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The main aim of this paper is to analyse the asymptotic behaviour of a non-autonomous integro-
differential parabolic equation of diffusion type with a memory term, expressed by convolution
integrals involving infinite delays, in an unbounded domain. The assumptions imposed do not en-
sure uniqueness of solutions of the corresponding initial value problems. The theory of set-valued
non-autonomous dynamical systems is applied to prove the existence of pullback attractors for
our model. To do this, we first analyse an abstract version of the equation.
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obituary

While this paper was in the referee procedure, our colleague and much better friend José Real sadly
passed away when he was sixty years old. He was an excellent mathematician and we very much enjoyed
learning Maths from and with him. However, being this important, what we will most miss is his friendship,
his sense of humor, and the good moments of our lives that we shared with him. He will not only be present
in our memories for the rest of our lives, but also in the bottom of our hearts.

1. Introduction

In all the paper we assume that Ω ⊂ R
N is a given nonempty open set, not necessarily bounded, such that

the Poincaré inequality is satisfied in Ω, i.e., there exists a constant λ1 > 0 such that∫

Ω
|u(x)|2 dx ≤ λ−1

1

∫

Ω
|∇u(x)|2 dx, ∀u ∈ H1

0 (Ω) . (1)

Let us consider the following non-autonomous reaction-diffusion equation with memory

∂u

∂t
− ∆u+

∫ t

−∞
γ(t− s)∆u(x, s)ds+ g(x, t, u(x, t)) = f(t), (2)

1
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with Dirichlet boundary condition, where x belongs to Ω, f and γ satisfy suitable assumptions (γ can be
given in a standard way as γ(t) = −γ0e

−d0t (see [Chepyzhov et al., 2006a] and [Chepyzhov et al., 2006b])
with d0 > 0 and γ0 > 0). The function g : (x, t) ∈ Ω × R 7→ g(x, t, r) ∈ R is measurable for all r ∈ R, with
g(x, t, ·) ∈ C(R) for a.e. (x, t) ∈ Ω×R, and satisfies that there exist positive constants η, ρ, and p ≥ 2, and
positive functions δi ∈ L1

loc

(
R;L1 (Ω)

)
, i = 1, 2, such that a.e. (x, t) ∈ Ω × R,

g(x, t, r)r ≥ η |r|p − δ1(x, t), (3)

and

|g(x, t, r)|q ≤ ρ |r|p + δ2(x, t), (4)

for all r ∈ R, where q is the conjugate exponent of p, i.e. 1/p + 1/q = 1. Many physical phenomena are
better described if one considers in the equations of the model some terms which take into account the
past history of the system. Although, in some situations, the contribution of the past history may not be
so relevant to significantly affect the asymptotic behaviour of the problem, in certain models, such as those
describing high viscosity liquids at low temperatures, or the thermomechanical behaviour of polymers (see
[Fabrizio & Morro, 1992] and [Renardy et al., 1987]) the past history plays a nontrivial role.

On some occasions, some phenomena are modelled by nonlinear evolutionary equations which do not
take into account all the relevant information of the real systems. Instead some neglected quantities can be
modelled as an external force which in general becomes time-dependent. For this reason, non-autonomous
systems are of great importance and interest.

The asymptotic behaviour of equations with memory has been much studied in recent years. The
asymptotic behavior of a stochastic version of (2), with an additive noise and with conditions ensuring
uniqueness of the Cauchy problem was studied in [Caraballo et al., 2008]. In [Caraballo et al., 2010], the
long-time behaviour of a variant of our model in a bounded domain, with memory terms expressed by
convolution integrals involving infinite delays, and by a forcing term with bounded delay, is investigated.

In [Anguiano et al., 2010, 2012] a non-autonomous reaction-diffusion equation without delay in an
unbounded domain is considered in which the non-autonomous term takes values in H−1 and the nonlinear
term satisfies dissipative and growth conditions which are not sufficient to ensure the uniqueness of the
Cauchy problem. Using the theory of pullback attractors for multi-valued non-autonomous dynamical
systems, the asymptotic behaviour of solutions is studied.

In [Chepyzhov et al., 2006a], the relation between the global attractor and trajectory attractor for
equations with memory and uniqueness of the Cauchy problem is analyzed. In [Chepyzhov et al., 2006b],
the authors establish some decay properties of the semigroup generated by a linear integro-differential
equation for a class of memory functions in a Hilbert space arising from heat conduction with memory. In
[Chepyzhov & Miranville, 2006], using the method of trajectory attractors, the authors present a global
scheme for the construction of connected trajectory and global attractors for heat equations with linear
fading memory and with nonlinear heat sources. In [Gatti et al., 2005], a reaction-diffusion equation in
which the diffusion term depends on the past history of the diffusion itself is considered. The authors are
able to construct a Lyapunov functional associated with the dynamical systems in an appropriate history
phase space. The existence of global attractor of a class of reaction-diffusion equations with finite delay
and uniqueness of the Cauchy problem is proved in [Wang & Xu, 2003].

We extend the results of these previous papers to a non-autonomous reaction-diffusion equation with
memory, in an unbounded domain, by considering a nonlinear term g which not ensure uniqueness of the
Cauchy problem. We construct a multivalued process associated to the problem and study the existence
of pullback attractors for it.

Due to the fact that the memory term involves an infinite delay which is given by a convolution term
and second-order partial derivatives, we study the existence of pullback attractors in the space H given
by measurable functions t 7→ u(t) ∈ H1

0 (Ω) with
∫ 0
−∞

∫
Ω e

λ1s (∇u(s))2 dxds < ∞ such that u(0) ∈ L2 (Ω).
The fact that the domain is unbounded implies that the techniques previously used in [Caraballo et al.,
2010] do not work in our case.

The structure of the paper is as follows. In Section 2 we introduce an abstract non-autonomous PDE,
which contains, in particular, our model. We assume that the coefficients of the abstract problem contain



March 30, 2012 8:6 AnCarReVa˙IJBC˙2

Pullback attractors for a non-autonomous integro-differential equation with memory in some unbounded domains 3

infinite delay terms and satisfy several weak conditions. Then, we prove the existence of at least one weak
solution for (2). Some preliminaries on the theory of set-valued non-autonomous dynamical systems are
stated in Section 3. Finally, the existence of pullback attractors for the abstract problem is proved in
Section 4 and in the last section we apply these results to our problem (2).

2. Setting of the problem. Existence of solutions

We intend to introduce a setting to find a solution of problem (2). First, we analyse an abstract parabolic
equation, which contains our problem as a particular case, and then we will cover other equations at the
same time.

The spaces L2 (Ω), H1
0 (Ω) and H−1 (Ω) are denoted by H, V and V ′, respectively. By |·|, |∇·| and

‖·‖−1 we denote the norms in the spaces H, V and V ′, respectively. We introduce the space Lp (Ω) with
norm |·|p for p > 2. We denote by (·, ·) the scalar product in H and by 〈·, ·〉 either the pairing between V ′

and V or the pairing between Lq (Ω) and Lp (Ω) indistinctly.
The space L2

λ1
(−∞, T ;V ) is formed by all functions ψ ∈ L2

loc (−∞, T ;V ) such that

‖ψ‖2
L2

λ1
(−∞,T ;V ) =

∫ T

−∞
eλ1s |∇ψ(s)|2 ds <∞.

We also use the abbreviation L2
V,λ1

=L2
λ1

(−∞,0;V). For u∈L2
λ1

(−∞,T ;V ) and t ≤ T , we will write

ut : s ∈ (−∞, 0] 7→ u(t+ s), with ut ∈ L2
V,λ1

.

We set H = H × L2
V,λ1

, which is a separable Hilbert space with the norm

‖(ϕ, ξ)‖2
H = |ϕ|2 + ‖ξ‖2

L2
V,λ1

.

We aim to analyze the following non-autonomous evolution equation





du

dt
(t) − ∆u(t) = K(t, ut) −G(t, u(t)) + F (t) for t > τ ,

u(τ) = uτ ,
u(s+ τ) = ψ(s) for s < 0,

(5)

where τ ∈ R, ψ ∈ L2
V,λ1

, F ∈ L2
loc(R;V ′), and

G : R×Lp (Ω) → Lq (Ω) ,

K : R×L2
V,λ1

→ V ′,

are measurable mappings such that for a.e. t ∈ R, G(t, ·) : Lp(Ω) → Lq (Ω) and K(t, ·) : L2
V,λ1

→ V ′ are
continuous operators.

We will assume that

〈G(t, v), v〉 ≥ η |v|pp − c1(t), (6)

and

|G(t, v)|qq ≤ ρ |v|pp + c2(t), for v ∈ Lp (Ω) , (7)

where ci ∈ L1
loc (R) , i = 1, 2, are positive functions.

For all n ≥ 1, we consider

Ωn = Ω ∩
{
x ∈ R

N : |x|
RN < n

}
, (8)

where |·|
RN denotes the Euclidean norm in R

N .

Let us now state a set of assumptions which will be imposed along the paper.
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(H1) There is a d ∈ (0, 1) and a positive function c3 ∈ L1
loc (R) such that

4

∫ t

τ
eλ1s ‖K(s, us)‖2

−1 ds ≤
∫ t

τ
eλ1sc3(s)ds+

d

2

∫ t

−∞
eλ1s |∇u(s)|2 ds, (9)

for all τ ∈ R, t ≥ τ , and u ∈ L2
λ1

(−∞, t;V ). In addition, there exist a k > 0 and a positive function

c4 ∈ L1
loc (R) for which

‖K (t, ψ)‖2
−1 ≤ c4(t) + k ‖ψ‖2

L2
V,λ1

, for ψ ∈ L2
V,λ1

, and for t ∈ R. (10)

(H2) For any n ≥ 1 and any sequence {um}m∈N
such that um → u strongly in L2

(
τ, T ;L2(Ωn)

)
, and

um ⇀ u weakly in Lp (τ, T ;Lp (Ω)) it follows that

G(·, um (·)) ⇀ G(·, u(·)) weakly in Lq (τ, T ;Lq (Ωn)) . (11)

(H3) For any T > τ and any sequence {um}m∈N
, the convergence um ⇀ u weakly in L2

λ1
(−∞, T ;V )

implies that

K(·, um
· ) ⇀K(·, u·) weakly in L2

(
τ, T ;V ′

)
. (12)

(H4) For all t > τ and any u, v ∈ L2
λ1

(−∞, t;V ) , we have

2

∫ t

τ
eλ1s ‖K(s, us) −K(s, vs)‖2

−1 ds ≤
b

2

∫ t

−∞
eλ1s |∇u(s) −∇v(s)|2 ds, (13)

where 0 < b < 1.
(H5) The operator K satisfies

∫ t

−∞
eλ1s ‖K(s, us)‖2

−1 ds < +∞, (14)

for all t ∈ R and any u ∈ L2
λ1

(−∞, t;V ) .
(H6) The function F satisfies

∫ t

−∞
eλ1s ‖F (s)‖2

−1 ds < +∞ ∀t ∈ R. (15)

Remark 2.1. If we define G : R×Lp (Ω) → Lq (Ω) as

G(t, v)(x) = g(x, t, v(x)), (16)

for v ∈ Lp (Ω), t ∈ R and x ∈ Ω, where g is given in Section 1, then we will see in Section 5 that thanks to (3)
and (4), we can deduce that G is continuous in v and satisfies (6), (7) and (H2), with ci(t) =

∫
Ω δi(x, t)dx,

i = 1, 2.

Remark 2.2. Observe that by assumption (1) the operator K can be written as K =
N∑

i=1

∂Ki

∂xi
, with Ki :

R × L2
V,λ1

→ H measurable mappings satisfying that for a.e. t ∈ R, Ki(t, ·) : L2
V,λ1

→ H is continuous for
all 1 ≤ i ≤ N , and

‖K(t, ξ)‖2
−1 =

N∑

i=1

|Ki(t, ξ)|2 , (17)

for all ξ ∈ L2
V,λ1

.

Analogously, the function F can be written as F =
N∑

i=1

∂Fi

∂xi
, with Fi ∈ L2

loc (R;H) for all 1 ≤ i ≤ N

such that

‖F (t)‖2
−1 =

N∑

i=1

|Fi(t)|2 a.e. t ∈ R. (18)
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We state a result on the existence of solution of problem (5). First, we give the definition of weak
solution.

Definition 2.1. A weak solution to the non-autonomous evolution equation (5), with initial function
(uτ , ψ) ∈ H, is a function u ∈ L2

loc(R;V ) such that u(s + τ) = ψ(s) a.e. s < 0, for any T > τ the
restriction of u on the interval (τ, T ) is in Lp (τ, T ;Lp (Ω)),

d

dt
(u(t), w)+(∇u(t),∇w)=〈K(t, ut)−G(t, u(t))+F (t), w〉 a.e. t > τ, (19)

for all w ∈ Lp (Ω) ∩ V , and

u(τ) = uτ . (20)

Observe that by (7) and (10), if u is a weak solution of (5), then u has a time derivative du
dt

in L2 (τ, T ;V ′) + Lq (τ, T ;Lq (Ω)), for all T > τ, and therefore, it is well known that u ∈ C ([τ,+∞);H),
and d

dt |u(t)|
2 = 2

〈
du
dt , u

〉
a.e. t > τ . Hence, it satisfies the energy equality

d

dt
|u(t)|2+2 |∇u(t)|2 =2 〈K(t, ut) −G(t, u(t)) + F (t), u(t)〉 a.e. t > τ . (21)

We will use the notation u (·; τ, (uτ , ψ)) to denote a weak solution of (5), but we will simply write u(·) when
no confusion is possible. The following result will be used in the proof of the main result of this paper.

Lemma 1. Under conditions (6), (7) and (H1), every weak solution u of (5) satisfies the estimates

|u(t)|2 ≤ e−λ1(t−τ) ‖(uτ , ψ)‖2
H +

∫ t

τ
e−λ1(t−s)c(s)ds+ 4

∫ t

τ
e−λ1(t−s) ‖F (s)‖2

−1 ds, (22)

and

(1 − d) ‖ut‖2
L2

V,λ1

≤ 2e−λ1(t−τ) ‖(uτ , ψ)‖2
H + 2

∫ t

τ
e−λ1(t−s)c(s)ds + 8

∫ t

τ
e−λ1(t−s) ‖F (s)‖2

−1 ds, (23)

for all t ≥ τ , where c(s) = 2c1(s) + c3(s).

Proof. Using (1), (6) and (21) we have

d

dt
|u(t)|2+λ1 |u(t)|2+|∇u(t)|2+2η |u(t)|pp ≤ 4 ‖K(t, ut)‖2

−1+
1

2
|∇u(t)|2+2c1(t)+4 ‖F (t)‖2

−1 . (24)

Multiplying by eλ1t and integrating between τ and t, we obtain

|u(t)|2 +
1

2

∫ t

τ
e−λ1(t−s) |∇u(s)|2 ds ≤ e−λ1(t−τ) |u(τ)|2 + 4

∫ t

τ
e−λ1(t−s) ‖K(s, us)‖2

−1 ds

+ 2

∫ t

τ
e−λ1(t−s)c1(s)ds + 4

∫ t

τ
e−λ1(t−s) ‖F (s)‖2

−1 ds.

By (9), we have

4

∫ t

τ
e−λ1(t−s) ‖K(s, us)‖2

−1 ds ≤
∫ t

τ
e−λ1(t−s)c3(s)ds +

d

2

∫ τ

−∞
e−λ1(t−s) |∇u(s)|2 ds

+
d

2

∫ t

τ
e−λ1(t−s) |∇u(s)|2 ds

=

∫ t

τ
e−λ1(t−s)c3(s)ds +

d

2
e−λ1(t−τ) ‖ψ‖2

L2
V,λ1

+
d

2

∫ t

τ
e−λ1(t−s) |∇u(s)|2 ds,
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and thus

|u(t)|2+
1 − d

2

∫ t

τ
e−λ1(t−s) |∇u(s)|2 ds≤e−λ1(t−τ)

(
|u(τ)|2+

d

2
‖ψ‖2

L2
V,λ1

)
+

∫ t

τ
e−λ1(t−s)c(s)ds

+ 4

∫ t

τ
e−λ1(t−s) ‖F (s)‖2

−1 ds, (25)

for t ≥ τ , where c = 2c1 + c3. In particular, we have proved (22).
On the other hand, for any t ≥ τ ,

‖ut‖2
L2

V,λ1

=

∫ τ−t

−∞
eλ1s |∇ψ(t+ s− τ)|2 ds+

∫ 0

τ−t
eλ1s |∇u(t+ s)|2 ds

= e−λ1(t−τ) ‖ψ‖2
L2

V,λ1

+

∫ t

τ
e−λ1(t−s) |∇u(s)|2 ds.

From this equality and (25), we obtain (23). �

Corollary 2.1. Under conditions (6), (7) and (H1), for every bounded set B of H, and for any T > τ ,
there exists a positive constant C = C(T, τ,B) such that, for every weak solution u = u (·; τ, (uτ , ψ)) of (5)
corresponding to the initial data (uτ , ψ) ∈ B , we have

‖u‖Lp(τ,T ;Lp(Ω)) + ‖u‖L2(τ,T ;V ) ≤ C, ∀ (uτ , ψ) ∈ B . (26)

Proof. From (21) we obtain

|u(T )|2 + 2

∫ T

τ
|∇u(t)|2 dt + 2

∫ T

τ
〈G(t, u(t)), u(t)〉 dt ≤ |uτ |2 + 2

∫ T

τ
(‖K(t, ut)‖2

−1 + ‖F (t)‖2
−1) dt,

and therefore, from (6) and (10) we deduce that

∫ T

τ
|∇u(t)|2 dt+ η

∫ T

τ
|u(t)|pp dt ≤

1

2
‖(uτ , ψ)‖2

H + k

∫ T

τ
‖ut‖2

L2
V,λ1

dt (27)

+

∫ T

τ
(c1(t) + c4(t) + ‖F (t)‖2

−1) dt.

Now, observe that from (23) we have in particular that

‖ut‖2
L2

V,λ1

≤ 2

1 − d

(
‖(uτ , ψ)‖2

H +

∫ T

τ
(c(t) + 4‖F (t)‖2

−1) dt

)
,

for all τ ≤ t ≤ T.
From this inequality and (27), we deduce (26). �

Now, we formulate the main theorem of this section.

Theorem 1. Assume conditions (6), (7) and (H1)-(H3). Then, for every (uτ , ψ) ∈ H , there exists at
least one weak solution u (·; τ, (uτ , ψ)) to problem (5).

Proof. Consider a Hilbert basis {wj : j ≥ 1} ⊂ V ∩ Lp (Ω) of H such that the vector space spanned by
{wj : j ≥ 1} is dense in V ∩ Lp (Ω). Let us denote by Vm = [w1, .., wm] the vector space spanned by
{wj : m ≥ j ≥ 1}, and PH

Vm
: H → Vm the projector given by PH

Vm
u =

∑m
j=1 (u,wj)wj. We will also denote

P V
Vm

: V → Vm the orthogonal projector with respect to the norm in V .
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Finally, define um(t) =
∑m

j=1 γmj(t)wj , where






d

dt
(um(t), wj) =−(∇um(t),∇wj)+〈K(t, um

t ), wj〉
− 〈G(t,um(t)),wj〉+〈F (t), wj〉 , a.e. t > τ , for all 1 ≤ j ≤ m,

um(τ) = PH
Vm
uτ ,

um(s+ τ) = PV
Vm
ψ(s) for s < 0.

(28)

The fact that problem (28) has a local solution can be obtained as a consequence of Theorem 1.1, page
36, in [Hino et al., 1991]. The fact that this local solution is global can be deduced from uniform estimates
that can be obtained reasoning similarly to the proofs of Lemma 1 and Corollary 2.1. These estimates also
give that

{um} is bounded in L2
λ1

(−∞,T ;V ) ∩ Lp(τ,T ;Lp(Ω)) ∩ L2(τ,T ;V ) ∩ C([τ,T ] ;H) , (29)

for all T > τ . We can conclude that there exists a subsequence of solutions of the Galerkin approximations,
denoted also by {um}m∈N

, such that, for some u, and all T > τ ,

um ∗
⇀ u weakly star in L∞ (τ, T ;H) ,

um ⇀ u weakly inL2
λ1

(−∞, T ;V ), Lp (τ, T ;Lp (Ω)) and L2 (τ, T ;V ) . (30)

Evidently, then in particular

∆um ⇀ ∆u weakly in L2
(
τ, T ;V ′

)
,

and, by condition (12),

K(·, um
· ) ⇀K(·, u·) weakly in L2

(
τ, T ;V ′

)
.

Also, observe that by Lebesgue’s dominated convergence Theorem, we have that P V
Vm
ψ converges to ψ

in L2
λ1

(−∞, 0;V ), and therefore,

u(s+ τ) = ψ(s) a.e. s < 0.

Now we assume that we have proved that for all T > τ and any n ≥ 1,

um → u strongly in L2
(
τ, T ;L2 (Ωn)

)
, (31)

where Ωn is defined in (8). For the sake of clarity, we postpone the proof of (31) to Lemma 2 below.
Then, by condition (11), we have

G(·, um (·)) ⇀ G(·, u(·)) weakly in Lq (τ, T ;Lq (Ωn)) . (32)

On the other hand, by (7) and (29), we obtain that G(·, um) is bounded in Lq (τ, T ;Lq (Ω)). Then, for every

subsequence
{
um′
}

m′∈N

of the sequence {um}m∈N
satisfying (30), there exists a subsequence

{
um′′

}

m′∈N

⊂
{
um′
}

m′∈N

, such that,

G(·, um′′

(·)) ⇀ χ weakly in Lq (τ, T ;Lq (Ω)) , (33)

in particular,

G(·, um′′

(·)) ⇀ χ|Ωn×(τ,T )
weakly in Lq (τ, T ;Lq (Ωn)) .

Taking into account (32) and the uniqueness of the weak limit, we have

χ = G(·, u(·)) a.e. in Ωn × (τ, T ) ∀n ≥ 1,

and thus, in light of ∪∞
n=1Ωn = Ω, we obtain

χ = G(·, u(·)) a.e. in Ω × (τ, T ) . (34)
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From (33), (34), and the arbitrariness of
{
um′
}

m′∈N

, we have that

G(·, um (·)) ⇀ G(·, u(·)) weakly in Lq (τ, T ;Lq (Ω)) .

Then, thanks to the equation satisfied by dum

dt and the fact that span {wj}j≥1 is dense in V ∩ Lp (Ω),
it is a standard matter to prove that we can pick an element in the equivalence class of u satisfying

(u(t), w) = (u(τ), w) +

∫ t

τ
〈∆u(s) +K(s, us) −G(s, u) + F (s), w〉 ds, (35)

for all t ≥ τ , for any w ∈ V ∩ Lp (Ω).
To prove that u (τ) = uτ we argue similarly to [Anguiano, 2011] and [Anguiano et al., 2010].

�

Lemma 2. Under the assumptions of Theorem 1, the sequence um satisfying (30) also satisfies

um → u strongly in L2
(
τ, T ;L2 (Ωn)

)
,

for all T > τ and any n ≥ 1.

Proof. Let T > τ and w ∈ Vm. Integrating the equality

d

ds
(um(s) , w) = − (∇um(s),∇w) + 〈K(s, um

s ) −G(s, um(s)) + F (s), w〉 ,

between t and t+ a, with a ∈ (0, T − τ), t ∈ (τ, T − a), and using the Hölder inequality, we obtain

(um(t+ a) − um(t), w) ≤
∫ t+a

t
|∇um(s)| |∇w| ds+

∫ t+a

t
‖K(s, um

s )‖−1 |∇w| ds

+

∫ t+a

t
|G(s, um(s))|q |w|p ds+

∫ t+a

t
‖F (s)‖−1 |∇w| ds

≤ |∇w| a1/2 ‖um‖L2(τ,T ;V ) + |∇w| a1/2 ‖K (·, um
· )‖L2(τ,T ;V ′)

+ |w|p a1/p |G (·, um)|Lq(τ,T ;Lq(Ω)) + |∇w| a1/2 ‖F‖L2(τ,T ;V ′) .

By (7), (10) and (29), we obtain that G(·, um) is bounded in Lq (τ, T ;Lq (Ω)) and K (·, um
· ) is bounded in

L2 (τ, T ;V ′) and that there exists a constant C(1) (depending on T and τ) such that

(um(t+ a) − um(t), w) ≤ C(1)
(
a1/p + a1/2

)(
|∇w| + |w|p

)
,

for all w ∈ Vm, m ≥ 1, a ∈ (0, T − τ), t ∈ (τ, T − a).
If we take in the last inequality w = um(t + a) − um(t) ∈ Vm and integrate between τ and T − a, we

obtain

∫ T−a

τ
|um(t+ a) − um(t)|2 dt ≤ 2C(1)

(
a1/p + a1/2

)∫ T

τ
|∇um(s)| ds + 2C(1)

(
a1/p + a1/2

)∫ T

τ
|um(s)|p ds,

and using the Hölder inequality,
∫ T−a

τ
|um(t+ a) − um(t)|2 dt ≤ 2C(1)

(
a1/p + a1/2

)
(T − τ)1/2 ‖um‖L2(τ,T ;V )

+2C(1)
(
a1/p+a1/2

)
(T−τ)1/q ‖um‖Lp(τ,T ;Lp(Ω)) .

From (29) we deduce that there exists a constant C(2), depending on T and τ , such that
∫ T−a

τ
|um(t+ a) − um(t)|2 dt ≤ C(2)

(
a1/p + a1/2

)
,
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for all m, and all a ∈ (0, T − τ), and thus

lim
a→0

(
sup
m

∫ T−a

τ
|um(t+ a) − um(t)|2 dt

)
= 0, (36)

for all T > τ .
On the other hand, let φ ∈ C1 ([0,+∞)) be a function such that

0 ≤ φ(s) ≤ 1, φ(s) = 1 ∀s ∈ [0, 1], φ(s) = 0 ∀s ≥ 2.

For each m and n ≥ 1, we define

vm,n(x, t) = φ

(
|x|2

RN

n2

)

um(x, t) ∀x ∈ Ω2n, ∀m, ∀n ≥ 1. (37)

We obtain from (29) that, for all n ≥ 1, the sequence {vm,n}m≥1 is bounded in L∞
(
τ, T ;L2 (Ω2n)

)
∩

Lp (τ, T ;Lp (Ω2n)) ∩ L2
(
τ, T ;H1

0 (Ω2n)
)
, for all T > τ.

In particular, it follows that

∫ τ+a

τ
|vm,n(t)|2L2(Ω2n) dt+

∫ T

T−a
|vm,n(t)|2L2(Ω2n) dt≤2a ‖vm,n‖2

L∞(τ,T ;L2(Ω2n)) ,

and therefore

lim
a→0

sup
m

(∫ τ+a

τ
|vm,n(t)|2L2(Ω2n) dt +

∫ T

T−a
|vm,n(t)|2L2(Ω2n) dt

)
= 0.

From (36) we see that for each n ≥ 1,

lim
a→0

(
sup
m

∫ T−a

τ
|vm,n(t+ a) − vm,n(t)|2L2(Ω2n) dt

)
= 0.

Moreover, as Ω2n is a bounded set, then H1
0 (Ω2n) is included in L2 (Ω2n) with compact injection.

Then, by the compactness Theorem 13.3 and Remark 13.1 of [Temam, 1983] with X = L2 (Ω2n),
Y =H1

0 (Ω2n), r = 2 and G = {vm,n}m≥1, we obtain that

{vm,n}m≥1 is relatively compact in L2
(
τ, T ;L2 (Ω2n)

)
,

and thus, taking into account that vm,n(x, t) = um(x, t) for all x ∈ Ωn, we deduce that, in particular, for
all n ≥ 1

{
um
|Ωn

}

m≥1
is relatively compact in L2

(
τ, T ;L2 (Ωn)

)
. (38)

By a contradiction argument, it is not difficult to conclude from (30) and (38) that um → u strongly in
L2
(
τ, T ;L2 (Ωn)

)
, for all n ≥ 1. �

3. Preliminaries on the abstract theory of pullback attractors

As the uniqueness of the Cauchy problem fails to be true for our equation, we have to work with set-valued
non-autonomous dynamical systems.

First we recall some basic definitions for set-valued non-autonomous dynamical systems and establish a
sufficient condition for the existence of pullback attractors for these systems. The results in this section can
be found in [Anguiano, 2011], [Anguiano et al., 2010, 2012], [Caraballo & Kloeden, 2009] and [Maŕın-Rubio
& Real, 2010], among others (see [Melnik & Valero, 1998] for the autonomous case).

Let X = (X, dX ) be a metric space, let P (X) denote the family of all nonempty subsets of X, and
R

2
d :=

{
(t, s) ∈ R

2 : t ≥ s
}
.
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Definition 3.1. A multi-valued map U : R
2
d × X → P (X) is called a multi-valued non-autonomous

dynamical system (MNDS) on X (also named a multi-valued process on X) if

U(τ, τ, x) = {x} for all τ ∈ R, x ∈ X,

U(t, τ, x) ⊂ U(t, s, U(s, τ, x)) for all τ ≤ s ≤ t, x ∈ X,

where U(t, τ, V ) :=
⋃

x0∈V

U(t, τ, x0) for any non-empty set V ⊂ X.

An MNDS is said to be strict if

U(t, τ, x) = U(t, s, U(s, τ, x)) for all τ ≤ s ≤ t, x ∈ X.

Definition 3.2. An MNDS U on X is said to be upper-semicontinuous if for all t ≥ τ the mapping U(t, τ, ·)
is upper-semicontinuous from X into P(X), i.e., for any x0 ∈ X and for every neighborhood N in X of
the set U(t, τ, x0), there exists δ > 0 such that U(t, τ, y) ⊂ N whenever dX(x0, y) < δ.

Let D be a class of sets parameterized in time, D̂ = {D(t) : t ∈ R} ⊂ P(X). The class D will be called

a universe in P(X). We will say that the class D is inclusion-closed if D̂ ∈ D and ∅ 6= D′(t) ⊂ D(t) for all

t ∈ R, imply that D̂′ = {D′(t) : t ∈ R} belongs to D.

Definition 3.3. We say that a family D̂0 = {D0(t) : t ∈ R} ⊂ P(X) is pullback D-absorbing for the

MNDS U if for every D̂ ∈ D and every t ∈ R, there exists τ(t, D̂) ≤ t such that

U(t, τ,D(τ)) ⊂ D0(t) for all τ ≤ τ(t, D̂).

Definition 3.4. The MNDS U is pullback asymptotically compact with respect to a family B̂ =
{B(t) : t ∈ R} ⊂ P(X) (or pullback B̂-asymptotically compact) if for all t ∈ R and every sequence τn ≤ t
tending to −∞, any sequence yn ∈ U(t, τn, B(τn)) is relatively compact in X.

We denote by distX(O1,O2) the Hausdorff semi-distance in X between two sets O1 and O2, defined as

distX(O1,O2) = sup
x∈O1

inf
y∈O2

dX(x, y) for O1, O2 ⊂ X.

Definition 3.5. A family A = {A(t) : t ∈ R} ⊂ P(X) is said to be a global pullback D-attractor for the
MNDS U if it satisfies

(1) A(t) is compact for any t ∈ R,
(2) A is pullback D-attracting, i.e.

lim
τ→−∞

distX(U(t, τ,D(τ)),A(t)) = 0 ∀t ∈ R,

for all D̂ ∈ D,
(3) A is negatively invariant, i.e.,

A(t) ⊂ U(t, τ,A(τ)), for any (t, τ) ∈ R
2
d.

A is said to be a strict global pullback D-attractor if the invariance property in the third item is strict,
i.e.,

A(t) = U(t, τ,A(τ)), for (t, τ) ∈ R
2
d.

Theorem 2. Assume that D̂0 = {D0(t) :t ∈ R} ⊂ P(X) is pullback D−absorbing for a MNDS U, which is

also pullback D̂0−asymptotically compact. Then, the family AD = {AD(t) : t ∈ R} given by

AD(t) =
⋃

bD∈D

Λ(D̂, t)
X

t ∈ R, (39)

where Λ(D̂, t) =
⋂

s≤t

⋃

τ≤s

U(t, τ,D(τ))
X

, satisfies the following properties:
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(1) For each t ∈ R the set AD(t) is a nonempty compact subset of X, and

AD(t) ⊂ Λ(D̂0, t).

(2) AD is pullback D-attracting, and in fact is the minimal family of closed sets that attracts pullback to
all elements of D.

(3) If D̂0 ∈ D, then AD(t) = Λ(D̂0, t) ⊂ D0(t)
X
, for all t ∈ R.

(4) If U is upper semi-continuous and with closed values, AD is a global pullback D-attractor for U .

(5) If D̂0 ∈ D, each D0(t) is closed and the universe D is inclusion-closed, then AD ∈ D. If moreover U is
upper semi-continuous and with closed values, AD is the unique global pullback D-attractor belonging
to D. In this case, if moreover U is strict, then AD is a strict global pullback D-attractor for U .

Proof. See [Anguiano, 2011], [Anguiano et al., 2012], [Caraballo & Kloeden, 2009] and [Maŕın-Rubio &
Real, 2010]. �

4. Pullback attractors for problem (5)

In this section we define a multivalued non-autonomous dynamical system generated by the weak solutions
of (5) and prove the existence of pullback attractors for it. First, we need a priori estimates and a continuity
result which are established in the next subsections.

4.1. A priori estimates

Let S((uτ , ψ), τ) be the set of all weak solutions u = u (·; τ, (uτ , ψ)) of (5) corresponding to initial data
(uτ , ψ) ∈ H and τ ∈ R. We define the multivalued map U : Rd ×H → P (H) as follows

U (t, τ, (uτ , ψ))={(u(t), ut) : u = u (·; τ, (uτ , ψ)) ∈ S((uτ , ψ), τ)} ⊂ H. (40)

Lemma 3. Under the assumptions of Theorem 1, the multi-valued mapping U defined by (40) is a strict

MNDS on H.

Proof. It is easy to check that U satisfies the first part in Definition 3.1.
Let us now fix τ ≤ t and (uτ , ψ) ∈ H. Consider (φ,ϕ) ∈ U (t, τ, (uτ , ψ)). Then, from the definition

of U , there exists a solution u ∈ S((uτ , ψ) , τ) such that u(t) = φ and ut = ϕ. If τ ≤ s ≤ t, then
(u(s), us) ∈ U(s, τ, (uτ , ψ)), and obviously,

(φ,ϕ) = (u(t), ut) ∈ U(t, s, (u(s), us)) ⊂ U(t, s, U(s, τ, (uτ , ψ))).

Thus,

U(t, τ, (uτ , ψ)) ⊂ U(t, s, U(s, τ, (uτ , ψ))) ∀τ ≤ s ≤ t.

To prove that the MNDS is strict, let us fix τ ≤ s ≤ t and (uτ , ψ) ∈ H, and be given (φ,ϕ) ∈
U(t, s, U(s, τ, (uτ , ψ))). Then, there exists a solution y ∈ S((uτ , ψ), τ) such that there exists u ∈
S((y(s), ys), s) satisfying (φ,ϕ) = (u(t), ut).

We now define

z(r) =

{
y(r) if r ≤ s,
u(r) if s ≤ r.

It can be seen that then

zr =

{
yr if r ≤ s,
ur if s ≤ r,

and z ∈ S((uτ , ψ), τ). Consequently,

(φ,ϕ) = (u(t), ut) = (z(t), zt) ∈ U(t, τ, (uτ , ψ)).
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This means that

U(t, s, U(s, τ, (uτ , ψ))) ⊂ U(t, τ, (uτ , ψ)) ∀τ ≤ s ≤ t.

�

Now, we additionally assume that for the constant λ1 given in (1), we have
∫ t

−∞
eλ1sc(s)ds < +∞ ∀t ∈ R, (41)

where the function c = 2c1 + c3 has been defined in Lemma 1.

Remark 4.1. Observe that thanks to (41), we have

lim
t→−∞

∫ t

−∞
eλ1sc(s)ds = 0. (42)

Let Rλ1 be the set of all functions r : R → (0,+∞) such that

lim
t→−∞

eλ1tr2(t) = 0,

and denote by Dλ1 the class of all families D̂ = {D(t) : t ∈ R} ⊂ P(H) such that D(t) ⊂ BH(0, r bD
(t))

for some r bD
∈ Rλ1 , where BH(0, r bD

(t)) denotes the closed ball in H centered at zero with radius r bD
(t).

Observe that the class Dλ1 is inclusion-closed.
Define

R2
λ1

(t) = 1 +

(
1 +

2

1 − d

)
e−λ1t

∫ t

−∞
eλ1sc(s)ds +

(
4 +

8

1 − d

)
e−λ1t

∫ t

−∞
eλ1s ‖F (s)‖2

−1 ds. (43)

We have the existence of a pullback absorbing family for U .

Lemma 4. Assume that the assumptions (6), (7), (H1)-(H3), (H6) and (41) are satisfied. Then the balls

Bλ1 = BH (0, Rλ1(t)), where Rλ1(t) > 0 is given by (43) for each t ∈ R, form a family B̂λ1 ∈ Dλ1 which is
pullback Dλ1-absorbing for the MNDS U defined by (40).

Proof. The fact that the family B̂λ1 is pullback Dλ1-absorbing for the MNDS U is an immediate conse-
quence of Lemma 1.

On the other hand, by conditions (15) and (42), it is evident that B̂λ1 ∈ Dλ1 . �

Lemma 5. Assume that G is given by (16), with g : (x, t) ∈ Ω × R 7→ g(x, t, r) ∈ R measurable for all
r ∈ R, g(x, t, ·) ∈ C(R) for a.e. (x, t) ∈ Ω × R, satisfying (3) and (4). Suppose also that assumptions
(H1), (H3), (H5) and (H6) are satisfied, and that (41) holds, with c1(·) =

∫
Ω δ1(x, ·) dx. Then, for any

real numbers t1 ≤ t2 and any ε > 0, there exist T = T (t1, t2, ε, B̂λ1) ≤ t1 and M = M(t1, t2, ε, B̂λ1) ≥ 1
such that for any (uτ , ψ) ∈ Bλ1(τ) and any weak solution u ∈ S((uτ , ψ), τ),

∫

Ω∩{|x|
RN ≥2n}

u2 (x, t) dx ≤ ε, ∀τ ≤ T , t ∈ [t1, t2], n ≥M .

Proof. Let τ ∈ R, (uτ , ψ) ∈ H and u ∈ S((uτ , ψ), τ) be fixed. Take a smooth function θ ∈ C1 ([0,+∞))
satisfying

0 ≤ θ(s) ≤ 1, θ(s) = 0 ∀s ∈ [0, 1], θ(s) = 1 ∀s ≥ 2.

The function |θu(t)|2 =
∫
Ω θ

2
(
|x|2

n2

)
|u (x, t)|2 dx is absolutely continuous and

d

dt
|θu|2 = 2

〈
du

dt
, θ2u

〉
for

a.e. t. On the other hand, we observe that

∂i

(
θ2

(
|x|2

RN

n2

)
u(x, t)

)
= θ2

(
|x|2

RN

n2

)
∂iu(x, t) +

4xi

n2
θ

(
|x|2

RN

n2

)
θ′

(
|x|2

RN

n2

)
u(x, t). (44)
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Hence, taking into account (H5), (H6) and Remark 2.2, we obtain for every t ≥ τ,

1

2

d

dt

∫

Ω
θ2

(
|x|2

RN

n2

)

u2(x, t)dx+

∫

Ω
θ2

(
|x|2

RN

n2

)

|∇u(x, t)|2 dx (45)

+
4

n2

∫

Ω
θ′

(
|x|2

RN

n2

)

θ

(
|x|2

RN

n2

)

u(x, t)x · ∇u(x, t)dx

= −
N∑

i=1

∫

Ω
θ2

(
|x|2

RN

n2

)

Ki(t, ut)∂iu(x, t)dx

−
N∑

i=1

∫

Ω

4xi

n2
θ′

(
|x|2

RN

n2

)
θ

(
|x|2

RN

n2

)
u(x, t)Ki(t, ut)dx

−
∫

Ω
θ2

(
|x|2

RN

n2

)
G(t, u)u(x, t)dx −

N∑

i=1

∫

Ω
θ2

(
|x|2

RN

n2

)
Fi(x, t)∂iu(x, t)dx

−
N∑

i=1

∫

Ω

4xi

n2
θ′

(
|x|2

RN

n2

)
θ

(
|x|2

RN

n2

)
u(x, t)Fi(x, t)dx

= I1 + I2 + I3 + I4 + I5.

Using the Cauchy-Schwarz inequality, we obtain

I1 ≤ 1

8

∫

Ω
θ2

(
|x|2

RN

n2

)
|∇u(x, t)|2 dx+ 2

N∑

i=1

∫

Ω
θ2

(
|x|2

RN

n2

)
K2

i (t, ut)dx, (46)

and

I4 ≤ 1

8

∫

Ω
θ2

(
|x|2

RN

n2

)
|∇u(x, t)|2 dx+ 2

N∑

i=1

∫

Ω
θ2

(
|x|2

RN

n2

)
F 2

i (x, t)dx. (47)

Using the fact that θ′
(

|x|2
RN

n2

)
= 0 if |x|

RN >
√

2n, θ′
(

|x|2
RN

n2

)
≤ Cθ′ for all |x|

RN ≤ 2n, and once more the

Cauchy-Schwarz inequality, we obtain

|I2| ≤
8

n
Cθ′

N∑

i=1

∫

Ω
θ

(
|x|2

RN

n2

)
|u(x, t)| |Ki(t, ut)| dx (48)

≤ 8

n
Cθ′N

1/2

(
N∑

i=1

∫

Ω
θ2

(
|x|2

RN

n2

)
K2

i (t, ut)dx

)1/2 (∫

Ω
u2(x, t)dx

)1/2

≤ 8

n2
C2

θ′N

∫

Ω
u2(x, t)dx+ 2

N∑

i=1

∫

Ω
θ2

(
|x|2

RN

n2

)

K2
i (t, ut)dx,

and

|I5| ≤
8

n2
C2

θ′N

∫

Ω
u2(x, t)dx + 2

N∑

i=1

∫

Ω
θ2

(
|x|2

RN

n2

)

F 2
i (x, t)dx. (49)
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From (16) and (3), it follows

I3 = −
∫

Ω
θ2

(
|x|2

RN

n2

)

g(x, t, u(x, t))u(x, t)dx (50)

≤ −η
∫

Ω
θ2

(
|x|2

RN

n2

)

|u(x, t)|p dx+

∫

Ω
θ2

(
|x|2

RN

n2

)

δ1(x, t)dx

≤
∫

Ω
θ2

(
|x|2

RN

n2

)

δ1(x, t)dx.

Moreover, we have

∣∣∣∣∣
4

n2

∫

Ω
θ′

(
|x|2

RN

n2

)
θ

(
|x|2

RN

n2

)
u(x, t)x · ∇u(x, t)dx

∣∣∣∣∣ (51)

≤ 4

n
Cθ′

∫

Ω
u2(x, t)dx +

4

n
Cθ′

∫

Ω
θ2

(
|x|2

RN

n2

)
|∇u(x, t)|2 dx.

From (45)-(51) we deduce

1

2

d

dt

∫

Ω
θ2

(
|x|2

RN

n2

)

u2(x, t)dx+

(
3

4
− 4

n
Cθ′

)∫

Ω
θ2

(
|x|2

RN

n2

)

|∇u(x, t)|2 dx (52)

≤
∫

Ω
θ2

(
|x|2

RN

n2

)

δ1(x, t)dx +
4

n
Cθ′

∫

Ω
u2(x, t)dx+

16

n2
C2

θ′N

∫

Ω
u2(x, t)dx

+ 4

N∑

i=1

∫

Ω
θ2

(
|x|2

RN

n2

)

K2
i (t, ut)dx+ 4

N∑

i=1

∫

Ω
θ2

(
|x|2

RN

n2

)

F 2
i (x, t)dx.

On the other hand,

∣∣∣∣∣∇
(
θ

(
|x|2

RN

n2

)
u(x, t)

)∣∣∣∣∣

2

= θ2

(
|x|2

RN

n2

)
|∇u(x, t)|2 +

4 |x|2
RN

n4

(
θ′

(
|x|2

RN

n2

))2

u2(x, t)

+
4

n2
θ′

(
|x|2

RN

n2

)
u(x, t)θ

(
|x|2

RN

n2

)
x · ∇u(x, t),

and therefore

∫

Ω

∣∣∣∣∣∇
(

θ

(
|x|2

RN

n2

)

u(x, t)

)∣∣∣∣∣

2

dx ≤
(

1 +
4

n
Cθ′

)∫

Ω
θ2

(
|x|2

RN

n2

)

|∇u(x, t)|2 dx

+

(
8

n2
C2

θ′ +
4

n
Cθ′

)∫

Ω
u2(x, t)dx.

From this inequality and (1) we obtain

∫

Ω
θ2

(
|x|2

RN

n2

)

|∇u(x, t)|2 dx ≥
(

n

n+ 4Cθ′

)
λ1

∫

Ω
θ2

(
|x|2

RN

n2

)

u2(x, t)dx (53)

−
(

n

n+ 4Cθ′

)(
8

n2
C2

θ′ +
4

n
Cθ′

)∫

Ω
u2(x, t)dx.
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Assume now that 3
4 − 4

nCθ′ > 0 (which holds true for n large enough). Then, from (52) and (53), we have

1

2

d

dt

∫

Ω
θ2

(
|x|2

RN

n2

)

u2(x, t)dx +

(
3

4
− 4

n
Cθ′

)(
n

n+ 4Cθ′

)
λ1

∫

Ω
θ2

(
|x|2

RN

n2

)

u2(x, t) dx (54)

≤
(

4Cθ′

n
+

16C2
θ′N

n2
+

(
n

n+ 4Cθ′

)(
8C2

θ′

n2
+

4Cθ′

n

)(
3

4
− 4Cθ′

n

))∫

Ω
u2(x, t) dx

+

∫

Ω
θ2

(
|x|2

RN

n2

)
δ1(x, t)dx+ 4

N∑

i=1

∫

Ω
θ2

(
|x|2

RN

n2

)
K2

i (t, ut)dx

+ 4

N∑

i=1

∫

Ω
θ2

(
|x|2

RN

n2

)

F 2
i (x, t)dx.

Evidently, there exists n0 such that for all n ≥ n0 we have

(
3

4
− 4

n
Cθ′

)(
n

n+ 4Cθ′

)
>

1

2
.

Then, from (54) we obtain

d

dt

∫

Ω
θ2

(
|x|2

RN

n2

)

u2(x, t)dx + λ1

∫

Ω
θ2

(
|x|2

RN

n2

)

u2(x, t) dx (55)

≤2

(
4Cθ′

n
+

16C2
θ′N

n2
+

(
n

n+ 4Cθ′

)(
8C2

θ′

n2
+

4Cθ′

n

)(
3

4
− 4Cθ′

n

))∫

Ω
u2(x, t) dx

+ 2

∫

Ω
θ2

(
|x|2

RN

n2

)

δ1(x, t)dx + 8

N∑

i=1

∫

Ω
θ2

(
|x|2

RN

n2

)

K2
i (t, ut)dx

+ 8

N∑

i=1

∫

Ω
θ2

(
|x|2

RN

n2

)
F 2

i (x, t)dx, for all n ≥ n0.

We observe that

4Cθ′

n
+

16C2
θ′N

n2
+

(
n

n+ 4Cθ′

)(
8C2

θ′

n2
+

4Cθ′

n

)(
3

4
− 4Cθ′

n

)

≤ 1

n

(
7Cθ′ + 22C2

θ′N
)
.

Thus, if we denote Ĉ = 14Cθ′ + 44C2
θ′N , from (55) we obtain

d

dt

(
eλ1t

∫

Ω
θ2

(
|x|2

RN

n2

)
u2(x, t)dx

)
≤ Ĉ

n
eλ1t

∫

Ω
u2(x, t) dx + 2eλ1t

∫

Ω
θ2

(
|x|2

RN

n2

)
δ1(x, t)dx

+ 8
N∑

i=1

eλ1t

∫

Ω
θ2

(
|x|2

RN

n2

)
K2

i (t, ut)dx

+ 8

N∑

i=1

eλ1t

∫

Ω
θ2

(
|x|2

RN

n2

)

F 2
i (x, t)dx.
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Integrating now between τ and t, and using the properties of θ, we have
∫

Ω∩{|x|
RN ≥2n}

u2(x, t)dx ≤ e−λ1teλ1τ

∫

Ω
θ2

(
|x|2

RN

n2

)
(uτ (x))2 dx+

Ĉ

n
e−λ1t

∫ t

τ
eλ1s |u(s)|2 ds (56)

+ 8

N∑

i=1

e−λ1t

∫ t

−∞
eλ1s

∫

Ω
θ2

(
|x|2

RN

n2

)
K2

i (s, us)dxds

+ 8
N∑

i=1

e−λ1t

∫ t

−∞
eλ1s

∫

Ω
θ2

(
|x|2

RN

n2

)
F 2

i (x, s)dxds

+ 2e−λ1t

∫ t

−∞
eλ1s

∫

Ω
θ2

(
|x|2

RN

n2

)

δ1(x, s)dxds,

for all n ≥ n0, t ≥ τ .
On the other hand, from (24), multiplying by eλ1t, in particular, we obtain

d

dt

(
eλ1t |u(t)|2

)
+
eλ1t

2
|∇u(t)|2≤4eλ1t ‖K(t, ut)‖2

−1 + 2eλ1tc1(t) + 4eλ1t ‖F (t)‖2
−1.

Using (1) and integrating between τ and t, we have

λ1

2

∫ t

τ
eλ1s |u(s)|2 ds ≤ eλ1τ |uτ |2 + 4

N∑

i=1

∫ t

τ
eλ1s |Ki(s, us)|2 ds (57)

+ 2

∫ t

τ
eλ1sc1(s)ds+ 4

N∑

i=1

∫ t

τ
eλ1s |Fi(s)|2 ds.

Assuming now that (uτ , ψ) ∈ Bλ1(τ), we obtain

∫ t

τ
eλ1s |u(s)|2 ds ≤ 2λ−1

1 eλ1τR2
λ1

(τ) + 8λ−1
1

N∑

i=1

∫ t

−∞
eλ1s |Ki(s, us)|2 ds (58)

+ 4λ−1
1

∫ t

−∞
eλ1sc1(s)ds + 8λ−1

1

N∑

i=1

∫ t

−∞
eλ1s |Fi(s)|2 ds,

for all t ≥ τ. Let us fix t1 ≤ t2 ∈ R. Observing that limτ→−∞ eλ1τR2
λ1

(τ) = 0, from (14), (15), (41), and
(58), we deduce that there exists a constant C(t1, t2) such that

e−λ1t

∫ t

τ
eλ1s |u(s)|2 ds ≤ C(t1, t2) ∀t ∈ [t1, t2] , τ ≤ t1,

and taking into account (56) and the fact that 0 ≤ θ ≤ 1, we can deduce
∫

Ω∩{|x|
RN ≥2n}

u2(x, t)dx ≤ e−λ1teλ1τR2
λ1

(τ) +
Ĉ

n
C(t1, t2) (59)

+ 8

N∑

i=1

e−λ1t

∫ t

−∞
eλ1s

∫

Ω
θ2

(
|x|2

RN

n2

)

K2
i (s, us)dxds

+ 8
N∑

i=1

e−λ1t

∫ t

−∞
eλ1s

∫

Ω
θ2

(
|x|2

RN

n2

)
F 2

i (x, s)dxds

+ 2e−λ1t

∫ t

−∞
eλ1s

∫

Ω
θ2

(
|x|2

RN

n2

)

δ1(x, s)dxds,

for n ≥ n0 and t ∈ [t1, t2], for every u ∈ S((uτ , ψ), τ), where τ ≤ t1 and (uτ , ψ) ∈ Bλ1(τ).
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On the other hand, thanks to (14), we have that for every t ∈ R,

eλ1sK2
i (s, us) ∈ L1 (Ω × (−∞, t)) .

Thus, by the Lebesgue’s Dominated Convergence Theorem, we have that for every t ∈ [t1, t2] ,

∫ t

−∞
eλ1s

∫

Ω
θ2

(
|x|2

RN

n2

)

K2
i (s, us)dxds ≤

∫ t2

−∞

∫

Ω
χ{|x|

RN ≥n}e
λ1sK2

i (s, us)dxds → 0 as n→ ∞, (60)

for all i = 1, .., N .
Analogously, thanks to (15) and (41) we have

∫ t

−∞
eλ1s

∫

Ω
θ2

(
|x|2

RN

n2

)

F 2
i (x, s)dxds ≤

∫ t2

−∞

∫

Ω
χ{|x|

RN ≥n}e
λ1sF 2

i (x, s)dxds → 0 as n→ ∞, (61)

and

∫ t

−∞
eλ1s

∫

Ω
θ2

(
|x|2

RN

n2

)
δ1(x, s)dxds ≤

∫ t2

−∞

∫

Ω
χ{|x|

RN ≥n}e
λ1sδ1(x, s)dxds → 0 as n→ ∞, (62)

for all i = 1, .., N and t ∈ [t1, t2].
From (59), (60), (61) and (62) we deduce our lemma. �

Lemma 6. Under the assumptions in Lemma 5, let K be a relatively compact set in H. Then, for all τ ≤ T
and ε > 0 there exists M = M(τ, T, ε,K) such that

∫

Ω∩{|x|
RN ≥2n}

u2 (x, t) dx ≤ ε, ∀t ∈ [τ, T ], ∀n ≥M ,

for any u ∈ S((uτ , ψ), τ), where (uτ , ψ) ∈ K is arbitrary.

Proof. We observe that, as shown in Lemma 5, we have (56) for n ≥ n0, and u ∈ S((uτ , ψ), τ), where t ≥ τ
and (uτ , ψ) ∈ H are arbitrary.

On the other hand, as K is a bounded subset of H, from (57) we deduce that for some constant k1 > 0,

∫ t

τ
eλ1s |u(s)|2 ds ≤ 2λ−1

1 eλ1τk2
1 + 8λ−1

1

N∑

i=1

∫ t

−∞
eλ1s |Ki(s, us)|2 ds

+ 4λ−1
1

∫ t

−∞
eλ1sc1(s)ds + 8λ−1

1

N∑

i=1

∫ t

−∞
eλ1s |Fi(s)|2 ds,

and thus there exists a constant C(τ, T ) such that

e−λ1t

∫ t

τ
eλ1s |u(s)|2 ds ≤ C(τ, T ) ∀t ∈ [τ, T ] , (63)

for any u ∈ S((uτ , ψ), τ), where (uτ , ψ) ∈ K is arbitrary.
Finally, as K is a relatively compact subset of H, then for all ε > 0 there exists nε ≥ n0 such that

∫

Ω
θ2

(
|x|2

RN

n2

)
(uτ (x))2 dx < ε ∀(uτ , ψ) ∈ K, ∀n ≥ nε. (64)

Otherwise, there would exist an ε > 0 and a sequence {(um, ψm)} ⊂ K such that

∫

Ω
θ2

(
|x|2

RN

m2

)
(um(x))2 dx ≥ ε, ∀m ≥ 1.
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But then, as {(um, ψm)} ⊂ K, there would exist a convergent subsequence {uµ} ⊂ {um}, with uµ → v
strongly in H as µ→ ∞. And thus we would have

ε ≤
∫

Ω
θ2

(
|x|2

RN

µ2

)

(uµ(x))2 dx

≤ 2

∫

Ω
θ2

(
|x|2

RN

µ2

)

(uµ(x) − v(x))2 dx+ 2

∫

Ω
θ2

(
|x|2

RN

µ2

)

v2(x)dx

≤ 2

∫

Ω
(uµ(x) − v(x))2 dx+ 2

∫

Ω
θ2

(
|x|2

RN

µ2

)

v2(x)dx,

and therefore, making µ→ ∞, we would have ε ≤ 0, which is a contradiction.
From (56), (63), (64), and taking into account (60)-(62), we deduce our Lemma. �

4.2. A continuity result

Now, we obtain a continuity result leading to the upper semicontinuity of the MNDS U defined by (40).

Lemma 7. Assume that the assumptions in Lemma 5 are satisfied. Let τ ∈ R, and a sequence
{(uτ,m, ψm)} ⊂ H be given. For each m ≥ 1 let us fix um ∈ S ((uτ,m, ψm) , τ). Then:

(i) If {(uτ,m, ψm)} converges weakly in H to an element (uτ , ψ) , there exists a subsequence {uµ} ⊂ {um}
satisfying that there exists u ∈ S ((uτ , ψ) , τ) such that

uµ(t) ⇀ u(t) weakly in H, for all t ≥ τ , (65)

and

uµ → u strongly in L2
(
τ, T ;L2 (Ωn)

)
for all T > τ , n ≥ 1. (66)

(ii) If {(uτ,m, ψm)} converges strongly in H to (uτ , ψ), then, there exists a subsequence {uµ} ⊂ {um}
satisfying that there exists u ∈ S ((uτ , ψ) , τ) such that

uµ → u strongly in L2 (τ, T ;H) for all T > τ , (67)

uµ(t) → u(t) strongly in H, for all t ≥ τ , (68)

and in addition, if assumption (H4) is also satisfied, then

uµ
T → uT strongly in L2

V,λ1
, for any T > τ. (69)

Proof. If we argue similarly to the proof of Theorem 1 and Lemma 2, we obtain the existence of a
subsequence {uµ} ⊂ {um} such that for all T > τ,

uµ → u weakly in L2
λ1

(−∞, T ;V ), Lp (τ, T ;Lp (Ω)) and L2 (τ, T ;V ) , (70)

{uµ(T )}µ∈N
is bounded in H, and u ∈ S ((uτ , ψ) , τ) and satisfies (66).

On the other hand, the boundedness of {uµ(T )}µ∈N
in H implies the existence of a subsequence

converging weakly in H to some ξ ∈ H. Let uµk(T ) ⇀ ξ weakly in H. Let w ∈ V ∩ Lp (Ω). From the
equation satisfied by uµk , we obtain

(uµk(T ), w)=

∫ T

τ
〈∆uµk(t)+K(t, uµk

t )−G(t, uµk (t))+F (t), w〉 dt+ (uµk(τ), w)

→ (u(τ), w) +

∫ T

τ
〈∆u(t) +K(t, ut) −G(t, u(t)) + F (t), w〉 dt,

as µk → ∞. Then arguing as in Theorem 1, we have

(ξ, w) = (u(τ), w) +

∫ T

τ
〈∆u(t) +K(t, ut) −G(t, u(t)) + F (t), w〉 dt.
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Consequently, as u is a solution of (5) corresponding to the initial data (u (τ) , ψ), we obtain

(ξ, w) = (u(T ), w) ∀w ∈ V ∩ Lp (Ω) ,

and therefore, by density, it follows

ξ = u(T ).

Then, by a contradiction argument, we can deduce that the whole sequence {uµ(T )}µ∈N
converges weakly

in H to u(T ).
As T > τ has been taken arbitrarily, we see that (65) holds.
Now we will prove (ii). Let us fix T > τ , and assume that (uτ,m, ψm) → (uτ , ψ) strongly in H. Then,

by Lemma 6, we have that for all ε > 0 there exists Mε ≥ 1 such that
∫ T

τ

∫

Ω∩{|x|
RN ≥2n}

(um − u)2 dxds ≤ 2

∫ T

τ

∫

Ω∩{|x|
RN ≥2n}

(um)2 dxds + 2

∫ T

τ

∫

Ω∩{|x|
RN ≥2n}

u2dxds

≤ 4ε(T − τ), ∀n ≥Mε.

From this inequality and (66) we obtain (67).
From (67) we deduce that from every subsequence of {uµ} we can extract a subsequence that we will

denote by {uν} such that

|uν(t)| → |u(t)| a.e. in (τ, T ) . (71)

Let us define

Jν(t) = |uν(t)|2 −
∫ t

τ
c4(s)ds−

∫ t

τ

2k

1 − d
e−λ1(s−τ) ‖(uτ,ν , ψν)‖2

H ds −
∫ t

τ

2k

1 − d
e−λ1s

∫ s

−∞
eλ1rc(r)drds

−
∫ t

τ

8k

1 − d
e−λ1s

∫ s

−∞
eλ1r ‖F (r)‖2

−1 drds− 2

∫ t

τ
c1(s)ds− 2

∫ t

τ
〈F (s), uν(s)〉 ds,

and

J(t) = |u(t)|2 −
∫ t

τ
c4(s)ds−

∫ t

τ

2k

1 − d
e−λ1(s−τ) ‖(uτ , ψ)‖2

H ds−
∫ t

τ

2k

1 − d
e−λ1s

∫ s

−∞
eλ1rc(r)drds

−
∫ t

τ

8k

1 − d
e−λ1s

∫ s

−∞
eλ1r ‖F (r)‖2

−1 drds− 2

∫ t

τ
c1(s)ds − 2

∫ t

τ
〈F (s), u(s)〉 ds,

for all t ≥ τ.
It is clear that Jν and J are continuous functions. Also, from (70), (71) and the fact that {(uτ,ν , ψν)}

converges strongly in H to (uτ , ψ) ∈ H, we see that

Jν(t) → J(t) a.e. t ∈ (τ, T ) as ν → ∞. (72)

On the other hand, taking into account the energy equality, (6) and (10), we have

d

dt
|uν(t)|2 ≤ ‖K(t, uν

t )‖2
−1 + 2c1(t) + 2 〈F (t), uν(t)〉

≤ c4(t) + k ‖uν
t ‖2

L2
V,λ1

+ 2c1(t) + 2 〈F (t), uν(t)〉 ,

and using Lemma 1, we obtain

d

dt
|uν(t)|2 ≤ c4(t) +

2k

1 − d
e−λ1(t−τ) ‖(uτ,ν, ψν)‖2

H +
2k

1 − d
e−λ1t

∫ t

−∞
eλ1rc(r)dr

+
8k

1 − d
e−λ1t

∫ t

−∞
eλ1r ‖F (r)‖2

−1 dr + 2c1(t) + 2 〈F (t), uν(t)〉 ,

for all t > τ . Thus, for every ν, the function Jν is a non-increasing function of t.
We are now in a position to show that

Jν(t) → J(t) for all t ∈ (τ, T ) . (73)
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Let t ∈ (τ, T ) and ε > 0 be fixed. From (72) and the continuity of J , we can take t′ > t and t′′ < t such
that

Jν(t
′) → J(t′) and Jν(t

′′) → J(t′′) as ν → ∞, (74)

with
∣∣J(t′′) − J(t)

∣∣ ≤ ε and
∣∣J(t) − J(t′)

∣∣ ≤ ε. (75)

As Jν is a non-increasing function of t, we obtain

Jν(t
′) − Jν(t) ≤ 0 and Jν(t′′) − Jν(t) ≥ 0, (76)

for every ν.
Using (75) and (76), we have

Jν(t) − J(t) = Jν(t) − Jν(t′′) + Jν(t
′′) − J(t′′) + J(t′′) − J(t) (77)

≤
∣∣Jν(t′′) − J(t′′)

∣∣+ ε,

and

J(t) − Jν(t) = J(t) − J(t′) + J(t′) − Jν(t′) + Jν(t
′) − Jν(t)

≤
∣∣J(t′) − Jν(t

′)
∣∣+ ε. (78)

From (74), (77) and (78), we have

lim sup
ν→∞

|J(t) − Jν(t)| ≤ ε, (79)

and therefore, as ε > 0 is arbitrary, (73) follows from (79).
Thanks to (73), and taking into account (70) and that {(uτ,ν , ψν)} converges strongly in H to (uτ , ψ) ∈

H, we deduce that

|uν(t)| → |u(t)| ∀t ∈ (τ, T ) ,

and then, by (65), we obtain

uν(t) → u(t) strongly in H ∀t ∈ (τ, T ) .

Then from a standard contradiction argument combined with the fact that T > τ has been taken arbitrarily,
we deduce (68).

Finally, we will prove (69). We observe that the difference vµ = uµ − u satisfies

d

dt
|vµ(t)|2 + λ1 |vµ(t)|2 + |∇vµ(t)|2 ≤ 2 ‖K(t, uµ

t ) −K(t, ut)‖2
−1 +

1

2
|∇vµ(t)|2

+ 2 〈F (t), vµ(t)〉 − 2 〈G(t, uµ(t)) −G(t, u(t)), vµ(t)〉 ,

a.e. t > τ.
Multiplying by eλ1t, integrating between τ and T , and using (13), we obtain

|vµ(T )|2 +
1 − b

2

∫ T

τ
e−λ1(T−s) |∇vµ(s)|2 ds ≤ e−λ1(T−τ) |vµ(τ)|2 (80)

+
b

2

∫ τ

−∞
e−λ1(T−s) |∇vµ(s)|2 ds

+ 2

∫ T

τ
e−λ1(T−s) 〈F (s), vµ(s)〉 ds

− 2

∫ T

τ
e−λ1(T−s) 〈G(s, uµ(s)) −G(s, u(s)), vµ(s)〉 ds.

As uµ (τ) → u (τ) strongly in H, then

lim
µ→∞

e−λ1(T−τ) |vµ(τ)|2 = 0. (81)



March 30, 2012 8:6 AnCarReVa˙IJBC˙2

Pullback attractors for a non-autonomous integro-differential equation with memory in some unbounded domains 21

By (70), we have

lim
µ→∞

∫ T

τ
e−λ1(T−s) 〈G(s, u(s)), vµ(s)〉 ds = 0, (82)

and

lim
µ→∞

∫ T

τ
e−λ1(T−s) 〈F (s), vµ(s)〉 ds = 0. (83)

Also, if we argue similarly to the proof of Theorem 1, we obtain,

G(·, uµ (·)) ⇀ G(·, u(·)) weakly in Lq (τ, T ;Lq (Ω)) . (84)

By (67) we know that for every subsequence of {uµ}, there exists a subsequence that we will denote
{uν} such that uν(t, x) → u(t, x), a.e. in (τ, T ) × Ω. Now, we will prove that

lim inf
ν→∞

∫ T

τ
e−λ1(T−s) 〈G(s, uν(s)), uν(s)〉 ds ≥

∫ T

τ
e−λ1(T−s) 〈G(s, u(s)), u(s)〉 ds. (85)

The continuity of g implies that g(x, t, uν(t, x)) → g(x, t, u(t, x)), a.e. in (τ, T ) × Ω. From (3) we have
that

g(x, t, uν(t, x))uν(t, x) + δ1(x, t) ≥ 0,

and then from Lebesgue-Fatou’s Lemma (see [Yosida, 1965]) we obtain

lim inf
ν→∞

∫ T

τ
e−λ1(T−s) 〈G(s, uν(s)), uν(s)〉 ds+

∫ T

τ
e−λ1(T−s)

∫

Ω
δ1(x, s)dxds

= lim inf
ν→∞

(∫ T

τ

∫

Ω
e−λ1(T−s) (g(x, s, uν(s, x))uν(s, x) + δ1(x, s)) dxds

)

≥
∫ T

τ

∫

Ω
e−λ1(T−s) lim inf

ν→∞
(g(x, s, uν(s, x))uν(s, x) + δ1(x, s)) dxds

=

∫ T

τ

∫

Ω
e−λ1(T−s) (g(x, s, u(s, x))u(s, x) + δ1(x, s)) dxds

=

∫ T

τ
e−λ1(T−s) 〈G(s, u(s)), u(s)〉 ds+

∫ T

τ
e−λ1(T−s)

∫

Ω
δ1(x, s)dxds,

so that (85) holds.
If we use (84) and (85), we have

lim sup
ν→∞

∫ T

τ
e−λ1(T−s) 〈−G(s, uν(s)), uν(s) − u(s)〉 ds (86)

=

∫ T

τ
e−λ1(T−s) 〈G(s, u(s)), u(s)〉 ds

− lim inf
ν→∞

∫ T

τ
e−λ1(T−s) 〈G(s, uν(s)), uν(s)〉 ds ≤ 0.

Then, taking into account (81)-(83) and (86) in (80), we get

lim sup
ν→∞

∫ T

τ
e−λ1(T−s) |∇vν(s)|2 ds

≤ b

1 − b
lim sup

ν→∞

∫ τ

−∞
e−λ1(T−s) |∇vν(s)|2 ds

=
b

1 − b
e−λ1(T−τ) lim sup

ν→∞

∫ 0

−∞
eλ1r |∇ψν(r) −∇ψ(r)|2 dr.
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From this inequality, observing that

‖vν
T ‖2

L2
V,λ1

=

∫ 0

τ−T
eλ1s |∇vν

T (s)|2 ds+

∫ τ−T

−∞
eλ1s |∇vν

T (s)|2 ds

=

∫ T

τ
e−λ1(T−s) |∇vν(s)|2 ds + e−λ1(T−τ)

∫ 0

−∞
eλ1r |∇vν(r + τ)|2 dr

=

∫ T

τ
e−λ1(T−s) |∇vν(s)|2 ds+e−λ1(T−τ)

∫ 0

−∞
eλ1r |∇ψν(r)−∇ψ(r)|2 dr,

we obtain

lim sup
ν→∞

‖vν
T ‖2

L2
V,λ1

≤ 1

1 − b
e−λ1(T−τ) lim sup

ν→∞

∫ 0

−∞
eλ1r |∇ψν(r) −∇ψ(r)|2 dr, (87)

and therefore, by the assumption ψν → ψ strongly in L2
V,λ1

, we deduce that uν
T → uT strongly in L2

V,λ1
.

As {uν} is a subsequence of an arbitrary subsequence of {uµ}, by a contradiction argument we deduce
(69).

�

Remark 4.2. The results given in Lemma 7 (i) are obtained for the more general case of a continuous
operator G satisfying (6), (7) and (H2).

As a consequence of the above result, we obtain that U has compact values.

Corollary 4.1. Under the assumptions in Lemma 5, assume that (H4) also holds. Then, the map U :
Rd ×H → P (H) defined by (40), has compact values, that is, U(t, s, x) is a compact set for all (t, s, x).

Proof. Thanks to Lemma 7, we obtain that for every t ≥ τ, and any (uτ , ψ) ∈ H, the set U(t, τ, (uτ , ψ))
is relatively compact and closed in H × L2

V,λ1
. �

4.3. Existence of pullback attractors

Now, we are ready to obtain the existence of pullback attractors for the MNDS U defined by (40).

Lemma 8. Under the assumptions in Lemma 5, assume that (H4) also holds. Then, the MNDS U defined

by (40) is pullback asymptotically compact with respect to the family B̂λ1 defined in Lemma 4.

Proof. Let us fix t ∈ R, a sequence τm ≤ t with τm → −∞, and a sequence (uτm , ψm) ∈ Bλ1 (τm). We
have to prove that from any sequence (zm, ym) ∈ U(t, τm, (u

τm , ψm)) we can extract a subsequence that
converges strongly in H.

As (zm, ym) ∈ U(t, τm, (u
τm , ψm)), there exists um ∈ S((uτm , ψm), τm) such that um(t) = zm and

um
t = ym.

Fixing k ≥ 1, as the family B̂λ1 belongs to Dλ1 , is pullback Dλ1-absorbing, and τm → −∞, there exists
mk(t) ≥ k such that τm ≤ t− k and

(
um(t− k), um

t−k

)
∈ U(t− k, τm, (u

τm , ψm))

⊂ U(t− k, τm, Bλ1 (τm)) ⊂ Bλ1 (t− k) ,

for all m ≥ mk(t). Thus,

U(t, τm, (u
τm , ψm)) = U(t, t− k,U(t− k, τm, (u

τm , ψm)))

⊂ U(t, t− k,Bλ1 (t− k)),

for all m ≥ mk(t).
This implies that (zm, ym) ∈ U(t, t − k,

(
ζm,k, ξm,k

)
) where

(
ζm,k, ξm,k

)
∈ Bλ1 (t− k) , with

um(t− k) = ζm,k and um
t−k = ξm,k.
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Since Bλ1 (t− k) is a bounded closed ball in H, we can assume, up to a subsequence, that, in particular,

ξm,k ⇀ ξk weakly in L2
V,λ1

,

and

ζm,k ⇀ ζk weakly in H,

where
(
ζk, ξk

)
∈ Bλ1 (t− k).

Then, as um ∈ S(
(
um(t− k), um

t−k

)
, t − k), by Lemma 7 (i), we have that there exists a subsequence{

um′,k
}
⊂ {um} such that there exists u ∈ S(

(
ζk, ξk

)
, t− k) satisfying

zm′,k = um′,k(t) ⇀ u(t) weakly in H,

and

um′,k → u strongly in L2
(
t− k, t;L2 (Ω2n)

)
, for n ≥ 1. (88)

as m′ → ∞.
By Lemma 5, and thanks to the fact that

(
um(t− k), um

t−k

)
∈ Bλ1 (t− k), for any ε > 0, there exists

T (t− k, t, ε, B̂λ1) ≤ t− k, and M1(t− k, t, ε, B̂λ1) ≥ 1, such that
∫ t

t−k

∫

|x|
RN ≥2n

(um)2 (x, s)dxds ≤ kε,

for all n ≥M1(t− k, t, ε, B̂λ1) and any m such that τm ≤ T (t− k, t, ε, B̂λ1).
On the other hand, by Lemma 6, for any ε > 0 there exists M2(t− k, t, ε), such that

∫ t

t−k

∫

|x|
RN ≥2n

u2(x, s)dxds ≤ kε,

for all n ≥M2(t− k, t, ε).
Then, we deduce that

∫ t

t−k

∫

|x|
RN ≥2n

(um(x, s) − u(x, s))2 dxds ≤ 4kε, (89)

for all n ≥ max
{
M1(t− k, t, ε, B̂λ1),M2(t− k, t, ε)

}
, and any m such that τm ≤ T (t − k, t, ε, B̂λ1). From

(88) and (89) we have

um′,k → u strongly in L2 (t− k, t;H) ,

as m′ → ∞.
Now, if we argue similarly to the proof of Lemma 7, but using the functional J with

2kRλ1
(t−k)

λ1(1−d)

[
1 − e−λ1(t−τ)

]
instead of

∫ t
τ

2k
1−de

−λ1(s−τ) ‖(uτ , ψ)‖2
H ds and a similar change for the functional

Jm′,k, we obtain

zm′,k = um′,k(t) → u(t) strongly in H, (90)

as m′ → ∞.
Now, observe that as (u(t), ut) ∈ U(t, t − k,

(
ζk, ξk

)
), then, reasoning as for the obtention of (87) in

the proof of Lemma 7 (ii), and taking into account that
(
ζm,k, ξm,k

)
and

(
ζk, ξk

)
belong to Bλ1 (t− k), we

obtain

lim sup
m′→∞

∥∥∥um′,k
t −ut

∥∥∥
2

L2
V,λ1

≤2e−λ1k

1 − b
lim sup
m′→∞

(∣∣∣ζm′,k−ζk
∣∣∣
2
+
∥∥∥ξm′,k−ξk

∥∥∥
2

L2
V,λ1

)

(91)

≤ 8

1 − b
e−λ1kR2

λ1
(t− k).
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Using (90), (91), and the fact that e−λ1kR2
λ1

(t − k) → 0 as k → ∞, it is not difficult to deduce, via a

diagonal procedure, the existence of a subsequence um′′

such that um′′

(t) converges to u(t) strongly in H,
and um′′

t converges strongly to ut in L2
V,λ1

. �

Lemma 9. Under the assumptions in Lemma 8, the map (uτ , ψ) 7→ U (t, τ, (uτ , ψ)) defined by (40) is upper
semicontinuous for any (t, τ) ∈ R

2
d.

Proof. If U is not upper semicontinuous, then there exist τ ≤ t, (uτ , ψ) ∈ H, a neighborhood N of
U(t, τ,(uτ , ψ)) and a sequence (ζm, ξm) ∈ U(t, τ,(uτ,m, ψm)), where (uτ,m, ψm) → (uτ , ψ) strongly in H,
such that (ζm, ξm) /∈ N . Lemma 7 (ii) implies that there exist subsequences {ζµ} ⊂ {ζm}, {ξµ} ⊂ {ξm}
and (ζ, ξ) ∈ U(t, τ, (uτ , ψ)) such that ζµ → ζ strongly in L2 (Ω) and ξµ → ξ strongly in L2

V,λ1
, which is a

contradiction. �

Now, as a consequence of the preceding results, we can deduce the existence of pullback attractors for
the MNDS U defined by (40).

Theorem 3. Assume that G is given by (16), with g : (x, t) ∈ Ω × R 7→ g(x, t, r) ∈ R measurable for all
r ∈ R, g(x, t, ·) ∈ C(R) for a.e. (x, t) ∈ Ω× R, satisfying (3) and (4). Suppose also that assumptions (H1)
and (H3) − (H6) are satisfied, and that (41) holds, with c1(·) =

∫
Ω δ1(x, ·) dx. Then, the MNDS U defined

by (40) possesses a unique pullback Dλ1- attractor ADλ1
belonging to Dλ1 , which is strictly invariant and

is given by

ADλ1
(t) = Λ

(
B̂λ1 , t

)
=
⋂

s≤t

⋃

τ≤s

U(t, τ,Bλ1(τ)), (92)

where B̂λ1 was defined in Lemma 4, and the closure is taken in H. Moreover, we have the following relation

ADλ1
(t) ⊂ BH (0, Rλ1(t)) for all t ∈ R.

Remark 4.3. Observe that the universe Dλ1 contains the families of fixed bounded sets (i.e. for any bounded

C ⊂ H it follows that Ĉ = {C(t) ≡ C, t ∈ R} ∈ Dλ1). It is easy to conclude, under the assumptions of
Theorem 3, the existence of the pullback attractor ADH

F
in the sense of Crauel et al. [1997] and the following

relation:

ADH

F
(t) ⊂ ADλ1

(t) for any t ∈ R.

In fact, it can be proved (see [Maŕın-Rubio & Real, 2009]) that if there exists a value T ∈ R such that

sup
t≤T

Rλ1(t) < +∞,

where Rλ1 is the function defined in (43), then

ADH

F
(t) = ADλ1

(t) ∀t ≤ T.

5. Application to equation (2)

In this section, we analyze our example (2). We will check that under adequate assumptions on the functions
appearing in this equation all the hypotheses established for the abstract equation are fulfilled in this
particular case.

First, if we define F (t) = f(t) where f ∈ L2
loc(R;H−1 (Ω)) is such that

∫ t

−∞
eλ1s ‖f(s)‖2

−1 ds < +∞ ∀t ∈ R, (93)

then (H6) holds.
On the other hand, if we define G by (16), with g : (x, t) ∈ Ω × R 7→ g(x, t, r) ∈ R measurable for

all r ∈ R, g(x, t, ·) ∈ C(R) for a.e. (x, t) ∈ Ω × R, satisfying (3) and (4), then it is evident that G is a
well defined measurable mapping from R×Lp (Ω) into Lq (Ω), and satisfies (6) and (7). On the other hand,
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using Lebesgue’s Theorem, it is not difficult to prove that for a.e t ∈ R, G(t, ·) is continuous from Lp (Ω)
into Lq (Ω).

Now, we will prove (H2). For this, we consider a sequence {um}m∈N
such that um → u strongly in

L2
(
τ, T ;L2(Ωn)

)
and um ⇀ u weakly in Lp(τ, T ;Lp(Ω)). By um → u strongly in L2

(
τ, T ;L2 (Ωn)

)
we know

that there exists a subsequence of {um}, denoted also by {um}, such that

um(t, x) → u(t, x) for a.e. (t, x) ∈ (τ, T ) × Ωn.

Hence, the continuity of the map v 7→ g(x, t, v) implies that

g(x, t, um(t, x)) → g(x, t, u(t, x)) for a.e. (t, x) ∈ (τ, T ) × Ωn. (94)

From (7), we have

‖G(·, um(·))‖q
Lq(τ,T ;Lq(Ω)) ≤

∫ T

τ

(
ρ |um(t)|pp + c2(t)

)
dt,

and, as um ⇀ u weakly in Lp (τ, T ;Lp (Ω)) and c2 ∈ L1
loc (R), in particular, we have

G(·, um(·)) is bounded in Lq (τ, T ;Lq (Ωn)) . (95)

From (94), (95), and by Lemma 1.3, Chapter 1 in [Lions, 1969], we obtain

G(·, um(·)) ⇀ G(·, u(·)) weakly in Lq (τ, T ;Lq (Ωn)) .

Therefore, (11) is satisfied.
On the other hand, let us define K : R×L2

V,λ1
→ V ′ as

〈K(t, ψ), v〉 = −
∫ t

−∞
γ(t− s) 〈∆ψ(x, s − t), v〉 ds (96)

=

∫ t

−∞
γ(t− s)(∇ψ(s − t),∇v)ds,

for v ∈ V , where the function γ ∈ L1(R+) satisfies

|γ(θ)| ≤ γ0e
−d0θ, a.e. θ > 0, (97)

for some constants

γ0 > 0 and d0 > λ1, (98)

such that

8γ2
0

d0 (d0 − λ1)
< 1. (99)

Then,

‖K(t, ψ)‖−1 = sup
|∇v|≤1

|〈K(t, ψ), v〉| ≤
∫ t

−∞
γ0e

−d0(t−s) |∇ψ(s − t)| ds

=

∫ 0

−∞
γ0e

d0s |∇ψ(s)| ds

≤
(∫ 0

−∞
γ2
0e

(2d0−λ1)sds

)1/2

‖ψ‖L2
V,λ1

=
γ0

(2d0 − λ1)
1/2

‖ψ‖L2
V,λ1

.

Therefore, (10) holds with k = γ2
0/(2d0 − λ1) and c4 ≡ 0.
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Moreover, for t > τ and u ∈ L2
λ1

(−∞, t;V ) ,

∫ t

τ
eλ1s ‖K(s, us)‖2

−1 ds ≤
∫ t

τ
eλ1s

(∫ s

−∞
γ0e

−d0(s−r) |∇u(r)| dr
)2

ds

≤
∫ t

τ
eλ1s

(∫ s

−∞
γ2
0e

−d0(s−r)dr

)(∫ s

−∞
e−d0(s−r) |∇u(r)|2 dr

)
ds

=
γ2
0

d0

∫ t

τ
eλ1s

(∫ s

−∞
e−d0(s−r) |∇u(r)|2 dr

)
ds

≤ γ2
0

d0

∫ t

−∞

(∫ t

r
eλ1se−d0(s−r) |∇u(r)|2 ds

)
dr

≤ γ2
0

d0 (d0 − λ1)

∫ t

−∞
eλ1r |∇u(r)|2 dr,

in view of (99) and (9) holds with d = 8γ2
0/[d0 (d0 − λ1)] and c3 ≡ 0.

It is clear from the above estimates and the linearity of K(t, ·) defined by (96) that for all t ∈ R the
mapping K(t, ·) : L2

V,λ1
→ V ′ is continuous, and (H4) holds, with b = d/2. Also, from the above inequality,

we see that (H5) is satisfied.
Finally, assume that um ⇀ u weakly in L2

λ1
(−∞, T ;V ). We note that for any ψ ∈ L2 (τ, T ;V ),

∫ T

τ
〈K(s, um

s ), ψ(s)〉 ds =

∫ T

τ

∫ s

−∞
γ(s− r)(∇um(r),∇ψ(s))drds (100)

=

∫ T

τ

∫ 0

−∞
γ(−θ)(∇um(θ + s),∇ψ(s))dθds

=

∫ T

τ

∫ 0

−∞
eλ1θ(∇um(θ + s), e−λ1θγ(−θ)∇ψ(s))dθds.

Now observe that by (97) and (98), for a.e. s ∈ (0, T ), we have e−λ1·γ(−·)ψ(s) ∈ L2
V,λ1

, and

um(· + s) ⇀ u(· + s) weakly in L2
V,λ1

. Thus,

∫ 0

−∞
eλ1θ(∇um(θ + s),e−λ1θγ(−θ)∇ψ(s))dθ →

∫ 0

−∞
eλ1θ(∇u(θ + s),e−λ1θγ(−θ)∇ψ(s))dθ,

as m→ ∞, for a.e. s ∈ (0, T ).
Also, by the boundedness of um in L2

λ1
(−∞, T ;V ), we have

‖um
s ‖2

L2
V,λ1

=

∫ 0

−∞
eλ1r|∇um(s+ r)|2dr =

∫ s

−∞
eλ1(θ−s)|∇um(θ)|2dθ

≤ e−λ1τ

∫ T

−∞
eλ1θ|∇um(θ)|2dθ ≤ Ce−λ1τ ,

for a.e. s ∈ (τ, T ), and therefore,

|〈K(s, um
s ), ψ(s)〉| ≤ ‖K(s, um

s )‖−1|∇ψ(s)| ≤ γ0

(2d0 − λ1)
1/2

C1/2e−λ1τ/2 |∇ψ(s)| .

Thus, by (100) and Lebesgue’s Theorem, we obtain that

∫ T

τ
〈K(s, um

s ), ψ(s)〉 ds→
∫ T

τ
〈K(s, us), ψ(s)〉 ds,

as m→ ∞, and so (H3) holds.
Now, we apply Theorem 3 and Remark 4.3 for the equation (2), and obtain the following result.
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Theorem 4. Assume that G is given by (16), with g : (x, t) ∈ Ω × R 7→ g(x, t, r) ∈ R measurable for
all r ∈ R, g(x, t, ·) ∈ C(R) for a.e. (x, t) ∈ Ω × R, satisfying (3) and (4), and that (41) holds, with
c1(·) =

∫
Ω δ1(x, ·) dx. Suppose that F = f ∈ L2

loc(R;V ′) satisfies (93), and K is given by (96), where
γ ∈ L1(R+) is such that conditions (97)–(99) are satisfied. Then, the MNDS defined in this case by (40)
(i.e., by equation (2) with Dirichlet boundary conditions) possesses a unique pullback Dλ1−attractor ADλ1

belonging to Dλ1 , which is strictly invariant and is given by (92). Moreover, there exists the pullback
attractor ADH

F
in the sense of Crauel et al. [1997], and we have the following relation

ADH

F
(t) ⊂ ADλ1

(t) ⊂ BH (0, Rλ1(t)) for all t ∈ R,

where Rλ1(t) is given by (43).

Acknowledgement. We would like to thank the referees for their comments and suggestions which
allowed us to improve the presentation of this paper.

This work has been partially supported by FEDER and Ministerio de Ciencia e Innovación grant #
MTM2011-22411. Spain.

References
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