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Abstract. Starting from a chain contraction (a special chain homotopy
equivalence) connecting a differential graded algebra A with a differen-
tial graded module M , the so-called homological perturbation technique
“tensor trick” [8] provides a family of maps, {mi}i≥1, describing an A∞-
algebra structure on M derived from the one of algebra on A. In this
paper, taking advantage of some annihilation properties of the compo-
nent morphisms of the chain contraction, we obtain a simplified version
of the existing formulas of the mentioned A∞-maps, reducing the com-
putational cost of computing mn from O(n!2) to O(n!).
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1 Introduction

At present, A∞-structures (or strong homotopy structures) find natural appli-
cations not only in Algebra, Topology and Geometry but also in Mathematical
Physics, related to topics such as string theory, homological mirror symmetry or
superpotentials [14,17,18]. Nevertheless, there are few methods for computing ex-
plicit A∞-structures, being the better known technique the tensor trick [8]. This
tool is used in the context of Homological Perturbation Theory. Starting from a
chain contraction c (a special chain homotopy equivalence, also called strong de-
formation retract) from a differential graded algebra A onto a differential graded
module M , the tensor trick technique gives explicit formulas for computing a
family of higher maps {mi}i≥1 that provides an A∞-algebra structure on M (de-
rived from the algebra structure on A). However, the associated computational
costs are extremely high (see [11,12,1]). In this paper, we are concerned about
finding a more cost-effective formulation of the family of maps transferred to
M . As it is shown in section 3, the use of annihilation properties of the com-
ponent morphisms of the chain contraction allows to reformulate the A∞–maps
on M (which depend on the mentioned component morphisms). Afterwards, in
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section 4 we carry out a theoretical study of the time and space invested in
computing mn, presenting the computational savings obtained, in comparison
with the original formulas defined by the Basic Perturbation Lemma.

The results can be extended to the case of A being an A∞-algebra (then,
another A∞-algebra structure is also induced on M). We remark that such a
transference can also be performed in the case of c being a general explicit chain
homotopy equivalence.

Of course, all the results given in this paper can be easily translated into the
context of coalgebras and A∞–coalgebras.

2 Notations and Preliminaries

We briefly recall here some basic definitions in Homological Algebra as well as
the notations used throughout the paper. See [3] or [16] for further explanations.

Take a commutative unital ring Λ. Let (M, d) be a DG-module, that is, a
Λ– module graded on the non-negative integers (M =

⊕
n≥0 Mn) and endowed

with a differential d (of degree −1). An element x ∈ Mn has degree n, what
will be expressed by |x| = n. In the case that M0 = Λ, M is called connected
and if, besides, M1 = 0, then it is called simply connected. Given a connected
DG–module, M , the reduced module M is the one with Mn = Mn for n > 1 and
M0 = 0.

We will denote the module M⊗ n· · · ⊗M by M⊗n, with M⊗0 = Λ and the
morphism f⊗ n· · · ⊗f : M⊗n → N⊗n by f⊗n. We adhere to Koszul convention
for signs. More concretely, given f : M → M ′, h : M ′ → M ′′, g : N → N ′ and
k : N ′ → N ′′ DG–module morphisms, then

(h ⊗ k)(f ⊗ g) = (−1)|k||f |(hf ⊗ kg).

On the other hand, if f : M⊗i → M is a DG–module morphism and n is a
non–negative integer, we will denote by f [n] : M⊗n → M⊗n−i+1 the morphism

f [n] =
n−i∑

j=0

1⊗j ⊗ f ⊗ 1⊗n−i−j

and the morphism f [ ] :
⊕

j≥i M⊗j →
⊕

k≥1 M⊗k will be the one such that
f [ ]|M⊗n = f [n].

We will denote by ↑ and ↓ the suspension and desuspension operators, which
shift the degree by +1 and −1, respectively. A given morphism of graded modules
of degree k, f : M → N , induces another one between the suspended modules
sf : sM → sN , given by sf = (−1)k ↑ f ↓.

Given a DG-module (M, d), the tensor module of M , T (M), is the DG–module

T (M) =
⊕

n≥0

T n(M) =
⊕

n≥0

M⊗n
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whose differential structure is provided by d
[ ]
M . Every morphism of DG-modules

f : M → N induces another one T (f) : T (M) → T (N), such that T (f)|M⊗n =
f⊗n.

A DG–algebra, (A, dA, μA), is a DG–module endowed with an associative prod-
uct, μA, compatible with the differential dA and which has a unit ηA : Λ → A,
that is, μA(ηA ⊗ 1) = μA(1 ⊗ ηA) = 1. If there is no confusion, subscripts will be
omitted. A DG–coalgebra (C, dC , ΔC) is a DG–module provided with a compat-
ible coproduct and counit ξC : C → Λ ( so, (ξC ⊗ 1)ΔC = (1 ⊗ ξC)ΔC = 1).

In the case of the tensor module T (M), a product, μ, and a coproduct, Δ,
can be naturally defined on an element a1 ⊗ · · · ⊗ an ∈ T n(M), as follows:

μ((a1 ⊗ · · · ⊗ an) ⊗ (an+1 ⊗ · · · ⊗ an+p)) = a1 ⊗ · · · ⊗ an+p;
Δ(a1 ⊗ · · · ⊗ an) =

∑n
i=0(a1 ⊗ · · · ⊗ ai) ⊗ (ai+1 ⊗ · · · ⊗ an).

Therefore, T (M) acquires both structures of DG–algebra (denoted by T a(M))
and DG–coalgebra (T c(M)), though they are not compatible to each other (that
is, (T (M), μ, Δ) is not a Hopf algebra).

We recall here two equivalent definitions of A∞–algebra (resp. A∞–coalgebra)
[13,19].

– An A∞-algebra (respectively, A∞-coalgebra), is a DG-module (M, m1) (resp.
(M, Δ1)) endowed with a family of maps

mi : M⊗i → M (resp., Δi : M → M⊗i)

of degree i − 2 such that, for n ≥ 1,

i∑

n=1

i−n∑

k=0

(−1)n+k+nkmi−n+1(1⊗k ⊗ mn ⊗ 1⊗i−n−k) = 0, (1)

(resp.,
i∑

n=1

i−n∑

k=0

(−1)n+k+nk(1⊗i−n−k ⊗ Δn ⊗ 1⊗k)Δi−n+1 = 0). (2)

– An A∞-algebra (resp., A∞–coalgebra) is a graded module M endowed with
a morphism of modules m : T (sM) → M (resp., Δ : M → T (s−1M)) such
that the morphism d = −(↑ mT (↓))[ ] (resp., d = −(T (↓)Δ ↑)[ ]) makes
T c(sM) (resp., T a(s−1M)) to be a DGA–coalgebra (resp., DGA-algebra).

The reduced bar construction of a connected DG–algebra A, B̄(A), is a DG–
coalgebra whose module structure is given by

T (sĀ) =
⊕

n≥0

(sĀ⊗ n times· · · ⊗sĀ).

The total differential dB̄ is given by the sum of the tensor differential, dt (which
is the natural one on the tensor product) and the simplicial differential, ds (that
depends on the product on A):

dt = −
∑n−1

i=0 1⊗i⊗ ↑ dA ↓ ⊗1⊗n−i−1; ds =
∑n−2

i=0 1⊗i⊗ ↑ μA ↓⊗2 ⊗1⊗n−i−2.
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The coproduct ΔB̄ : B̄(A) → B̄(A) ⊗ B̄(A) is the natural one on the tensor
module.

In the context of homological perturbation theory, the main input data are
contractions [4,9,15,7,10]: a contraction c : {N, M, f, g, φ} from a DG-module N
to a DG-module M , consists in a particular homotopy equivalence determined
by two DG-module morphisms, f : N� → M� and g : M� → N� and a homotopy
operator φ : N� → N�+1 such that fg = 1M , and φdN +dNφ+gf = 1N . Moreover,
these data are also required to satisfy the anihilation properties:

fφ = 0, φg = 0, φφ = 0.

Given a DG–module contraction c : {N, M, f, g, φ}, one can establish the
following ones [7,8]:

– The suspension contraction of c, s c, which consists of the suspended DG–
modules and the induced morphisms:

s c : {s N, s M, s f, s g, s φ},

being s f =↑ f ↓, s g =↑ g1 ↓ and s φ = − ↑ φ ↓, which are briefly expressed
by f , g and −φ.

– The tensor module contraction, T (c), between the tensor modules of M
and N :

T (c) : {T (N), T (M), T (f), T (g), T (φ)},

where

T (φ)|T n(N) = φ[⊗n] =
n−1∑

i=0

1⊗i ⊗ φ ⊗ (g f)⊗n−i−1.

A morphism of graded modules f : N → N is called pointwise nilpotent
whenever for all x ∈ N , x �= 0, there exists a positive integer n such that
fn(x) = 0. A perturbation of a DG-module N consists in a morphism of graded
modules δ : N → N of degree −1, such that (dN +δ)2 = 0. A perturbation datum
of the contraction c : {N, M, f, g, φ} is a perturbation δ of the DG-module N
satisfying that the composition φδ is pointwise nilpotent.

The main tool when dealing with contractions is the Basic Perturbation
Lemma [2,5,15], which is an algorithm whose input is a contraction of DG–
modules c : {N, M, f, g, φ} and a perturbation datum δ of c and whose output
is a new contraction cδ : {(N, dN + δ), (M, dM + dδ), fδ, gδ, φδ} defined by the
formulas

dδ = f δ Σδ
c g; fδ = f (1 − δ Σδ

c φ); gδ = Σδ
c g; φδ = Σδ

c φ;

where Σδ
c =

∑
i≥0(−1)i (φδ)i .

The pointwise nilpotency of the composition φδ guarantees that the sums are
finite for each particular element.
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3 Transferring A∞–Algebras Via Homological
Perturbation Theory

A∞–algebras were first introduced by Stasheff in [20]. They are, roughly speak-
ing, algebras which are associative “up to homotopy” (also called strongly ho-
motopy associative algebras).

In the papers of Gugenheim, Stasheff and Lambe [6,9,8], they describe a tech-
nique called tensor trick by which, starting from a contraction between a DG–
algebra A and a DG–module M , an A∞–algebra structure is induced on M . This
transference also exists in the case that A is an A∞–algebra. Moreover, in the
case that a general homotopy equivalence is established between A and M , it is
also possible to derive a formulation for an A∞–algebra structure on M . We will
mainly focus our efforts on obtaining computational improvements in the first
case.

3.1 Transference Via Contractions

Let us consider the contraction

c : {A, M, f, g, φ},

where A is a connected DG–algebra and M a DG–module. The first step con-
sists in tensoring, in order to obtain the underlying graded module of the bar
construction of A,

T (sc) : {T c(sĀ), T c(sM̄), T f, T g, T (−φ)};

and then, considering the simplicial differential, ds, which is a perturbation da-
tum for this contraction, and using the Basic Perturbation Lemma, a new con-
traction is obtained,

{B̄(A), (T c(sM̄), d̃), f̃ , g̃, φ̃} ,

where (T c(sM̄), d̃) is called the tilde bar construction of M [20], denoted by
B̃(M). Then, the perturbed differential d̃ induces a family of maps mn : M⊗n →
M of degree n − 2 that provides an A∞–algebra structure on M .

The transference of an A∞–algebra structure was also studied by Kadeishvili
in [13] for the case M = H(A). Using this technique, in the following theorem, an
expression of a family of A∞–operations is given with regard to the component
morphisms of the initial contraction. Although this formulation is implicitly
derived from the mentioned papers [13] and [8], an explicit proof is given in [12].

Theorem 1. [13,8] Let (A, dA, μ) and (M, dM) be a connected DG–algebra and
a DG–module, respectively and c : {A, M, f, g, φ} a contraction between them.
Then the DG–module M is provided with an A∞–algebra structure given by the
operations
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m1 = −dM

mn = (−1)n+1f μ(1) φ[⊗2] μ(2) · · · φ[⊗n−1] μ(n−1) g⊗n , n ≥ 2 (3)

where

μ(k) =
k−1∑

i=0

(−1)i+11⊗i ⊗ μA ⊗ 1⊗k−i−1 .

As far as the computation of these formulas is concerned, we can take advan-
tage of the annihilation properties of f , g and φ to deduce a more economical
formulation for mn.

Theorem 2. Any composition of the kind φ[⊗s]μ(s) (s = 2, . . . , n − 1) in the
formula (3), which is given by

⎛

⎝
s−1∑

j=0

1⊗j ⊗ φ ⊗ (g f)⊗s−j−1

⎞

⎠ ◦
(

s−1∑

i=0

(−1)i+11⊗i ⊗ μA ⊗ 1⊗s−i−1

)

,

can be reduced to the following sum

s−1∑

i=0

(−1)i+11⊗i ⊗ φμA ⊗ 1⊗s−i−1 . (4)

Moreover, given a composition of the kind

(φ[⊗s−1]μ(s−1)) ◦ (φ[⊗s]μ(s)) s = 3, . . . , n − 2,

for every index i in the sum (4) of φ[⊗s]μ(s), the formula of φ[⊗s−1]μ(s−1) in such
a composition can be reduced to

s−2∑

j=i−1, j≥0

(−1)j+11⊗j ⊗ φμA ⊗ 1⊗s−j−2 . (5)

In other words, the whole composition (φ[⊗2] μ(2)) ◦ · · · ◦ (φ[⊗n−1] μ(n−1)) in the
formula of mn can be expressed by

n−2∑

in−1=0

⎛

⎝
n−3∑

in−2=in−1−1

(

· · ·
(

1∑

i2=i3−1

(φμ)(2,i2)

)

· · ·
)

(φμ)(n−2,in−2)

⎞

⎠ (φμ)(n−1,in−1),

where (φμ)(k,j) = (−1)j+11⊗j ⊗φμA ⊗1⊗k−j−1 and each addend exists whenever
the corresponding index ik ≥ 0.

Proof. Let us prove the formula 4 of φ[⊗s]μ(s) for any s = n − 1, n − 2, . . . , 2, by
induction over the number k = n − s of factors of the type φ[⊗∗]μ(∗) that are
composed, following the scheme
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mn = (−1)n+1f μ(1) φ[⊗2] μ(2) · · ·φ[⊗n−2] μ(n−2) φ[⊗n−1] μ(n−1) g⊗n

︸ ︷︷ ︸
k=1

︸ ︷︷ ︸
k=2

︸ ︷︷ ︸
k=n−2

(6)

At the same time, we will prove the major reduction of terms given by (5) for
s = n − 2, . . . , 2.

– k = 1 The composition of morphisms φ[⊗n−1] μ(n−1) g⊗n can be written as
⎛

⎝
n−2∑

j=0

1⊗j ⊗ φ ⊗ (gf)⊗n−j−2

⎞

⎠ ◦
(

n−2∑

i=0

(−1)i+1g⊗i ⊗ μA g⊗2 ⊗ g⊗n−i−2

)

.

Now, using the facts that fg = 1 and φg = 0, it is simple to see that the
only non null elements are those where φ is applied over μA, so the original
formula of φ[⊗n−1] μ(n−1) is simplified to

n−2∑

i=0

(−1)i+11⊗i ⊗ φμA ⊗ 1⊗n−i−2 .

– k = 2 In this case, taking into account the formula obtained for k = 1,

φ[⊗n−1] μ(n−1) g⊗n =
n−2∑

i=0

(−1)i+1g⊗i ⊗ φμAg⊗2 ⊗ g⊗n−i−2 (7)

and that φ[⊗n−2]μ(n−2) is the composition
⎛

⎝
n−3∑

j=0

1⊗j ⊗ φ ⊗ (gf)⊗n−j−3

⎞

⎠ ◦
(

n−3∑

i=0

(−1)i+11⊗i ⊗ μA ⊗ 1⊗n−i−3

)

,

we can use the anihilation properties φg = 0 and φ2 = 0, to conclude that
the factor φ in φ[⊗n−2] has to be applied over μA and hence,

φ[⊗n−2] μ(n−2) =
n−3∑

j=0

(−1)j+11⊗j ⊗ φμA ⊗ (gf)⊗n−j−3 . (8)

Now, considering the composition of the sum (7) with (8), one can observe
that, since fφ = 0, for each index i in the sum (7), the only addends of (8)
that have to be considered for the composition are those j ≥ i − 1. On the
other hand, fg = 1 is also satisfied, so

φ[⊗n−2] μ(n−2) =
n−3∑

j=i−1

(−1)j+11⊗j ⊗ φμA ⊗ 1⊗n−j−3 .
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– k = m Finally, let us assume that the proposition is true for φ[⊗n−k]μ(n−k)

for all k = 1, . . . , m − 1. Now, considering, on one hand, φ[⊗n−m]μ(n−m),
⎛

⎝
n−m−1∑

j=0

1⊗j ⊗ φ ⊗ (gf)⊗n−j−m−1

⎞

⎠

(
n−m−1∑

i=0

(−1)i+11⊗i ⊗ μA ⊗ 1⊗n−i−m−1

)

and that, on the other hand, the composition of morphisms

φ[⊗n−m+1] μ(n−m+1) · · ·φ[⊗n−1] μ(n−1) g⊗n

by induction hypothesis, is a sum of elements that are tensor product of
factors of the type φ(something) or g, using again the annihilation properties,
it follows that

φ[⊗n−m] μ(n−m) =
n−m−1∑

j=0

(−1)j+11⊗j ⊗ φμA ⊗ (gf)⊗n−j−m−1 .

Since, by induction hypothesis,

φ[⊗n−m+1] μ(n−m+1) =
n−m∑

i=0

(−1)i+11⊗i ⊗ φμA ⊗ 1⊗n−m−i,

taking into account that fg = 1 and the fact that fφ = 0, again we can
reduce the number of terms of φ[⊗n−m] μ(n−m) to

n−m−1∑

j=i−1

(−1)i+11⊗i ⊗ φμA ⊗ 1⊗n−m−i−1 ,

where i is the index corresponding to the term of the preceding sum that is
being composed with φ[⊗n−m] μ(n−m).

We can generalize the results showed above to the case that the “big” DG-
module of a given contraction is an A∞-algebra. The stability of the A∞-
structures with respect to the contractions follows from the paper [8]. In fact, it
is possible to extract the next theorem as an implicit consequence of the results
there.

Theorem 3. Given c : {A, M, f, g, φ} a contraction, where (A, m1, m2, . . .) is
a connected A∞-algebra and M is a DG-module, then M inherits an A∞-algebra
structure.

Proof. The proof follows the same scheme as in theorem 1 (and for that reason,
we will only sketch it slightly) , making use of the tensor trick and the Basic
Perturbation Lemma, with the difference that, now, the perturbation datum for
the contraction
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T (sc) : {T c(sĀ), T c(sM̄), T (f), T (g)T (−φ)}

is the one induced by the A∞–maps

dm|(sĀ)⊗n = −
n∑

k=2

n−k∑

i=0

1⊗i⊗ ↑ mk ↓⊗k ⊗1⊗n−k−i .

Since the family of maps {mi}i≥1 defines an A∞-algebra structure on A,
dB̃ = dt + dm is a differential on T c(sĀ) (in fact, (T c(sĀ), dB̃) is the tilde bar
construction of A). On the other hand, the pointwise nilpotency of T (−φ) dm

follows because dm reduces the simplicial dimension, while T (−φ) keeps it the
same.

Thanks to the Basic Perturbation Lemma, a new differential is obtained on
T c(sM̄), d̃, given by the formula:

d̃ = dt + T (f) dm

∑

i≥0

(−1)i(T (−φ) dm)i T (g) .

This way, d̃ induces a family of maps {mM

i }i≥1 on M , where mM
n , up to sign,

can be expressed by

f mn g⊗n +
n−2∑

l=1

∑

2≤k1<...<kl≤n−1

±f mk1 (φ[⊗k1] m
(k1)
k2−k1+1) · · · (φ[⊗kl] m

(kl)
n−kl+1) g⊗n

where m
(k)
n−k+1 : A⊗n → A⊗k is given by

m
(k)
n−k+1 =

n−k+1∑

i=0

1⊗i ⊗ mn−k+1 ⊗ 1⊗k−i−1 .

Notice that, since mi is a map of degree i − 2, mM
n has degree n − 2.

If we examine the formula above in low dimensions, we obtain, up to sign:

mM
2 = ±f m2 g⊗2;

mM
3 = ±f m3 g⊗3 ± f m2 φ[⊗2] m

(2)
2 g⊗3;

mM
4 = ±f m4 g⊗4 ± f m2 φ[⊗2] m

(2)
3 g⊗4 ± f m3 φ[⊗3] m

(3)
2 g⊗4

±f m2 φ[⊗2] m
(2)
2 φ[⊗3] m

(3)
2 g⊗4.

Notice that only the last addend of each map is the one induced in the case
of A being an algebra, instead of the 2n−2 addends generated in these cases (the
number of subsets of a set of n − 2 elements). At each addend of each A∞–map,
one can obtain a reduction in number of terms, of the same nature than the one
showed in theorem 2.
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Theorem 4. Any composition of the kind φ[⊗s] m
(s)
r in the formula of mM

n ,
which is given by

⎛

⎝
s−1∑

j=0

1⊗j ⊗ φ ⊗ (g f)⊗s−j−1

⎞

⎠ ◦
(

r∑

i=0

1⊗i ⊗ mr ⊗ 1⊗s−i−1

)

,

can be reduced to the following sum
r∑

i=0

1⊗i ⊗ φmr ⊗ 1⊗s−i−1 .

Proof. This proof is completely dual to the one of theorem 2, so it is left to the
reader.

3.2 Transference Via Homotopy Equivalences

In [10], a general chain homotopy equivalence e between two DG-modules M and
M ′ is considered as a pair of chain contractions {M̂, M, f, g, φ} and {M̂, M ′, f ′,
g′, φ′}, where M̂ is a “big” DG-module obtained from e. Our interest here is
to compute the A∞-algebra structure on M ′ derived from that of M . Having
at hand the mentioned characterization of chain homotopy equivalence and the
results of the previous subsection, our task is then reduced to determine the
transferring of A∞-structures via chain contractions in the sense from-small-
to-big. In a more formal way, our main problem here is the transference of
the A∞-algebra structure from a “small” DG-module N to a “big” DG-module
M via the chain contraction c : {M, N, f, g, φ}. The following propositions are
straightforward and, in particular, allow to design an algorithmic method for
transferring A∞-structures via chain homotopy equivalences:

Proposition 1. Let c : {M, N, f, g, φ} be a chain contraction and let (N, μ) be
a DG-algebra with product μ. Then, M has a structure of DG-algebra, provided
by the product μM = g μ (f ⊗ f).

Proposition 2. Let c : {M, N, f, g, φ} be a chain contraction and let (N, μ) be
an A∞-algebra with higher maps (n1, n2, n3, . . .). Then, the DG-module M inher-
its a structure of A∞-algebra, given by the maps (g n1 f, g n2 f⊗2, g n3 f⊗3, . . .).

4 Computational Advantages: Theoretical Study

In this section we are concerned about the theoretical study of the time and
space invested in computing the maps of an A∞–algebra structure induced by a
contraction c : {A, M, f, g, φ}. We will focus on the case of A being an algebra.
In particular, we will make a comparison between the original formulas defined
by the Basic Perturbation Lemma and the reduced formulas obtained in the
previous section.
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Regarding the original formulas of the A∞–algebra maps, we must say that
experimental results can be obtained with [1], a software developed in order
to perform low dimension computations. This software is based on the initial
formulation for the map mn : M⊗n → M given in theorem 1:

mn = (−1)n+1f μ(1) φ[⊗2] μ(2) · · · φ[⊗n−1] μ(n−1) g⊗n , n ≥ 2 .

We will take n ≥ 3, since no improvement is obtained in the case n = 2.
As for complexity in space, let us consider the number of addends generated

in the sum above. Taking into account that

φ[⊗k] =
k−1∑

i=0

1⊗i ⊗ φ ⊗ (g f)⊗k−i−1 and μ(k) =
k−1∑

i=0

(−1)i+11⊗i ⊗ μA ⊗ 1⊗k−i−1 ,

the result of applying mn to an element x1 ⊗ x2 ⊗ · · · xn has (n − 1)!2 addends.
Concerning complexity in time, let us assume that each component morphism

of the initial contraction, f, g and φ, consumes a unit of time when applied (that
is, each one of these morphisms is considered a basic operation); we will also make
this assumption for the composition g f which is applied in different terms of
the morphisms φ[⊗k].

Notice that applying g⊗n is O(n) in time.
On the other hand, the number of operations of each addend of the form

1⊗i ⊗φ⊗ (g f)⊗k−i−1 is k− i and the one of each addend 1⊗i ⊗μA ⊗1⊗k−i−1 is 1.
That is, the number of basic operations can be expressed by

n + 2 (n − 1)!2 + (n − 1)!
∑

ki∈{1,2,...,i}
(k2 + 1 + k3 + 1 + · · · + kn−1 + 1) ,

where n comes from g⊗n, 2 (n − 1)!2 from the two operations f μ at the end of
each addend and the big sum corresponds to the operations on the composition

φ[⊗2] μ(2) · · · φ[⊗n−1] μ(n−1).

Notice that the sum is multiplied by (n − 1)! because of all the possibilities
for taking an addend 1⊗i ⊗ μA ⊗ 1⊗k−i−1 of each μ(k). The sum above can be
expressed by

n + n (n − 1)!2 +
(n + 3)(n − 2)

4
(n − 1)!2.

Therefore, the complexity of the algorithm becomes O(n!2) in time.
Now, taking into account the first reduction of terms in the sums involved in

mn (theorem 2), any composition of morphisms of the form φ[⊗s]μ(s), which had
s2 addends, is reduced to a sum with s terms. So, the total number of addends
is now (n − 1)!.

As for the number of operations, now it is O(n) for each addend. Moreover,
the number of operations is, exactly,

n + (n − 1)! (2n − 2) ,

and hence O(n!) in time.
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Finally, considering that the upla of indexes (i2, i3, . . . in−1) for the sums must
be taken so that ik ≥ ik+1 − 1, we eliminate (for n ≥ 4)

Sn =
n−3∑

k=1

k∑

i=1

i · k! =
n−3∑

k=1

k (k + 1)!
2

addends, so the number of addends becomes (n − 1)! − Sn. Now, taking into
account that (n − 1)! can be expressed by

(n − 1)! = 2 +
n−3∑

k=1

(k + 1)! +
n−3∑

k=1

k (k + 1)! ,

it is easy to see that

(n − 1)!
2

< (n − 1)! − Sn < (n − 1)! ,

so the algorithm is still O((n − 1)!) in space. However, the final number of
addends, (n−1)!−Sn, is much ”closer” to (n−1)!

2 than to (n−1)!, as it is shown
in the following comparative table.

n 5 10 50 100 1000
((n − 1)! − Sn)/(n − 1)! 0, 708333 0, 563704 0, 510421 0, 505103 0, 500050

Summing up, the order of complexity in time and space of the original formula
versus the new one is presented in the following table.

original formula new formula
time space time space

mn O(n!2) O((n − 1)!2) O(n!) O((n − 1)!)
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algèbre), Ph. D. Thesis, Université Paris VII (1984)
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