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Abstract

We prove that the asymptotic behaviour of partial differential inclusions and partial dif-
ferential equations without uniqueness of solutions can be stabilised by adding some suitable
Itô noise as an external perturbation. We show how the theory previously developed for the
single-valued cases can be successfully applied to handle these set-valued cases. The theory
of random dynamical systems is used as an appropriate tool to solve the problem.

1 Introduction

The stabilising and destabilising effects produced by noisy terms in the evolution of single valued
deterministic systems is now very well known as the literature on this topic reveals (see [1], [4],
[5], [13], [18], [20], [22], and the references therein). The importance of these effects in the
understanding of the long time behaviour of real systems is now out of any doubt. Indeed, if
we assume that the real world is non-deterministic (what seems to be a very sensible fact) and
we approximate a real model by a deterministic one, we can find that on some occasions the
appearance of noise in the deterministic models could produce dramatic changes in the behaviour
(see, e.g. [1], [4], [20]).

However, in many real situations, the real models are better described if we consider some
multi-valued or set-valued features. For instance, many systems described by differential equa-
tions does not have uniqueness of solutions, or even the problem is better modelled by a dif-
ferential inclusion. So far, we still have not seen in the literature any paper dealing with the
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effects produced by noise in the asymptotic behaviour of multivalued dynamical systems (in the
direction developed in the papers mentioned above).

Our aim in this paper is to start an investigation on this topic. In fact, we aim to show how
some of the techniques already developed and successfully applied in the single-valued case can
also be adapted to handle with some multivalued situations.

The objective of our investigation in this paper is twofold.
On the one hand, we want to show how a very simple multiplicative noise (in the Itô sense)

can produce a stabilising effect on the solutions of a deterministic partial differential inclusion.
This is an important fact when we want to stabilise an unstable system by acting on it with an
external forcing term. Although there exists a controversy on the use of different kinds of noise
(Itô versus Stratonovich), we will not go deeper in this discussion and simply show, in Section
2, a first easy way to produce stabilisation of a deterministic partial differential inclusion. It
may be possible to obtain the same result with a much more complicate noisy term, and even
one may try to get stabilisation by using linear Stratonovich noise (as in [13]), or much general
additive noise (as in [4]), but these will be the topics for some future papers.

On the other hand, we will show in Section 3 how the theory of random dynamical systems
can be a suitable and helpful tool in the analysis of the effects produced by noise in some
deterministic multivalued dynamical systems. In fact, we will consider a partial differential
equation (of reaction-diffusion type) without uniqueness of solutions, and which generates a
multi-valued or set-valued dynamical system but without having a global attractor. Then, if
we add a high-intensity multiplicative linear Itô noise, we will prove that the stochastic model
generates a random dynamical system which possesses a random attractor. This reflects a
regularising/stabilising effect of the noise. Even more, in some situations and for a higher
intensity of the noise this random attractor becomes a single random point (random equilibria).

2 Stabilising evolution inclusions

2.1 Setting of the problem

Let V be a separable and reflexive Banach space (with norm || · || and inner product ((·, ·))),
and consider a Hilbert space H (with norm | · | and inner product (·, ·)). If we identify H with
its dual space, then we can identify H with a subspace of V ′, so that we have

V ↪→ H ↪→ V ′,

where the previous inclusions are continuous and dense. We will denote by || · ||∗ the norm in
V ′ and by 〈·, ·〉 the duality product between V and V ′.

Now, let us consider the following stochastic evolution inclusion in the Ito sense




du (t)
dt

∈ Au (t) + F (u (t)) +
∑d

i=1 Biu(t)
dwi (t)

dt
, 0 ≤ t < +∞,

u (0) = u0 ∈ H,
(1)

where w1, w2, ..., wd are mutually independent standard Wiener processes over the same filtered
probability space (Ω,F , {Ft}t≥0,P), Bi : H → H is a linear operator for i = 1, ..., d, A : V → V ′
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is a linear A operator which is the infinitesimal generator of a strongly continuous semigroup (i.e.
of class C0) denoted by S (t). As we are interested in analysing the behaviour of the variational
solutions of (1) (see below for the definition), we need to assume some additional hypotheses
ensuring their existence. To be more precise, we need the following assumptions:

Coercivity: There exist α > 0, λ ∈ R such that

−2 〈Au, u〉+ λ|u|2 ≥ α||u||p, for all u ∈ V, (2)

where p > 1 is fixed.
Boundedness: There exists β > 0 such that

||Au||∗ ≤ β||u||p−1, for all u ∈ V. (3)

Notice that, in the case p = 2, condition (2) implies that operator A is the generator of a strongly
continuous semigroup (see Dautray and Lions [15, page 388]).

On the other hand, we assume that F : H → 2H satisfies:

(F1) F has closed, bounded, convex, non-empty values.

(F2) There exists C > 0 such that

distH (F (u) , F (v)) ≤ C|u− v|, ∀u, v ∈ H,

where distH(·, ·) denotes the Hausdorff distance between bounded sets.

(F3) F (0) = 0.

Under the preceding assumptions (in fact without assuming (2), (3) and (F3)), Theorem 2.1
in Da Prato and Frankowska [16] ensures the existence of at least one solution u (·) of (1) for
any random variable u0 ∈ Lp(Ω,F0,P,H) with some p > 2. By such a solution we mean an
adapted process u(·) taking values in H and such that:

1. u (·, ω) is continuous for P-a.a. ω ∈ Ω.

2. For any T > 0, u(·) is a mild solution, on the interval [0, T ] , of the problem
{

du (t) = Au(t) dt + f (t) dt +
∑d

i=1 Biu(t)dwi (t) ,
u(0) = u0,

(4)

in other words, we have for all t ∈ [0, T ],

u(t) = S(t)u0 +
∫ t

0
S(t− s)f(s) ds +

d∑

i=1

∫ t

0
S(t− s)Biu(s)dwi (s) ,

being f (·) an adapted process such that

f (s, ω) ∈ F (u (s, ω)) , for a.a. (s, ω) ∈ (0, T )× Ω,

E
(∫ T

0
|f (s) |2ds

)
< ∞.
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Observe that, for the selection f(·), the unique mild solution to (4) is given by u(·).

Remark 2.1 Although we have imposed that the initial value u0 belongs to the space Lp(Ω,F0,P,H)
for some p > 2, there are some interesting cases in which it is possible to take p = 2 (see Da
Prato and Frankowska [16] for more details on this point).

However, in order to apply Itô’s formula (or to make an appropriate change of variable) we
need to handle a stronger concept of solution, say, either the so-called strong solution or the
variational concept of solution. In this paper we consider the latter one.

In addition to the previous assumptions we do assume now (2) and (3). Then (see Pardoux
[21]), for any u0 ∈ Lp(Ω,F0,P,H) (p > 2), there exists a unique variational solution of problem
(4). In other words, there exists a stochastic process v(·) which belongs to Lp(Ω × (0, T );V ) ∩
L2(Ω; C(0, T ; H)) and that satisfies the equation in (4) in the sense of V ′, i.e., it follows that,
for all t ∈ [0, T ],

v(t) = u0 +
∫ t

0
(Av(s) + f(s)) ds +

d∑

i=1

∫ t

0
Biv(s) dwi (s) , for P− a.a. ω ∈ Ω, (5)

where the equality is understood in the sense of V ′. Now, taking into account that the variational
solution (when it exists) is also a mild solution (see, e.g. Caraballo [3]) we have that, for an
initial datum u0 ∈ Lp(Ω,F0,P,H), and for the selection f(·) in (4), we can ensure the existence
of a unique variational solution which is also a solution of (1) in the sense of Da Prato and
Frankowska. So, from now on, when we deal with a solution of (1) we will be always referring
to this one.

2.2 Stabilisation by a linear one-dimensional noise

An important task in the asymptotic behaviour of dynamical systems is the analysis of the
stability properties. As it has been mentioned in the Introduction, on some occasions it might
be very important to act on a system so that its stability properties can be improved. For
instance, the original (deterministic or stochastic) system may be unstable and after our action
it becomes stable (or being already stable, we might be able of improving their stability, say, we
increase the approaching speed of solutions, etc....). Although this problem has been extensively
studied in the literature in the single-valued case, as far as we know, it still has not been
considered in a set-valued framework. It is our aim here to establish some preliminary results
which can serve as the basis for further investigations in this field.

As it has been noted in the single-valued case, in order to produce a stabilization effect on
deterministic (and even stochastic) systems one does not need to perturb the model with a very
general noise (provided it is considered in the Itô sense). In fact, a very simple multiplicative one
is enough. However, if we consider the noise in the sense of Stratonovich, the analysis requires
of a much more complicate structure in the noise (see, e.g. [13] and [4] for a detailed discussion
on this topic). Nevertheless, we do not aim to go deeper in this direction in the present paper,
since this will be the topic of some future work.

Now we can establish our main stabilisation result
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Theorem 2.2 Assume that B2 = · · · = Bd = 0 and B1 is given by B1v = σv for v ∈ H, and
σ ∈ R. Under the preceding hypotheses, for a large enough σ2 such that γ = σ2 − λ− 2C > 0 (λ
and C are the constants appearing in (2) and (F2)), there exists Ω0 ⊂ Ω with P(Ω0) = 0 and a
random variable T (ω) ≥ 0, such that for any initial datum u0 ∈ Lp(Ω,F0,P,H) (p > 2), any of
its corresponding solutions u(·) of problem (1) satisfies

|u(t, ω)|2 ≤ e−γt/2 |u0(ω)|2 for all t ≥ T (ω), a.s. (6)

Proof. Let us fix u0 ∈ L2(Ω,F0,P,H). Then, there exists at least a variational solution u(·)
of (1). This means that there exists a selection f(t) ∈ F (u(t)) such that u(·) is solution of (5),
which can be rewritten as{

du(t) = (Au(t) + f(t)) dt + σu(t)dw1(t)
u(0) = u0.

(7)

Then, if we perform the change of variable v(t) =e−σw1(t)u(t), thanks to our assumptions, it
follows that the process v solves the random problem




dv(t)
dt

= Av(t) + f̃(t)− σ2

2 v(t)

v(0) = u0,

where f̃(t) =e−σw1(t)f(eσw1(t)v(t)) ∈e−σw1(t)F (eσw1(t)v(t)). Then, taking into account that (F2)-
(F3) imply

|f̃(t)| ≤ C|v(t)|,
it follows from (2) that

d|v(t)|2
dt

= 2
〈

v(t), Av(t) + f̃(t)− σ2

2
v(t)

〉

≤ (λ− σ2)|v(t)|2 + 2(v(t), f̃(t))

≤ (λ− σ2 + 2C)|v(t)|2
= −γ|v(t)|2,

and, consequently,

|v(t, ω)|2 ≤ |u0(ω)|2e−γt, for all t ≥ 0, and all ω ∈ Ω.

Thus,
|u(t, ω)|2 ≤ |u0(ω)|2e−γt+σw1(t), for all t ≥ 0, and all ω ∈ Ω.

Noticing now that limt→∞
w1(t)

t
= 0, P − a.s., there exists Ω0 ⊂ Ω,P(Ω0) = 0, such that for

ω /∈ Ω0 there exists T (ω) satisfying, for all t ≥ T (ω),

σw1(t)
t

≤ γ

2
,

and, therefore,

|u(t, ω)|2 ≤ |u0(ω)|2e−γt/2, for all t ≥ T (ω), and all ω /∈ Ω0.
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Remark 2.3 As we have already mentioned, this result illustrates how we can stabilise a possible
unstable system by adding a linear multiplicative noise. It is also possible to develop a similar
theory to the existing one in the single-valued case in order to establish sufficient conditions
ensuring the stability properties of the stochastic inclusion (1) with even nonlinear operators
in the diffusion term (see, e.g. [5]). Moreover, we could also analyse the existence of random
attractors for the set-valued dynamical system generated by the stochastic evolution inclusion
(with very special kinds of noise: multiplicative or additive) and compare with the deterministic
situation. However, instead of doing this with a differential inclusion we will carry out the
problem in the next section but working with a partial differential equation without uniqueness
of solutions, which also yields to a set-valued dynamical system.

3 Stabilising a PDE without uniqueness properties

As far as we know, the analysis carried out in the literature concerning the effects of noise in
the asymptotic behaviour of deterministic systems has been done in several directions: stabi-
lization of constant solutions (equilibria) by different types of noise (see, e.g., [1], [7], [5], [13]),
improvement of the stability of already stable solutions (see, e.g., [5]), existence of exponentially
stable stationary solutions for stochastic perturbations of deterministic models ([6]), existence
of random attractors for special stochastic perturbations (additive or multiplicative linear noise)
of deterministic models possessing global (deterministic) attractors ([8], [4]), and also comparing
the structure of the deterministic attractor with the corresponding random one, which can yield
to prove that both attractors have “more or less” the same complexity or structure ([9]), or
the random one can be somehow simpler ([8], [4]). But the common fact in all the cases we
know is that the deterministic problem already possesses a global attractor. However, there is
a research line which remains unexplored, and which is very important in our opinion. We are
referring to the problem of analyzing if the appearance (or addition) of certain kind of noise
in a deterministic model which does not have a global attractor, could ensure the existence
of a non-trivial random attractor for the stochastically perturbed one. Later, it could be also
interesting to investigate when this random attractor becomes a single (fixed) equilibrium.

Although we could have developed our theory in a single-valued framework, we have preferred
to proceed directly in a more general set-valued context in the case of a reaction-diffusion
equation (eventually) without uniqueness of solutions.

In what follows we will first recall some definitions and results from the theory of random
attractors for set-valued random dynamical systems. Next, and before setting our reaction-
diffusion model, we will exhibit a “simple” example of an ordinary differential equation which
does not have a global attractor, and will show how the addition of a high intensity linear
noise in the sense of Itô ensures the existence of a non-trivial random attractor. If the noise is
considered in the sense of Stratonovich, the random perturbed model will not have a random
attractor (same behaviour than the deterministic equation) no matter how large is the intensity
of the noise. Finally, we will establish the general results for our reaction-diffusion equation
without uniqueness.

Of course, these are the first results on this direction and much more analysis has to be done
in the future. We hope that this paper could be considered, at least, as a stimulating reason to
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continue investigating on this topic.

3.1 Preliminaries on set-valued random dynamical systems and random at-
tractors

We summarize the main concepts and results from the theory of random attractors of set-valued
(or multi-valued) random dynamical systems developed in the papers [10], [11], [12].

Let (X, dX) be a complete and separable metric space with the Borel σ-algebra B (X). Let
(Ω,F ,P) be a probability space and θt : Ω → Ω a measure preserving group of transformations
in Ω such that the map (t, ω) 7→ θtω is measurable and satisfying

θ0 = Id; θt+s = θt ◦ θs = θs ◦ θt, for t, s ∈ R.

The set R is endowed with its Borel σ-algebra B (R) .

Definition 3.1 A set valued map G : R+×Ω×X → C(X) (C(X) denotes the set of non-empty
closed subsets of X) is called a set-valued or multi-valued random dynamical system (MRDS)
if is measurable (see Aubin and Frankowska [2], definition 8.1.1) and satisfies

i) G(0, ω) = Id on X;

ii) G(t + s, ω)x = G(t, θsω)G(s, ω)x (cocycle property) for all t, s ∈ R+, x ∈ X, ω ∈ Ω

Remark 3.2 Observe that we will use the notation G(t, ω)x instead of G(t, ω, x).

Remark 3.3 Throughout this paper all assertions about ω are assumed to hold on a θ-invariant
set of full measure (unless otherwise stated).

Using the notation and assumptions from [10] and [11], we have the following definition.

Definition 3.4 A closed random set ω 7→ A(ω) is said to be a global random attractor of the
MRDS G if:

i) G(t, ω)A(ω) ⊇ A(θtω), for all t ≥ 0, P− a.s (that is, it is negatively invariant);

ii) for all D ⊂ X bounded,
lim

t→+∞ dist(G(t, θ−tω)D,A(ω)) = 0;

iii) A (ω) is compact P− a.s.

Let us now establish two assumptions which will be crucial in the following theorem.

(H1) There exists an absorbing random compact set B(ω), that is, for P−almost all ω ∈ Ω and
every bounded set D ⊂ X, there exists t(ω,D) such that for all t ≥ t(ω, D)

G(t, θ−tω)D ⊂ B(ω). (8)
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(H2) G(t, ω) : X → C(X) is upper semicontinuous, for all t ∈ R+ and ω ∈ Ω.

Theorem 3.5 (see [10], [11]) Let assumptions (H1) − (H2) hold , the map (t, ω) 7→ G(t, ω)D
be measurable for all deterministic bounded sets D ⊂ X, and the map x ∈ X 7→ G(t, ω)x have
compact values. Then,

A(ω) :=
⋃

D⊂X
bounded

ΛD(ω) (9)

is a global random attractor for G (measurable with respect to F). It is unique and the minimal
closed attracting set.

Moreover, if the map x 7−→ G(t, ω)x is lower semicontinuous for each fixed (t, ω), then the
global random attractor A (ω) is strictly invariant, i.e., G(t, ω)A(ω) = A(θtω), for all t ≥ 0.

Remark 3.6 Although it is possible to refer the attractor to attract a universe of random sets
instead of attracting only deterministic bounded sets (see, e.g. [6]), this last universe is enough
for our purposes.

In what follows, we will consider as our base probability space (Ω,F ,P) the canonical one
generated by a standard two-sided real Wiener process Wt (t ∈ R). In other words, we consider
the Wiener probability space (Ω,F ,P) defined by

Ω = {ω ∈ C (R,R) | ω (0) = 0} ,

equipped with the Borel σ−algebra F , the Wiener measure P, and the usual uniform convergence
on bounded sets of R. Recall that Wt(ω) := ω(t) and that the flow θt is defined as

(θtω)(s) = ω(t + s)− ω(t), for t, s ∈ R.

3.2 A motivating single-valued example: Stabilisation to a random attractor

To illustrate our later analysis, we would like to consider now an example given by an ordinary
differential equation which does not possess a global attractor and show the different effects that
a very simple noise can produce on the systems depending on the interpretation given to the
noise (Itô or Stratonovich).

Consider the following initial value (autonomous) problem
{

ẋ(t) = x(t) + 1
x(0) = x0,

(10)

with x0 ∈ R. As the solution of (10) is

x(t; 0, x0) = −1 + (x0 + 1)et, (11)

it is clear that the dynamical system generated by the equation in (10) does not possess a global
attractor.
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First, let us assume that a linear Itô noise appears in the equation, i.e, let us consider the
following problem {

ẋ(t) = x(t) + 1 + σx(t)
dWt

dt
x(s) = x0,

(12)

where σ ∈ R represents the intensity of the noise and s ∈ R is the initial time. It can be easily
seen (see, e.g., [14], [8]) that this equation generates a single-valued random dynamical system.
More precisely, we can first transform (12) into an equivalent problem but for a stochastic
equation in the sense of Stratonovich, namely

{
ẋ(t) = (1− σ2

2 )x(t) + 1 + σx(t) ◦ dWt

dt
x(s) = x0,

(13)

where the ◦ denotes the Stratonovich sense for the stochastic term. Now, in order to obtain the
expression for the random dynamical system generated by this equation, we perform a suitable
change of variables which transforms our stochastic equation into a random one. Indeed, for a
fixed realisation of our Wiener process, i.e., for a fixed ω ∈ Ω, and setting y(t) = e−σWt(ω)x(t),
we obtain {

ẏ(t) = (1− σ2

2 )y(t) + e−σWt(ω)

y(s) = ys = e−σWs(ω)x0,
(14)

whose solution is explicitly given by

y(t; s, ω, ys) = e(1−σ2

2
)(t−s)e−σWs(ω)x0 + e(1−σ2

2
)t

∫ t

s
e−(1−σ2

2
)re−σWr(ω)dr.

Therefore, the random dynamical system G(t, ω) generated by our problem is defined as

G(t, ω)x0 = eσWt(ω)y(t; 0, ω, x0).

If we now choose σ with absolute value large enough so that 1 − σ2

2 < 0, then it is possible to
take limits when s → −∞ (observe that the resulting improper integral below is well defined)
yielding

lim
s→−∞ y(t; s, ω, ys) = e(1−σ2

2
)t

∫ t

−∞
e−(1−σ2

2
)re−σWr(ω)dr,

and, consequently

lim
s→−∞ eσWt(ω)y(t; s, ω, ys) = e(1−σ2

2
)teσWt(ω)

∫ t

−∞
e−(1−σ2

2
)re−σWr(ω)dr. (15)

Denoting now

A(ω) =
∫ 0

−∞
e−(1−σ2

2
)re−σWr(ω)dr,

it is straightforward to check that x(t, ω) := A(θtω) is a stationary solution of the stochastic
equation in (13), and the following equality holds

A(θtω) = e(1−σ2

2
)teσWt(ω)

∫ t

−∞
e−(1−σ2

2
)re−σWr(ω)dr.
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Therefore, using the arguments in [14], it can be easily deduced from (15) that A(ω) is a
non-trivial random attractor for our problem (12). So, this kind of Itô noise has produced a
stabilisation effect to a random attractor.

However, if we consider the noise in the Stratonovich sense from the very beginning, i.e. if
we consider {

ẋ(t) = x(t) + 1 + σx(t) ◦ dWt

dt
x(s) = x0,

(16)

then, we obtain (repeating the previous analysis) that

x(t; s, ω, ys) = et−seσ(Wt(ω)−Ws(ω))x0 + eteσWt(ω)

∫ t

s
e−re−σWr(ω)dr

and we now cannot take limits as s → −∞ because the resulting improper integral has no
sense now. This and the fact that the first term is not bounded as s → −∞ imply that the
stochastic equation in the sense of Stratonovich does not possess a random attractor for any
σ ∈ R. Consequently, the contribution of the Itô noise to the dissipativity of the problem is
determining to obtain the stabilisation to the random attractor.

3.3 Setting of the problem

Consider the following stochastic PDE in the Itô sense




∂u (t, x)
∂t

−∆u (t, x) + f (u (t, x)) = h(x) + σu(t, x)
dWt (t)

dt
, t0 ≤ t < +∞, x ∈ O,

u(t, x) = 0 , for t > t0, x ∈ ∂O,
u (t0, x) = u0(x), for x ∈ O,

(17)

where O ⊂Rd is a bounded open set with boundary ∂O regular enough, u0, h ∈ L2(O), and Wt

is the two-sided real Wiener process (t ∈ R) above.on the probability space (Ω,F ,P).
As usual we will denote by | · | and (·, ·) the norm and inner product in the space L2(O),

by || · || and ((·, ·)) the corresponding ones in the Sobolev space H1
0 (O), and by 〈·, ·〉 the duality

product between H1
0 (O) and its topological dual H−1(O) with norm || · ||∗.

Recall that
H1

0 (O) ↪→ L2(O) ↪→ H−1(O),

where the inclusions are dense and compact and

λ1|u|2 ≤ ||u||2, for u ∈ H1
0 (O),

where λ1 denotes the first eigenvalue of −∆ in H1
0 (O).

The hypotheses for the nonlinear term f are the following

f.1) f ∈ C(R;R).

f.2) |f(u)| ≤ γ|u|+ c, c ∈ R, γ > 0.
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Proposition 3.7 Under assumption f.2) there exist α, M ∈ R such that

f(u)u ≥ αu2 −M, for all u ∈ R. (18)

Proof. The proof follows by a straightforward application of Young’s inequality. The
constants α and M will depend on the different ways in which we can apply that inequality.
One of them provides α = −γ − 1

2 , M = c2

2 .

Observe that, under the preceding assumptions on the function f, the deterministic problem
(i.e. (17) with σ = 0) may not possess a global attractor. We will show that, for a σ2 large
enough, the MRDS generated by the stochastic problem will have a random attractor. This can
be interpreted as a regularizing effect produced by the noise on the deterministic problem.

To construct the MRDS generated by (17), we will perform again the change of variables we
used in the precedent motivating example, after having rewritten the problem in its equivalent
Stratonovich formulation. Indeed, observe that we can rewrite (17) as





∂u (t, x)
∂t

−∆u (t, x) + f (u (t, x)) = h(x)− 1
2σ2u(t, x) + σu(t, x) ◦ dWt

dt
, t0 ≤ t < +∞, x ∈ O,

u(t, x) = 0, for t > t0, x ∈ ∂O,
u (t0, x) = u0(x), for x ∈ O.

(19)
Given again a fixed realisation of our Wiener processes Wt(ω), we use the following change

of variable v = ue−σWt and obtain a random PDE




∂v(t, x)
∂t

−∆v(t, x) + e−σWtf
(
v(t, x)eσWt

)
= h(x)e−σWt − 1

2σ2v(t, x), t0 ≤ t < +∞, x ∈ O,

v(t, x) = 0, for t > t0, x ∈ ∂O,
v (t0, x) = u0(x)e−σWt0 , for x ∈ O.

(20)
Denoting now

gω(t, v) = e−σWtf(veσWt),

we can prove the following estimates.

Proposition 3.8 Under the previous assumptions on f, there exist constants Mω, cω ∈ R such
that

gω(t, v)v ≥ αv2 −Mω, (21)

|gω(t, v)| ≤ γ|v|+ cω. (22)

Proof. The proof follows easily from f.2) and (18). In fact, the constants Mω and cω are
given by

Mω = e−2σWtM, cω = e−σWtc.

11



Denote also hω (t, x) = h (x) e−σWt ∈ L2
(
t0, T ;L2 (O)

)
for any T > t0. Then (20) can be

rewritten as 



∂v

∂t
−∆v + gω (v) = hω − 1

2σ2v, t0 ≤ t < +∞,

v(t) = 0 on ∂O,
v (t0) = v0 = u0e

−σWt0 ,

(23)

where from now on we will omit the arguments in the function v when no confusion is possible.
Property (22) implies that gω (t, v) ∈ L2(0, T ;L2(O)) if v ∈ L2(0, T ;L2(O)).

Definition 3.9 The function v = v(t, x) ∈ L2(t0, T ;H1
0 (O))) is called a solution of (23) on

(t0, T ), if for arbitrary η ∈ H1
0 (O),

∂

∂t
(v, η) + ((v, η)) + (gω(t, v), η) +

σ2

2
(v, η)− (hω, η) = 0, (24)

in the sense of scalar distributions on (t0, T ).

It follows from this definition that
dv

dt
= 4v − σ2

2 v − gω(t, v) + hω(t) ∈ L2
(
t0, T ;H−1 (Ω)

)
.

Hence, equality (24) is equivalent to the following one:
∫ T

t0

〈
dv

dt
, ξ

〉
dt +

∫ T

t0

((v, ξ)) dt +
σ2

2

∫ T

t0

(v, ξ) dt +
∫ T

t0

(gω (t, v) , ξ) dt =
∫ T

t0

(hω, ξ) dt, (25)

for all ξ ∈ L2(t0, T ; H1
0 (Ω)).

Since
dv

dt
belongs to L2(t0, T ; H−1(O)), an arbitrary solution of (23) belongs to C([t0, T ], L2(O))

[23, p.261]. Also, the map t 7→ ‖u(t)‖2 is absolutely continuous on [0, T ] and a.e. on [t0, T ],

1
2

d

dt
|v(t)|2 =

〈
dv

dt
, v

〉

= −‖v(t)‖2 − σ2

2
|v(t)|2 − (gω(t, v(t)), v(t)) + (hω(t), v(t)). (26)

The property v ∈ C([t0, T ], L2(O)) allows us to consider the Cauchy problem

v(t, x)|t=t0 = v0(x) ∈ L2(O).

Theorem 3.10 For any ω ∈ Ω and T > t0 there exists at least one solution for problem (20)
on [t0, T ].

Proof. The existence of a solution will be proved by the Galerkin approximation method.
Let {wj}∞j=1 ⊂ H2(O) ∩H1

0 (O) be an orthonormal basis in L2(O), which consists of the eigen-
functions of −4 in H1

0 (O). This basis is complete in H1
0 (O). We denote by [w1, ..., wN ] the

space spanned by {wj}N
j=1, and by PN : L2(O) 7→ [w1, ..., wN ] the orthoprojector defined by

PNv =
N∑

j=1

(v, wj)wj , ∀ u ∈ L2(O).

12



For every N ≥ 1 we consider vN = vN (t, x) =
N∑

j=1
cN
j (t)wj(x), where the unknown functions

{cN
j (·)}N

j=1 satisfy the following system of ordinary differential equations:




d

dt
cN
j + λjc

N
j + σ2

2 cN
j + (gω(t,

N∑
j=k

cN
k (t)wk(x)), wj) = (hω, wj), j = 1, ...N,

vN (0) = vN
0

(→ v0, in L2(O)
)
,

(27)

where λi are the eigenvalues of −∆ in H1
0 (O) .

From well-known results on the existence of solutions for ordinary differential equations, for
every N ≥ 1 there exists TN > t0 such that there exists at least a solution of (27), say vN , on
[t0, TN ]. Now we deduce a priori estimates, which will guarantee that TN = T . If follows from
(21) that

d

dt

∣∣vN (t)
∣∣2 + 2‖vN (t)‖2 ≤ 2|(hω(t), vN (t))|+ 2Mωµ (O)− 2α

∣∣vN (t)
∣∣2

≤ K1

∣∣vN (t)
∣∣2 + K2(|hω(t)|2 + 1),

where the constants K1,K2 > 0 do not depend on N . It follows from the Gronwall lemma that
∣∣vN (t)

∣∣ ≤ K3, for all t ∈ [t0, T ],
∫ T

t0

‖vN (t)‖2dt ≤ K3,

where K3 > 0 does not depend on N . We obtain that TN = T and also that the sequence
{vN} is bounded in L2(t0, T ; H1

0 (O)) ∩ L∞(t0, T ; L2(O)). It follows from these inequalities and
(22) that gω(t, vN ) is bounded in L2

(
t0, T ; L2 (O)

)
. Further, in view of (27) and the equality

PN (4vN ) = 4vN (which is true because our basis consists of the eigenfunctions of −∆ in
H1

0 (O)) we have

vN
t = 4vN − σ2

2
vN − PNgω(t, vN ) + PNhω(t),

so that the sequence {vN
t } is bounded in L2(t0, T ; H−1(O)). Therefore by the Compactness

Lemma (see [19]) there is a function v = v(t, x) ∈ L2(0, T ; H1
0 (O))∩L∞(0, T ; L2(O)) such that,

up to a subsequence,

vN → v weakly in L2(t0, T ;H1
0 (O)) and weakly star in L∞(t0, T ;L2(O)),

vN → v strongly in L2(t0, T ;L2(O)),
vN (t) → v(t) in L2(O) for a.a. t ∈ (t0, T ),

vN (t, x) → v(t, x) for a.a. (t, x) ∈ (t0, T )×O.

(28)

Hence gω(t, vN (t, x)) → gω(t, v(t, x)) for a.a. (t, x) ∈ (t0, T )×O. Since the sequence {gω(t, vN )}
is bounded in L2(t0, T ; L2(O)), up to a subsequence gω(t, vN ) → χ weakly in L2(t0, T ;L2(O)).
Then we have that gω(t, vN ) → χ = gω(t, v) weakly in L2(t0, T ; L2(O)) (see [19]). This fact and
(28) allow us to pass to the limit in the equality

−
T∫

0

(vN , wj)ηtdt +

T∫

0

(
((vN , wj)) +

σ2

2
(
vN , wj

)
+ (gω(t, vN ), wj)− (hω, wj)

)
ηdt = 0 (29)
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for each fixed j ≥ 1. In view of the completeness of {wj} in H1
0 (O) we deduce that the limit

function u satisfies (24). Thus, v ∈ L2(0, T ; H1
0 (O)) is a solution of (23). Further, in a standard

way by using the Ascoli-Arzelà theorem and the compact embedding L2(O) ⊂ H−1(O) we obtain
that vN → v in C

(
[t0, T ],H−1 (O)

)
. In particular, vN (0) → v(0) in H−1(O), but we have also

that vN (0) → v0 in L2(O), so that v(0) = v0.

Notice that all the solutions whose existence is ensured by the previous theorem can be
extended to be defined for all t ≥ t0, by simply concatenating solutions. This is important in
order to construct the dynamical system. Indeed, for any u0 ∈ L2(O) and ω ∈ Ω, let us denote
by D(ω, u0) the set of all solutions (globally defined in time) v of (20) corresponding to t0 = 0,
and set

G(t, ω)u0 =
⋃

v∈D(ω,u0)

eσWt(ω)v(t). (30)

Then, G is a set-valued random dynamical system. The proof follows the same lines that the
ones in [12], so the reader is referred to this reference for the details.

We also note that if we additionally assume that f ∈ C1(R;R) and the derivative f ′ is
bounded below, i.e.

f ′ (u) ≥ −C, (31)

then it is easy to see that ∂
∂vgω(t, v) ≥ −C, also. Then in a standard way one can check that

we have uniqueness of the Cauchy problem, and the map G defines a single-valued random
dynamical system, i.e. it is a cocycle. We note that the result that we prove in the following
section is also new for this case.

It is also important to point out that under condition (31) it is possible to obtain the existence
and uniqueness of the Cauchy problem for the original stochastic equation (17) (see e.g. [21]).
However, without this additional assumption we failed to obtain a theorem on existence of
solutions due to some difficulties in the proof of the measurability of the solution.

3.4 Existence of a random attractor

We can now prove the existence of a random attractor for the set-valued random dynamical
system defined in (30). We will check that the assumptions in Theorem 3.5 hold.

Proposition 3.11 Under the conditions f.1)-f.2), if σ is such that β := λ1 + α + σ2

2 > 0,
then there exists r1 : Ω → R+ measurable such that, for all R > 0 and all ω ∈ Ω, there exists
t(ω, R) > 1 satisfying

‖G(t− 1, θ−tω)BR‖ ≤ r1(ω), for all t ≥ t(ω, R),

where BR denotes the ball in H centered at 0 and with radius R.

Proof. Let v be a solution of (20). From (26) and (21) we obtain

1
2

d

dt
|v(t)|2 + ‖v(t)‖2 + α|v(t)|2 −Me−2σWt ≤ |h| |v(t)|e−σWt − 1

2
σ2|v(t)|2,
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and, consequently

1
2

d

dt
|v(t)|2 +

(
λ1 + α +

1
2
σ2

)
|v(t)|2 −Me−2σWt ≤ |h| |v(t)|e−2σWt . (32)

By Young’s inequality we deduce the existence of positive constants c1, c2 > 0, such that

d

dt
|v(t)|2 + β|v(t)|2 ≤ (c1|h|2 + c2)e−2σWt .

By the Gronwall lemma in [t0,−1], with t0 ≤ −1 we get

|v(−1)|2 ≤ e−β(−1−t0)|u0|2e−2σWt0 + eβ

∫ −1

t0

eβs(c1|h2|+ c2)e−2σWs) ds.

Thus, given R > 0 and considering the bounded set BR, there exists t(ω,R) ≤ −1 such that,
for all t0 ≤ t(ω, R) and all u0 ∈ BR we have that

|v(−1)|2 ≤ r2(ω),

with

r2(ω) = eβ(1 +
∫ −1

−∞
eβs(c1|h2|+ c2)e−2σWs) ds).

It is enough to choose t(ω, R) such that

eβ(1+t0)e−2σWt0 |R|2 ≤ 1, for all t0 ≤ t(ω, R),

since
eβte−2σWt → 0 as t → −∞, P− a.s.

The measurability of r(ω) follows, from example, as in Crauel and Flandoli [14].
Let y ∈ G(−t0 − 1, θt0ω)BR. Then, y = eσW−1−σWt0z(−t0 − 1), being z a solution of (20)

with z(0) = u(0) ∈ BR and with θt0ω instead of ω. Then,

∂z

∂t
−∆z + e−σ(Wt+t0−Wt0)f

(
zeσ(Wt+t0−Wt0 )

)
= he−σ(Wt+t0−Wt0 ) − 1

2
σ2z. (33)

If we now make the change v(t) = z(t)e−σWt0 we get

∂v

∂t
−∆v + e−σWt+t0f

(
veσWt+t0

)
= he−σWt+t0 − 1

2
σ2v, (34)

with v(0) = u0e
−σWt0 . If we write τ = t + t0 we have

∂v

∂τ
−∆v + e−σWτ f

(
veσWτ

)
= he−σWτ − 1

2
σ2v, (35)

and v(t0) = u0e
−σWt0 . Thus, by the previous arguments

|v(−1)|2 ≤ r2(ω), for all t0 ≤ t(ω, BR),

so that
|y|2 ≤ e2σW−1r2(ω) = r2

1(ω).
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Proposition 3.12 Given un → u0 weakly in L2(O), tn → t0 and ωn → ω0, with yn ∈
G(tn, ωn)un, there exists a subsequence ynk

converging to y0 ∈ G(t0, ω0)u0. As a consequence,
the maps (t, ω, x) 7→ G(t, ω)x, (t, ω) 7→ G(t, ω)D (where D is any bounded set of L2(O)) are
measurable, G possesses an absorbing random compact set, has compact values, and G(t, ω) is
upper semicontinuous for all (t, ω) ∈ R× Ω.

Proof. Take T > 0 such that tn, t0 ∈ [0, T ]. For yn ∈ G(tn, ωn)un there exist solutions of
(20) vn(·) with vn(0) = un such that yn = eσWtn vn(tn).

If we multiply (20) by vn (see (26)) using (21) we get, for Wn
t = Wt(ωn),

1
2

d

dt
|vn(t)|2 + ‖vn(t)‖2 ≤ M1e

−2σW n
t (|h|2 + 1) + (−α− σ2

2
+

1
2
)|vn|2.

As ωn → ω0 and t ∈ [0, T ] we have a uniform bound

|Wn
t | ≤ K, ∀t ∈ [0, T ],

so that
d

dt
|vn(t)|2 + 2‖vn(t)‖2 ≤ M2 + M3|vn|2

and so

|vn(t)|2 + 2
∫ t

s
‖vn(s)‖2 ≤ M2(t− s) + M3

∫ t

s
|vn(s)|2 ds. (36)

Now, by Gronwall’s lemma, we obtain that vn are bounded in L∞(0, T ; L2(O))∩L2(0, T ;H1
0 (O)).

Now, taking subsequences if necessary, and using the compactness Lemma [19], we have that

vn → v weakly in L2(0, T ;H1
0 (O)), and strongly in L2(0, T ; L2(O)),

vn → v weakly star in L∞(0, T ; L2(O)),
vn(t) → v(t) strongly in L2(O), for almost all t ∈ [0, T ],
dvn

dt
→ dv

dt
weakly in L2(0, T ; H−1(O)),

vn(t, x) → v(t, x) for almost all (t, x) ∈ [0, T ]×O.

Thus,

gn(t, x) = e−σW n
t f(eσW n

t vn(t, x)) → g (t, x) = e−σWtf(eσWtv(t, x)) for a.a. (t, x) ∈ [0, T ]×O.

Moreover, we also have that |gn|L2(0,T ;H) ≤ C, so that arguning as in the proof of Theorem
3.10 we have gn → g weakly in L2(0, T ; L2(O)). Thus, v(·) is a weak solution of (20). Let us see
that v(0) = v0. Since L2(O) ↪→ H−1(O) compactly, from the Ascoli-Arzelà theorem we get that
vn → v in C([0, T ]; H−1(O)). Then, for every tn → t0 we have that v(tn) → v(t0) strongly in
H−1(O). Thanks to the uniform bound |vn(tn)| ≤ C, a standard argument gives v(tn) → v(t0)
weakly in L2(O). In particular,

vn(0) → v(0) = v0 = u0 weakly in L2(O). (37)

If we finally prove that v(tn) → v(t0) strongly in L2(O) we would finish the proof, since then

yn → eσWt0v(t0) ∈ G(t0, ω0)u0.
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Now, from (37) we get that
|v(t0)| ≤ lim inf

n→+∞ |vn(tn)|.
Let us finally prove that

lim sup
n→+∞

|vn(tn)| ≤ |v(t0)|. (38)

Let us define the non-increasing (see (36)) and continuous functions

Jn(t) = |vn(t)|2 −M2t−M3

∫ t

0
|vn(s)| ds,

J(t) = |v(t)|2 −M2t−M3

∫ t

0
|v(s)| ds.

As vn(t) → v(t) in L2(O), for almost all t ∈ [0, T ], and vn → v strongly in L2(0, T ;L2(O)),
we have that Jn(t) → J(t) for almost all t ∈ [0, T ]. Moreover, given 0 < tm < t0 such that
vn(tm) → v(t0) in L2(O), using that Jn are non-increasing and J is continuous, we get that
given ε > 0 there exist tm and N(ε, tm) such that

Jn(tn)− J(t0) ≤ Jn(tn)− Jn(tm) + Jn(tm)− J(tm) + J(tm)− J(t0)
≤ Jn(tn)− Jn(tm) + |Jn(tm)− J(tm)|+ ε

≤ 0 + ε + ε,

if n ≥ N (note that tn > tm for n large).
Thus,

lim sup
n→+∞

Jn(tn) = lim sup
n→+∞

|vn(tn)|2 −M2t0 −M3

∫ t0

0
|v(s)|2 ds ≤ J(t0),

from which we have (38), and so the result holds.
As a consequence, G(t, ω) has compact values. A standard argument (see, for instance,

Corollary 7 in [24]) implies that the map x → G(t, ω)x is upper semicontinuous. Finally, the
measurability of the maps (t, ω, x) 7→ G(t, ω)x, (t, ω) 7→ G(t, ω)D and the existence of an
absorbing random compact set follow from Lemma 2 in Kapustyan [17] and Proposition 3.11.

We finally have, as a consequence of Proposition 3.12 and Theorem 3.5, the following theorem:

Theorem 3.13 There exists a compact random attractor associated to (17).

As we remarked before, we have obtained that the random equation (23) possesses a random
attractor, despite the fact that equation (17) in the deterministic case (i.e. with σ = 0) may
not possess a global attractor, which can be interpreted as a regularizing effect produced by the
noise on the deterministic problem. This result is also new in the single-valued setting (which
appears assuming condition (31)), which is a particular case of our theorem. It is interesting to
point out that in the single-valued framework the existence of the global random attractor could
be established by using for example the arguments of [14]. However, the proof of the existence
of a compact absorbing set is not suitable for the set-valued case, as we do not have enough
regularity of solutions in order to justify the estimates in H1 spaces.
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3.5 Stabilisation to a single equilibrium

We have just proved that the addition of noise can imply the existence of a random attractor for
a stochastic perturbation of a deterministic model which could not have it previously. Although
we can interpret this result as a kind of stabilisation or regularization for the deterministic model,
it does not say anything about the stability or attractivity of the equilibria for the deterministic
system (if they exist). It may happens, as we will show below, that a deterministic equation
possesses an equilibrium (or more than one) which is not (or not known to be) stable, then the
appearance of a high intensity noisy term can ensure the existence of a random attractor which
is given by a single deterministic point (which is a steady state solution) and which attracts any
other solution. In other words, some improvement has been produced in the behaviour of the
system. Let us illustrate this with the following example.

Let us assume that the constant c = 0 in assumption f.2) and that h = 0 (for simplicity).
Then, it follows that f(0) = 0, α = −γ and M = 0, and therefore u ≡ 0 is an equilibrium of the
deterministic and the stochastic problems, i.e. (17) with σ = 0 and σ 6= 0.

Then, arguing as in the proof of Proposition 3.11, we obtain from (32)

d

dt
|v(t)|2 + 2

(
λ1 − γ +

1
2
σ2

)
|v(t)|2 ≤ 0.

Denoting β1 = 2
(
λ1 − γ + 1

2σ2
)
, we obtain for any u0 ∈ H and any t0 ≤ t

|v(t)|2 ≤ e−β1(t−t0)−2σWt0 |u0|2

and
|u(t)|2 ≤ e−β1(t−t0)+2σ(Wt−Wt0)|u0|2.

Then, observe the following facts:

• If λ1 − γ > 0, the null solution of the deterministic problem attracts any other solution
starting in any initial point u0. Futhermore, there exists a global attractor which is given
by A = {0}. Then for any σ ∈ R, the stochastically perturbed system also possesses a
random attractor which is given by A(ω) = {0}.

• If λ1 − γ < 0, then the deterministic problem may not have a global attractor, and even
the steady state null solution can be unstable (in fact, it is known to be unstable when,
for instance, we are in the linear case, i.e., f(u) = −γu). In this case, with a stochastic
perturbation of sufficently large intensity σ, namely, for σ such that β1 > 0, we can ensure
that there exists a random attractor which is again given by A(ω) = {0}. This means that
any solution starting at any point should approaches the steady state solution as t0 → −∞
(pullback sense) and, what is more important, in the forward sense, i.e. when t →∞.
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