ(< 8 >) =< 1, 8 >, the final result
R′ and its homology gvf appears in figure 5. The face < 1, 5, , 67 > need to be
subdivided into two triangular faces: < 1, 5, 7 > and < 1, 6, 7 > for getting the
configuration R. For connecting R and R′, we applied to R the integral operator
given by the formula ψ(< 5, 7 >) =< 1, 5, 7 >.

In consequence, a homology gvf for R appears in Figure 5.
In fact, all this homology gvfs are obtained by transferring the homology gvf

of Q via chain homotopy equivalences.
All these techniques are valid for any finite field or integer coefficients, and

additional difficulties about orientation of the cells can be easily overcome.
We are now able for designing an incremental algorithm for computing the

homology of V via the cell complex P (V ), based on the reiterated use of homo-
logy gvfs for polyhedral cells inscribed in the unit cube Q, we face to the problem
of computing the homology of an union of a polyhedral cell complex P (V ′) and
a polyhedral cell R.

Definition 2. Let (K, ∂) be a finite cell complex and φ1, φ2, . . . , φr a sequence of
integral operators φi : C∗(K) → C∗+1(K) involving two cells {ci1, ci2} of different
dimension and such that {ci1, ci2}

⋂{ck1 , ck2} = ∅, ∀1 ≤ i, k ≤ r. Then, an
algebraic gvf

⊕r
i=1 φi for C(K) onto a chain subcomplex having n− 2r cells can

be constructed. The sum
⊕r

i=1 φi applied to a cell u is ck2 is u = ck1 (k = 1, . . . , r)
and zero elsewhere.
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Fig. 6. An example showing the representative generator of the 1-cycle (in blue) and
the resulting Φ and ϕ. Notice that Φ(< 3, 6 >) = 0 and < 3, 6 >/∈ Im(Φ) (< 3, 6 > is
a critical simplex in terms of Discrete Morse Theory).

Fig. 7. An example showing the filling of the “hole” and an attachment of a 2-cell

In general Φ =
⊕r

i=1 φi does not satisfy the condition ΦdΦ = Φ. Applying
Algorithm 1 to (K, ∂) (previously filtered) to a partial filtering affecting only
to the cells cij (1 ≤ i ≤ r and j = 1, 2) in its sub-cells and specifying at each
cell-step concerning the cell ci2 that φ̃(fi(ci1)) := ci2, the final result will be a
(non necessarily homological) algebraic integral operator ϕ : C(K) → C(K).
Applying Proposition 1 to the algebraic integral operator ϕ and assuming that
K has n cells, we obtain a chain contraction (f, g, ϕ) from C(K) to a chain
subcomplex C(M(K)) havingM(K) (also called, Morse complex ofK associated
to the sequence {φi}r

i=1) n− 2r cells. Algorithm 1 applied to M(K) gives us a
homology gvf φ for M(K). Finally, the map ϕ + φ(1 − dϕ − ϕd) gives us a
homology gvf for the cell complex K.

Using these arguments, it is straightforward to design an algorithmic pro-
cess of homology computation (over F2) for a binary 26-adjacency voxel-based
digital volume V based on the contractibility of the maximal cells (in terms
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of a homology gvf) constituting the continuous analogous P (V ). All is reduced
to find a sequence of elementary integral operators acting as internal topologi-
cal thinning operators on P (V ). Our candidates are the arrows describing the
contractibility of all the maximal polyhedral cell configurations forming the ob-
jects.In order to suitably choose these integral operators, we use a maximal cell
incremental technique.
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