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Amorphous samples of nominal composition Co62Nb6Zr2B30 have been prepared using mechanical

alloying (MA) and rapid quenching (RQ) techniques. Differences appear in Curie temperature and

the phases developed after crystallization. Refrigerant capacity is enhanced 20% in the MA-sample

with respect to that of RQ-sample. Neglecting the demagnetizing factor of powder samples

significantly affects the exponent n characterizing the field dependence of the maximum magnetic

entropy change. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4857595]

I. INTRODUCTION

Amorphous and nanocrystalline soft magnetic alloys

have deserved the attention of the research community as

these metastable microstructures lead to the disappearance1

or averaging out2,3 of the magnetocrystalline anisotropy.

Moreover, additional reduction of magnetoelastic anisotropy

can be obtained in some compositions after certain field and

thermal treatments making this type of materials the softest

magnetic materials known.4

In recent years, these soft magnetic materials have also

been studied as candidates for room temperature magnetic

refrigeration as they present a second order phase transition

with negligible hysteresis and they lack of rare earth ele-

ments, which significantly reduces the cost.5 In fact, mag-

netic refrigeration based on magnetocaloric effect (MCE) at

room temperature is a promising technology with environ-

mental and efficiency advantages over the conventional sys-

tems based on compression-expansion of gasses.

Although the conventional way to produce amorphous

alloys is via rapid quenching (RQ) from a liquid melt with

suitable composition (close to an eutectic),4 mechanical

alloying (MA) (generally ball milling) has been shown as a

versatile technique which also leads to the formation of

amorphous structures and even with a broader compositional

range than that can be obtained by rapid quenching.6

In this work, two amorphous samples of the same nomi-

nal composition Co62Nb6Zr2B30 have been prepared from

mechanical alloying and melt-spinning techniques, respec-

tively. Differences in microstructure, magnetization, and

MCE are studied.

II. EXPERIMENTAL

Two samples with Co62Nb6Zr2B30 nominal composition

were prepared by two different methods: mechanical alloy-

ing of elemental powders and rapid quenching. The mechani-

cally alloyed sample, MA-sample, was prepared by ball

milling during 40 h at 350 rpm (frequency ratio -2) in a

planetary mill Fritsch Pulverisette 4 Vario from a mixture of

elemental powders. The initial powder mass was 5 g and the

ball to powder ratio was 10:1. Further details on the milling

process can be found elsewhere.7 The rapidly quenched sam-

ple, RQ-sample, was obtained by single-roller melt-spinning

technique where the alloy ingots were prepared from high

purity elements by arc melting under argon atmosphere.

X-ray diffraction (XRD) patterns were recorded at room

temperature in a Bruker D8I diffractometer using Cu Ka
radiation for the MA-sample and in a Philips PW 1820 dif-

fractometer using Co Ka radiation for the RQ-sample. The

thermal stability of the samples was studied by differential

scanning calorimetry (DSC) in a Perkin-Elmer DSC7 under

Ar flow. The magnetic properties were studied using a

Lakeshore 7407 vibrating sample magnetometer (VSM)

using a maximum applied magnetic field H¼ 1.5 T. The

magnetic entropy change due to the application of a mag-

netic field has been calculated using a numerical approxima-

tion to the equation,

DSM ¼
ðHmax

0

@M

@T

� �
H

dH; (1)

where DSM is the magnetic entropy change, M is the magnet-

ization, and T is the temperature. Values of the Curie temper-

ature, TC, were estimated as the inflexion point of the M(T)
curves at H¼ 0.05 T.

III. RESULTS AND DISCUSSION

XRD patterns for as-milled MA and as-cast RQ samples

are shown in Figures 1(a) and 1(c), respectively. Although

both XRD patterns show typical amorphous haloes, previous

XRD and scanning electron microscopy, SEM, studies7 con-

firmed that the microstructure of MA-sample is composed of

�90% of amorphous phase with dispersed hcp-Co nanocrys-

tals of about 5 nm in size and boron inclusions of �100 nm

in size. About 4 at. % of Fe due to contamination from

milling media was found by energy dispersive X-ray

(EDX) spectroscopy. The RQ-sample presents slight surfacea)Electronic mail: jhonipus@us.es.
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crystallization that disappears after polishing. There is a sin-

gle line at d¼ 3.45 Å which prevents an unambiguous identi-

fication of the phase. However, this line could be ascribed to

some oxide phase. DSC scans at 10 K/min (Figure 2) show

several differences between the two studied samples. For the

MA-sample two exothermic events appear: the first one,

with a peak temperature TP¼ 670 K, corresponds to relaxa-

tion phenomena and the second one, with TP¼ 900 K, to

crystallization. For the RQ-sample, relaxation phenomena,

much less significant than for MA-sample, a glass transition

at about 930 K and a single crystallization event with

TP¼ 960 K are observed.8 On the other hand, for the MA-

sample, crystallization process produces a single fcc

Co21Nb2B6-type phase (with metal to boron ratio 23:6), for

the RQ-sample, besides this Co21Nb2B6-type phase, other

B-richer boride phase have been detected: Co(Nb,Zr)B,

Co2B (with metal to boron ratio of 2:1) and (Nb,Zr)3Co4B7

(with metal to boron ratio 1:1). Figures 1(b) and 1(d) show

the XRD patterns of MA and RQ-samples after being heated

at 10 K/min up to the end of the corresponding crystallization

process (998 K and 1035 K for the MA and RQ-samples,

respectively). The absence of boron rich phases in the crys-

tallized MA-sample can be ascribed to a poorer B content of

the amorphous phase developed by milling due to the

remaining B-inclusions. In fact, a composition of

(Co62Nb6Zr2)79B21 can be estimated assuming a 23:6 metal

to boron ratio for the amorphous phase in the MA-sample

that yields the formation of a 23:6 intermetallic.

Figure 3(a) shows the temperature dependence of the

specific magnetization at 0.05 T for both amorphous samples.

From these curves, TC¼ 530 K and 210 K were obtained for

the MA and RQ-samples, respectively. This significant

difference in the Curie temperature can be also ascribed to

the presence of B inclusions in the MA-sample, i.e., to a

reduced B content in the amorphous phase. In fact, TC

decreases about 30 K/at. % B for Co100-xBx alloys.9

Therefore, the estimated composition of the amorphous ma-

trix should be (Co62Nb6Zr2)81B19, which is in good agree-

ment with our previous estimation. The agreement could

even be enhanced after taking into account that there is a

small amount of Fe from contamination coming from the

milling media in the MA-sample (�4 at. % 7), which also

contributes to increasing the Curie temperature for Co-based

amorphous alloys.

Figure 3(b) shows the temperature dependence of mag-

netic entropy change, DSM(T), for the milled and quenched

FIG. 1. XRD patterns for as-milled (a) and as-quenched (c) samples and for

the same samples after crystallization, (b) and (d), respectively. The lines of

the different crystalline phases are indicated.

FIG. 2. DSC scans at heating rate of 10 K/min for as-milled and as-

quenched samples.

FIG. 3. Temperature dependences of specific magnetization at H¼ 0.05 T

(a), magnetic entropy change (b), and exponent n (c) at maximum fields of

H¼ 0.5, 1, and 1.5 T. The inset shows the field dependence of n at

T¼ 330 K for uncorrected (N¼ 0) and corrected (N¼ 1/3) values.
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samples. The minimum in DSM(T) is shifted to higher temper-

atures in the MA-sample with respect to that of RQ-sample as

it occurs for TC values. Although the value of this minimum

does not change significantly, the MCE peak broadens for the

MA-sample with respect to the RQ-sample, leading to a 20%

enhancement in the refrigerant capacity estimated as the prod-

uct of the maximum jDSMj times the full width at half maxi-

mum. Figure 3(c) shows the temperature dependence of the

exponent n characterizing the field dependence of the mag-

netic entropy change: DSM¼ aHn. For the RQ-sample, n(T)

curves are similar to those previously observed for other

amorphous alloys10 with three temperature regimes where n is

field independent. A ferromagnet well below TC shows n¼ 1

and a paramagnet well above TC shows n¼ 2. At TC, n is inde-

pendent of the field and takes a value of �0.74, similar to

those found for other amorphous alloys11 and which is related

to the critical exponents (d and b) as

n ¼ 1þ 1

d
1� 1

b

� �
; (2)

whereas b exponent describes the evolution of M with T-TC

at H¼ 0 and d describes the evolution at TC of M with H.

Therefore, the effect of the demagnetizing factor should be

concentrated in d exponent.

However, n(T) for the MA-sample exhibits a very differ-

ent behavior (although similar to that found for other ball

milled samples).12,13 At low temperatures, n> 1 and shows a

strong field dependence even at TC, where n(TC)¼ 0.905,

well above the value observed for the RQ-sample. There is a

main factor which has not usually considered in the calcula-

tion of DSM (and thus in the calculation of n) using Eq. (1),

the demagnetizing factor, N.14 In fact, for a square ribbon

sample of �3 mm in wide and �20 lm thick, N¼ 0 is a good

approximation. However, for powder samples, by assuming

that the particles are spherical, N should be 1/3. We have to

take that the field in Eq. (1) should be the internal field

Hint¼H-NM. Therefore, Hint has been calculated from each

M(H) curve and the different M(H) curves obtained in the

VSM were transformed into M(Hint) data. Corrected values

of DSM(T) and n(T) plots considering N¼ 1/3 are also shown

in Figures 3(b) and 3(c), respectively, as hollow symbols. It

is worth noting that DSM(T) plots for the MA-sample are not

significantly affected but just a very slight reduction in ferro-

magnetic range is observed. However, n(T) curves are

strongly modified after considering N¼ 1/3 for powder sam-

ples. The main difference is observed at low temperatures

where field independent n¼ 1 values are recovered, as it

should correspond to a ferromagnetic sample well below its

Curie temperature. Moreover, n(TC) becomes also practically

field independent and its value is reduced with respect to

those obtained from DSM calculated using Eq. (1). However,

this value n(TC)¼ 0.895 is still clearly higher than those

found for ribbon samples of amorphous alloys, for which

N� 0. A possible explanation of this higher value is the

existence of a broader distribution of Curie temperatures in

the MA-sample compared to that of RQ-sample. The

slope observed at the inflexion point in M(T) curves of

Figure 3(a) is in agreement with this proposed distribution of

Curie temperature as dM/dT values at TC are �0.25 and

�0.45 emu g�1 K�1 for the MA and RQ-samples, respec-

tively. A broader distribution of TC should lead to a flattened

and smaller minimum for n(T). Instead of the theoretical

n(TC) value predicted by Eq. (2), an average of the n(T) val-

ues around TC should be observed. This is in agreement with

the observed n(T) curve for the MA-sample.

IV. CONCLUSIONS

Two amorphous samples of nominal composition

Co62Nb6Zr2B30 were prepared by mechanical alloying and

rapid quenching techniques, respectively. Boron inclusions

observed in the MA-sample implies a lower B content than

the nominal one for the amorphous phase developed by me-

chanical alloying, which is estimated as (Co62Nb6Zr2)80B20.

This poorer boron content of the amorphous phase of the

MA-sample explains the much higher value of the TC in this

sample than in the RQ-sample as well as the lack of B-rich

intermetallic compounds as a product of crystallization. The

MA-sample shows a broader distribution of TC in the amor-

phous phase than the RQ-sample.

On the other hand, the maximum absolute value of DSM

is similar for both samples, refrigerant capacity is enhanced

�20% in the MA-sample with respect to that of RQ-sample

due to the broad distribution of Curie temperatures. The

demagnetizing factor N for powder samples does not signifi-

cantly affect the values of DSM. However, when N is

neglected, the exponent n characterizing the field dependence

of DSM is seriously affected leading to unrealistic values and

artificial field dependences of this parameter. The broader dis-

tribution of Curie temperatures in the MA-sample should

explain the smaller and flattened minimum observed in n
around TC for the MA-sample with respect to the RQ-sample.
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