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Abstract NASA is researching advanced technologies
for future exploration missions using intelligent swarms
of robotic vehicles. One of these missions is the Au-
tonomous Nano Technology Swarm (ANTS) mission that
will explore the asteroid belt using 1,000 cooperative au-
tonomous spacecraft.

From the engineering point of view, the complexity
of this kind of systems is one of the main challenges
that has to be overcame, since it makes the behavior of
the swarm unpredictable. In NASA, many approaches
are being explored towards this goal, mainly, a tailored
software engineering approach for this kind of systems,
called agent-oriented software engineering, and formal
methods. In this paper, we report on the main advances
we have done towards modelling, implementing, and test-
ing NASA swarms-based concept missions.

1 Introduction

NASA is investigating new paradigms for future space
exploration, heavily focused on the (still) emerging tech-
nologies of autonomous and autonomic systems [66,67].
Traditional missions, reliant on one large spacecraft, are
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being replaced with missions that involve smaller collab-
orating spacecraft, analogous to swarms in nature [15].
This approach offers several advantages: the ability to
send spacecraft to explore regions of space where tradi-
tional craft simply would be impractical, greater redun-
dancy (and, consequently, greater protection of assets),
and reduced costs and risk, to name but a few. Concept
swarm missions entail the use of unmanned autonomous
vehicles (UAVs) flying approximately one meter above
the surface of Mars, which will cover as much of the sur-
face of Mars in three seconds as the now famous Mars
rovers did in their entire time on the planet; the use of
armies of tetrahedral walkers to explore the Mars and
Lunar surface [13]; constellations of satellites flying in
formation; and, the use of miniaturized spacecraft to
explore the asteroid belt, where heretofore it has been
impossible to send exploration craft without the high
likelihood of loss [15].

These new approaches to exploration simultaneously
pose many challenges. The missions will be unmanned
and highly autonomous. They will also exhibit the prop-
erties of autonomic systems, being self-protecting, self-
healing, self-configuring, and self-optimizing. Many of
these missions will be sent to parts of the solar system
where manned missions are simply not possible, and to
where the round-trip delay for communications to space-
craft exceeds 40 minutes, meaning that the decisions on
responses to exploration opportunities as well as prob-
lems and undesirable situations must be made in situ
rather than from ground control on Earth.

Swarms [3,4] consist of a large number of simple
agents that have local interactions (between each other
and the environment). There is no central controller di-
recting the swarm and no one agent has a global view;



2 Christopher A. Rouff et al.

they are self-organizing based on the emergent behaviors
of the simple interactions. This type of behavior is ob-
served in insects and flocks of birds. Bonabeau et al. [7],
who studied self-organization in social insects, state that
“complex collective behaviors may emerge from interac-
tions among individuals that exhibit simple behaviors”
and describe emergent behavior as “a set of dynami-
cal mechanisms whereby structures appear at the global
level of a system from interactions among its lower-level
components.” The emergent behavior is sometimes re-
ferred to as the macroscopic behavior, also called macro-
level behavior, and the individual behavior and local in-
teractions as the microscopic behavior, also called micro-
level behavior. Though swarm behaviors are the combi-
nation of often simple individual behaviors, when ag-
gregated, they can form complex and often unexpected
behaviors.

Agent swarms are often used as a modeling tech-
nique and as a tool to study complex systems [22]. In
swarm simulations, a group of interacting agents [68] (of-
ten homogeneous or near homogeneous agents) is stud-
ied for their emergent behavior. Examples of the use of
swarm simulations includes studying flocks of birds [11,
53], business and economics [35], and ecological systems
[62]. In swarm simulations, each of the agents is given
certain parameters that it tries to maximize. In terms of
bird swarms, each bird tries to find another bird to fly
with, and then fly off to one side and slightly higher to
reduce its drag. Eventually the birds form flocks. Swarms
are also being investigated for use in applications such as
telephone switching, network routing, data categorizing,
and shortest path optimizations [6].

Intelligent swarm technology is where the individ-
ual members of a swarm also exhibit intelligence [5,6].
With intelligent swarms, members may be heterogeneous
or homogeneous. Even if members start out as homoge-
neous, due to their differing environments they may learn
different things, develop different goals, and thereby be-
come a heterogeneous swarm. Intelligent swarms may
also from the beginning be made up of heterogeneous
elements, such as the NASA concept mission described
below, reflecting different capabilities as well as a possi-
ble social structure.

However, although this kind of systems present many
advantages since complex behavior emerge from the def-
inition of simple individuals behaviors, reducing the ef-
fort on design, its unpredictability represents a problem
since unexpected behaviors may cause the failure of a
mission that cost million of dollars.

In this paper, we survey on the current NASA efforts
towards benefiting from intelligent swarm-based systems
at the time that the macro-level behavior of the mis-
sions is controlled and ensured to be running into a
safe operational space. For this purpose, the main ap-
proaches that are being explored can be summarized in
two: Agent-Oriented Software Engineering (AOSE) and
Formal Methods.

2 Problems of modeling swarm-based systems

Complexity is one of the main problems of engineering
software systems, that is specially relevant when tackling
the development of swarm-based missions.

Several authors agree that the complexity is a con-
sequence of interactions [32,39]: Complexity is caused by
the collective behavior of many basic interacting agents.
In fact, many authors point out that the complexity is
the consequence of those interactions among agents, and
that these interactions can vary at execution time, and
cannot be predicted thoroughly at design time, namely,
emergent behavior. The reasons for the emergence can
be traced to two features present in these systems: self-
adaptation, and self-organization [19, page 20–21][32,
39]. It is important to observe that this capability of
demonstrating emergent behavior is the key factor that
drove us to implement swarm-based solutions in the first
place, since this key capability is essential to address so-
lutions to the targeted domains.

In Ref. [32],Jennings adapts to agency the three main
principles to manage complexity proposed by Booch in
the OO context [8]: Abstraction, Decomposition and Or-
ganization/Hierarchy1:

Abstraction: is based on defining simplified models of
the systems that emphasize some details avoiding
others. It is interesting since it limits the designer
scope of interest and the attention can be focused on
the most important details at a given time.

Decomposition: is based on the principle ”divide and
conquer”. It helps to limit the designer scope to a
portion of the problem.

Composition: consists in identifying and managing the
inter-relationships between the various subsystems
in the problem. It makes it possible to group to-
gether various basic agents or organizations and treat
them as higher-level units of analysis. It also provides
means of describing the high-level relationships be-
tween several units.

In addition, automation and reuse have been pre-
sented as two important principles to overcome complex-
ity [18,33]:

Automation: Automating the modeling process results
in lower complexity of models and reduces effort and
errors. Some procedures must definitely be carried
out based on the judgment of the human modeler.
However, some steps can be performed using auto-
matic techniques to transform models which can be
carried out by a software tool.

Reuse: Reuse is based on using previous knowledge in
designing systems. It saves modelers from redesign-
ing some parts of the system and avoids errors, thus
achieving lower complexity of models. Reuse involves

1 Notice that hereafter we call it Composition in order to
differentiate it from the organization term in AOSE
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processes, modeling artifacts, techniques, guidelines,
management processes, models of previous projects,
etc.

2.1 AOSE and complexity

From the engineering point of view, these principles im-
ply a set of requirements for AOSE methodologies at the
three dimensions of a methodology: modeling artifacts,
software process, and techniques to manage models. The
main requirements are [52]:

In the modelling artifacts dimension, the first ele-
ment we must considers are roles, since this is the con-
cept that allows us to focus on interactions, the main
source of complexity. In addition, roles also allows us to
decompose an agent by its responsibilities, which repre-
sent the decomposition principle.

In addition to roles, artifacts for abstracting interac-
tions and organizations are needed, as well as enable the
possibility of modeling a Multiagent System (hereafter
MAS) using several abstraction layers, which is also cru-
cial to cover the abstraction principle. Because of struc-
turing models in several layers, it is also needed models
devoted to maintain traceability across layers.

From the software process point of view, bottom-up
and top-down approaches are needed to finally allow us
to go through layers completing models. Using both per-
spectives permits to obtain intermediate layers which
link micro-level, that is to say, bottom layers that rep-
resents the agents behavior, with macro-level, that is to
say, top layers that represent the organization/emergent
behavior. In addition, the bottom-up software process
provides means for reusing models, an important princi-
ple to deal with complexity.

Regarding automatic techniques to transform and
analyze models, AOSE methodologies must provide tech-
niques to decompose and to compose models, techniques
to refine and abstract them, and techniques to determine
where to draw the limits for composition/decomposition.
These techniques must be automated as much as possi-
ble and can be used to support top-down and bottom-
up software processes since decomposition of models into
finer grain descriptions (refinement) helps top-down, and
composition of models into higher level models (abstrac-
tion) helps us to perform a bottom-up approach.

2.2 Formal Methods and complexity

Formal methods are proven approaches for assuring the
correct operation of complex interacting systems [23,24,
38,57]. Formal methods are mathematically-based tools
and techniques for specifying and verifying systems. They
are particularly useful for specifying complex parallel
and distributed systems where the entire system is dif-
ficult for a single person to fully understand and when
more than one person was involved in the development.

This is done thanks to applying the decomposition prin-
ciple.

With formal methods, we may propose that certain
properties hold, and prove that they hold automatically
or semi-automatically, thus applying the automation prin-
ciple. In particular this is invaluable for properties that
we cannot test on Earth. By its nature, a good formal
specification can guide us to propose and verify certain
behaviors (or lack of certain behaviors) that we would
often not think of when using regular testing techniques.
Moreover, if properly applied, and properly used in the
development process, a good formal specification can
guarantee the presence or absence of particular prop-
erties in the overall system well in advance of mission
launch, or even implementation. Indeed, various formal
methods offer the additional advantage of support for
simulation, model checking and automatic code genera-
tion, making the initial investment well worth while.

It has been stated that formal analysis is not fea-
sible for emergent systems due to the complexity and
intractability of these systems, and that simulation is
the only viable approach for analyzing emergence of a
systems [10]. For NASA missions, relying on simula-
tions and testing alone are not sufficient even for sys-
tems that are much simpler than the ANTS mission,
as noted above. The use of formal analysis would com-
plement the simulation and testing of these complex sys-
tems and would give additional assurance of their correct
operation. Given that one mistake can be catastrophic to
a system and result in the loss of hundreds of millions of
dollars and years of work, development of a formal anal-
ysis tool, even at a great cost, could have huge returns
even if only one mission is kept from failing.

Verifying emergent behavior is an area that has been
addressed very little by formal methods, though there
has been some work done in this area by computer sci-
entist analyzing biological systems [36,64,65]. However,
formal methods may provide guidance in determining
possible emergent behaviors that must be considered.
Formal methods have been widely used for test case gen-
eration to develop effective test cases. Similar techniques
may be used with formal methods, not to generate a
test plan, but to propose certain properties that might
or might not hold, or certain emergent behaviors that
might arise.

3 Case study

The Autonomous Nano-Technology Swarm (ANTS) con-
cept mission [13,15,16] will involve the launch of a swarm
of autonomous pico-class (approximately 1kg) spacecraft
that will explore the asteroid belt for asteroids with cer-
tain scientific characteristics. Figure 1 gives an overview
of the ANTS mission [67]. In this mission, a transport
ship, launched from Earth, will travel to a point in space
where net gravitational forces on small objects (such as
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Figure 1 ANTS Mission Concept

pico-class spacecraft) are negligible (a Lagrangian point).
From this point, 1000 spacecraft, that have been manu-
factured en route from Earth, will be launched into the
asteroid belt. The asteroid belt presents a large risk of
destruction for large (traditional) spacecraft. Even with
pico-class spacecraft, 60 to 70 percent of them are ex-
pected to be lost. Because of their small size, each space-
craft will carry just one specialized instrument for col-
lecting a specific type of data from asteroids in the belt.

To implement this mission, a heuristic approach is
being considered that provides for a social structure to
the spacecraft that uses a hierarchical behavior analo-
gous to colonies or swarms of insects, with some space-
craft directing others. Artificial intelligence technologies
such as genetic algorithms, neural nets, fuzzy logic, and
on-board planners are being investigated to assist the
mission to maintain a high level of autonomy. Crucial
to the mission will be the ability to modify its opera-
tions autonomously to reflect the changing nature of the
mission and the distance and low bandwidth communi-
cations back to Earth. As shown in Figure 2, the swarm
is envisioned to consist of several types of spacecraft. Ap-
proximately 80 percent of the spacecraft will be workers
that will carry the specialized instruments (e.g., a mag-
netometer, x-ray, gamma-ray, visible/IR, neutral mass
spectrometer) and will obtain specific types of data. Some
will be coordinators (called rulers or leaders) that have
rules that decided the types of asteroids and data the
mission is interested in and that will coordinate the ef-
forts of the workers. The third type of spacecraft are
messengers that will coordinate communication between
the rulers and workers, and communications with the
mission control center on Earth.

The swarm will form sub-swarms, each under the
control of a ruler, which contains models of the types of
science that are to be pursued. The ruler will coordinate

Figure 2 ANTS encounter with an asteroid

workers, each of which uses its individual instrument to
collect data on specific asteroids and feeds this informa-
tion back to the ruler, who will determine which aster-
oids are worth examining further. If the data matches
the profile of a type of asteroid that is of interest, an
imaging spacecraft will be sent to the asteroid to ascer-
tain the exact location and to create a rough model to
be used by other spacecraft for maneuvering around the
asteroid. Other teams of spacecraft will then coordinate
to finish mapping the asteroid to form a complete model.

3.1 Autonomic Properties of ANTS

The ANTS system may be viewed as an Autonomic Sys-
tem as it meets four key requirements: self-configuration,
self-healing, self-optimization and self-protection, as il-
lustrated in [63]. Here we focus on self-configuration prop-
erties as these are illustrated in our case study.

ANTS is self-protecting: The self protecting behavior
of the team will be interrelated with the self-protecting
behavior of the individual members. The anticipated so-
urces of threats to ANTS individuals (and consequently
to the team itself) will be collisions and solar storms.

Collision avoidance through maneuvering will be lim-
ited because ANTS individuals will have limited ability
to adjust their orbits and trajectories, due to thrust for
maneuvering powered by solar sails. Individuals will have
the capability of coordinating their orbits and trajecto-
ries with other individuals to avoid collisions with them.
Given the chaotic environment of the asteroid belt and
the highly dynamic trajectories of the objects in it, oc-
casional near approaches of interloping asteroidal bodies
(even small ones) to the ANTS team may present threats
of collisions with its individuals. Collision-avoidance ma-
neuvering for this type of spacecraft presents a great
challenge and is currently under consideration. The main
self-protection mechanism for collision avoidance is achi-
eved through the process of planning. The plans involve
constraints that will result in acceptable risks of colli-
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sions between individuals when they carry out their ob-
servational goals. In this way, ANTS exhibits a kind of
self-protection behavior against collisions.

Another possible ANTS self-protection mechanism
could protect against the effects of solar storms, which
is the basis of the case study we use later in this paper.
Charged particles from solar storms could subject indi-
viduals to degradation of sensors and electronic compo-
nents. The increased solar wind from solar storms could
also affect the orbits and trajectories of the ANTS indi-
viduals and thereby could jeopardize the mission. Spe-
cific mechanisms to protect ANTS spacecraft against the
effects of solar storms have not yet been determined. A
potential mechanism might, for example, provide space-
crafts with a solar storm sensing capability through on-
board, direct observation of the solar disk. When the
spacecraft recognize that a solar storm threat exists,
they would invoke their goal of protecting themselves
from the harmful effects of a solar storm. Part of the
protective response might be to orient solar panels and
sails to minimize the impact of the solar wind. An ad-
ditional response might be to power down unnecessary
subsystems to minimize disruptions and damage from
charged particles.

4 The FAST project

A NASA project, Formal Approaches to Swarm Technol-
ogy (FAST), is investigating appropriate formal methods
for use in swarm-based missions, and is beginning to ap-
ply these techniques to specifying and verifying parts of
the NASA ANTS mission as a test-bed [58,56]. To verify
NASA swarm-based missions an effective formal method
must be able to predict the emergent behavior of 1000
agents as a swarm as well as the behavior of the individ-
ual agent. Crucial to the mission will be autonomic prop-
erties and the ability to modify operations autonomously
to reflect the changing nature of the mission. For this,
a formal specification will need to be able to track the
goals of the mission as they change and to modify the
model of the universe as new data comes in. The formal
specification will also need to allow for specification of
the decision-making process to aid in the decision as to
which instruments will be needed, at what location, with
what goals, etc.

The FAST project identified several important at-
tributes needed in a formal approach for verifying swarm-
based systems and surveyed a wide range of formal meth-
ods and formal techniques to determine whether existing
formal methods, or a combination of existing methods,
could be suitable for specifying and verifying swarm-
based missions and their emergent behavior [58,61,56].
Various methods were surveyed based on a small num-
ber of criteria that were determined to be important in
their application to intelligent swarms. These included:

– support for concurrency and real-time constraints;

– formal basis;
– (existing) tool support;
– past experience in application to agent-based and/or

swarm-based systems;
– algorithm support.

A large number of formal methods that support the
specification of one of, but not both, concurrent behavior
and algorithmic behavior were identified. In addition,
there were a large number of integrated or combination
formal methods that have been developed over recent
years with the goal of supporting the specification of
both concurrency and algorithms.

Based on the results of the survey, four formal meth-
ods were selected to be used for a sample specification
of part of the ANTS mission. These methods were: the
process algebras CSP [25,31] and WSCCS [64,65], X-
Machines [37], and Unity Logic [12]. CSP was chosen
as a baseline specification method because the team has
had significant experience and success [59,60] in spec-
ifying agent-based systems with CSP. WSCCS and X-
Machines were chosen because they have already been
used for specifying emergent behavior by others, appar-
ently with some success. Unity Logic was also chosen be-
cause it had been successfully used for specifying concur-
rent systems and was a logic-based specification, which
offered a contrast to the other methods.

The project is currently integrating these methods to
develop a new formal method for swarm-based systems
and will test this new formal method by developing a
formal specification of the NASA ANTS mission.

5 Modeling using MaCMAS

MaCMAS is the AOSE methodology that we use for
modeling swarm-based systems and is based on previ-
ously developed concepts [44]2. It is specially tailored to
model complex Multiagent Systems covering all the re-
quirements for tackling complexity shown previously and
by the best of our knowledge is the unique that cover all
of these principles.

MaCMAS can be categorized in the AOSE method-
ologies that follows the organizational metaphor that is
based on engineer MASs mimicking human organizations
which can be also applied to swarm-based structures.

The organizational metaphor has been proven to be
one of the most appropriate tools for engineering this
kind of systems, and has been successfully applied by
other methodologies, e.g., [40,43,69]. It shows that a
MAS/swarm organization can be observed from two view-
points [69]:

Acquaintance point of view: shows the organization as
the set of interaction relationships between the roles
played by agents.

2 See http://james.eii.us.es/MaCMAS/ for details and case
studies of this methodology
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Figure 3 Acquaintance analysis discipline

Structural point of view: shows agents as artifacts that
belong to sub-organizations, groups, teams. In this
view agents are also structured into hierarchical struc-
tures showing the social structure of the system.

Both views are intimately related, but they show the
organization from radically different viewpoints. Since
any structural organization must include interactions be-
tween agents in order to function, it is safe to say that
the acquaintance organization is always contained in the
structural organization. Therefore, a natural map is for-
med between the acquaintance organization and the cor-
responding structural organization. This is the process
of assigning roles to agents [69]. Then, we can conclude
that any acquaintance organization can be modeled or-
thogonally to its structural organization [34].

This concepts has been applied to the models we have
performed of NASA ANTS where each spacecraft is as-
signed with a set of roles that change over time depend-
ing on the environment.

Entering into details, MaCMAS focuses on the ac-
quaintance organization view providing a set of UML2.0-
based models, a software process to build them, and a
set of techniques to compose, decompose, refine and ab-
stract models, as required by the principles to deal with
complexity. These models are not orthogonal to the for-
mal specifications performed using formal methods, but
complementary since they provide a graphical represen-
tation of the system that improves the understanding of
the specifications at the time they have a strong math-
ematical support thanks to formal methods.

Figure 4, summarize the structure of models pro-
duced by MaCMAS and how they are obtained. Roughly
speaking, MaCMAS produces a set of models of the sys-
tem at different levels of abstraction in order to tackle
the complexity of a system iteratively. Thus, a model of
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Decomp.
/Refinement

…

Comp.
/Abstraction
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abstraction
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Figure 4 Overview of the structure of MaCMAS models

the system at the micro-level, where all details are mod-
eled, can be linked with a model of the system at the
macro-level where only relevant properties are modeled
using abstraction. This allows us to ensure properties at
the micro, macro, and intermediate levels of the system
by means of formal methods. In addition to this struc-
ture of models, as shown in the following, MaCMAS also
provides techniques to refine and abstract these models
to complete layers.

In Figure 3, we summarize all the models, activities
and guidelines included in MaCMAS. From all the mod-
els proposed in this methodology, the most important
are the following:

a) Static Acquaintance Organization View: This shows
the static interaction relationships between roles in
the system and the knowledge processed by them. In
this category, we can find models for representing the
ontology managed by agents, models for represent-
ing their dependencies, and role models. The most
important are the role models:
Role Models: show an acquaintance sub-organization

as a set of roles collaborating by means of sev-
eral multi-Role Interactions (mRI) [46]. mRIs are
used to abstract the acquaintance relationships
amongst roles in the system. As mRIs allow ab-
stract representation of interactions, we can use
these models at whatever level of abstraction we
desire. This allows to represent abstractedly com-
plex joint process that implies IA techniques such
as negotiation, learning or self-* techniques, al-
lowing modeling emergent features by means of
abstraction.

b) Behavior of Acquaintance Organization View: The be-
havioral aspect of an organization shows the sequenc-
ing of mRIs in a particular role model. It is repre-
sented by two equivalent models:

Plan of a role: separately represents the plan of each
role in a role model showing how the mRIs of the
role sequence. It is represented using UML 2.0
ProtocolStateMachines [42]. It is used to focus
on a certain role, while ignoring others.

Plan of a role model: represents the order of mRIs in
a role model with a centralized description. It is
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Figure 5 Acquaintance analysis process

represented using UML 2.0 StateMachines [42].
It is used to facilitate the understanding of the
whole behavior of a sub-organization.

c) Traceability view: This model shows how models in
different abstraction layers relate. It shows how mRIs
are abstracted, composed or decomposed by means of
classification, aggregation, generalization or redefini-
tion. Notice that we usually show only the relations
between interactions because they are the focus of
modeling, but all the elements that compose an mRI
can also be related. Finally, since an mRI presents
a direct correlation with system goals, traceability
models clearly show how a certain requirement sys-
tem goal is refined and materialized at whichever
level of abstraction, from micro to macro-level.

The software process of MaCMAS starts with re-
quirements documented using a goal-directed approach
[17]. After applying MaCMAS we obtain the acquain-
tance organization of the MAS thus enabling to assign
roles to run-time agents using a middleware that sup-
ports this feature. This allows us to build the struc-
tural organization and to change it at run-time, thus
easing the modeling and management of self-organizing
systems, as need by NASA swarm-based missions.

The software process of MaCMAS is described as a
set of abstract SPEM work definitions which can be in-
stantiated by any work definition that produces the same
work products (c.f. Ref. [41] for consulting the SPEM
specification). In Figure 5, we show our process by means

of several general process components in form of SPEM
work definitions. These work definitions are strictly re-
lated to the main principles dealing with complexity and
are responsible for applying them:

Build Initial Acquaintance organization model: It consists
in producing an initial set of role models. These mod-
els provide an initial understanding of the system to
be built which is augmented by means of the rest of
work definitions. This work definition applies the ab-
straction principle to provide a first approach to the
model of the system.

Layer Completion: It consists in producing a new ac-
quaintance organization model because of the com-
position or the decomposition of a model(s) devel-
oped in a previous iteration or in the build initial ac-
quaintance organization work definition. The model
produced is used to fill a bottom/top layer when us-
ing decomposition/composition of mRIs and is used
to reduce/augment a model maintaining the level of
abstraction when using decomposition/composition
of role models, thus performing a top-down or bottom-
up designs[45,46].
These processes are supported by formal methods
that help us to perform these operations and to prove
properties over models. Thus, we can ensure that the
emergent behavior that we obtain is enclosed into a
safe operational space.
Thus, this work definition is in charge of applying ab-
straction, decomposition and composition principles,
and the automation principle to composition and de-
composition when possible.

Traceability Maintenance: It updates the traceability mo-
del which documents the relations between models in
different layers and requirements system goals.
This model helps us to link macro-level behavior of
the system with micro-level behavior, what finally
helps us to controll the emergent behavior we obtain,
for example, giving information on which macro-level
properties of the system will be affected by changes
in certain properties of single spacecrafts, or adding
formal specifications of these models that allow to
check properties.

Reuse: It instantiates parameterized role models stored
in a repository when appropriate. It is also responsi-
ble for analyzing models produced in the layer com-
pletion work definition to add them to the repository.
This work definition is responsible for enforcing the
application of the reuse principle.

5.1 Modeling autonomous and autonomic systems using
MaCMAS

MaCMAS can be used to model autonomous and auto-
nomic properties of swarm-based systems as needed by
NASA missions [50]. To exemplify the models of MaC-
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Figure 6 Traceability model of ANTS

MAS and how the are applied to model both kind of
properties, we use the case study presented in Section 3.

After applying all the software process of MaCMAS
to the case study, we obtain the traceability diagram of
Figure 6. This diagram summarizes the mRIs in the sys-
tem structured by layers of abstraction. In this diagram,
the top layer is the most abstract, i.e. the macro-level.
As each node represents a system-goal also, we can see
here the division of tasks necessarily undertaken to de-
velop the system. As each mRI is inside a role model,
we can also see which roles we have determined to carry
out by observing the role models. In the model shown,
we have depicted several sub-regions. Horizontal subdi-
visions depict layers of abstraction, while the vertical
line denotes the distinction between the parts of the sys-
tem that represent autonomic and the parts of the sys-
tem that represent autonomous behaviors. In addition
to mRIs, MaCMAS also uses UML packages to repre-
sent role models that contain several mRIs. In Figure 6
we identify two of these packages, which group the mRIs
used in the example that follows.

To foster reuse, to model an autonomous or an auto-
nomic property in a sufficiently generic and generalized
way, and to enable the deploying of these features at
runtime, properties must be independent of the concrete
agents over which they will be deployed. As we have
shown, the features required to have an appropriate de-
scription correlates with the features of an acquaintance
sub-organization. As we have also shown, to represent
this kind of organization, MaCMAS proposes two kind of
models—one for showing the relationships between roles,
that is, role models, and another to show how these re-
lationships evolve over time, that is to say, plan models.

A) Plan Model

B) Role Model
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Figure 8 Self-protection from solar storms autonomic prop-
erty model

For example, showing the autonomous process of or-
biting an asteroid to take a measurement requires at
least two models–its role model and its plan model. No-
tice that the plan model can be formaly specified using
CSP thus being able to check properties such as dead-
locks, etc. Figure 7b shows the role model for this case.
We show here the models from the third layer of abstrac-
tion of Figure 6. In this model there are two kinds of el-
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B) Role Model

Figure 7 Orbiting and measuring an asteroid autonomous property

ements: roles, which are represented using interface-like
icons, and mRIs, which are represented as collaboration-
like icons. In this model, roles show which is their general
goal and their particular goals when participating in a
certain interaction with other roles or with some part of
the environment (represented using interfaces with the
<<environment>> stereotype). Roles also represent the
knowledge they manage (middle compartment) and the
services they offer (bottom compartment). For example,
the goal of the Orbiter role is “maintain the orbit and
measure [the asteroid]”, while its goal when participat-
ing in the Report Orbit interaction is to get a model of
the orbit it must follow. In addition to roles, mRIs also
show us some important information. They must also
show the system-goal they achieve when executed, the
kind of coordination that is carried out when executed,
the knowledge used as input to achieve the goal, and
the knowledge produced. For example, the goal of the
mRI Report Orbit is to “Report the Orbit”. It is done
by taking as input the knowledge of the OrbitModeler
regarding the orbit and producing as output the model
for the orbit (orbitM) in the Orbiter role.

Continuing with the example, in Figure 7a, we show
the plan model of this role model where the order of
execution of all its mRIs is shown. As can be seen, the
Orbiter, while it is in orbit, is adjusting its orbit and
measuring and reporting measures. And when it has
completed constructing a model of the asteroid, it es-

capes the orbit using its knowledge of the orbit model
(orbitM ).

Autonomic properties can be also modeled in this
way. As role models can be used at any level of abstrac-
tion, we can use them for specifying autonomic proper-
ties that concern a single agent, or even a group of agents
when dealing with autonomic properties at the swarm
level. Thus, as shown in the traceability model, we have
a role model at abstraction layer 2 that shows the swarm
autonomic behavior, while at layer 4, we show autonomic
properties at the level of individual spacecraft.

Here we illustrate a model at abstraction layer 4 for a
self-protection autonomic property: protecting from so-
lar storms. The role model for this property is shown in
Figure 8b, and, as can be seen, as it is a property at the
individual level, a single role is shown (SelfProtectSpace-
Craft). Its plan model is shown in Figure 8a. As all the
spacecraft can be affected by solar storms, this role is
applied to all the spacecraft in the swarm, thus adding
this autonomic property to all of them.

5.2 MaCMAS for modelling Multiagent Systems
Product Lines (MAS-PL)

Many organizations, and software companies in particu-
lar, develop a range of products over periods of time that
exhibit many of the same properties and features. The
multiagent systems community exhibits similar trends.
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Figure 9 Overview of the process for building the core ar-
chitecture of a MAS-PL

However, the community has not as yet developed the
infrastructure to develop a core multiagent system (here-
after, MAS) from which concrete (substantially similar)
products can be derived.

The software product line paradigm (hereafter, SPL)
augurs the potential of developing a set of core assets
for a family of products from which customized prod-
ucts can be rapidly generated, reducing time-to-market,
costs, etc. [14], while simultaneously improving quality,
by making greater effort in design, implementation and
test more financially viable, as this effort can be amor-
tized over several products. The feasibility of building
MASs product lines is presented in [49,48].

All NASA swarm-based missions present many com-
mon features, thus it is feasible of applying a MAS-PL
approach improving the application of the reuse princi-
ple, and thus improving our capabilities to deal with its
complexity. This may also dramatically reduce the costs
in money and time of these related missions.

For enabling a product line, one of the important ac-
tivities to be performed is to identify a core architecture
for the family of software products.

In Figure 9, we show the SPEM definition of the soft-
ware process of our approach to build the core architec-
ture.

Build Acquaintance Organziation. The first stage to be
performed consists of developing a set of models in
different layers of abstraction where we obtain a trace-
ability model and a set of role models showing how
each goal is materialized. This is achieved by apply-
ing the MaCMAS software process.

Build Features Model. The second activity shown is re-
sponsible for adding commonalities and variabilities
to the traceability model. This is done modifying the
traceability diagram to add information on variabil-
ity and commonalities, as shown in Figure 11, to ob-
tain a feature model of the family. We do not de-
tail this process since it relies on taking each node
of the traceability diagram and determining if it is
mandatory, optional, alternative, or-exclusive, or if
it depends on other(s), as shown in the figure.
There exists a direct traceability between features
and role models. When a system goal is complex
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Figure 10 Role model/features relationship

enough to require more than one agent in order to
be fulfilled, a group of agents are required to work
together. Hence, a role model shows a set of agents,
represented by the role they play, that join to achieve
a certain system goal (whether by contention or co-
operation). MaCMAS uses mRIs to represent all of
the joint processes that are required and are carried
out amongst roles in order to fulfill the system goal of
the role model. These also pursue system sub-goals as
shown in Figure 10, where we can see the correlation
between these elements and the feature model ob-
tained from the traceability diagram. Note that the
role model of this figure can be also seen in Figure 8.

Analize Commonalities. Later, we perform a common-
ality analysis to find out which features, called core
features, and thus which role models, are more used
across products.
To build the core architecture of the system we must
include those features that appear in all the prod-
ucts and those whose probability of appearing in a
product is high. In [1,2] the authors define the com-
monality of a feature as the percentage of products
defined within a feature model that contains the fea-
ture. A calculation method for this and many other
operations related to feature models analysis is pro-
posed using Constraint Satisfaction Problems (CSP).
To perform this calculation, we have extended the
prototype3 presented in [1] to automatically calcu-
late the commonality of all the features of our case
study. The results obtained with the prototype are
shown in Figure 12. As shown in this figure, these
features are ordered by their commonality. The fig-
ure also show the threshold that we have selected, set
up at the 60%, for considering a feature to be core
or not. As shown in the Figure, the commonality for
the features self-protection from a solar storm and
orbiting is 100%. Thus we have to add them to the

3 This prototype along with this and other case studies is
available at http://www.tdg-seville.info/topics/spl
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Figure 12 Commonalities of the features in our example

core architecture, since they appear in all the possible
products.

Compose Core Features. Then, given that traceability
diagrams and thus features models present a direct
traceability between system goals and role models,
we can use the composition operation of MaCMAS
to compose the role models corresponding to the core
features to obtain the core architecture.

5.3 Modeling evolving systems using MaCMAS

MaCMAS is also able to model evolving systems as re-
quired by swarm-based NASA missions [47]. MaCMAS

bases on viewing different instances of a system as it
evolves as different “products´´ in a Software Product
Line. That Software Product Line is in turn developed
with an agent-oriented software engineering approach
and views the system as a Multiagent System Product
Line. The use of such an approach is particularly appro-
priate as it allows us to scale our view to address enter-
prise architectures where various entities in the enter-
prise are modeled as software agents. This, improves the
application of the decomposition principle allowing to
factorize the models and the formal specifications mak-
ing them simpler and more understandable.

Each product in a MAS-PL is defined as a set of
features. Given that all the products present a set of
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Figure 13 Evolution plan of our case study

features that remain unchanged, the core architecture is
defined as the part of all of the products that implement
these common features[48]. Thus, a system can evolve
by changing, or evolving, the set of non-core features.

A product or a state in our evolutionary system can
be defined as a set of features. Let F = {f1..fn} be the
set of all features of a MAS-PL. Let cF ⊂ F be the set
of core features and ncF = F \CF be the set of non-core
features. We define a valid state of the system as the set
of core features and a set of non-core features, that is
to say, S = cF ∪ sF , where sF ⊂ ncF is a subset of
non-core features.

Given that, the evolution from one state Si−1 to an-
other Si is defined as:

Si = Si−1 ∪ nFi,i−1 \ dFi,i−1

where nFi,i−1 ⊂ ncF is the set of new features and
dFi,i−1 ⊂ ncF is the set of deleted features.

Finally, ∆i,i−1 describes the variation between the
product of the state i− 1 and the product of the state i,
that is to say, nFi,i−1 \ dFi,i−1.

In [48], we show that a feature correlates with a role
model, also shown in previous section. Thus, for a system
to evolve from one state to another, we must compose or
decompose the role models in nF and dF . Specifically,
we must compose the role models corresponding to the
features in nF with the role models corresponding to the
features that remain unchanged from the initial state
Si−1, that is to say Si \ dFi,i−1. Decomposition is used
for role models that must be eliminated.

We represent the evolution plan using a UML state
machine where each state represents a product, and each
transition represents the addition or elimination of a set
of features, that is to say, ∆. In addition, the conditions
in the transitions represent the properties that must hold
in the environment and in the system in order to evolve
to the new product.

In Figure 13, we show part of the evolution plan of
our case study. There we represent two products, one
representing the swarm when orbiting an asteroid, and
another representing the swarm when orbiting and pro-
tecting from a solar storm. As can be seen, we add or
delete the feature corresponding to protect from solar
storm depending on whether or not the swarm is under
risk of solar storm.

The main advantage of this approach resides in the
fact that it allows us to derive a formal model of the
system and of each state that it may reach. This allows
us to clearly specify the differences from one state of the
architecture and any subsequent states of that evolv-
ing system. This significantly improves our capabilities
to understand, analyze and test evolving systems. Ad-
ditionally, thanks to the use of MaCMAS which allows
for the description of the same feature at different levels
of abstraction, we can also specify and test the architec-
tural changes at different levels of abstraction.

Finally, such an approach provides support at run
time for the addition and deletion of roles in the archi-
tecture. It provides reflection mechanisms that enable
understanding of the features, roles, and agents at dif-
ferent levels of abstraction, providing capabilities for en-
suring quality of service by means of self-organization,
self-protection, and other self-* properties identified by
the Autonomic Computing initiative.

6 Tool support

All this techniques are not valuable if they have to be
performed by hand. Thus, and in order to fulfill the
automation principle to deal with complexity, we have
implemented several tools to support automatically the
techniques exposed in this paper.

6.1 Requirements-to-Design-to-Code (R2D2C)

Requirements-Based Programming (RBP) has been ad-
vocated [20,21] as a viable means of developing complex
evolving systems. The idea that it embodies is that re-
quirements can be systematically and mechanically trans-
formed to executable code.

This may seem to be an obvious goal in the engineer-
ing of computer-based systems, but requirements-based
programming does in fact go a step further than current
development methods. System development, typically,
assumes the existence of a model of reality, called a de-
sign (more correctly, a design specification), from which
an implementation will be derived [27]. This model must
itself be derived from the system requirements, but there
is a large ‘gap’ in going from requirements to design.
Requirements-Based Programming seeks to eliminate this
‘gap’ by ensuring that the ultimate implementation can
be traced fully back to the actual requirements. NASA’s
experience has been that emphasizing sufficient effort at
the requirements phase of development can significantly
reduce cost overruns later [9]. RBP promises a significant
payoff for increasing effort at the requirements phase by
reducing the level of effort in subsequent verification.

R2D2C (Requirements-to-Design-to-Code) is a NASA
patent pending approach to the engineering of complex
computer systems, where the need for correctness of the
system, with respect to its requirements, is significantly
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Figure 14 The R2D2C approach and current status of the prototype

high [26,28]. In this category, we include NASA mission
software, most of which exhibits both autonomous and
autonomic properties, and must continue to do so in or-
der to achieve survivability in harsh environments.

In the R2D2C approach (Figure 14), engineers (or
others) may write requirements as scenarios in constrained
(domain-specific) natural language, or in a range of other
notations (including UML use cases). These will be used
to derive a formal model that is guaranteed to be equiva-
lent to the requirements stated at the outset, and which
will subsequently be used as a basis for code generation.
The formal model can be expressed using a variety of for-
mal notations. Currently we are using CSP, Hoare’s lan-
guage of Communicating Sequential Processes [29,30],
which is suitable for various types of analysis and investi-
gation, and as the basis for fully formal implementations
as well as automated test case generation, etc.

R2D2C is unique in that it allows for full formal de-
velopment from the outset, and maintains mathematical
soundness through all phases of the development pro-
cess, from requirements through to automatic code gen-
eration. The approach may also be used for reverse en-
gineering, that is, in retrieving models and formal spec-
ifications from existing code. The method can also be
used to “paraphrase” (in natural language, etc.) formal
descriptions of existing systems.

In addition, the approach is not limited to generating
executable code. It may also be used to generate business
processes and procedures, and we have been experiment-
ing (successfully) with using a rudimentary prototype to
generate instructions for robotic devices to be used on
the Hubble Robotic Servicing Mission (HRSM) [54]. We
are also experimenting with using it as a basis for an
expert system verification tool, and as a means of cap-
turing expert knowledge for expert systems [55].

6.2 MaCMAS Case tool

We have also implemented a module plug-in for the open
source UML modeling tool ArgoUML4.

This case tool allows to represent all the MaCMAS
models. It provides automatic support for operations

4 See james.eii.us.es/MaCMAS/ for further details

for decomposing/composing and for refining/abstracting
models using an MDA approach [51]. Furthermore, it
provides code generation for the skeletons of roles and
its plans in JAVA, which will be extended to conform
with R2D2 code generation.

Another important feature is that it maintains trace-
ability between goal-oriented requirements and all the
models used in MaCMAS allowing to navigate to the
models that materialize a system-goal at whichever level
of abstraction.

7 Conclusions and Future work

Complexity is a big challenge of current software devel-
opment. When tackling systems with the properties of
NASA ANTS, complexity become unmanageable with
current engineering and software tools.

The main conclusion we can draw from our work
on these missions is that the modeling of this kind of
systems is not feasible using only UML-based tailored
models, or only formal methods, but a new set of for-
mal techniques along with a tailored set of models and
software processes. As shown, we have had to base on
techniques from many fields ranging from, and not only,
the use of several formal methods, autonomic comput-
ing, swarm-based systems, to new applications of the
software product lines approach.

As shown, all these techniques carefully covers the
principles to deal with complexity which is crucial for
the success of our work.

However, although many promising results have been
already reached, a long research path has still to be trav-
eled. The main future research lines will consist on im-
proving the integration of formal methods and AOSE
and the improvement and integration of the tools we are
developing. Indeed, the test of these approaches with
NASA swarm-based case studies.
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de Datos,JISBD 2006, 2006.

3. Gerardo Beni. The concept of cellular robotics. In Proc.
1988 IEEE International Symposium on Intelligent Con-
trol, pages 57–62. IEEE Computer Society Press, Los
Alamitos, Calif., 1988.

4. Gerardo Beni and Jing Want. Swarm intelligence. In
Proc. Seventh Annual Meeting of the Robotics Society of
Japan, pages 425–428, Tokyo, Japan, 1989. RSJ Press.

5. Eric Bonabeau, Marco Dorigo, and Guy Théraulaz.
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7. Eric Bonabeau, Guy Théraulaz, Jean-Louis Deneubourg,
Serge Aron, and Scott Camazine. Self-organization in
social insects. Trends in Ecology and Evolution, 12:188–
193, 1997.

8. G. Booch. Object-Oriented Design with Applications.
Benjamin/Cummings, Redwood City, CA, 1990.

9. J. P. Bowen and M. G. Hinchey. Ten commandments
revisited: A ten year perspective on the industrial appli-
cation of formal methods. In Proc. FMICS 2005, 10th
International Workshop on Formal Methods for Indutrial
Critical Systems, Lisbon, Portugal, 5 – 6 September 2005.
ACM Press.

10. S. Brueckner and H. V. Dyke Parunak. Resource-aware
exploration of the emergent dynamics of simulated sys-
tems. In Proceedings of Autonomous Agents and Multi
Agent Systems (AAMAS), pages 781–788, 2003.

11. Shawn Carlson. Artificial life: Boids of a feather flock
together. Scientific American, November 2000.

12. K. Mani Chandy and Misra J. Parallel Program De-
sign: A Foundation. Addison-Wesley Publishing Com-
pany, 1988.

13. Pamela E. Clark, Steven A. Curtis, and Michael L. Rilee.
ANTS: Applying a new paradigm to Lunar and plane-
tary exploration. In Proc. Solar System Remote Sens-
ing Symposium, Pittsburgh, Pennsylvania, USA, 20–21
September 2002.

14. P. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. SEI Series in Software Engineer-
ing. Addison–Wesley, August 2001.

15. Steven A. Curtis, J. Mica, J. Nuth, G. Marr, Michael L.
Rilee, and Maharaj K. Bhat. ANTS (Autonomous Nano-
Technology Swarm): An artificial intelligence approach
to Asteroid Belt resource exploration. In Proc. Int’l As-
tronautical Federation, 51st Congress, October 2000.

16. Steven A. Curtis, W. F. Truszkowski, Michael L. Rilee,
and Pamela E. Clark. ANTS for the human exploration
and development of space. In Proc. IEEE Aerospace Con-
ference, Big Sky, Montana, USA, 9–16 March 2003.

17. A. Dardenne, A. van Lamsweerde, and S.Fickas. Goal-
directed requirements acquisition. Science of Computer
Programming, 20:3–50, 1993.

18. D.F. D’Souza and A.C. Wills. Objects, Components,
and Frameworks with UML: The Catalysis Approach.
Addison–Wesley, Reading, Mass., 1999.

19. J. Fromm. The Emergence of Complexity. Kassel uni-
versity press, 2004.

20. D. Harel. From play-in scenarios to code: An achievable
dream. IEEE Computer, 34(1):53–60, 2001.

21. D. Harel. Comments made during presentation at
“Formal Approaches to Complex Software Systems”
panel session. ISoLA-04 First International Conference
on Leveraging Applications of Formal Methods, Paphos,
Cyprus. 31 October 2004.

22. David E. Hiebeler. The swarm simulation system and
individual-based modeling. In Proc. Decision Support
2001: Advanced Technology for Natural Resource Man-
agement, Toronto, Canada, September 1994.

23. M. Hinchey, J. Rash, and C. Rouff. Verification and
validation of autonomous systems. In Proc. SEW-26,
26th Annual NASA/IEEE Software Engineering Work-
shop, pages 136–144, Greenbelt, MD, November 2001.
NASA Goddard Space Flight Center, IEEE Computer
Society Press, Los Alamitos, Calif.

24. M. G. Hinchey and J. P. Bowen, editors. Industrial-
Strength Formal Methods in Practice. FACIT Series.
Springer-Verlag, London, UK, 1999.

25. M. G. Hinchey and S. A. Jarvis. Concurrent Systems:
Formal Development in CSP. International Series in
Software Engineering. McGraw-Hill International, Lon-
don, UK, 1995.

26. M. G. Hinchey, J. L. Rash, and C. A. Rouff. Require-
ments to design to code: Towards a fully formal ap-
proach to automatic code generation. Technical Report
TM-2005-212774, NASA Goddard Space Flight Center,
Greenbelt, MD, USA, 2004.

27. M. G. Hinchey, J. L. Rash, and C. A. Rouff. A formal
approach to requirements-based programming. In Proc.
IEEE International Conference and Workshop on the
Engineering of Computer Based Systems (ECBS 2005).
IEEE Computer Society Press, Los Alamitos, Calif., 3–8
April 2005.

28. M. G. Hinchey, J. L. Rash, C. A. Rouff, and
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