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We study the dynamics ap* kinks perturbed by an ac force, both with and without damping. We address
this issue by using a collective coordinate theory, which allows us to reduce the problem to the dynamics of the
kink center and width. We carry out a careful analysis of the corresponding ordinary differential equations, of
Mathieu type in the undamped case, finding and characterizing the resonant frequencies and the regions of
existence of resonant solutions. We verify the accuracy of our predictions by numerical simulation of the full
partial differential equation, showing that the collective coordinate prediction is very accurate. Numerical
simulations for the damped case establish that the strongest resonance is the one at half the frequency of the
internal mode of the kink. In conclusion, we discuss the possible relevance of our results for other systems,
especially the sine-Gordon equation. We also obtain additional results regarding the equivalence between
different collective coordinate methods applied to this problem.

PACS numbgs): 05.45.Yv, 02.30.Jr, 03.56.z, 63.20.Pw

[. INTRODUCTION center of mass of the kink but also its width, as suggested in
Ref.[8]. In addition, some radiation can appear in the waves,
A century and a half after their discovery, solitons anda phenomenon that can render the whole collective coordi-
solitary waves have proven themselves ubiquitous in naturenate idea useless as more and more degrees of freedom are
arising in many physical applications and leading to veryexcited[9,10].
important advances in applied mathemafit®]. Generally As mentioned above, in 1983 Ri¢8] developed a new
speaking, it is often the case that the properties of solitarperturbative method, which he applied to two well-known
waves are known for certain equations, perhaps integrabl@onlinear Klein-Gordon problems, the* and the sine-
that relate to an oversimplified description of different physi-Gordon equationfl,2], in order to account for variations of
cal systems; subsequently, one is interested to learn hotiie width of their kink solutions under perturbations. In
these properties are modified if terms initially neglected areRice’s approach, the collective coordinates are the kink cen-
included as perturbations of the original equation. In moster X(t) and its widthl (t). His results pointed out that when,
cases, this is a very complicated problem, and shedding ligtin those systems, the kink is subject to “some perturbations”
on it usually requires the use of approximate analytical ap<{sic) the simple translational motion of the kink center can be
proaches. One of the most succesful and widely applicable afoupled to an oscillatory motion of the width of the wave,
these approaches is the collective coordinate technique onhose frequency he obtained by means of a variational ap-
rather, the family of collective coordinate techniqu&s4]. proach. Interestingly, for the* equation this so-called Rice
The main merit of these procedures is the drastic reduction dfequency )y practically coincides with the frequendy; of
the number of degrees of freedom involved in the problemthe kink internal modgone of the modes of linear excita-
from the multiplicity of them in the original partial differen- tions around the kink, corresponding to a nonzero eigenvalue
tial equation to the dynamics of a few degrees of freedomin the discrete spectrum; see, e.g., R&l]). Conversely, for
governed by ordinary differential equations. Quite com-the sine-GordonsG case,{)g turns out to be within the
monly, the reduction is done to a single degree of freedomphonon spectrum and, furthermore, the sG kink does not
which, in general, can be identified with the center of thehave an internal modéts only eigenvalue in the discrete
wave X(t) or its velocityV(t), as first proposed in the mid- spectrum is zero, corresponding to a Goldstone m&de
1970s,5,6]. This amounts to mapping the motion of solitons For this reason, the deformation of the kink width due to the
or solitary waves to the motion of a pointlikperhaps rela- internal mode was studied extensively in ti#é equation
tivistic) particle with an effective mag§]. Surprisingly, this and, among other interesting results, we now know that the
dramatic simplification leads to excellent results for manyinternal mode is able to store and transfer the energg®in
systemg3,4]. However, there are perturbations which, whenkink-antikink collisions[12], in the interaction of¢* kinks
acting on solitary waves, change not only the position of thewith impurities [13], or in the case when the* kink is
subject to a periodic spatially modulated potentiad]. This
exchange of energy between the internal and translational

*Email address: kinter@math.uc3m.es modes, or among the internal mode and the modes of the
"Email address: anxo@math.uc3m.es impurities, explains the resonances that take place in the
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In view of these results, a question that naturally arises is ) SH
the possible existence of resonances of gfekink when == 5—¢+F(X.t,¢,¢>u ey ©)
perturbed by external ac forces: a problem that has not been
considered so far, and that relates to a number of physical . S .
contexts. Very recently, we showél5] that a strong reso- wherey= ¢, the dot represents the derivative with respect to
nance arises when thg* system is subject to an external ac time, F(x,t,¢, ¢, ...)=—B¢+1(t), andH is the Hamil-
force of the formf(t)= esin(st+ &), with & close toQ;/2,  tonian of the system with the corresponding poteritiétp)
while in the case thad={); this resonance is weak and even = (¢°—1)%4 whene and 8 are zero:
disappears for an appropriate choice of the initial kink veloc-
ity and the parameters of the driving force. However, the
work reported in Ref[15] contained mostly numerical re-
sults, and only an intuitive explanation of this striking phe-
nomenon in terms of the collective coordinate equationsive now assume that the solution of E¢®). and(3) has the
therefore, our aim in this paper is to provide a full analyticalform
treatment of those equatioi®r the undamped cas@ or-
der to better understand the anomalous resonance phenom- d(X,1)=p[x—X(1),1(1)], (5)
enon. In addition, in doing so we will be already carrying out
the same analysis for the sG equation, which may be ofnd, hence, from the definition @f we have that
interest in order to clarify the question of the existence of an
internal quasimode for this equatipb6]. We deal with these _ _ o
issues throughout the paper according to the following YOO =gIx= X0 X 1. ©
scheme: In Sec. Il we use the so called generalized travellin
wave ansattGTWA) [17] to obtain the equations governing

+o (1 1
Hzf dx(§w2+§<;/>§+U(¢)- 4

Here ¢ describes the soliton shape, whose center will be
) : ; L .~ given byX(t), and where we introduced a second collective
the dynamics of the kink center and widthich is associ variablel (t) which will represent the kink width, as we see

ated to the excitation of the internal modén Sec. Il we |\ "ic oot takes into account thaan be different
thoroughly analyze those equations in the absence of dam‘f)r'om the Lorentz-contracted width due to the action of the

ing, identifying all the possible resonances and their IOCa'external force. Since the internal mode is related with the

tions as a function of the equation parameters. We then fOCLﬁnk width. we can expect that by using this aporoach we
on the most interesting resonances, namely, thos@,& ' P y 9 bp

and(); . For the damped case we have not been able to sol
the equation fot(t) analytically, but in Sec. IV we present
numerical simulations of the full partial differential equation,
confirming that the resonance &;/2 remains for weak
damping, while the resonance &t=(); disappears for any

VwiII be able to explain the kink motion when the internal
Mode is excited. However, the linearized problem around the
initial kink solution tells us that perturbations of the kink
cannot only shift its position or change its width, but also
make it emit radiationf11]. We have not considered this

q : lue. Additionallv. in that i "effect, and therefore the ansatz is only valid when the exter-
amping vaiue. itonally, in that section we compare all .| trce js so small that practically no radiation is emitted.

our analytical results to the numerical simulations, findingSince the frequencies of the discrete internal mdde

excellent agreement. Finally, in Sec. V we summarize our_ 5 . e
results and discuss their implications for other systems, fo-_ 3/2 and the continuum phonon band=y2+k*/2 are

cusing especially on the sG kink dynamics. In an appendixseparated from each other, one can expect that the two kinds

we prove the equivalence of the GTWA to a different pro—bf modes are excited at different values of the parameters of

; . : . ; the external force; then, when resonances appear as a conse-
cedure to obtain collective coordinate equations, which USES nce of the excitation of the internal mode. one can in
the momentum and the energy of the system similarly to theluen o '
classical approach if6] principle neglect the effect of radiation. In any event all our

PP ' analytical results will have to be confirmed later by numeri-

cal simulations, which will show whether or not this assump-

Il. COLLECTIVE COORDINATE APPROACH tion is correct. . . _
To obtain the equations for our collective coordinates

The dynamics of¢ kinks subject to a periodic force X(t) andi(t), we will follow Ref.[17] (see the Appendix for

f(t) = e sin(t+ &) is governed by the equation another possible derivatiprFirst, we insert Eqs5) and(6)
into Eq. (2) and (3), and then multiply the first obtained
e b+ 3= — +f 1 equation bydy/oX and the second by¢/dX; subtracting
Pu= o dF 6 Bt T(v), @ both expressions and integrating we arrive at the system of
equations

where g is the damping coefficient, andl &, and §, repre-
sent the amplitude, frequency, and phase of the periodic r+x 56 gy +oo _ +o I .
force, respectively. f dxﬁ —X+ f dx[ ¢, ]l + f dxﬁ —
In order to apply the GTWA, first proposed in R§17], - X - - Jl
we rewrite Eq.(1) in the following way:

d¢

—FS‘a‘(X)zﬁ:dx Fot b, - )agn (D)

. OH
¢= E @ ith
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AP oy I oy N ¢ _ int_ _ 9E
[gﬁ,lﬂ]—ﬁﬁ—ﬁ&—x, (8) K—J‘iw dx f(t)w—o, K __E' (16)
+oo SH o SH ay 1, .. 1l 1 lo |
stat_ __ I T —__ Y 2, - Y 2, Yo
B +wd dH  OE with a=(mw2—6)/12, q=2 and My=4/(3l,). Denoting
T f_x X T X ©) P(t)=MyloX/I, Eq.(13) can be written as
whereE represents the energy of the systéinis the Hamil- d—P——,BP—qf(t). (18)

tonian density, andrs'3t is the static force due the external dt

field or other solitons, equal to zero for the above Hamil- = ) . ,

tonian. In order to obtain the second equation of motion, wdt 1S interesting to note that this equation may also be ob-
proceed as in the previous equation and begin by insertinfined by applying the McLaughlin-Scott proced{i6¢ with
Egs. (5) and (6) into Egs.(2) and (3); then we multiply the ~ONe (_:ollectlve varlable only corresponding Fo the cen_ter of
first and second equations by/dl anddg/dl, respectively; —the kink. As shown in Ref{18], for the sG kink dynamics

finally we take the difference and integrate, thus finding ~ this is an excellent description of the kink motion, and we
have verified that it also describes t#é kink motion under

ac forces away from the resonances we will find and discuss

fﬂdx[w,(ﬁ])'(%—jwdxi—(lﬁ iﬂk below. Its solution is given by
—o —o axX
€
te  Jd Y. P(t)= ———=-[dcog t+ 5y) — BsIiN(St+ 6
+f ax?® i _ i, (D= gz, [ocosott 8) — Bsin( o+ 5y)]
—oo al i
e d +exp(— Bt) P(O)+L[ﬁsin(5o)
=f7 AXFX,t by, ) (10) (B?+ 6%
where —5cog 50)]] . (29
o o gH JE _ , ,
KNI, X) = — dxﬁz - (11 From Eg.(14) the equation that holds for the widtkt) is
. ) 2 2
By this procedure, we have obtained two coupled second- a[|2—2|i'—2,3||]:—2 1+ —| -1 (20
order ordinary differential equations f¥i(t) andl(t), where 15 Mg

up to now we have not imposed any condition on the soliton 5. )
shape; however, to solve Eqd)—(11) we need an explicit Note that the ternP(t)< in Eg. (20) involves two frequen-

functional dependence ab(x,t). Following Rice[8], we  Ci€sé and 25 whens=0, whereas fop+0 and after some
assume that transient time the only frequency that remains & Eurther-

more, the term with frequency vanishes for8=0 and an

appropriate choice of initial parameters. This equation repre-
, (12 sents a nonlinear, damped, and parametrically excited oscil-
lator. To solve Eq(20) we provide the change of variables,
I(t)=g?(t), proposed in Ref[19], which transforms the
above equation into an Ermakov-tyf@ Pinney-type equa-
tion (see Ref[20], and references therginThen the equa-
tion for g(t) reads

X—X(t)
[(t)
where ¢o=tanix—Xy/ly] is the static kink solution of the

¢* system, centered ¥, and of widthl ;= 2. Substituting
Eq. (12) into Egs.(7)—(11) and integrating ovex, we obtain

H(X,1) = ho[ X = X(1),1(1)] :tanr{

5

MOIOI——MOIOX—2|=F5‘a‘(X)—,BM0I0§+Fex, (13 <y aoy[[2) &)2 2} _ 1
| I 9+pgt+ || 5| oM, P 2ag’
P | i 2
aMaloj +Molo > =K"™(1,13)~ BaMaloj +K. 4(0) = VIO, 6= 5

(14
where Q =1/\Jal ;=1.2452 is equal to the Rice frequency
Qr=1/Jal, in the case when the kink initially is at rest; this
.. ” agrees within 1.7% with);= \3/2=1.2247. We have not
FeX:J dx f()— = —qf(t), F8=0, (15 been able to solve Eq21) analytically, except wher3
o axX =0. Section Il is devoted to a detailed analysis of that case;

where
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we will come back to the nonzer® problem when discuss- where the prime denotes the derivative with respect.to

ing our numerical results in Sec. IV. Note that the initial conditions fov;(7) becomeuv(8y)
=I5, vi(80)=1(0)/(28\15), v5(65)=0, and v,(5)
Il UNDAMPED KINK: ~ g=0 =v(0)/5. The solution of Eq(24) (see Ref[22]) for v(7)
When =0, Eq.(21) reads anduv,(7) can be expressed as a linear superposition of the
two Mathieu functionsce, andse, with a noninteger index
) N Q|2 1 v, i.e.,
g+|| =] + —) Pz}g= : (22)
2 2Mo 4ag® vi(r)=Aice,(r,— 0)+Bjse,(r,—0), =12, (25
where P(t) is given by P(t)=\+qe cos@+ &)/5, with A where
=Mgyou(0)/ls—qge cos()/ 6. We thus see that the function
P(t)? in Eq. (22) involves trigonometric functions with fre- A A
quenciess and 25 if and only if \#0. Conversely, when _A _ "B
. . 2 A|_ ’ B|_ ’ (26)
A =0 the only frequency that remains in the functi®t) is A A

24. Interestingly, we note that the relation=0 coincides
with the condition for the oscillatory motion of the center of and
the kink, obtained by using the McLaughlin-Scott approach
in the absence of dissipatida8]. The solution of Eq(22) A=ce,(5y,— 0)s€(5y,—0)—ce,(dy,— 0)se,(d,— 0),
[21] is
Ap,=vi(5)S€)(d0,— 0) —vi (J)S€,( o, — 0),
1
v (23 Ap =v] (50)ce,(30,~ 0) —vi(Sp)ce,( 5, — 6),

t)= v+
9t Y 4awW

wherev(t) andv,(t) are two independent solutions of the v_vith the constraint(characteristic curve for Mathieu func-
linear part of Eq.(22). W=0,v,—0,v; is the Wronskian, tions
which in this case is a constant and can be calculated by the

|.n|t|al cpndltlons forv; (i=1,2), vyhlch arev,(0) \/E a= 24 62+ 0(6%). 27)
v1(0)=1(0)/(2\14), v,(0)=0, andv,(0)=const0. 2(v*—1)
A. A=0: resonance até=Q /2 From Egs.(23), (25), and(26), and taking into account that

If one denoteg= 6t+ &y, and sets. =0 in the linear part 7= U+ 8, we obtain that the kink width(t) is given by

of Eq. (22), after some manipulations we arrive at the fol-

lowing Mathieu equation for the; functions: I(t)=gz=vf(t)+ 2v§(t), (28)
4aW
vi+[a+26cog27)]v;=0,
@9 L (t)=Ace,(dt+ 8y, — ) +Bse(dt+8y,—0), =12,
Q 2 q262 Q 2 q262 (29)
a=125 | 1T oemzl” 971\25) 2s2m2
26°Mg 46°Mg where
vi(0)5€,(80,~ 0) ~v;(0)s€,( 50, ~ )

AiE y

[ce, (6o, —0)se, (S, —0)—ce,(d,—0)se,(dy,—0)]
(30

vi(0)ce,(Sy,— 8 —vi(0)ce,(5y,— 0)
BiE_ . . !
[ce,(dg,—0)se,(Sy,— 0)—ce,(dy,— 0)se,(by,—6)]

W= —l2,(0), (31)
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related to the integer Mathieu functiosg, andce;. How-
ever, these two solutions appear when the characteristic
curvea(d) is

0 6 ¢

a=lt0- g 61 1536

for the even Mathieu functione;, and

”? 6 ¢
a=1-0- g 64 1536
for the odd Mathieu functiorse;. Since the values od are
different for each of the functiose, andce;, these func-
tions are not solutions of the same equation except when
02 : ) . . =0. Althoughse, and ce; are not solutions of Eq(24)
e o1 02 83 04 %8 [recall that in order to find(t) we need to calculate two
independent solutions of EqR24)], the characteristic curves
FIG. 1. Characteristic curved=d(e) corresponding to Egs. of these solutions separate the unstable and stable solutions
(32) (upper solid ling, (33), and(34) (upper dashed lingdor zero  of the Mathieu equatiofi24), and can be rewritten as
initial kink velocity and §,=7/2. The lower solid line is related

with solutions(28)—(31) whenv=3/2. The lower dashed lines are Qr | g?cog26,) q°
the characteristic curves of the integer Mathieu functions with 5_=7— 2 2 2 2 € (33
=2. Shadowed regions represent unstable solutions ofZAj. 2M3yoQr  AMGyQR
- - and
and the characteristic cury&q. (27)] for our initial param-
eters can be written up to ordef as O [g?cog25,) q° ,
0r="% — 2 20 am2-20 | (34)
2MgyoQr  4AMGyQr

~ Og g*vcog24)

=— e+ 0(e%). (32
2v 2M§7(%QR (

respectively. Interestingly, we note that the width of the un-
bounded region,

To obtain a better approximation, we need to take into ac- q2e2
count more terms of the above series, so in Fig. 1 we plot, as Ad=8,—6_ =—F—5—,
solid lines, the characteristic curves obtained numerically 2MgyoQr

with MATHEMATICA 3.0 [23], for »=1/2 and 3/2 whem(0) o o
=0 and 8,= /2. Note that whenw=m+ p/s is rational, ~decreases when the initial velocity increases, and conse-

with m an integer number ang/s a rational fraction (0 quently we will focus on the casg(0)=0 in our numerical
<pls<1), v4(t) orv,(t) are 2rs periodic functions ifpis ~ Simulations below, as the resonance is then easier to observe.
odd, andws-periodic functions ifp is even, however, for The curvess, ands_ [Egs.(33) and(34)] are plotted in Fig.
irrational v both functions will be nonperiodic, but bounded, 1 for zero initial velocity and5y,= /2, where the shadowed
solutions[22]. region represents the region whé(e) is unbounded. Analo-

If we know I(t), then from the solutiorP(t) [Eq. (19)]  9ously, we can obtain other characteristic curves, related ei-
we can calculate the velocit§(= P(H)1(£)/(Mqlo) for the ther to integer Mathieu functiorse, andce, (neN), or to

kink center. Since the momentuR(t) is a periodic function noninteger Math!eu functionse, andce, . In view .c.’f this,
. . . e the above analytical results lead us to expect thatis close
and the kink widthl(t) at least is a bounded functiok, is

. . . to Qr~=Q;, I(1), u(t), and the energy should be oscillatory
bounded as well. For instance, if we take 1/2 in Eq.(32), PN o
the frequency of the external force (or, at Ieas.t, bqundedfqnctlons, vyherga; ifo QR/2

' ~();/2 the kink widthl(t) increases indefinitely, and since
the energy and velocity are proportional lt(t) [see Egs.
q°cog25,) , . (19) and (17)] we should observe that these functions in-
0=Qr—————€+0(€), crease with time as well.
AMG5yeQr

B. A#0: resonances ato=Qg/2, Qg
is very close toQQr~Q); if €e<1 (see Fig. 1, andI(t) is a
function of the square of the# &-periodic solutionsse;,
andcey,, respectively, thus the velocity of the kink center,
X(t), and the energf(t) will also be bounded functions for
5=6(e). g"+[b+260,€?cog27)+26,€% cog47)]g=0, (35

If we try to find, e.g., 2r-periodic solutions of Eq(24),

we obtain that in this case the two independent solutions arehere

When A #0, the linear part of Eq(22) becomes, in a
manner similar to the procedure leading to E2d), a more
general Mathieu equatidr24], namely,
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02 q2e? A2 can be shown to be
b:(g) L il 2
26°Mg Mg b=4*¢%0,,
Q\2 \g? 0\2 @ or, alternatively,
91=<§) oz 02 3) VL ) ) —
Mg 45°Mg _Or qu(O)cos{(So) 3q . cog25y) | ,
+_ 1
and the prime denotes the derivative with respect+d 5t 2 Moo 07o0r  2MGY5Qg |
+ 8,)/2. According to Floquet theor§25], Eq. (35) has nor- (43
mal solutions of the forng=exp(e7)®(7), whered(7) is a 2 2 T
mr-periodic function andr is the characteristic exponent. Ex- §_ _QR qu(O)cos(éo) 5q +q c082) 2
panding®(7) in a Fourier series, the functiom can be re- Moo o?’oQR 2'V|07 Qr |

written asg=23."_,®,exfd(o+2ni)7], where®, are the

coefficients of the above series. Therefore, the transitioh€SPECtiVely. Since these curves start frem0 andb=4,
curves separating stability from instability correspondoto we are analyzing the transition curves when the frequency of

=0 (-periodic solutionsando=i (2-periodic solutions the ac force is close to half the value Ofz. Hence the

[26]. Now we will apply the method of strained parameterseSonance ab~(;/2~g/2 appears much as in the case
[25] to determine the values &f 6,, and 6, corresponding O+ €ven whem#0. Let us remark that, for a given the
to these values of the characteristic exponent. First we aglistance between these two curves &(e) is
sume that the solutions of E(35), which have periodr or
24, and the transition curvds=Db(e) can be written in the q’e .
form of perturbation expansions as M2y3Q0R

g(1)=go+ €91+ €*gr+O( €%, so when the velocity increases, the unstable region is nar-
rower, as we found above in the case whenO.

The other transition curves are related to the-2eriodic
solution of Eq.(37), go=A cos{)+Bsin(7), which appears
whenbg=1 (n=1). In this casey, will be a periodic func-
tion if by=6, andA=0 or b;=—6; andB=0. Hence the
transition curves starting frorn=1 are

(36)
b: b0+ Ezbl“l‘ €4b2+ 0(66).

Second, substituting E@36) into Eg. (35) and equating the
coefficients of the same order efto zero, we obtain

Lgo=0, (37
b=1+¢€%6,,
L£g1=—Db190— 26, cog27)go— 26, co447)g,, (38 !
or, equivalently,
L£g;=—b191—by90—26, co427)g91— 26, 005(47')9159
39 _ g, quOcos &) 0°  acos28y)|
whereL represent the second-order linear differential opera- R Mo7Yo O’YOQR 4|\/|0’),OQR
tor £=(d?/d7%)+b,. The solution of Eq(37) is
_ A
do=A cog vbo7) +B sin( ybg7), (40) € (44)
2M575QR
where by=4n? for the m-periodic solutions and,=(2n )
—1)2 for the 2m-periodic solutionsn is an integer number, @nd correspond to the solutions
andA andB are constants.
For the 7r-periodic solutions we will analyze the case g_=Bsin(7)+Be? sm(37-)+ |n(57)}
=1, corresponding tby=4; we note that the case=0 is
not possible due to the definition of our paramdieiWhen (45)
bo=4, go=Acos(Z)+Bsin(27). For g, to be aw-periodic 0, 0,
funct|_on it |§ necessary to eliminate the secular terms in Eq. g, =Acog 7)+Ae? 005(37-)+ 05(57_)}
(38), imposing eitheb;=6, andA=0 or b;=—6, andB 8
=0. Then the transition curves corresponding to the solu- (46)
tions respectively. These solutions, and their corresponding char-
acteristic curves, are related to the driving frequedajose
g.=Bsin(27)+B € |n(47-)+ |n(61-) (4D  to Qg. Finally, in this case we have
27\62
and NG=5,— 5 =
P P M5voQr
- o1 1 22
9-=AcCos27)+ A€t —5 =+ 17C0947) + 35c0967) which means, as above, that for a fixad AS decreases

(42) whenu(0) is increased.
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FIG. 2. Verification of the collective coordinate method in the

absence of damping. The solid line was obtained from Eig.and is close to();/2. The parameters of the numerical simulations of the

(20), and represents the values of the velocity of the kink center a . . . ) _
given by the collective coordinate approach; the points are the ve?UII partial differential equations, Eqd2) and (3), are =0, e

locities of the center of the kink from the numerical simulations of c:rgaogln 60;:;’ g(zog 288 (?oTNOefiS:lv(;pr?grrwr(;ir(\)/r?ér:?zzr;ﬁllgi}:)Ir;-
Egs.(2) and(3) by using the Strauss-Vguez scheme, starting from 9 Y ) ’ n

a kink at rest and with forcé(1) =001 sin(1.28-+ /). The ve- - (3 Py B0 A B N I8 8 e el
locity function is represented only from=24 900 to the final time q y Re ' q Y

t=25000, but the same behavior of this function is observed dur-rnOde I53/2=0.6124.

ing the whole run.

FIG. 3. Kink energy when the frequency of the driving foige

=0, because wher+ 0 the kink moves to the right or to the

In summary, we have found here that whes 0 and we  left, and then for large times the kink will leave our finite
drive the system with a frequency closeQg, the solutions ~ System. For the aforementioned values of initial parameters

will be unstable in the region between curvés and 5_.  the width of the resonance regiané=4, — 6., predicted
Note that for\ =0 we recover the previous results, i.e., there@t 6~Qr/2~€;/2 in Sec, Il A, [see Eqs(33) and (34)], is
are no resonances at-Qy. of the order of 10%. For this reason we have explored the
regions around(; and €;/2 in an interval of that order.
IV. NUMERICAL VERIFICATION Finally, we mention that with the Strausstaiez method

one can very accurately compute the position and velocity of

The results we obtained in Sec. Il were derived withinthe kink center using the integrals of energy and momentum
the collective coordinate assumption that we can describe glR8]; thus this is a good numerical method in order to com-
the kink dynamics by the two variable§(t) and|(t), all pare with our analytical predictions.
other degrees of freedom being negligible. As there is no First of all, in order to verify the results obtained by
way to knowa priori that this is indeed the case, we have tomeans of the GTWA with two independent collective coor-
verify this hypothesis by numerical simulations of the full dinates, the position and width of the kink, we have studied
partial differential equation. Furthermore, we have not beerthe region around={);=1.2247, i.e., the driving frequency
able to solve the collective coordinate equations for thefor which we do not expect any resonances whenO;
damped B#0) case; it is reasonable to expect that in thishence the width and the velocity should at least be bounded
situation phenomena similar to those found for the un-functions. We have verified that this prediction is in excel-
damped case will arise, but insofar as it has not beetent agreement with the numerical simulations, an example
checked, this assertion remains a conjecture. of which is shown in Fig. 2. In this plot, we can see that the

In view of the above considerations, we have computedrelocity is indeed an oscillatory function, and even for large
the numerical solution of the partial differential equatié®s  times our theoretical approach correctly describes the evolu-
and (3) by using the Strauss-Vguez schemd27] and tion of the velocity of the center of mass of the kink. Other
choosing a total length for our numerical system lof values close t@=1.21 behave very much like the presented
=400, with stepsAt=0.01, Ax=0.1, free boundary condi- example.
tions, and simulating up to a final time equal to 25000 with  The next test of our analytical results of course has to be
a kink at rest as initial condition. In addition, we have fixedthe existence of a resonance néxr2. For frequencies
the amplitudes=0.01 and the phas&,= 7/2 of the ac force, aroundQg/2, our collective variable approach has predicted
and then changed the value of the driving frequedcin  that the widthl(t) increases unboundedly, and hence the
order to see the resonances. We note that there are mawmglocity and energy should increase as well. Again, the pre-
other parameters we could change, such as the initial velodiction is fulfilled, but for();/2 instead of(2x/2: In the nu-
ity, the driving amplitude, or the driving phase, but as ourmerical simulations we have observed that in this case a
main goal in this section is to assert the validity of the gen+esonance takes place whén:-();/2=0.6124. As a specific
eral analytical results obtained above we prefer to concerexample, the results for the kink energy @+ 0.6104 and
trate on a few cases as mentioned. In all our simulations w8.608 are plotted in Fig. 3, clearly showing a resonant in-
have chosen the initial parameters in such a way dat crease of the energy in the former case and an oscillatory
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2
>
-0.10 . : : :
0 5000 10000 15000 20000 25000
time 0.90 , ‘ , .
7o 5000 10000 15000 20000 25000
0.030 time
0.025 | : FIG. 5. Resonance in the presence of damping: kink energy at a
frequency5=0.6103 obtained from numerical simulations of Egs.
o 0020} ] (2) and(3), with e=0.01, =0.001,u(0)=0, and&y= /2.
3 _ _ _
£ 0015 ] tion, reaches an asymptotic value, and thus does not increase
g' indefinitely as in the absence of damping. For a comparison
< 1010 ] of both situations we have computed the mean energy in the
time interval 10 006:t<<25 000 with and without damping,
0.005 ] and our results are summarized in Figs. 6 and 7. Bor
=0.001 (see the points on the solid line in Fig) &e have
0.000 e . . found that the energy increases &t 0.6103, whereas for
0.00 0.05 0.10 0.15 0.20 0.25 B=0 (see the points on the dashed line in Fiytlte reso-
/(2 m) nance frequency i$~0.6102.

FIG. 4. Upper panel: Velocity of the kink center computed from As mentioned above, the numerical solutions of the full

the numerical solution of the partial differential equation when thePartial differential equation show that the resonancesat
frequency of the driving is close to half of the internal mode fre- ~2i/2 also takes place fq8#0, whereas whed~(); (see
quency 6=0.6104),3=0, e=0.01, ,= w/2, andu(0)=0. After  Fig. 7) the resonance disappears. Let us recall that in all our
some time the velocity function departs from its oscillatory behav-Simulations we have chosan(0)=0 (and hence the reso-
ior, which was transiently exhibited at the beginning of the run, andnant region should be the widest possible Jored &,
develops chaotic features. Lower panel: discrete Fourier transforree 77/2 in such a way thak =0. In the case whek vanishes
of the signal in the upper panel. we cannot expect any resonancegat(); . Nevertheless, in
Fig. 7 it is clear that the energy increases weakly in this

behavior in the latter. Interestingly, at resonance the velocityegion. We believe that this maximum of the energy is prob-
also does not have an oscillatory behavior as depicted in Fig.
4, in contrast to the behavior off-resonance we found in Fig. 1.40 |
2 for 6=1.21. Such a nonperiodic evolution of the kink ve-
locity implies that the kink motion is chaotic, as we first 1.32 |
found in Ref.[15] and eventually the kink begins emitting
radiation. As we discussed in R¢l.5], we believe that this
phenomenon has its origin in the energy transfer from the
kink internal mode to the rest of modes in the system, a
mechanism already demonstrated in Refs2,14); intu- ;
itively, the reason for this is that the collective coordinate 1.08 | ;
prediction that the kink width grows without limit cannot be :
physically true due to the very nature of the kink, and hence, 1.00 | ! ]
when the internal mode excitation reaches large values the =~ f-----e--occeceoveo o J\\&- ———————————————
energy ends up being transferred to the rest of the available 0.92 . . .
modes(translation and radiation 0.59 0.60 0.61 0.62 0.63
After checking our analytical results for the undamped
case, we now have to turn to the dampg#(0) dynamics, FIG. 6. Resonance d?;/2. Mean energy of the system, com-
in order to find out whether the same phenomena arise therguted by averaging the energy in the numerical simulations of the
Simulations for the damped case show that the energy of thgartial differential equations fdr>10 000, with the final time equal
system also increases when resonance takes fdaeeFig. to 25000;e=0.01, §,= /2, andu(0)=0. Dashed line: undamped
5), but in this case the energy is bounded due to the dissipaase,3=0; solid line: damped cas@=0.001.

1.24

1.16 |

Mean Energy
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1.28 . - : - ditions, analytically. On the other hand, we have also shown
that the resonance ad-=(); can be suppressed if we add a

123 | h 1 small damping to the system, or by an appropriate choice of
A initial parameters of the ac force. We have verified in our
& 118 | : .‘,,.v—"" ] simulations that for5~(); the lower radiational modes are
g: b excited; for this reason the energy in Fig. 7 increases when
W 148 [ _eeemee™ ] increases. Of course, this excitation of the lowest phonons
S ' cannot be explained within the present collective coordinate
§ 108 [ ] theory; a much more involved approach including phonon

effects (as in Ref.[30] for the sG model would probably

1.03 // account for that resonance.
Beyond the application of our results to tg#é kink dy-

0.98 ‘ ) , ) namics, we believe that the same phenomenology will arise
1.21 1.22 1.23 1.24 1.25 1.26 in other systems for which internal modes are pregasytfor

) example, in the double sG equatipdl]). The analysis we
presented can be straightforwardly extended to this system,
averaging the energy in the numerical simulations of the partiafelnd Itis qu!te likely that S'm”ar resonance effects W'”. arise,
differential equations fot>10 000, with the final time equal to as well as in Other. models with the. same feature of mtemal
25000; €=0.01, 5,= /2, u(0)=0, B=0 (dashed ling and 3 mc_;des. A related interesting gquestion concerns the_applu_:a—
=0.001(solid line. bility of these resul_ts to the_ sG equation. As we mentl(_)ned in
Sec. |, our calculation applies directly to the sG equation, but

ably due to the fact that the condition for the suppression of? this system the kinks do not possess internal m40des.
the resonance af~Q, is extremely difficult to fulfill nu-  Therefore, the identificatio);~(Qr we made for thep™
merically. On the other hand, it is also possible that thiskink is no longer available, and, what is worse, the putative
condition, which has been obtained within the collective co-{!r lies within the phonon band. However, it has been re-
ordinate framework, is only approximately true, and therePorted that close t6lg sG kinks might exhibit a quasimode
fore when we choosk=0 we are beginning with an initial [16] with a very long life. If such a mode indeed exists,
condition close to the one needed for a complete suppressicW]h'Ch is still in QOubt since no other reports of its existence
of the resonance but not exactly there; hence we would stift@ve been published, it could be found, as we have done in
see the small bump in Fig. 7. Another possible reason for thigiS paper, by looking at resonances of half its frequency,
peak is that it is possible that when=0 at s~Q,~Qg a v_vhlch_ vv_ould beoutsidethe phonon band. Work along these
resonance appears in the next order correctises the work ~ liN€s is in progres$32].

of Segur[29], in which the frequency Q,; arises, and could

then be parametrically excited b§=(};). Were this the ACKNOWLEDGMENTS

case, this “weaker resonance,” that completely disappears
for B#0 (see the solid line in Fig.)7is the resonance that
we can expect either for~0 in the partial differential equa-
tion or for A=0 and large enough times.

FIG. 7. Resonance &; . Mean energy of the system, computed
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V. CONCLUSIONS of DAAD (Az. 314-Al) and DGESIC.
We have shown analytically and numerically that the in-
ternal mode of the;[)4 model can be excited if we drive the APPENDIX A: EQUIVALENCE OF COLLECTIVE
system with an ac force of a frequency close to 1/2 of the COORDINATE METHODS

internal mode frequency. This is a very surprising result, as

the driving we apply to the system is not parametric. At In this appendix we demonstrate that the GTWA, the
resonance, as a consequence of the increment of the eneWthOd we used in Sec. Il to obtain the collective coordinate
of the system, the kink initially at rest begins to move cha-equations, is equivalent to using the variation of the momen-
otically [15] and also begins to radiate, i.e., the energy istum and the energy of systeft). First of all, from Eqs(7)
transferred from the internal mode to the translational andnd(10) we can obtain the variation of the momentum and
radiational ones. The chaotic motion is confirmed by notingehergy of the perturbed® equation. Combining the first
that, when the internal mode is excited &t Q,/2, in the three terms of Eq(7), and doing some straightforward trans-
discrete Fourier transform of the kink’s velocityee Fig. 4  formations the equation for the momentum can be recast in
we see some frequencies in the low frequency part of théhe forms

spectrum aside from the frequency of the ac foi&eWhat

is more important, we have presented a full analysis of the dP_ te  gH +eo do
collective coordinate theory for this problem, whose validity —gr — | . X5 * | dxFxtd.de, )7,
has undoubtedly been confirmed by numerical simulations of (A1)
the full partial differential equation. In particular, in the ab- .
sence of damping we have been able to find all the reso- -

. NS P(t) dX ¢ by .
nances, as well as their dependence on the kink initial con- —o
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Furthermore, if instead of Eq10) we add Eq(7), rewritten  whereas, in the other one, we first substitute the systems of

as equation(2) and (3) into Egs.(A3) and (A4), and then as-
sume thatp(x,t) and (x,t) satisfy Eq.(A5). Thus
j dx——X+j dx &, ¢l + f dxﬁ—i—]pl Y
f dx f dx F(x,t, ¢, qﬁt,...)ﬂy
+o0 d
—Fstalx) — f dX FOx,t b, - .)0—5::0, (A8)
. . . : . . dH . [+= dg
multiply this equation byX, and the expression obtained W=xJ dx F(x,t, ¢, ¢y, . . _)&—X
from Eq.(10) by I, we conclude that Eq10) is equivalent -
to L[ d¢
+If dx F(x,t, o, ¢y, - - ')H' (A9)
dH do

+ o
dat f_x APt bos - ')H’ Egs.(A6) and(A8) and Eqs(A7) and(A9), respectively, we

(A2) find that Egs.(A3) and (A4) become Eqs(7) and (10), re-
42 spectively.

H(t)= f dx[ﬂ+—+U(¢)} Let us note that the connection between the GTWA and
the variation of the momentum and energy gives a physical
interpretation of such a technique, and furthermore, this sec-

This implies that when we apply the GTWA in those systemsond method leads more directly to formulas #6(t) and
we are, in fact, varying the momentum, I(t). Furthermore, if the solution of Eq$2) and (3) for
F(X,t,,¢¢, ...)=—Bp+T(x,t) is a kink centered at

dpP d [+ 4o X(t) whose widthl(t) depends on tim¢Egs. (5) and (6)],
T §f dXx ¢y = ﬁm dX[ durhi— by il then Egs(A3) and(A4) become
(A3) :
and the energy, dP:_BP f dx f(x,t)py, P(t)= Oll(ot);(t)
dH d [+= (1 1 (A0
E=afwdx[§¢i+§¢?+uw>j g
~ [ u’ . (A4
| bt dact 0100, a0 P(t)l(t){dp s [ dxf(xwx}
where .
N P(t)2+1 " <2| |2)+1M (1 |O)
a S i -_ 0
$(x,H)= ¢lx— X1 (D], Mo 2771z T2 o 2
(AS) |O' +

Moreover, we can also start from Eq®#3), (A4), and . . .
(A5), and obtain Eqs(7) and(10). Doing tﬁis we only need respectively. The first bracket on the right hand of &L1)

to take into account that there are at least two different Wayg"’lnISheS because of E@10), so the solution of EqA11)

of transforming the above integrals: in one of them, one subis | =0 or
stitutes Eq(A5) into Egs.(A3) and(A4), so that

[12—21i —2pI1] i i 1+2l(t)2
dP_ tee b I g Iy . @ N _|_2 W_ M Al
a—f d {&X X+[ o, (,/;]I+——II (AB) 0 0 0'0

xfﬁ dof[ ol +X(1),t]10¢,.
dH . [+= dd w qbﬁ(//

In such a way, Eqs(A10) and (A12) can be interpreted as
(A7) the equations which the collective coordinad@) [P(t)]
andl(t) are satisfied, and they are obtained frd/dt and

ap d d¢ d
+|j dx[wx+ ¢ﬁ§x+a_f;.
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dH/dt, respectively. For example, f{x,t) = e sin(&t+ &) in moment, the equivalence between these two above-

Egs. (A10) and (A12), we recover Eqs(18) and (20), ob- ~mentioned methods remains true for any other perturbed
tained by applying the GTWA in Sec. II. nonlinear Klein-Gordon equation of the form of E¢8) and

As a final remark, we point out that, since we have not(3), when the Hamiltonian of the system is of the form of Eq.
used the explicit form for the potential functie(¢) in any  (4).
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