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Directed transport in ratchets is determined by symmetry breaking in a system out of equilibrium. A
hallmark of rocking ratchets is current reversals: an increase in the rocking force changes the direction of the
current. In this work for a biharmonically driven spatially symmetric rocking ratchet we show that a class of
current reversal is precisely determined by symmetry breaking, thus creating a link between dynamical and
symmetry-breaking mechanisms.
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Many processes in physics, chemistry, and biology in-
volve directed transport through periodic structures. For the
equilibrium situation of Brownian motion, diffusion can be
turned into directed diffusion by the application of a dc bias.
In out-of-equilibrium systems, new mechanisms for directed
transport may arise. Counterintuitively, far from equilibrium
it is possible to obtain directed transport through a macro-
scopically flat potential in the absence of an applied dc bias.
This is the so-called ratchet effect �1–7�.

The archetypal of a ratchet device is the rocking ratchet.
In this setup, Brownian particles experience an asymmetric
sawtooth potential and a sinusoidal rocking force. The rock-
ing force drives the system out of equilibrium, and directed
transport is generated following the breaking of the symme-
tries of the system. An analogous effect can also be produced
in a spatially symmetric potential and a biharmonic force,
with the latter playing the double role of driving the system
out of equilibrium and breaking the relevant time symmetries
�8–16�.

A hallmark of rocking ratchets is current reversals. By
progressively increasing the rocking force from zero, the
generation of a current is observed, whose magnitude is first
an increasing function of the strength of the driving. How-
ever, at larger values of the rocking force the current reaches
a maximum, then decreases to zero, and changes sign. This
feature can appear several times in a given system for differ-
ent values of the force, thus producing multiple current re-
versals. Single and multiple current reversals have been ob-
served in a variety of systems, both for an asymmetric
potential and a symmetric drive and for a symmetric poten-
tial and a time-asymmetric drive �17–19�.

Current reversals are usually considered a dynamical ef-
fect, not related to the symmetry breaking required to allow
directed motion. In this work, for the specific system with a
spatially symmetric potential and a time-asymmetric drive,
we show that a class of current reversal is actually deter-
mined by dissipation-induced symmetry breaking. As a con-
sequence, these reversals are not present in the Hamiltonian
limit or in the overdamped limit.

Our work consists of a theoretical analysis of the relation-

ship between current reversals and dissipation-induced sym-
metry breaking. This is carried out comparing differing re-
gimes: weakly damped, Hamiltonian, and overdamped. In
the case of weak damping, where current reversals associated
with dissipative effects are present, the theoretical analysis is
also supported by experimental results obtained with cold
atom ratchets. In our theoretical analysis, the dynamics of
particles in the considered spatially symmetric rocking
ratchet is described by the Langevin equation

mẍ = − �ẋ − U��x� + F�t� + ��t� , �1�

where U�x�=U0 cos�2kx� /2 is a periodic potential, � is the
friction coefficient, ��r� is a Gaussian white noise: ���t��=0,
���t���t���=2D��t− t��, and F�t� is an applied biharmonic
drive of the form �20�

F�t� = F0�A cos��t� + B cos�2�t + ��� . �2�

The generation of a current in such out-of-equilibrium
setup can be understood within the framework of the sym-
metry analysis �13–15�. For the considered spatially symmet-
ric potential there are two time symmetries which need to be
broken to allow for the generation of a current: the shift
symmetry, which corresponds to invariance under the trans-
formation �x , p , t�→ �−x ,−p , t+T /2�, with T as the period of
the drive, and the time-reversal symmetry, which requires
invariance under the transformation �x , p , t�→ �x ,−p ,−t�.
For a biharmonic drive of the form of Eq. �2�, the shift sym-
metry is broken independently of the value of � �for A�0,
B�0�. The breaking of the time-reversal symmetry depends
on both the value of the phase � and the dissipation level. In
the Hamiltonian �dissipationless� case, the system is invari-
ant under time reversal for �=n�, with n as integer. Thus,
for these values of the relative phase, no current can be gen-
erated. However, for nonzero weak dissipation the time-
reversal symmetry is broken by dissipation, and directed mo-
tion can be produced also for �=n�. In the regime of weak
dissipation, the dependence of the particles’ velocity v on the
phase � is well described, in leading order, by v
=vmax sin��−�0�, where �0 is determined by dissipation,
and vanishes in the Hamiltonian limit. It has been shown
recently that this sinelike functional form is a consequence
solely of the system symmetries, being independent of the
interaction details �21�. Of importance for the present study
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is the overdamped regime. In this limit, the so-called “super-
symmetry” �15� �x , p , t�→ �x+� /2,−p ,−t�, with � as the
spatial period of the potential, is satisfied for �=� /2+n�,
with n as integer. For these values of the driving phase � no
directed transport can occur.

In order to establish a link between current reversals and
symmetry breaking, we examine the dependence of the par-
ticles’ current on two different quantities. First, we study the
current as a function of the driving phase �, which controls
the time symmetry of the Hamiltonian. This allows us to
reveal the role of dissipation-induced symmetry breaking.
Second, we consider the standard setup for the observation
of current reversals: we fix the Hamiltonian by choosing a
value of � which corresponds to broken time-reversal sym-
metry ��=� /2, say� and study the current as a function of
the driving strength. This will allow us to detect current re-
versals and relate them to dissipation-induced symmetry
breaking. In all the results presented in this work, the relative
weight between the harmonics of the force is fixed �A=B
=1 in all numerical simulations� and we vary the overall
amplitude F0.

We examine first the weakly damped regime. The top
panel of Fig. 1 shows the average particles’ velocity as a
function of the driving phase for different values of the am-
plitude of the drive. The displacement of the current curves’
extrema clearly indicates that, for a given dissipation level
�i.e., a given value of the friction coefficient ��, a variation
of the drive amplitude leads to a variation in the dissipation-
induced phase lag �0. This is the central point of our analy-
sis: because of dissipation, the curve of the average velocity
vs the phase � acquires a nonzero phase lag �0, and the
magnitude of the phase lag is a function of the strength of the
driving. If we now examine the behavior of the current for a
fixed phase � �say, �=� /2� we see that the variation of �0

due to the change in driving strength leads to a current re-
versal. Thus, a link between current reversals and
dissipation-induced symmetry breaking is established.

Our argument relies on the existence of a dissipation-
induced symmetry-breaking phase lag �0, whose value de-
pends on the dissipation level and driving strength. The con-
sistency of the argument can be verified by considering two
extreme limits: the Hamiltonian case and the overdamped
regime. In both cases, the phase lag �0 is “locked” to a given
value �zero for the Hamiltonian case and � /2 in the over-
damped regime� by the system symmetry and cannot be var-
ied by modifying the driving strength. According to our ar-
gument, current reversals should disappear in both limits.

We consider the dissipationless limit. The bottom panel of
Fig. 1 shows the average particles’ velocity as a function of
the phase � for different values of the driving strength. As in
the weakly damped case, the current shows a sinelike depen-
dence on the phase �. However, unlike the weakly damped
case, the zeros of the current curves are now fixed by the
time-reversal symmetry, and a change in the driving strength
does not induce any phase shift. If we now consider the
current dependence on the driving strength F0 for a given
phase �say, �=� /2�, we observe that no current reversal
occurs. These results are consistent with the link we estab-
lished between current reversals and dissipation-induced
symmetry breaking.

It is interesting to study the dynamics of disappearance of
current reversals while approaching the Hamiltonian limit.
This is done in Fig. 2, where for a fixed phase �=� /2 the
current is studied as a function of the driving strength, for
different levels of dissipation. It appears that by decreasing
dissipation, the position of the current reversal moves toward
F0=0, and in the Hamiltonian limit the current reversal dis-
appears as its position coincides with F0=0.

We notice that in the Hamiltonian limit the asymptotic
particles’ velocity depends on the initial preparation �22�. For
the specific system of interest here, such a dependence is
summarized in Fig. 3. There, we also evidence the chaotic
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FIG. 1. �Color online� Average atomic velocity as a function of
the relative phase � between harmonics of the ac drive for several
values of the driving amplitude F0 and �=�v=k�2U0 /m�1/2. Top
panel: simulation data in the weakly damped regime. The friction
and the noise strength values are fixed to �=0.15�0 and D
=1.944D0, respectively, where �0=mkv0, D0=�0

2v0 /k, and v0

= �U0 /m�1/2 /10. The values near �=� /2 �or �=3� /2� show a cur-
rent reversal as the driving amplitude is increased. Bottom panel:
simulation data in the Hamiltonian regime ��=D=0�. The initial
conditions were chosen within the chaotic sea shown in Fig. 3.
Lines are a guide to the eye.
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FIG. 2. �Color online� Simulation data in the weakly damped
regime: current as a function of the driving amplitude F0 for several
values of the friction � and a fixed driving phase �=� /2; rest of
the parameters as in Fig. 1. As the dissipation is decreased, the
current reversal position is shifted to lower values of the driving
amplitude F0. The diamonds show the results for the Hamiltonian
system. Lines are a guide to the eye.
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sea. It is within that region where the initial conditions for
the calculations in the Hamiltonian limit presented here �bot-
tom panel of Fig. 1 and one set in Fig. 2� were chosen.

We now consider the overdamped case. Numerical simu-
lations for this regime, in the presence of noise, are reported
in the top panel of Fig. 4. The current is still described by a
sinelike function v� sin��−�0�, but the value of the phase
lag is now locked by the symmetry to �0=� /2. A variation
in the strength of the driving does not lead to a change in the
phase lag. Studying the current as a function of the driving
strength, for a fixed value �=� /2 of the driving phase, re-
veals the absence of current reversals. This confirms our
statement about a link between current reversals and the

symmetry breaking induced by the presence of a moderate
amount of dissipation.

So far we have demonstrated that the dependence of the
dissipation-induced phase lag �0 on the driving strength F0
results in current reversals, as observed by monitoring the
dependence of the current at a fixed driving phase on the
strength of the drive. For the same argument, this type of
current reversals is absent in the Hamiltonian and over-
damped regimes, where the phase lag �0 does not vary with
the amplitude of the drive. It is important to specify the
regime of applicability of such reasoning, and underline that
not all current reversals may be necessarily traced back to
dissipation-induced symmetry breaking. In fact our argument
relies on the assumption that the current can be well de-
scribed by a smooth sinelike function v� sin��−�0�. This
holds provided that the noise level is sufficiently large to
smooth the curve. Thus, at low noise levels additional cur-
rent reversals may appear, not related to dissipation-induced
symmetry breaking. An example of this is provided in the
bottom panel of Fig. 4, where current reversals are observed
in the overdamped regime at a very low level of noise.
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FIG. 5. Experimental results for 1D rocking ratchet for cold
atoms. �a�–�f� Average atomic velocity, rescaled by the recoil veloc-
ity vr �vr=5.88 mm /s for 87Rb�, as a function of the relative phase
� between harmonics of the ac drive, for different values of the
driving force amplitude. �g� Dissipation-induced phase lag �0, as
obtained by fitting data as those in �a�–�f� with the function v /vr

=A sin��−�0�, as a function of the driving amplitude. The ampli-
tude A is reported in �h�. The parameters of the optical lattice are
detuning from resonance 	=−15
 and intensity per lattice beam
IL=105 mW /cm2. The rocking force is of the form of Eq. �2�, with
� / �2��=100 kHz, A=1, B=2, and F0=−mf0� /k, where m is the
atomic mass, k is the laser field wave vector, and the values of f0 �in
MHz� for the different sets of data are reported in the figures.
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FIG. 3. �Color online� Simulation data in the Hamiltonian re-
gime: the current as a function of the initial conditions v�0� and
x�0� is represented using a color density plot. The driving param-
eters are �=�v, F0=0.1U0k, and �=� /2. A black circumference
indicates the boundary of a regular circular region in which the
current is zero throughout.
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FIG. 4. �Color online� Simulation data in the overdamped re-
gime: current as a function of the driving phase � for several values
of the driving amplitude F0, with �=0.01�v and a friction �
=100�0. Top panel: D=1.944�103D0, with lines being a guide to
the eye. Bottom panel: D=0.1944�10−3D0. The inset in the bottom
panel shows the current as a function of F0 for a fixed driving phase
�=1.01, displaying multiple current reversals.
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The weakly damped regime, of central interest here, can
be explored using dissipative cold atoms ratchets �23�. We
used a one-dimensional �1D� rocking ratchet setup for 87Rb
atoms �24�, which corresponds to a spatially symmetric po-
tential and a biharmonic rocking force of the form of Eq. �2�.
Proceeding along the lines of the theoretical analysis, we
measured the atomic average velocity as a function of the
driving phase �, for a given dissipation level and for differ-
ent strengths of the driving. Our results, shown in Fig. 5,
confirm the prediction of the general theory we presented.
An increase in the applied driving force amplitude F0 leads
to a large variation in the phase lag �0, as also summarized
in Fig. 5�g�. Also the amplitude of the curve varies with the
driving amplitude F0. However, it never becomes zero �see
Fig. 5�h��. It is thus the variation in the phase lag �0 which

produces a change in sign of the current observed for �
=� /2, i.e., a current reversal.

In conclusion, in this work we studied, both theoretically
and experimentally, the relationship between current rever-
sals and symmetry breaking. For the specific system with a
spatially symmetric potential and a time-asymmetric drive,
we showed that a class of current reversals is actually deter-
mined by dissipation-induced symmetry breaking. As a con-
sequence, these reversals are not present in the Hamiltonian
limit or in the overdamped limit.
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