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1. Introduction

Over the last decades, several turbulence models have been proposed for obtaining
closure, i.e., for capturing the physical phenomenon of turbulence at computably
low resolution. The Lagrangian-Averaged Navier-Stokes alpha (LANS-α) model is
the first to use Lagrangian averaging to address the turbulence closure problem,
and one of the main reason justifying its use is the high computational cost that
the Navier-Stokes model requires.

The LANS-α model provides closure by modifying the nonlinearity in the Navier-
Stokes equations to stop the cascading of turbulence at scales smaller than a certain
length, but without introducing any extra dissipation (see Holm et. al (2005) for a
nice detailed description of the development of the LANS-α model).

It is well known that the relation of the Navier-Stokes equations to the phe-
nomenon of turbulence have fascinated the physicists and mathematicians for a
long time. One of the popular hypothesis relates the onset of turbulence to the
randomness of background movement. Bensoussan & Temam (1973) pioneered an
analytic version of this approach based on investigations of stochastic Navier-Stokes
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equations driven by white noise type random forces, allowing to analyse a more re-
alistic model for the problem, since it is sensible to consider some kind of ‘noise’
in the equations which may reflect, for instance, some environmental effects on the
phenomenon, some external random forces, etc. Later, this approach was substan-
tially developed and extended by many authors (see, e.g. Mikulevicius & Rozovskii
(2004, 2005) and the references therein). We are now proposing in this paper a
stochastic version of the LANS-α model on a bounded domain which may be help-
ful and useful for future investigations towards a more complete knowledge and
understanding of turbulence.

To be more precise, we study existence and uniqueness of solution for the
3D-Lagrangian Averaged Navier-Stokes (LANS-α) equations, also called viscous
Camassa-Holm equations by some authors (see Foias et al. (2002) and the references
therein), with homogeneous Dirichlet boundary condition in a bounded domain, in
the case in which random perturbations appear. More exactly, we suppose given a
connected and bounded open subset D of R3, with a Lipschitz boundary ∂D, and
a final time T > 0. We denote by A the Stokes operator, and consider the system





∂t(u− α∆u) + ν(Au− α∆(Au)) + (u · ∇)(u− α∆u)
−α∇u∗ ·∆u +∇p = F (t, u) + G(t, u)Ẇt, in D × (0, T ),
∇ · u = 0, in D × (0, T ),
u = 0, Au = 0, on ∂D × (0, T ),
u(0) = u0, in D,

(1.1)

where u = (u1, u2, u3) and p are unknown random fields on D× [0, T ], representing,
respectively, the large-scale (or averaged) velocity and the pressure, in each point
of D × [0, T ], of an incompressible viscous fluid with constant density filling the
domain D. The constants ν > 0 and α > 0 are given, and represent respectively
the kinematic viscosity of the fluid, and the square of the spatial scale at which
fluid motion is filtered, u0 is a given initial velocity field, and the terms F (t, u)
and G(t, u)Ẇt represent random external forces depending eventually on u, where
Ẇt denotes the time derivative of a cylindrical Wiener process. The abstract and
general form of this stochastic term allows to include in the formulation certain
random environmental effects as well as the turbulent part of the velocity field,
as happens in the case of Navier-Stokes equations (see Mikulevicius and Rozovskii
(2004) for more details on the idea of splitting up the velocity field into a sum of
slow oscillating–deterministic– and fast oscillating–stochastic– components).

To the best of our knowledge, this paper is the first work dealing with a stochas-
tic version of the LANS-α model. In this sense, many topics and problems are to be
solved. For instance, one first needs to choose an appropriate mathematical frame-
work for setting up the problem, to prove existence, uniqueness and regularity of
solutions, to analyse their long time behaviour, to investigate how close are the
deterministic and stochastic versions when the intensity of the noise is small (this
would justify whether or not the deterministic model is a good approximation of
the more realistic stochastic one), to implement numerical simulations, to study the
effects caused by the noise in the intermittency and anomalous scaling features of
turbulence (see the nice description by Chertkov on this topics in page 136 of the
paper by Ecke (2005)). To this respect, and taking into account that noise may have
some regularizing and stabilising effects (as well as destabilising ones, see Caraballo
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3-dimensional Lagrangian averaged Navier-Stokes equations 3

& Langa (2001) for more details) it is possible that, for suitable forms of the noisy
term, one can obtain different results concerning these issues. However, with so
many points to be addressed and treated, we will content ourselves in this paper
with providing a suitable mathematical framework for (1.1) and prove existence
and uniqueness of solution.

One of our main objectives is to show that the deterministic model used by
Marsden and his collaborators (see, e.g., Marsden & Shkoller (2001), Coutand &
Shkoller (2004) amongst others) on bounded domains is sensible in the case of
bounded domains, in the sense that, when some stochastic disturbances appear or
are taking into account in the model, we can propose a stochastic version which
admits a rigorous mathematical treatment yielding to the existence and uniqueness
of solutions of the problem (this is our first step in this investigation). In addition,
our analysis also shows that the deterministic model is robust to stochastic per-
turbations of the kind considered. To do this, and instead of working directly with
our LANS-α model, we first establish a result ensuring existence and uniqueness
of solutions for a general model which contains this as a particular one, as well as
the case of a periodic box (see Holm et al. (2002)), and other interesting situations
from applications. As the proof strongly relies on the compactness of the injection
between the spaces involved in the variational formulation, this technique is not
suitable for more general unbounded domains. The analysis of the interesting sit-
uations related to infinite and semi-infinite domains (as channels, pipes, etc) will
require of different techniques which are to be explored in the future.

We would like to mention briefly that there exists a controversy regarding the
boundary condition Au = 0. We only wish to point out here that, from the mathe-
matical point of view, this condition makes sense in the case of bounded domains
and contributes to the well-posedness of the problem (see Marsden & Shkoller
(2001), and Coutand et. al. (2003) for more details).

We hope that this initial work can serve as a motivating paper which can attract
the attention and collaboration of researchers interested in this fascinating area
of turbulence, and that their knowledge of the issues arisen in the deterministic
framework, may serve as inspiration for obtaining as much understanding as possible
of this stochastic model.

The content of the paper is as follows. In Section 2 we first establish and prove
some properties of the nonlinear term appearing in our equations. The rigorous
statement of our problem as well as the main results are included in Section 3. The
existence and uniqueness of solutions for the abstract general equation are proved
in Section 4. Finally, the proofs of our main results are given in the last section.

2. Some results about the nonlinear term

Previously to the formulation of our main results, we will obtain some results on
the nonlinear term (u · ∇)(u− α∆u)− α∇u∗ ·∆u appearing in (1.1).

We will denote from now on by (·, ·) and | · |, respectively, the scalar product and
associated norm in (L2(D))3, and by (∇u,∇v) the scalar product in ((L2(D))3)3

of the gradients of u and v. We consider the scalar product in (H1
0 (D))3 defined

by ((u, v)) = (u, v) + α(∇u,∇v), for u, v ∈ (H1
0 (D))3, where its associated norm,

which is in fact equivalent to the usual gradient norm, will be denoted by ‖·‖. Let us
denote by H the closure in (L2(D))3 of the set V = {v ∈ (D(D))3 : ∇·v = 0 in D},
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and by V the closure of V in (H1
0 (D))3. Then, H is a Hilbert space equipped with

the inner product of (L2(D))3, and V is a Hilbert subspace of (H1
0 (D))3.

We denote by A the Stokes operator, with domain D(A) = (H2(D))3 ∩ V,
defined by Aw = −P(∆w), ∀w ∈ D(A), where P is the Leray operator, i.e., the
projection operator from (L2(D))3 onto H. Recall that as ∂D is Lipschitz, |Aw|
defines in D(A) a norm which is equivalent to the (H2(D))3-norm, i.e., there exists
a constant c1 > 0, depending only of D, such that

‖w‖(H2(D))3 ≤ c1|Aw|, ∀w ∈ D(A), (2.1)

and so D(A) is a Hilbert space with the scalar product (v, w)D(A) = (Av, Aw). For
given u ∈ D(A) and v ∈ (L2(D))3, we define (u · ∇)v as the element of (H−1(D))3

given by

〈(u · ∇)v, w〉 =
3∑

i,j=1

〈∂ivj , uiwj〉, ∀w ∈ (H1
0 (D))3. (2.2)

Observe that (2.2) is meaningful, since H2(D) ⊂ L∞(D), and H1
0 (D) ⊂ L6(D),

with continuous injections. This implies that uiwj ∈ H1
0 (D), and there exists a

constant c2 > 0, depending only on D, such that

|〈(u · ∇)v, w〉| ≤ c2|Au||v|‖w‖, ∀ (u, v, w) ∈ D(A)× (L2(D))3 × (H1
0 (D))3. (2.3)

Observe also that if v ∈ (H1(D))3, then the definition above coincides with defining
(u · ∇)v as the vector function whose components are

∑3
i=1 ui∂ivj , for j = 1, 2, 3.

Now, if u ∈ D(A), then ∇u∗ ∈ (H1(D))3×3 ⊂ (L6(D))3×3, and consequently,
for v ∈ (L2(D))3, we have that ∇u∗ · v ∈ (L3/2(D))3 ⊂ (H−1(D))3, with

〈∇u∗ · v, w〉 =
3∑

i,j=1

∫

D

(∂jui)viwj dx, ∀w ∈ (H1
0 (D))3. (2.4)

It is easy to see that there exists a constant c3 > 0, depending only on D, such that

|〈∇u∗ · v, w〉| ≤ c3|Au||v|‖w‖, (2.5)

for all (u, v, w) ∈ D(A)× (L2(D))3 × (H1
0 (D))3.

First, we have the following result.

Proposition 2.1. For all (u, w) ∈ D(A)×D(A) and all v ∈ (L2(D))3, it holds

〈(u · ∇)v, w〉 = −〈∇w∗ · v, u〉. (2.6)

Proof. If (u,w) ∈ D(A) × D(A), then for each i, j = 1, 2, 3, one has that uiwj ∈
H1

0 (D), and consequently,

〈∂ivj , uiwj〉 = −
∫

D

vj∂i(uiwj) dx = −
∫

D

vjwj∂iui dx−
∫

D

vjui∂iwj dx.

Thus, using that ∇ · u = 0, it is immediate to check that (2.6) is satisfied.
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We now consider the trilinear form defined by

b#(u, v, w) = 〈(u·∇)v, w〉+〈∇u∗ ·v, w〉, ∀ (u, v, w) ∈ D(A)×(L2(D))3×(H1
0 (D))3.

We then have the following result.

Proposition 2.2. The trilinear form b# satisfies

b#(u, v, w) = −b#(w, v, u), ∀ (u, v, w) ∈ D(A)× (L2(D))3 ×D(A), (2.7)

and consequently,

b#(u, v, u) = 0, ∀ (u, v) ∈ D(A)× (L2(D))3. (2.8)

Moreover, there exists a constant c > 0, depending only on D, such that

|b#(u, v, w)| ≤ c|Au||v|‖w‖, ∀ (u, v, w) ∈ D(A)× (L2(D))3 × (H1
0 (D))3, (2.9)

and

|b#(u, v, w)| ≤ c‖u‖|v||Aw|, ∀ (u, v, w) ∈ D(A)× (L2(D))3 ×D(A). (2.10)

Thus, in particular, b# is continuous on D(A)× (L2(D))3 × (H1
0 (D))3.

Proof. The assertions are straightforward consequences of (2.6), (2.3) and (2.5).

3. Statement of the problem and the main results

Assume that {Ω,F , P} is a complete probability space, and let {Ft}t∈[0,T ] be an
increasing and right continuous family of sub σ-algebras of F , such that F0 contains
all the P -null sets of F . Let {βj

t , t ≥ 0, j = 1, 2, ...} be a given sequence of mutually
independent standard real Ft-Wiener processes defined on this space, and suppose
given K, a separable Hilbert space, and {ej ; j = 1, 2, ...}, an orthonormal basis
of K. We denote by {Wt; t ≥ 0}, the cylindrical Wiener process with values in K
defined formally as Wt =

∑∞
j=1 βj

t ej .
It is well known that this series does not converge in K, but rather in any Hilbert

space K̃ such that K ⊂ K̃, being the injection of K in K̃ Hilbert-Schmidt (see e.g.
DaPrato & Zabczyk (1992) for more details).

For any separable Banach space X, and p ∈ [1,∞], we will denote by Mp
Ft

(0, T ; X)
the space of all processes ϕ ∈ Lp(Ω× (0, T ), dP × dt;X) that are Ft-progressively
measurable. The space Mp

Ft
(0, T ;X) is a Banach subspace of Lp(Ω × (0, T ), dP ×

dt; X).
We will write Lp

Ft
(Ω;C([0, T ]; X)), for 1 ≤ p < ∞, to denote the space of all

continuous and Ft-progressively measurable X-valued processes {ϕt; 0 ≤ t ≤ T}
satisfying E

(
sup0≤t≤T ‖ϕt‖p

X

)
< ∞.

Given another separable Hilbert space H̃, with scalar product (·, ·) eH , let us de-
note by L2(K; H̃) the separable Hilbert space of Hilbert-Schmidt operators from K

into H̃, and by ((·, ·))L2(K; eH) and ‖ · ‖L2(K; eH) the scalar product and its associated

norm in L2(K; H̃).
For any process Ψ ∈ M2

Ft
(0, T ;L2(K; H̃)), one can define the stochastic integral of
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Ψ with respect to the cylindrical Wiener process Wt, denoted by
∫ t

0
Ψ(s) dWs, 0 ≤

t ≤ T, as the unique continuous H̃-valued Ft-martingale such that for all h ∈ H̃,
(
∫ t

0
Ψ(s) dWs, h) eH =

∑∞
j=1

∫ t

0
(Ψ(s)ej , h) eH dβj

s , 0 ≤ t ≤ T, where the integral
with respect to βj

s is understood in the sense of Itô, and the series converges
in L2(Ω;C([0, T ])). See e.g. DaPrato & Zabczyk (1992) for the properties of the
stochastic integral so defined. In particular, we note that if Ψ ∈ M2

Ft
(0, T ;L2(K; H̃))

and φ ∈ L2(Ω; L∞(0, T ; H̃)) is Ft-progressively measurable, then the series∑∞
j=1

∫ t

0
(Ψ(s)ej , φ(s)) eH dβj

s , 0 ≤ t ≤ T, converges in L1(Ω;C([0, T ])), and defines

a real valued continuous Ft-martingale. We will use the notation
∫ t

0
(Ψ(s), φ(s)dWs)

=
∑∞

j=1

∫ t

0
(Ψ(s)ej , φ(s)) eH dβj

s , 0 ≤ t ≤ T.
We suppose that F and G are measurable Lipschitz and sublinear mappings

from Ω× (0, T )×V into (H−1(D))3 and from Ω× (0, T )×V into L2(K; (L2(D))3),
respectively. More exactly, assume that, for all v1, v2 ∈ V, F (·, v1) and G(·, v1) are
Ft-progressively measurable, and dP × dt-a.e. in Ω× (0, T ),

‖F (t, v1)− F (t, v2)‖(H−1(D))3 ≤ LF ‖v1 − v2‖, (3.1)

F (t, 0) ∈ M2
Ft

(0, T ; (H−1(D))3), (3.2)

‖G(t, v1)−G(t, v2)‖L2(K;(L2(D))3) ≤ LG‖v1 − v2‖, (3.3)

G(t, 0) ∈ M2
Ft

(0, T ;L2(K; (L2(D))3)). (3.4)

Finally, we assume that
u0 ∈ L2(Ω,F0, P ; V ). (3.5)

Definition 3.1. A variational solution to problem (1.1) is a stochastic process
u ∈ M2

Ft
(0, T ; D(A)) ∩ L2(Ω;L∞(0, T ; V )), weakly continuous with values in V ,

such that for all w ∈ D(A), and t ∈ [0, T ],

((u(t), w)) + ν

∫ t

0

(u(s) + αAu(s), Aw) ds

+
∫ t

0

b#(u(s), u(s)− α∆u(s), w) ds = ((u0, w)) (3.6)

+
∫ t

0

〈F (s, u(s)), w〉 ds + (
∫ t

0

G(s, u(s)) dWs, w).

Our two major results are the following.

Proposition 3.2. Under the hypotheses (3.1), (3.2), (3.3), (3.4) and (3.5), there
exists at most a variational solution of (1.1). Moreover, if u is the variational
solution of (1.1), then u ∈ L2(Ω; C([0, T ];V )) and satisfies

‖u(t)‖2 + 2ν

∫ t

0

(u(s) + αAu(s), Au(s)) ds

≤ ‖u0‖2 + 2
∫ t

0

〈F (s, u(s)), u(s)〉 ds (3.7)

+ 2
∫ t

0

(G(s, u(s)), u(s)dWs) +
1

1 + αµ1

∫ t

0

‖G(s, u(s)‖2L2(K;(L2(D))3) ds,
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and E
∫ t

0
(G(s, u(s)), u(s)dWs) = 0, for all t ∈ [0, T ], where µ1 denotes the first

eigenvalue of A.

Theorem 3.3. Suppose the hypotheses (3.1) and (3.3) hold, and that

F (t, 0) ∈ L4(Ω;L2(0, T ; (H−1 (D))3)), G(t, 0) ∈ L4(Ω;L2(0, T ;L2(K; (L2(D))3))),

and u0 ∈ L4(Ω,F0, P ;V ). Then, there exists a unique variational solution u of
(1.1), and moreover, u ∈ L4(Ω;C([0, T ];V ))∩L4(Ω;L2(0, T ; D(A))). In fact, there
exists C > 0, depending only on α, ν, T , LF and LG, such that

E

(
sup

t∈[0,T ]

‖u(t)‖4
)

+ E




(∫ T

0

|Au(t)|2 dt

)2



≤ C


E(‖u0‖4) + E




(∫ T

0

‖F (t, 0)‖2(H−1(D))3 dt

)2

 + E




(∫ T

0

‖G(t, 0)‖2L2(K;(L2(D))3) dt

)2




 .

Moreover, associated to the variational solution u, there exists a unique
p ∈ L2(Ω,Ft, P ; H−1(0, t; H−1(D))), for all t ∈ (0, T ], such that P -a.s.,

∂t(u− α∆u) + ν(Au− α∆(Au)) + (u · ∇)(u− α∆u)

− α∇u∗ ·∆u +∇p = F (t, u) + G(t, u)Ẇt, in (D′((0, T )×D))3,∫

D

p dx = 0, in D′(0, T ),

where G(t, u)Ẇt denotes the time derivative of
∫ t

0
G(s, u(s)) dWs, that is, by defi-

nition, we put

G(t, u)Ẇt = ∂t

(∫ ·

0

G(s, u(s)) dWs

)
, in D′(0, T ; (L2(D))3), P − a.s..

Although we could carry out a programme to prove these two results directly,
we prefer to proceed in the following manner. We will establish in the next section
some results concerning the existence and uniqueness of solutions for an abstract
model. Then, we will be able to check that our situation falls within this framework,
and consequently, our two main results will be automatically proved. In this way,
we can obtain more profit from our analysis, since it may be possible that these
abstract results can be applied to other situations arising in applications.

4. Some abstract results

Let H and U be two separable real Hilbert spaces, such that U ⊂ H with compact
injection, and U is dense in H.

We denote by (·, ·)H and ((·, ·))U the scalar product in H and U respectively,
and we use | · |H and ‖ · ‖U to denote their corresponding associated norms. We
identify H with its topological dual H∗, but we consider U as a subspace of H∗.

We will denote by ‖·‖U∗ the norm in U∗, and by 〈·, ·〉 the duality product between
U∗ and U . We then suppose given:
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a) An operator Ã ∈ L(U ,U∗), such that
a1) Ã is self adjoint,
a2) there exists α̃ > 0, such that

2〈Ãv, v〉 ≥ α̃‖v‖2U , ∀ v ∈ U . (4.1)

Observe that there exist a Hilbert basis {vk; k ≥ 1} ⊂ U of H and an increas-
ing sequence {λk; k ≥ 1} ⊂ (0,∞) such that

Ãvk = λkvk, ∀ k ≥ 1. (4.2)

b) A bilinear mapping B̃ : U × U → U∗ and a constant c̃ > 0 such that
b1) 〈B̃(u, v), u〉 = 0, for all u, v ∈ U ,

b2) ‖B̃(u, v)‖U∗ ≤ c̃|u|H‖v‖U , for all (u, v) ∈ U × U ,

b3) 〈B̃(u, v), w〉 ≤ c̃‖u‖U‖v‖U |w|H, for all u, v, w ∈ U .

c) A measurable random mapping F̃ : Ω× (0, T )×H → U∗, such that for fixed
h ∈ H, F̃ (·, h) is Ft-progressively measurable,
c1) F̃ (·, 0) ∈ M2

Ft
(0, T ;U∗),

c2) there exists L eF > 0 such that ‖F̃ (t, u)− F̃ (t, v)‖U∗ ≤ L eF |u− v|H, dP ×
dt− a.e., for all u, v ∈ H.

d) A measurable random mapping G̃ : Ω× (0, T )×H → L2(K;H), such that for
fixed h ∈ H, G̃(·, h) is Ft-progressively measurable,
d1) G̃(·, 0) ∈ M2

Ft
(0, T ;L2(K;H)),

d2) there exists L eG > 0 such that ‖G̃(t, u)− G̃(t, v)‖L2(K;H) ≤ L eG|u− v|H,
dP × dt− a.e., for all u, v ∈ H.

e) An initial datum u0 ∈ L2(Ω,F0, P ;H).

We consider the equation

u(t) +
∫ t

0

Ãu(s) ds +
∫ t

0

B̃(u(s), u(s)) ds

= u0 +
∫ t

0

F̃ (s, u(s)) ds +
∫ t

0

G̃(s, u(s)) dWs, P − a.s., ∀ t ∈ [0, T ]. (4.3)

Definition 4.1. A solution of (4.3) is a process u ∈ M2
Ft

(0, T ;U)∩L2(Ω;L∞(0, T ;H)),
such that the equation (4.3) is satisfied in U∗, P−a.s. for all t ∈ [0, T ].

Proposition 4.2. If u is a solution of (4.3), then u ∈ L2(Ω; C([0, T ];H)), and

|u(t)|2H + 2
∫ t

0

〈Ãu(s), u(s)〉 ds = |u0|2H + 2
∫ t

0

〈F̃ (s, u(s)), u(s)〉 ds (4.4)

+2
∫ t

0

(G̃(s, u(s)), u(s)dWs) +
∫ t

0

‖G̃(s, u(s))‖2L2(K;H), ∀t ∈ [0, T ],

and

E

∫ t

0

(G̃(s, u(s)), u(s)dWs) = 0, ∀ t ∈ [0, T ]. (4.5)
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Proof. If u is a solution of (4.3), then B̃(u, u) ∈ M1
Ft

(0, T ;U∗), Ãu − F̃ (t, u) ∈
M2
Ft

(0, T ;U∗), and G̃(t, u) ∈ M2
Ft

(0, T ;L2(K;H)). Consequently, from Theorem
3.2 in Pardoux (1975) (page 58), u is P−a.s. continuous with values in H, and by
b1), the energy equality (4.4) is satisfied. Finally, (4.5) is a direct consequence of
the fact that G̃(t, u) ∈ M2

Ft
(0, T ;L2(K;H)) and u ∈ L2(Ω; L∞(0, T ;H)).

Proposition 4.3. There exists at most one solution of (4.3).

Proof. Let u1 and u2 be two solutions of (4.3), and denote ū = u1 − u2. Then,
reasoning as in the proof of Proposition 4.2, and taking into account b1), we obtain

|ū(t)|2H + 2
∫ t

0

〈Ãū(s), ū(s)〉 ds + 2
∫ t

0

〈B̃(u2(s), ū(s)), ū(s)〉 ds

= 2
∫ t

0

〈F̃ (s, u1(s))− F̃ (s, u2(s)), ū(s)〉 ds

+
∫ t

0

‖G̃(s, u1(s))− G̃(s, u2(s))‖2L2(K;H) ds (4.6)

+ 2
∫ t

0

(G̃(s, u1(s))− G̃(s, u2(s)), ū(s)dWs), ∀t ∈ [0, T ].

Take µ > 0 to be fixed later and define σ(t) = exp(−µ
∫ t

0
‖u2(s)‖2U ds), 0 ≤ t ≤ T.

Applying Itô’s formula to the real process σ(t)|ū(t)|2H, we obtain from (4.6), a2),
b3), c2) and d2), that

σ(t)|ū(t)|2H + α̃

∫ t

0

σ(s)‖ū(s)‖2U ds ≤ L2
eG

∫ t

0

σ(s)|ū(s)|2H ds

+ 2c̃

∫ t

0

σ(s)‖u2(s)‖U‖ū(s)‖U |ū(s)|H ds + 2L eF

∫ t

0

σ(s)‖ū(s)‖U |ū(s)|H ds (4.7)

+ 2
∫ t

0

(σ(s)(G̃(s, u1(s))− G̃(s, u2(s))), ū(s)dWs)

− µ

∫ t

0

σ(s)‖u2(s)‖2U |ū(s)|2H ds, ∀t ∈ [0, T ].

But,

2c̃‖u2(s)‖U‖ū(s)‖U |ū(s)|H ≤
α̃

2
‖ū(s)‖2U +

2c̃2

α̃
‖u2(s)‖2U |ū(s)|2H,

and

2L eF ‖ū(s)‖U |ū(s)|H ≤
α̃

2
‖ū(s)‖2U +

2L2
eF

α̃
|ū(s)|2H.

If we take µ = 2c̃2/α̃, we obtain from (4.7),

σ(t)|ū(t)|2H ≤
(

L2
eG +

2L2
eF

α̃

)∫ t

0

σ(s)|ū(s)|2H ds

+ 2
∫ t

0

(σ(s)(G̃(s, u1(s))− G̃(s, u2(s))), ū(s)dWs), ∀t ∈ [0, T ]. (4.8)
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10 T. Caraballo, J. Real & T. Taniguchi

As 0 < σ(t) ≤ 1, the expectation of the stochastic integral in (4.8) vanishes, and

Eσ(t)|ū(t)|2H ≤
(

L2
eG +

2L2
eF

α̃

)
E

∫ t

0

σ(s)|ū(s)|2H ds, 0 ≤ t ≤ T.

The Gronwall Lemma implies now that ū(t) = 0, P−a.s. for all t ∈ [0, T ].

Now, we can prove the following result.

Theorem 4.4. Suppose all the above hypotheses and that, moreover, F̃ (·, 0) ∈
L4(Ω;L2(0, T ;U∗)), G̃(·, 0) ∈ L4(Ω; L2(0, T ;L2(K;H))) and u0 ∈ L4(Ω,F0, P ;H).
Then, there exists a unique solution u to (4.3), which satisfies in addition,

u ∈ L4(Ω;C([0, T ];H)) ∩ L4(Ω;L2(0, T ;U)).

In fact, there exists C > 0, depending only on α̃, T , L eF and L eG such that

E

(
sup
[0,T ]

|u(t)|4H
)

+ E




(∫ T

0

‖u(t)‖2U dt

)2



≤ C


E(|u0|4H) + E




(∫ T

0

‖F̃ (t, 0)‖2U∗ dt

)2



+E




(∫ T

0

‖G̃(t, 0)‖2L2(K;H) dt

)2




 . (4.9)

Proof. The proof follows the scheme of that in Breckner (1999) for the case of
stochastic 2D-Navier-Stokes equations, but with appropriate changes (see also Ben-
soussan 1995). We will split the proof into five steps.

Step 1.- Construction of an approximating sequence.
We take the Hilbert basis {vk; k ≥ 1} ⊂ U of H satisfying (4.2). For each integer
m ≥ 1, we denote by Hm = Um the vector space spanned by {v1, ..., vm}, and
consider the finite dimensional problem

(um(t), vk)H +
∫ t

0

〈Ãum(s), vk〉 ds +
∫ t

0

〈B̃(um(s), um(s)), vk〉 ds

= (u0, vk)H +
∫ t

0

〈F̃ (s, um(s)), vk〉 ds (4.10)

+
m∑

j=1

∫ t

0

(G̃(s, um(s))ej , vk)H dβj
s , 0 ≤ t ≤ T, 1 ≤ k ≤ m.

Arguing as in the proof of Theorem 1.2.1 in Breckner (1999), pages 11-13, one
can obtain existence and uniqueness of a solution um ∈ M2

Ft
(0, T ;Um) of equation

(4.10) with continuous trajectories.
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Step 2.- Estimates for the approximating sequence.
By Itô’s formula and b1), we obtain for all t ∈ [0, T ]

|um(t)|2H + 2
∫ t

0

〈Ãum(s), um(s)〉 ds

=
m∑

k=1

(u0, vk)2H + 2
∫ t

0

〈F̃ (s, um(s)), um(s)〉 ds (4.11)

+
∫ t

0

m∑

j,k=1

(G̃(s, um(s)ej , vk)
2

H ds + 2
m∑

j=1

∫ t

0

(G̃(s, um(s))ej , um(s))H dβj
s .

But then, taking into account that
∑m

j,k=1 (G̃(s, um(s))ej , vk)
2

H ≤ ‖G̃(s, um(s))‖2L2(K;H),
the fact that

2〈F̃ (s, um(s)), um(s)〉 ≤ 2L eF |um(s)|H‖um(s)‖U + 2‖F̃ (s, 0)‖U∗‖um(s)‖U
≤ α̃

2
‖um(s)‖2U +

4L2
F

α̃
|um(s)|2H +

4
α̃
‖F̃ (s, 0)‖2U∗ ,

and a2), d1) and d2), we deduce from (4.11) that

|um(t)|2H +
α̃

2

∫ t

0

‖um(s)‖2U ds

≤ |u0|2H +

(
4L2

eF
α̃

+ 2L2
eG

) ∫ t

0

|um(s)|2H ds

+
4
α̃

∫ t

0

‖F̃ (s, 0)‖2U∗ ds + 2
∫ t

0

‖G̃(s, 0)‖2L2(K;H) ds (4.12)

+ 2
m∑

j=1

∫ t

0

(G̃(s, um(s)ej , um(s))H dβj
s , ∀t ∈ [0, T ].

For each integer n ≥ 1, consider the Ft-stopping time τm
n defined by

τm
n = min(T, inf{t ∈ [0, T ]; |um(t)|2H +

∫ t

0

‖um(s)‖2U ds ≥ n2}).

For fixed m, the sequence {τm
n ; n ≥ 1} is increasing to T . It follows from (4.12),

sup
s∈[0,t∧τm

n ]

|um(s)|4H +
α̃2

4

(∫ t∧τm
n

0

‖um(s)‖2U ds

)2

≤ 6

(
|u0|2H +

4
α̃

∫ T

0

‖F̃ (s, 0)‖2U∗ ds + 2
∫ T

0

‖G̃(s, 0)‖2L2(K;H) ds

)2

+ 6T

(
4L2

eF
α̃

+ 2L2
eG

)2 ∫ t

0

sup
r∈[0,s∧τm

n ]

|um(r)|4H ds (4.13)

+ 24 sup
s∈[0,t∧τm

n ]




m∑

j=1

∫ s

0

(G̃(r, um(r)ej , um(r))H dβj
r




2

,
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12 T. Caraballo, J. Real & T. Taniguchi

for all t ∈ [0, T ] and all m,n ≥ 1.
But, taking expectations in (4.13), observing that by Doob’s inequality it holds

E sup
s∈[0,t∧τm

n ]




m∑

j=1

∫ s

0

(G̃(r, um(r)ej , um(r))H dβj
r




2

≤ 4E

m∑

j=1

∫ t∧τm
n

0

(G̃(s, um(s)ej , um(s))
2

H ds

≤ 4E

(
sup

s∈[0,t∧τm
n ]

|um(s)|2H
∫ t∧τm

n

0

‖G̃(s, um(s))‖2L2(K;H) ds

)
(4.14)

≤ 1
2
E sup

s∈[0,t∧τm
n ]

|um(t)|4H + 64TL4
eGE

∫ t∧τm
n

0

|um(s)|4H ds

+ 64E




(∫ T

0

‖G̃(s, 0)‖2L2(K;H) ds

)2

 ,

and, using the Gronwall Lemma and the fact that τm
n ↑ T when n goes to ∞, it

follows that there exists a constant C1 > 0, depending only on α̃, T , L eF and L eG,
such that, for all m ≥ 1,

E

(
sup
[0,T ]

|um(t)|4H
)

+ E




(∫ T

0

‖um(t)‖2U dt

)2

 (4.15)

≤ C1


E(|u0|4H) + E




(∫ T

0

‖F̃ (t, 0)‖2U∗ dt

)2

 + E




(∫ T

0

‖G̃(t, 0)‖2L2(K;H) dt

)2




 ,

Now, observing that

∫ T

0

|um(s)|2H‖um(s)‖2U ds ≤ sup
t∈[0,T ]

|um(t)|2H
∫ T

0

‖um(t)‖2U dt,

one can obtain from (4.15) and for all m ≥ 1,

E

∫ T

0

|um(s)|2H‖um(s)‖2U ds ≤ C1

2


E(|u0|4H) + E




(∫ T

0

‖F̃ (t, 0)‖2U∗ dt

)2



+E




(∫ T

0

‖G̃(t, 0)‖2L2(K;H) dt

)2




 . (4.16)

Step 3.- Taking limits in the finite dimensional equations.
From b2) and (4.16), we can deduce that the sequence B̃(um, um) is bounded in
M2
Ft

(0, T ;U∗). On the other hand, from (4.15), c2) and d2), we have that, in partic-
ular, the sequence um is bounded in M2

Ft
(0, T ;U), the sequence um(0) is bounded in
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L4(Ω,F0, P ;H), the sequence F̃ (t, um) is bounded in M2
Ft

(0, T ;U∗), and G̃(t, um)
is bounded in M2

Ft
(0, T ;L2(K;H)).

Thus, we can ensure that there exists a subsequence {um′} ⊂ {um}, and
five elements u ∈ M2

Ft
(0, T ;U), ξ ∈ L4(Ω,F0, P ;H), B ∈ M2

Ft
(0, T ;U∗), Φ ∈

M2
Ft

(0, T ;U∗), and G ∈ M2
Ft

(0, T ;L2(K;H)), such that

um′ ⇀ u in M2
Ft

(0, T ;U), (4.17)

um′(0) ⇀ ξ in L4(Ω,F0, P ;H), (4.18)

B̃(um′ , um′) ⇀ B in M2
Ft

(0, T ;U∗), (4.19)

F̃ (t, um′) ⇀ Φ in M2
Ft

(0, T ;U∗), (4.20)

G̃(t, um′) ⇀ G in M2
Ft

(0, T ;L2(K;H)). (4.21)

It is then a standard matter (see e.g. Pardoux 1975) to obtain from (4.10) that
u ∈ L2(Ω; C([0, T ];H)) and satisfies for all 0 ≤ t ≤ T that

u(t) +
∫ t

0

Ãu(s) ds +
∫ t

0

B(s) ds = u0 +
∫ t

0

Φ(s) ds +
∫ t

0

G(s) dWs, (4.22)

Step 4.- To prove that B =B̃(u, u), Φ = F̃ (t, u) and G =G̃(t, u).
For simplicity we will keep denoting by {um} the subsequence {um′} in this step.
For each m ≥ 1, let us denote ũm(t) = Πmu(t) =

∑m
k=1 (u(t), vk)Hvk, where

Πm ∈ L(H,Hm) is the orthogonal projection of H onto Hm. It follows that

|ũm(t)|H ≤ |u(t)|H , ‖ũm(t)‖U ≤ µ‖u(t)‖U , (4.23)

with µ =
(
2‖Ã‖/α̃

)1/2

, and

ũm → u in M2
Ft

(0, T ;U). (4.24)

On the other hand, we obviously have (ũm(t), vk)H = (u(t), vk)H, ∀ 1 ≤ k ≤ m.

And also, by a1) and (4.2), we easily obtain for each 1 ≤ k ≤ m, that 〈Ãũm(t), vk〉 =
〈Ãu(t), vk〉.

From (4.22) and (4.10), it follows for all t ∈ [0, T ], all 1 ≤ k ≤ m and all m ≥ 1,

(ũm(t)− um(t), vk)H +
∫ t

0

〈Ã(ũm(s)− um(s)), vk〉 ds

+
∫ t

0

〈B(s)− B̃(um(s), um(s)), vk〉 ds =
∫ t

0

〈Φ(s)− F̃ (s, um(s)), vk〉 ds

+
m∑

j=1

∫ t

0

(G(s)ej − G̃(s, um(s))ej , vk)H dβj
s +

∞∑

j=m+1

∫ t

0

(G(s)ej , vk)H dβj
s .

Thus, by Itô’s formula,

d[(ũm(t)− um(t), vk)2H] = 2(ũm(t)− um(t), vk)Hd[(ũm(t)− um(t), vk)H]

+
m∑

j=1

(G(t)ej − G̃(t, um(t))ej , vk)
2

Hdt +
∞∑

j=m+1

(G(t)ej , vk)2Hdt,

Article submitted to Royal Society



14 T. Caraballo, J. Real & T. Taniguchi

in [0, T ], for all 1 ≤ k ≤ m and all m ≥ 1, and summing in k, we therefore obtain

|ũm(t)− um(t)|2H + 2
∫ t

0

〈Ã(ũm(s)− um(s)), ũm(s)− um(s)〉 ds

+ 2
∫ t

0

〈B(s)− B̃(um(s), um(s)), ũm(s)− um(s)〉 ds

= 2
∫ t

0

〈Φ(s)− F̃ (s, um(s)), ũm(s)− um(s)〉 ds

+ 2
m∑

j=1

∫ t

0

(G(s)ej − G̃(s, um(s))ej , ũm(s)− um(s))H dβj
s (4.25)

+ 2
∞∑

j=m+1

∫ t

0

(G(s)ej , ũm(s)− um(s))H dβj
s

+
m∑

j=1

∫ t

0

|Πm(G(s)ej − G̃(s, um(s))ej)|
2

H ds +
∞∑

j=m+1

∫ t

0

|Πm(G(s)ej)|2H ds.

Denote now ρ(t) = exp
(
−η1t− η2

∫ t

0
‖u(s)‖2U ds

)
, 0 ≤ t ≤ T, with η1 and η2

positive constants to be fixed later. Applying Itô’s formula to the process ρ(t)|ũm(t)− um(t)|2H,

we obtain from (4.25), a2), and the properties of B̃, F̃ and Πm,

ρ(t)|ũm(t)− um(t)|2H + α̃

∫ t

0

ρ(s)‖ũm(s)− um(s)‖2U ds

≤ 2
∫ t

0

ρ(s)〈B̃(ũm(s), ũm(s))− B(s), ũm(s)− um(s)〉 ds

+ 2c̃µ

∫ t

0

ρ(s)‖u(s)‖U‖ũm(s)− um(s)‖U |ũm(s)− um(s)|H ds

+ 2
∫ t

0

ρ(s)〈Φ(s)− F̃ (s, ũm(s)), ũm(s)− um(s)〉 ds

+ 2L eF

∫ t

0

ρ(s)‖ũm(s)− um(s)‖U |ũm(s)− um(s)|H ds (4.26)

+ 2
m∑

j=1

∫ t

0

ρ(s)(G(s)ej − G̃(s, um(s))ej , ũm(s)− um(s))H dβj
s

+ 2
∞∑

j=m+1

∫ t

0

ρ(s)(G(s)ej , ũm(s)− um(s))H dβj
s

+
∫ t

0

ρ(s)‖G(s)− G̃(s, um(s))‖2L2(K;H) ds +
∞∑

j=m+1

∫ t

0

ρ(s)|G(s)ej |2H ds

− η1

∫ t

0

ρ(s)|ũm(s)− um(s)|2H ds− η2

∫ t

0

ρ(s)‖u(s)‖2U |ũm(s)− um(s)|2H ds,

for all t ∈ [0, T ] and all m ≥ 1.
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Now, observe that

‖G(s)− G̃(s, um(s))‖2L2(K;H) = ‖G̃(s, u(s))− G̃(s, um(s))‖2L2(K;H)

+ 2((G(s)− G̃(s, um(s)),G(s)− G̃(s, u(s))))L2(K;H)

− ‖G̃(s, u(s))− G(s)‖2L2(K;H)

≤ 2L2
eG|u(s)− ũm(s)|2H + 2L2

eG|ũm(s)− um(s)|2H (4.27)

+ 2((G(s)− G̃(s, um(s)),G(s)− G̃(s, u(s))))L2(K;H)

− ‖G̃(s, u(s))− G(s)‖2L2(K;H).

On the other hand,

2c̃µ‖u(s)‖U‖ũm(s)− um(s)‖U |ũm(s)− um(s)|H
≤ α̃

4
‖ũm(s)− um(s)‖2U +

4c̃2µ2

α̃
‖u(s)‖2U |ũm(s)− um(s)|2H, (4.28)

and

2L eF ‖ũm(s)− um(s)‖U |ũm(s)− um(s)|H

≤ α̃

4
‖ũm(s)− um(s)‖2U +

4L2
eF

α̃
|ũm(s)− um(s)|2H. (4.29)

On account of (4.27), (4.28) and (4.29), we obtain from (4.26), for t ∈ [0, T ], m ≥ 1,

ρ(t)|ũm(t)− um(t)|2H +
α̃

2

∫ t

0

ρ(s)‖ũm(s)− um(s)‖2U ds

+
∫ t

0

ρ(s)‖G̃(s, u(s))− G(s)‖2L2(K;H) ds

≤ (
4L2

eF
α̃

+ 2L2
eG − η1)

∫ t

0

ρ(s)|ũm(s)− um(s)|2H ds

+ (
4c̃2µ2

α̃
− η2)

∫ t

0

ρ(s)‖u(s)‖2U |ũm(s)− um(s)|2H ds

+ 2
∫ t

0

ρ(s)〈B̃(ũm(s), ũm(s))− B(s), ũm(s)− um(s)〉 ds

+ 2
∫ t

0

ρ(s)〈Φ(s)− F̃ (s, ũm(s)), ũm(s)− um(s)〉 ds (4.30)

+
∞∑

j=m+1

∫ t

0

ρ(s)|G(s)ej |2H ds + 2L2
eG

∫ t

0

ρ(s)|u(s)− ũm(s)|2H ds

+ 2
∫ t

0

ρ(s)((G(s)− G̃(s, um(s)),G(s)− G̃(s, u(s))))L2(K;H) ds

+ 2
m∑

j=1

∫ t

0

ρ(s)(G(s)ej − G̃(s, um(s))ej , ũm(s)− um(s))H dβj
s

+
∞∑

j=m+1

∫ t

0

ρ(s)(G(s)ej , ũm(s)− um(s))H dβj
s .
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Therefore, if we take η1 = 4L2
eF /α̃ + 2L2

eG, η2 = 4c̃2µ2/α̃, and for each integer
n ≥ 1 consider the Ft-stopping time τn defined by

τn = min(T, inf{t ∈ [0, T ]; |u(t)|2H +
∫ t

0

‖u(s)‖2U ds ≥ n2}), (4.31)

it is straightforward to obtain from (4.30) and for all n,m ≥ 1 that

E(ρ(τn)|ũm(τn)− um(τn)|2H) +
α̃

2
E

∫ τn

0

ρ(s)‖ũm(s)− um(s)‖2U ds

+ E

∫ τn

0

ρ(s)‖G̃(s, u(s))− G(s)‖2L2(K;H) ds

≤
∞∑

j=m+1

E

∫ T

0

ρ(s)|G(s)ej |2H ds + 2L2
eGE

∫ T

0

ρ(s)|u(s)− ũm(s)|2H ds (4.32)

+ 2E

∫ τn

0

ρ(s)((G(s)− G̃(s, um(s)),G(s)− G̃(s, u(s))))L2(K;H) ds

+ 2E

∫ τn

0

ρ(s)〈B̃(ũm(s), ũm(s))− B(s) + Φ(s)− F̃ (s, ũm(s)), ũm(s)− um(s)〉 ds,

Now, it follows that

lim
m→∞




∞∑

j=m+1

E

∫ T

0

ρ(s)|G(s)ej |2H ds + 2L2
eGE

∫ T

0

ρ(s)|u(s)− ũm(s)|2H ds


 = 0.

(4.33)
Also, as G̃(t, um) ⇀ G(t) in M2

Ft
(0, T ;L2(K;H)), and 1[0,τn]ρ(t)(G − G̃(t, u(t))) ∈

M2
Ft

(0, T ;L2(K;H)), we have

lim
m→∞

E

∫ τn

0

ρ(s)((G(s)− G̃(s, um(s)),G(s)− G̃(s, u(s))))L2(K;H) ds = 0. (4.34)

On the other hand,

E

∫ τn

0

ρ(s)〈B̃(ũm(s), ũm(s))− B(s) + Φ(s)− F̃ (s, ũm(s)), ũm(s)− um(s)〉 ds

= E

∫ τn

0

ρ(s)〈B̃(ũm(s), ũm(s))− B̃(u(s), u(s)), ũm(s)− um(s)〉 ds

+ E

∫ τn

0

ρ(s)〈F̃ (s, u(s))− F̃ (s, ũm(s)), ũm(s)− um(s)〉 ds (4.35)

+ E

∫ τn

0

ρ(s)〈Φ(s)− F̃ (s, u(s)) + B̃(u(s), u(s))− B(s), ũm(s)− um(s)〉 ds.

But, thanks to (4.17) and (4.24), ũm − um ⇀ 0 in M2
Ft

(0, T ;U), as m →∞, and it
is also immediate that

1[0,τn]ρ(t)(Φ(t)− F̃ (t, u(t)) + B̃(u(t), u(t))− B(t)) ∈ M2
Ft

(0, T ;U∗),
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and 1[0,τn]ρ(t)F̃ (t, u(t)) − F̃ (t, ũm(t)) → 0 in M2
Ft

(0, T ;U∗), as m → ∞, what
implies

lim
m→∞

E

∫ τn

0

ρ(s)〈Φ(s)− F̃ (s, u(s)) + B̃(u(s), u(s))− B(s), ũm(s)− um(s)〉 ds = 0,

(4.36)
and

lim
m→∞

E

∫ τn

0

ρ(s)〈F̃ (s, u(s))− F̃ (s, ũm(s)), ũm(s)− um(s)〉 ds = 0. (4.37)

Finally, by b2) and (4.23),

‖1[0,τn]ρ(t)(B̃(ũm(t), ũm(t))− B̃(u(t), u(t)))‖U∗
≤ 1[0,τn](t)c̃(|ũm(t)− u(t)|Hµ‖u(t)‖U + |u(t)|H‖ũm(t)− u(t)‖U ) ,

and thus ‖1[0,τn]ρ(t)(B̃(ũm(t), ũm(t))− B̃(u(t), u(t)))‖U∗ → 0, as m →∞, dt×dP -
a.e., and

‖1[0,τn]ρ(t)(B̃(ũm(t), ũm(t))− B̃(u(t), u(t)))‖U∗ ≤ (3µ + 1) nc̃‖u(t)‖U ∈ M2
Ft

(0, T ;R),

whence

lim
m→∞

E

∫ τn

0

ρ(s)〈B̃(ũm(s), ũm(s))− B̃(u(s), u(s)), ũm(s)− um(s)〉 ds = 0. (4.38)

From (4.33)−(4.38), and the fact that exp(−η1T−η2n) ≤ 1[0,τn]ρ(t) ≤ 1, we obtain
from (4.32) and for all n ≥ 1,

lim
m→∞

E(|ũm(τn)− um(τn)|2H) = 0, (4.39)

lim
m→∞

E

∫ τn

0

‖ũm(s)− um(s)‖2U ds = 0, (4.40)

E

∫ τn

0

‖G̃(s, u(s))− G(s)‖2L2(K;H) ds = 0, (4.41)

It is now clear that (4.41) and the fact that the sequence {τn; n ≥ 1} is increasing
to T , imply that G̃(t, u(t)) = G(t), as elements of the space M2

Ft
(0, T ;L2(K;H)).

Also, observe that (4.40) and (4.24) imply

um1[0,τn] → u1[0,τn], in M2
Ft

(0, T ;U). (4.42)

Thus, given any w ∈ M∞
Ft

(0, T ;U),

E

∫ τn

0

〈B̃(u(s), u(s))− B̃(um(s), um(s)), w(s)〉 ds

≤ c̃‖w‖M∞
Ft

(0,T ;U)E

∫ τn

0

(|u(s)− um(s)|Hµ||u(s)‖U + |um(s)|H‖u(s)− um(s)‖U ) ds,
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and consequently, by (4.42),

lim
m→∞

E

∫ τn

0

〈B̃(u(s), u(s))− B̃(um(s), um(s)), w(s)〉 ds = 0. (4.43)

Taking into account (4.19), it follows from (4.43) that

E

∫ τn

0

〈B̃(u(s), u(s))− B(s), w(s)〉 ds = 0, ∀w ∈ M∞
Ft

(0, T ;U), (4.44)

and consequently, as τn ↑ T and M∞
Ft

(0, T ;U) is dense in M2
Ft

(0, T ;U), we obtain
from (4.44) that B̃(u(t), u(t)) = B(t), as elements of the space M2

Ft
(0, T ;U∗).

Analogously, one can prove that F̃ (t, u(t)) = Φ(t), as elements of M2
Ft

(0, T ;U∗),
and thus, u is the solution of (4.3).

Step 5.- Obtention of the estimate (4.9).
Using the sequence of stopping times τn defined by (4.31), and arguing as for the
obtention of (4.15), one obtains (4.9).

It is not difficult to prove the following result (see Breckner 1999).

Lemma 4.5. Let {Qm; m ≥ 1} ⊂ M2
Ft

(0, T ;R) be a sequence of continuous real
processes, and let {σn; n ≥ 1} be a sequence of Ft-stopping times such that σn ↑ T ,
supm≥1 E|Qm(T )|2 < ∞, and limm→∞E|Qm(σn)| = 0, for all n ≥ 1. Then
limm→∞E|Qm(T )| = 0.

Applying this Lemma to Qm(t) = |u(t)− um(t)|2H and σn = τn, and taking into
account (4.9), (4.15), (4.39) and the uniqueness of u, one easily obtains that the
whole sequence um defined by (4.10) satisfies limm→∞E|u(t)− um(t)|2H = 0, for
all t ∈ [0, T ].

Analogously, applying the Lemma to Qm(t) =
∫ t

0
‖u(s)− um(s)‖2U ds and σn =

τn, and taking into account (4.9), (4.15), (4.40) and the uniqueness of u, we have
that the whole sequence um defined by (4.10) converges to u strongly in M2

Ft
(0, T ;U),

i.e. it satisfies limm→∞E
∫ t

0
‖u(s)− um(s)‖2U ds = 0.

5. Proof of Proposition 3.2 and Theorem 3.3

As we have already mentioned, the results stated in Proposition 3.2 and Theorem
3.3 are direct consequences of, respectively, Proposition 4.2 and Proposition 4.3,
and Theorem 4.4, which will be proved in this section.

To this end, we take: H = V, with (u, v)H = ((u, v)), and U = D(A), with
((u, v))U = (Au,Av). We define 〈Ãu, v〉 = ν(Au, v)+να(Au,Av), for u, v ∈ D(A),
and observe that Ã satisfies a1), a2) with α̃ = 2να, and (4.2) is fulfilled with
λk = νµk, vk = wk/

√
1 + αµk, where µk and wk are the eigenvalues of A and their

corresponding associated eigenvectors.
On the other hand, we consider B̃(u, v) and F̃ (t, u) defined by

〈B̃(u, v), w〉 = b#(u, v − α∆v, w), ∀ (u, v, w) ∈ D(A)×D(A)×D(A),

〈F̃ (t, u), w〉 = 〈F (t, u), w〉, ∀ (u,w) ∈ V ×D(A).
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Finally, let G̃(t, u) be defined by

G̃(t, u) = (I + αA)−1 ◦ P ◦G(t, u), ∀ (t, u) ∈ (0, T )× V,

where I denotes the identity operator in H. First of all, observe that the operator
I + αA is bijective from D(A) onto H, and

(((I + αA)−1h, w)) = (h,w), ∀h ∈ H, ∀w ∈ V. (5.1)

Thus, in particular, ‖(I + αA)−1h‖2 ≤ 1
1 + αµ1

|h|2, for all h ∈ H. Also, observe

that for each j ≥ 1, (G(t, u)ej , w) = ((I + αA)(G̃(t, u)ej), w) = ((G̃(t, u)ej , w)),
for all (t, u, w) ∈ (0, T )×V ×D(A), and consequently, for all (t, w) ∈ [0, T ]×D(A),

(
∫ t

0

G(s, u(s)) dWs, w) =
∞∑

j=1

∫ t

0

(G(s, u(s))ej , w) dβj
s = ((

∫ t

0

G̃(s, u(s)) dWs, w)).

By means of a straightforward application of Propositions 4.2 and 4.3, and
Theorem 4.4, we deduce Proposition 3.2 and the existence of u in Theorem 3.3.

For the existence of the pressure p, observe that by (2.3) and (2.5), as u ∈
L4(Ω;L2(0, T ; D(A))) and is Ft−progressively measurable, then

(u · ∇)(u− α∆u) +∇u∗ ·∆u ∈ L2(Ω,Ft, P ; L1(0, t; (H−1(D))3)),

with

E

[(∫ t

0

‖(u(s) · ∇)(u(s)− α∆u(s)) +∇u(s)∗ ·∆u(s)‖(H−1(D))3 ds

)2
]

≤ cE

[(∫ t

0

|Au(s)|2 ds

)2
]

, ∀ t ∈ [0, T ].

On the other hand, u − α∆u ∈ L4(Ω,Ft, P ; L2(0, t; (L2(D))3)), and consequently
∂t(u − α∆u) ∈ L4(Ω,Ft, P ;H−1(0, t; (L2(D))3)), for all t ∈ [0, T ]. Also, as u ∈
L4(Ω,F , P ; C([0, T ];V )), and is Ft-progressively measurable, then it follows that
F (t, u) ∈ L4(Ω,Ft, P ; L2(0, t; (H−1(D))3)), and reasoning as in Langa et al. (2003),
one also obtains G(t, u)Ẇt ∈ L4(Ω,Ft, P ; W−1,∞(0, t; (L2(D)3))), for all t ∈ [0, T ].
Finally, for the term Au − α∆(Au), which is the more irregular one, as u ∈
L4(Ω;L2(0, T ; D(A))), we then have

Au− α∆(Au) ∈ L4(Ω,Ft, P ; L2(0, t; (H−2(D))3)), ∀t ∈ [0, T ].

Arguing as in Langa et al. (2003), and in particular using Remark 4.3 in this paper,
one can prove the existence and uniqueness of p.
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