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Abstract. A novel microfluidic single-use valve for fluid injection and extraction in pressure-

driven applications is presented in this paper. The device consists in a thin SU-8 membrane 

crossed by a resistor that withstands a mechanical stress induced by a pressure difference. 

When the resistor heats up the membrane, the SU-8 fracture strength drastically decreases 

causing the valve activation. This device has been designed, fabricated using inexpensive SU-8 

and Printed Circuit Board technologies, and finally characterized. The hybrid thermal-

mechanical microvalve operation principle has been demonstrated and experimental results 

have shown the device characteristics and performance. Specifically, this design was functional 

at pressures of 0.8 MPa and opened in less than 3.2 seconds with an applied power of 280 mW. 

The simple fabrication process and the absence of moving mechanical parts have made the 

valve suitable for large-scale integration in Lab-on-Chip microfluidic platforms. 

1.  Introduction 

Since the rapid expansion and development of microfluidics during the last years, microvalves and 

micropumps have become essential elements in microscale fluid handling. The requirements for 

precise control of fluid flow in a widely range of areas from biomedical and drug delivery to 

automotive, aeronautics and fuel cell systems, has motivated the development of this microfluidic 

devices using microelectromechanical systems (MEMS) technology [1]. During the last two decades, 

MEMS and microfluidics research have been largely encouraged by the realization of a fully 

integrated microfluidic platform, such as micro total analysis systems (TAS) [2] or Lab-on-chip 

(LOC) [3].  

These devices are potentially important in biotechnology, clinical diagnostics and medical 

applications, performing the functions of a bio-laboratory in a single chip. Several Lab-on-chip 

devices have been reported in the literature by different research groups [4-6]. The microscale 

platform not only makes possible to work with small volume of fluids but also has many distinct 

advantages such as reduced consumption of expensive chemical reagents, faster analysis times as well 

as increased sensitivity and reliability [7]. Microvalves are essential components in such devices for 

portable chemical analysis, sample transport, drug delivery or mixing, but their actual lack of 

reliability have become one of the main obstacles that have delayed the successful miniaturization and 

commercialization of fully integrated microfluidic systems. 

Microvalves are used not only to provide fluid flow regulation in microchannels but also to seal 

liquids, gases or vacuums and to switch between open and closed flow. One way of classifying 

microvalves is through the actuation mode, where two main types can be found: passive and active 

valves. Passive valves have no actuation due to the open/closed states come from the internal energy 
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of the fluid. On the other hand, active microvalves require external energy to operate, presenting a 

structure formed by a closing element and an actuator. Active valves can either be categorized by their 

initial working state or by their actuation principle. The three initial working states are normally 

closed, open or bistable, and the main actuation methods are pneumatic, thermopneumatic, 

thermomechanical, electrostatic, piezoelectric, electromagnetic, electrochemical and phase change. A 

detailed classification of microvalves has been reported in the literature by several authors [8, 9].  

However, high manufacturing costs, fragility and lack of reliability of these devices still present a 

serious obstacle to integration. Specifically, traditional microvalves are fabricated in silicon, but high 

costs and limited accessibility of silicon processing has driven interest in exploring other materials and 

alternative technologies. During the past decade, polymers such as SU-8 and PDMS have emerged as 

materials of choice for many microfluidic devices and LOC platforms, offering the advantages of 

inexpensive and simple fabrication processes using rapid prototyping [10, 11]. 

In this respect, SU-8 technology has been a widely researched and developed area. SU-8 is an 

epoxy-based negative photoresist, whose properties make it a useful and cheap alternative for many 

microfluidic applications [12]. It can be patterned using standard mask processes with very thin films 

and nearly vertical sidewalls profiles [13]. Furthermore, the resist is transparent so the fluids can be 

sensed using an optical approach and inspected during experiments. Biocompatibility and biofouling 

of SU-8 have been previously evaluated and reported, presenting suitable results for biomedical 

applications [14]. 

Another technology that is becoming important in miniaturized fluid components is Printed Circuit 

Board Microsystems (PCBMEMS), which combines mechanical, electronic and fluidic devices by 

adding some new steps on common PCB fabrication process [15]. The main advantage of these 

devices lies in high integration with inexpensive materials, making possible to place all the 

components necessary for sensing, analyzing and controlling the fluids onto the same PCB.  

In some microfluidic applications it is sufficient to open a flow channel only once in order, for 

example, to trigger a mixing reaction in a microchamber or to deliver some fluid sample at a certain 

time. For such one-shot actuations, a disposable microvalve design can minimize reliability problems 

and manufacturing cost. Single-use microvalves contain a destructible element that is commonly 

activated by thermal or chemical actuation. The benefits of thermal techniques over chemical ones are 

simplicity and safety, due to the absence of risky or toxic reagents.  

Several authors have reported different contributions to this area, developing single-use 

microvalves with diverse operation principles and materials. Thermally actuated paraffin microvalves 

[16] and destructible membranes coated with low melting point alloys [17] can be found in the 

literature. Similar studies oriented to high gas pressure applications or about integration of air-bursting 

detonators are reported in [18, 19] respectively. However, the main disadvantages of thermal actuation 

are principally related to high energies required for valve activation and slow time responses when 

compared to many active microvalves.  

The purpose of this work is to develop a novel single-use microvalve designed to overcome the 

common limitations presented in traditional microfluidic devices. The presented device is activated 

combining two simultaneous and different phenomena, thermal and mechanical, minimizing the 

energy consumption required to activate the device. The valve design has been conceived to control 

the fluid flow in pressure-driven microfluidic applications, where the fluid motion energy is contained 

in a pressurized tank. Considerable effort has been directed towards minimizing the device cost, 

improving its integration and simplifying the fabrication process. Consequently, inexpensive materials 

like SU-8 and PCB have been selected. 

This paper is organized as follows. In section 2, device hybrid operation principle is presented and 

theoretical pressure and temperature effects over the membrane are studied separately. The following 

section shows the fabrication process and the device finally implemented. Experiments and results are 

discussed in section 4. Finally, conclusions are presented in section 5. 

 

 



 

 

 

 

 

 

2.  Operation principle 

A schematic of the microvalve concept is shown in figure 1. It consists of a thin SU-8 membrane 

crossed by a resistor element. A pressure difference is fixed between both sides of the membrane in 

order to cause a mechanical stress over the structure. This stress will produce a breakage on the 

membrane when an electric current is supplied through the resistor element. The purpose of this 

resistor is to weaken the membrane by thermal power, acting as a trigger for the activation. In absence 

of electric current the membrane will remain as a solid barrier, withstanding the pressure difference 

between both sides. Therefore, the microvalve actuation is achieved by a combination of pressure and 

temperature actions.  

When the membrane is broken, a fluid contained in the higher pressure side will flow to the other 

side of the membrane in order to reach the equilibrium of pressures. Membrane dimensions are studied 

and discussed in detail in the following subsection to achieve a correct operation of the device. 

 

 
 

Figure 1. Schematic of the microvalve concept. 

2.1.  Mechanical actuation 

An essential component in microvalve design is the SU-8 membrane, in charge of withstanding the 

mechanical stress produced by the pressure and sealing completely the fluid path. Dimensions of this 

membrane will play a fundamental role in the thermal power required as well as the time taken for the 

valve to operate. Due to fabrication process the membrane geometry will be restricted to square or 

rectangular section. According to the mathematical approximation reported by [20], the maximum 

bending stress, max, generated by a uniform pressure P on a clamped rectangular plate with a width Ly, 

a length Lx and a thickness h can be expressed as:  
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where the coefficient c is calculated by the polynomial least-square curve-fitting as a function of Ly 

and Lx. 

This formula is valid for most materials that have Poisson's ratios around 0.3. Previous works have 

reported a 0.22 Poisson ratio for the SU-8 polymer [12], assuming then a similar membrane behavior 

to expression (1) when a real pressure is applied. In order to verify the theoretical analysis before 

determining the appropriate dimensions for the membrane, software tool Coventorware was used to 

simulate the phenomenon involved in valve operation. A rectangular membrane with a width of 500 



 

 

 

 

 

 

m, a length of 1000 m and a thickness of 40 m was selected to study the maximum bending stress 

applied by a pressure of 0.7 MPa, in order to localize possible breakage points. Simulation results are 

shown in figure 2.  

 

 
 

Figure 2. Bending stress produced by a pressure of 0.7 MPa applied over a 500×1000×40 m 3 SU-8 

membrane. 

 

The simulation illustrates the zones where the bending stress is maximum, located in the center 

point of both long edges near bottom and top surfaces of the membrane. Thereby, the optimum place 

to cross the membrane with the resistor will be on its low-center zone near the substrate, in order to 

heat the weakest area. The simulation exhibited a maximum bending stress of 51 MPa, while the 

calculated value in (1) was approximately 55 MPa, validating the theoretical expression. 

According to (1) max will be thickness-to-width aspect ratio quadratic dependent. This fact 

establishes the membrane aspect ratio and the pressure applied as main parameters involved in 

mechanical actuation. According to previous authors, the SU-8 fracture strength f has been reported 

as 62.9 MPa at room temperature, assuming optimum processing conditions for the resist [21]. Thus, 

high membrane aspect ratios or very high pressures will be required to perform a mechanical breakage 

without any thermal contribution. The maximum theoretical bending stress in the membrane as a 

function of aspect ratio and pressure is reported in figure 3. 

 

 
 

Figure 3. Theoretical bending stress as a function of membrane aspect ratio and pressure applied. 

Dashed line shows the SU-8 fracture strength under optimal conditions. 



 

 

 

 

 

 

Experimental assays with different membrane dimensions were carried out in section 4 to confirm 

these limitations, where an increment of resistor temperature was necessary to achieve such strict 

breakage conditions. 

2.2.  Thermal actuation 

In this section, the heating of the SU-8 membrane due to the temperature transfer of the resistor 

element is discussed, when the pressure applied to the membrane is assumed to be negligible. A gold 

microwire commonly used in wire bonding technology for connecting microchips to external pads in 

semiconductor device fabrication was selected as a resistor. This proposal maximizes the thermal 

power generated-to-electric current ratio due to the small cross-sectional area of the wire. In our study 

the wire presented a 25 m diameter section.  

Different designs actuated by thermal phenomenon have been considered to activate the valve, 

comparing copper PCB microlines to gold wires. When metal is heated up, conduction phenomenon to 

air and also to PCB substrate plays an important role due to thermal power losses. Simulation and 

experimental results determined that isolation between metal and substrate reduces power losses and 

concentrates the heat transferred to the membrane. For this reason, a gold wire was bonded between 

copper lines with a certain curvature, in order not to be in contact with PCB substrate.  

When the wire temperature increases by current effect, a radial heat distribution will propagate 

from the wire surrounding area with higher temperature to the membrane edges that initially are at 

ambient temperature. This effect was simulated with Coventorware as is shown in figure 4.  

 

 
(a) (b) 

 
(c) (d) 

 

Figure 4. Thermal conduction through a 25 m section diameter gold wire which crosses a 500 × 

1000 × 40 m 3 SU-8 membrane when (a) t=0.1s, (b) t=0.5s, (c) t=1s and (d) t=1.5s. Wire temperature 

selected for simulations was 200 ºC. 

 



 

 

 

 

 

 

With this in mind, the theoretical temperature reached in the wire Tint can be obtained as a function 

of the heat generated Q by Joule effect, which depends on the external current supplied I flowing 

through a conductor of electrical resistance R for a time t. The thermal conduction through the wire, 

assumed as a cylinder, can be mathematically expressed as follows: 
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where H is the wire length that crosses the membrane, T is the temperature gradient between the wire 

perimeter Tint and the membrane edges Text (initially assumed as ambient temperature), rext and rint are 

the external radius from the heat source to the membrane edge and the internal radius to the wire 

border, respectively, k is the SU-8 conductivity and Rc is the thermal resistance. According to equation 

(2), the wire temperature can be solved as follows. 
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With this equation the theoretical wire temperature as a function of the current supplied is 

illustrated in figure 5.  

 

 
 

Figure 5. Theoretical temperature as a function of the current supplied to the wire at steady state. 

Dashed vertical line shows the current necessary to reach the SU-8 glass transition temperature, Tg. 

 

Previous studies reported that the SU-8 glass transition temperature Tg is approximately 200 ºC 

[22]. From this point the polymer is in its rubbery state, lending softness and flexibility to the 

membrane. At higher temperatures the SU-8 starts melting down until degradation temperature is 

reached, located near 380 ºC. It is important to underline that the present study has been carried out 

without taking into account another heat conduction effects in the membrane like convection or 

radiation to air, resulting in an effective reduction of the temperature showed in figure 5 during real 

assays. In addition to this, SU-8 Young’s modulus linearly decreases approximately from 50 ºC to 150 

ºC, as is reported in [23]. In this temperature range, SU-8 Young’s modulus will be nearly one order of 

magnitude smaller, affecting the membrane visco-elastic properties. However, the numerical results 

and conclusions resulting from this theoretical approximation will help us in the discussion of the 

experiments carried out in section 4. 

 



 

 

 

 

 

 

2.3.  Hybrid actuation 

In the device presented, high power consumptions commonly associated to thermally actuated 

microvalves has been overcome by setting a differential pressure between the chamber and the 

microchannel in order to help the membrane destruction by mechanical stress. The combined actuation 

of thermal and mechanical principles cause a synergistic effect, drastically reducing the energy needed 

for activation and decreasing the SU-8 fracture strength f due to temperature effect. Besides this, SU-

8 Young’s modulus reduction results in an increment of material elasticity and consequently in a raise 

of membrane displacement when pressure is applied. 

According to the physic mechanisms involved in the device operation, two different mathematical 

models can be assumed as a function of the heat reached in the membrane. On one hand, when this 

temperature is lower than Tg the membrane behaviour will be similar to a SU-8 rectangular plate 

clamped on all edges under a uniform pressure, with a fracture strength also thermally dependent. On 

the other hand, when membrane temperature exceeds SU-8 glass transition the model will be assumed 

as a viscous cylinder around the gold wire subjected to a uniform pressure. 

The phenomena concerned in this mixed actuation principle leads to a complex mathematical 

model with very hard assumption. For this reason, an experimental study has been carried out to 

determine the behaviour of the operation process. 

3.  Fabrication 

The implementation of the microvalve is simple to be carried out and employs inexpensive materials 

due to the use of SU-8 and PCBMEMS technologies. Integration of microfluidics and classical PCB 

electronic connections in a common substrate is achieved by adding some new steps in the fabrication 

process. Membrane fabrication, gold wire alignment accuracy and final bonding and enclosure with 

the cover board are critical steps in the complete fabrication process flow. The device design, 

materials involved in fabrication and process flow are detailed as follows.   

3.1.  Design 

An overhead and cross-section view of the complete device is shown in figure 6. It is formed by a SU-

8 structure composed of a circular chamber and a microchannel separated by the membrane. The gold 

wire that crosses the membrane is connected to two independent copper lines, patterned on a common 

printed circuit board substrate. Two small orifices are performed in the chamber and the microchannel, 

acting as a connector to an external pump to set up the operation pressure, and to allow the fluid flow 

by means of an input/output fluid port, respectively. A transparent board is bonded to the structure as a 

cover, allowing the valve to be inspected during pressure and breakage experiments. 

Pressure on chamber and microchannel will determine the fluid flow direction, establishing a 

reversible valve operation mode. If the microchannel is set at atmospheric pressure and chamber 

pressure is higher the device will operate as a microinjector, whereas with lower pressure than 

atmospheric, the valve will work in microextractor mode, forcing the fluid contained in the inlet/outlet 

port through the channel towards the chamber.  

Dimensions of the chamber and the microchannel have been calculated to ensure the microchannel 

filling with fluid, which flows through the input/output port after activation in microextractor 

operation mode with the chamber pressurized at 10 kPa. The energy stored in the chamber will drive 

the fluid through the channel. The microchannel length was 8 mm with a square section of 500 × 500 

m2, and the circular pressure chamber was designed with a radius of 1.8 mm and a total internal 

volume of 5 L. Chamber and microchannel SU-8 walls as well as copper lines presented a width of 

500m. The total dimensions of the device were 4 × 12 × 5 mm3. The purpose of the structure 

designed is to validate the membrane hybrid operation principle, visualizing the fluid flow when the 

microvalve is activated during experiments. 
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Figure 6. Cross-section view (a) and overhead view (b) of the microvalve design. Pressure in the 

chamber is regulated through a PCB orifice. 

3.2.  Materials 

Following the basic idea of PCB-based technology, a conventional single-sided copper-plated rigid 

material (FR4) was used as a substrate. The thickness of the copper layer and the total thickness of the 

PCB are selectable, however commercially standard 35 m and 1500 m copper and FR4 respectively 

were chosen.  

SU-8 2150 photoresist (supplied from Microchem Corporation) was applied to form the basic 

device structure: pressure chamber, membrane and microchannel. Other materials were previously 

suggested to compose the membrane, like PDMS elastomer, Paraffin or epoxy resists. Their 

mechanical and thermal properties are critical for the microvalve operation, due to the required 

capabilities of supporting high pressures and reaching its glass transition point at relatively low 

temperatures, respectively. In experimental tests, these materials showed low mechanical endurance or 

excessive low glass transition temperatures, resulting unsuitable for the proposed device. In addition to 

this, the width control of the membrane during fabrication process was better achieved by means of 

SU-8 technology. Therefore, SU-8 2150 was finally selected in order to build high sidewall profiles 

for the membrane, accomplishing a monolithic structure without additional fabrication steps and 

exhibiting suitable mechanical and thermal properties.  

Epo-Tek 302-3M resist (Epoxy technology Inc.) reported in previous investigations [24] was 

replaced with SU-8 2025 photoresist as adhesion layer between the structure and the transparent cover, 

resulting into a stronger linking. A 3 mm thickness methacrylate cover was selected to completely seal 

the device ensuring pressure chamber enclosure and avoiding possible leakages. This transparent 

cover allowed the valve to be inspected during pressure and breakage experiments. 

 

 



 

 

 

 

 

 

3.3.  Process flow 

The complete microvalve fabrication procedure is illustrated in figure 7 and is described as follows. 

 

 
 

Figure 7. Microvalve fabrication process flow. 

 

The fabrication process started with an UV light exposure over a 5.5 cm2 square PCB substrate 

during 2.5 minutes. After UV lithography with the corresponding mask, the exposed areas were 

developed by wet etching obtaining the connections where the gold wire is subsequently bonded. 

Several adhesion tests involving SU-8-copper and SU-8-FR4 determined that the stronger cohesion 

was achieved depositing SU-8 over a copper layer. For this reason, the mask was designed with copper 

areas under the complete valve structure, avoiding short circuits with the copper lines in charge of 

supplying the electric current to the wire. 

After this, the PCB was cleaned with acetone and the gold wire was bonded to the two copper lines. 

The wire should be thermally and electrically isolated from substrate and quite flat in order to cross 

the membrane as close as possible to its bottom surface, according to subsection 2.1. Table 1 

summarizes the variations on wire distances to the substrate achieved during different fabrication 

processes. 

 

Table 1. Distance of the wire crossing point in the membrane respect to the substrate in manufactured 

valves. 

Valve sample 1 2 3 4 5 6 7 8 

Wire height (μm) 180 195 245 155 255 175 165 155 

 

Although wire height was controlled by a loop selector, the employed machine showed some 

tolerance during bonding process. Average height was approximately 190 μm with a maximum 

deviation of 34% when compared to this value. Wire length was 1.5 mm. The bonding process was 



 

 

 

 

 

 

carried out at 120ºC, dehydrating the PCB to improve the gold to copper connection and to enhance 

considerably the adhesion to the substrate. Model 4123 from K&S Inc. was employed for this purpose. 

The next step was the deposition of a thick SU-8 layer over the whole board by a spin coater SMA 

AC 6000 supplied from SMA Inc. The thickness of the SU-8 layer depends on the spinning speed, the 

time being spinning and the quantity of resist poured. To obtain high SU-8 structures with the 2150 

variant the spin speed selected was 450 rpm for 10 seconds followed by 700 rpm during 50 seconds. 

With these parameters, a planar 500 μm thick deposition was carried out. Although is possible to 

achieve membranes with higher aspect ratios the SU-8 deposition flatness is not assured. 

After this, the SU-8 is baked for 15 minutes at 65ºC in a hotplate. Then, is baked again for 180 

minutes at 95º, avoiding exposure to visible light. Previous publications reported that lower soft bake 

temperatures reduces the level of stress induced into the internal SU-8 structure and prevents cracking 

[25]. Nevertheless, with the proposed procedure the SU-8 membranes with aspects ratios higher than 

12 were fabricated without cracks or adhesion problems. 

Once the resist is cured and cooled down at room temperature (~25 ºC) for 15 minutes, a high 

resolution transparency mask was used for lithography. SU-8 was then exposed to UV light with 

vacuum contact between the mask and the photoresist. A key point was the correct alignment between 

the gold wire and the membrane mask pattern in order to locate the resistor in the middle of the SU-8 

membrane. It is remarkable that no mask aligner was needed in this step due to the tolerances provided 

by the device design dimensions. It is important to realize that the copper and SU-8 masks were 

designed for positive and negative photoresists, respectively.  

When the UV exposition was finished, a post exposure bake step (PEB) was carried out, baking the 

board for 5 minutes at 65ºC followed by a 10 minutes period at 95ºC on a hotplate in order to 

polymerize the SU-8. After a relaxation step of 10 minutes at room temperature the following stage 

was to immerse the PCB with the polymerized resist in the SU-8 Developer (supplied from 

Microchem Corporation) for 10 minutes. This step was performed at room temperature inside a beaker 

using a stirring bar for slight agitation. Then the patterned SU-8 was carefully rinsed in isopropyl 

alcohol (IPA). Thereby, membranes with widths near to 45 μm and aspect ratios of 11 were achieved 

with nearly perfect vertical profiles. 

After PEB and cleaning, a 0.8 mm diameter orifice was drilled in the chamber through the PCB to 

connect an external pump and set up the working pressure. Drilling dust was removed and the SU-8 

cavities cleaned with IPA.  

A thin SU-8 2025 layer was spinned over the methaclylate cover, which was previously cleaned 

with IPA. The spin speed was selected to 500 rpm for 5 seconds followed by 3000 rpm for 40 seconds, 

resulting in a 30μm thick deposition. The thickness of this layer was selected in order to avoid 

undesirable displacements into the cavities of the resist in contact with the device walls, which could 

cover the gold wire making its thermal actuation worse or obstruct the fluid flow though the valve. A 

detailed study of this phenomenon is widely reported in [26].  

The cover bonding process with the microvalve structure was carried out in absence of pressure 

applied over the methaclylate board, when the cover weight causes the uniform distribution of the 

spinned SU-8 on the microvalve SU-8 walls. Thus, the resist located on the cover diffuses over the 

structure, ensuring the device enclosure and preventing possible pressure leakages in the chamber. The 

bonding is carried out by means of an UV exposure step of 1.5 minutes over the whole device, 

achieving a very strong cross-linking between both SU-8 resists. The fabricated device is shown in 

figure 8. An overhead photograph of the membrane is illustrated in figure 9. 

 



 

 

 

 

 

 

 
 

Figure 8. Photograph of the microvalve and enlarged view of the SU-8 membrane with the gold wire 

through it. 

 

 
 

Figure 9. Overhead photograph of the membrane. 

4.  Experimental tests 

Once the microvalve was fabricated experimental test were carried out to confirm the correct operation 

of the device. The goal is to study the membrane behaviour at different pressures when a current is 

applied through the gold wire. With these results, the proposed microvalve will be characterized, 

confirming the relation between theoretical studies and experimental outcomes. 

4.1.  Experiment setup 

Following the fabrication process described in section 3, several microvalves with membrane aspects 

ratios of 4:1, 9:1 and 11:1 (height:width) were produced and prepared for pressure and temperature 

assays. An optimal balance between power consumption and pressure required will be necessary to 

optimize the microvalve operation. 

The device chamber was connected to an external air pump to fix a suitable pressure in it according 

to a pressure gauge. A control valve regulated the maximum pressure selectable up to 0.8 MPa. The 

microchannel fluid port was set at atmospheric pressure and coupled to a small tank containing black 



 

 

 

 

 

 

ink diluted in water, in order to inspect the fluid flow along the device when the activation was 

performed. Two external wires connected the copper lines to a DC source to supply the current pulse 

through the gold wire during experiments. The whole assembly is illustrated in figure 10. A 

microscope connected to a camera provided a real-time inspection of the device behaviour through a 

personal computer screen. 

 

 
 

Figure 10. Experimental setup for microvalve testing and characterization. 

4.2.  Results 

Pressure was progressively supplied to the microvalve chamber in absence of current until reaching 

the desired value. Working pressure was maintained for 1 minute approximately in order to avoid 

undesired transient effects. It was verified that the maximum pressure the device could withstand 

without leakages was above 0.8 MPa. At that moment, electric current was gradually incremented 

through the gold wire until valve activation was achieved. The detailed process steps are illustrated in 

figure 11.  
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Figure 11. Microvalve operation process. (a) Valve photograph with components description (t=0s). 

(b) Pressure in chamber is fixed to P1. The membrane supports the pressure applied and the current is 

gradually incremented (t=1s). (c) DC current is still connected through the gold wire. The membrane 

starts to weaken due to the thermal power contribution (t=2s). (d) The membrane finally breaks and 

the fluid is pushed from the chamber to the microchannel (t=3.2s). 

 

Photograph 11(b) shows the membrane supporting a pressure difference of 0.5 MPa. When 

pressure is fixed and current is supplied, wire temperature increases and starts debilitating the 

membrane surrounding area, as is shown in photograph 11 (c). A slight membrane displacement is 

observed in this area due to the bending stress induced by the pressure difference between chamber 

(P1) and microchannel (P2). After a few seconds, pressure finally breaks through the lower centred 

point of the membrane resulting in a fluid flow towards the microchannel, as is illustrated in 

photograph 11 (d). For the reported experiment a valve with 11:1 membrane aspect ratio was selected, 

achieving activation in 3.2 seconds. Table 2 reports the activation energy for each inlet pressure 

applied, which was calculated as the time integral of the electric power supplied to the wire. 

 

Table 2. Different activation conditions for the 11:1 aspect ratio microvalve.  

Inlet pressure 

(MPa) 

Average 

current 

(A) 

Voltage 

(V) 

Applied 

power 

(W) 

Time 

response 

(s) 

Energy 

(J) 

0.1 1.65 0.65 1.07 3.0 3.21 

0.3 1.40 0.55 0.77 2.5 1.92 

0.5 0.90 0.38 0.34 3.2 1.09 

0.7 0.80 0.35 0.28 2.5 0.70 

This experiment was also carried out with the remaining groups of valves divided in 9:1 and 4:1 

aspect ratios. Figure 12 illustrates pressure and heat required in the wire to activate these aspect ratio 

devices. 



 

 

 

 

 

 

 
 

Figure 12. Heat dissipated by the wire to activate the valve as a function of the operation pressure for 

different membrane aspect ratio designs. 

 

As shown in the graphic, very low membrane aspect ratios force a high heat contribution due to the 

slight bending stress caused by applied pressure. Curve 4:1 illustrates that great widths in the 

membrane dimensions will minimize the pressure effect over the structure. For medium aspect ratios 

(9:1) the thermal energy required for activation increases linearly with pressure, suggesting a similar 

thermal and mechanical contribution. Different slopes are visualized for curve 11:1 where higher 

pressures cause slight variations in the heat required, indicating a more important mechanical 

contribution in activation process than thermal. Figure 12 also illustrates that for a given pressure in 

the valve chamber, higher temperatures are required as lower membrane aspect ratios are selected. 

Microvalve operation zones will be discussed in detail in the next section. 

5.  Discussion 

The different operation zones that theoretical study has suggested in device behaviour according to the 

experimental results shown for the best performance microvalve are now discussed. Figure 13 

illustrates these microvalve operation zones for a membrane aspect ratio of 11:1. 

 

 
 

Figure 13. Device operation zones as a function of the wire heat and the pressure supplied to the 

membrane. 



 

 

 

 

 

 

 

The operation zones as a function of the pressure applied are listed below: 

 

 Mechanical activation: When the current supplied is very low or zero the mechanical 

activation principle will be the only responsible for membrane breakage. The heat generated in 

the wire will be not enough to cause a significant thermal weakening for the SU-8 membrane. 

Thus, activation moment will be impossible to control without a thermal trigger. 

 Hybrid activation: In this operation range the breakdown of the membrane will be achieved by 

a hybrid actuation, thermal and mechanic. The wire heat reduces the SU-8 fracture strength 

and the membrane model as a rectangular plate under a uniform pressure is still valid. The 

mechanical stress will be the principal cause of activation and the thermal contribution will be 

consigned to a secondary level. Hence the actuation will be carried out mechanically, acting 

the temperature increasing as a trigger for activation. 

 Thermal activation: When heat increases and wire temperature goes beyond 200 ºC the SU-8 

reaches its glass transition point and the theoretical model of a viscous cylinder flow must be 

considered. The thermal contribution will be dominant then over mechanical which leads to a 

high power consumption of the device. According to the slow curve slope observed, high 

pressures will just decrease linearly the valve time response. When temperature is around 380 

ºC the SU-8 from the membrane starts to degrade and physical properties drastically change.  

 Wire breakage: When the heat generated induces a wire temperature increase close to the gold 

melting point, the wire melts down disabling the device functionality. 

 

From the point of view of minimizing the electric power consumption, the pressure contribution 

must be dominant over the thermal contribution in order to break the membrane and cause the fluid 

flow. With that in mind, the hybrid activation zone corresponding to a pressure-dependent behavior 

was the optimal operation area, with an energy required for activation typically of 0.7 J.  

According to the graphic shown in Figure 13, the relation between the supplied heat Q and the 

inner chamber pressure P required for valve activation can be defined as follows: 
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This parameter expresses the variation of the heat required in the resistor when the chamber 

pressure changes. SQP is negative all over the working range due to an increase of pressure will always 

reduce the thermal energy required to activate the valve. In hybrid activation zone, the device requires 

less thermal contribution when pressure varies, considerably reducing the electrical power 

consumption. The most important microvalve nominal characteristics that have been measured are 

summarized in Table 3. 

 

Table 3. Microvalve nominal characteristics. 

Membrane 

aspect ratio 

(height:width) 

Maximum working 

pressure P 

(MPa) 

SQPmax  

(J/MPa) 

Maximum time 

response t 

(s) 

Minimum energy 

required Q 

(J) 

11:1 0.8 -1.6 3.2 0.7 

 

Similar microvalves have been previously reported by different authors, presenting a combined 

activation process by thermal and mechanical principles. Guerin’s group developed a single-use 

microvalve that included a heating resistor which melted and delaminated a PE/PET membrane from 

the substrate [27]. In a similar way to the work described in this paper, an overpressure existing behind 

the membrane forced the valve to open, requiring a power about 200 to 400 mW for 1.2 s. Although 



 

 

 

 

 

 

this design presented a lower energy required for operation, it was only capable of withstanding a 

pressure of around 0.2 MPa, resulting insufficient for high pressure-driven applications. 

Another device similar to the described here is the work reported by Debray et al [17], where the 

valve consisted in a channel obstructed by a membrane coated with a low melting point alloy. At 20 ºC 

the alloy was solid and could withstand an input pressure higher than 3 MPa, but the device opened 33 

s after the temperature had reached 47 ºC, presenting a relatively slow time response. For the 

irreversible paraffin-based microvalves [16] time responses are also slow (on the order of tens of 

seconds) with a maximum holdup pressure around 275 kPa. Nevertheless, the power required for 

actuation is close to the design presented in this paper (100-200 mW). 

Mueller et al [28] have developed a single-use valve for micro-propulsion applications whose 

actuation principle is based on a silicon membrane that withstands pressures up to 20 MPa. The main 

drawback is the high temperature required to melt the membrane (1400 ªC), which is not compatible 

with many applications. Finally, Bejhed et al [18] presented a robust microvalve for high pressure 

space applications, capable of being functional at pressures of 10 MPa. An important innovation of 

this design was the incorporation of a filter which served to remove any particle debris created by the 

activation process. In these studies, the valve opened in less than 10 s but required an applied power of 

13 W.  

Regarding the use of the microvalve in biomedical applications, the contact between the fluid and 

the membrane should be avoided, due to the high temperatures reached around the gold wire. Most of 

the biological fluids are not compatible with temperatures near 200 ºC, resulting in a degradation of 

the analyte properties of interest. Besides this, the contact between the viscous SU-8 from the 

membrane and the biological fluid may also affect its properties and consequently the measurements 

performed. Nevertheless, some little debris from the membrane may be released to the fluid so a safety 

area must be kept in order to avoid an undesirable mixing. Although this matter is currently being 

studied, some strategies are described as follows. 

When chamber pressure is higher than atmospheric, the valve will operate as a microinjector, 

pushing the fluid through the microchannel to the output port (Figure 6). In this case, the fluid would 

be contained in a reservoir located in the microchannel path separated from the membrane and the 

gold wire. Thus, the chamber pressure will drive the fluid from the microchannel reservoir to the 

output port when the SU-8 membrane is broken, preventing the contact between the membrane and the 

fluid. A safety distance between the fluid reservoir and the membrane must be determined in order to 

avoid the fluid warming when an electric current is supplied to the gold wire. However, this safety 

distance would be short because the high temperature area is located close to the membrane due to the 

small dimensions of the wire. 

When the valve operates in microextractor mode, chamber pressure will be higher than atmospheric 

and fluid will flow through the microchannel towards the broken membrane. Dimensions of the 

microchannel must be calculated to ensure the channel filling with fluid except the safety area around 

the membrane. A suitable place to include a biochemical sensor to analyze biological substances in the 

fluid is in the microchannel, close to the input where fluid filling is ensured when valve is activated. 

This way, membrane temperature or debris is far enough to affect the sensor measurements. 

6.  Conclusions 

A single-use microvalve for pressure-driven microfluidic applications has been presented. By means 

of a hybrid thermal and mechanical actuation principle, low power consumption has been achieved. 

The main advantages of this device lie on its simplicity, robustness, great functionality and ease of 

integration due to its planar structure, improving previously reported single-use valves due to its 

simple fabrication process and low cost based on SU-8 and PCBMEMS technologies.  

Experimental results have proven the microvalve functionality, working in a pressure range up to 

0.8 MPa and presenting an energy consumption of 0.7 J for less than 3.2 seconds to be open. 

The device has been conceived as a single component of a microvalve array platform, being a key 

part of an integrated microfluidic Lab-on-chip. Valve portability can be improved by adapting a small 



 

 

 

 

 

 

battery with an activation switch and adding a pressurization extra step in fabrication process. Future 

works also include integration of microneedles and biochemical sensors to analyze biological 

substances.  
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