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Universidad de Sevilla, Apdo. de Correos 1160, 41080-Sevilla, Spain

Francisco Morillas

Department d’Economia Aplicada, Facultat d’Economia, Universitat de València,
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Abstract. In this paper we first prove a rather general theorem about exis-
tence of solutions for an abstract differential equation in a Banach space by

assuming that the nonlinear term is in some sense weakly continuous.
We then apply this result to a lattice dynamical system with delay, proving

also the existence of a global compact attractor for such system.

1. Introduction. Lattice differential equations arise naturally in a wide variety
of applications where the spatial structure possesses a discrete character. These
systems are used to model, for instance, cellular neural networks with applications
to image processing, pattern recognition, and brain science [18, 19, 20, 21]. They
are also used to model the propagation of pulses in myelinated axons where the
membrane is excitable only at spatially discrete sites (see for example, [8], [9], [41],
[40], [30, 31]). Lattice differential equations can be found in chemical reaction theory
[23, 28, 33] as well. Also, it can appear after a spatial discretization of a differential
equation, as it is the case we are interested in the present paper.
Recently, there have been published many works on deterministic lattice dynamical
systems. For traveling waves, we refer the readers to [14, 36, 15, 54, 1, 5] and the
references therein. The chaotic properties of solutions for such systems have been
investigated by [14] and [17, 42, 16, 22]. The existence and properties of the global
attractor for lattice differential equations have been established, for example, in [2],
[7], [10], [38], [39], [44], [45], [51], [52], [53].
Also, one can find several papers considering stochastic versions of lattice dynamical
systems (see, e.g., [6], [11], [12] [13], [26], [27], [35], [49], [46]).
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On the other hand, the consideration of some kind of delay, memory or retarded
terms in the models are a sensible fact, as they are present in many aspects of
real models (e.g. in control problems). Therefore, our main aim in this paper
is to analyze the existence (and eventually the uniqueness) of solutions and their
asymptotic behavior of the following retarded lattice differential equation





dui

dt
− (ui−1 − 2ui + ui+1) + λui + fi (uit) = 0, t > 0, i ∈ Z,

ui (s) = ψi (s) , ∀s ∈ [−h, 0],

(1)

where λ ∈ R, which is the discretization of the following scalar retarded reaction-
diffusion equation:





du

dt
− ∂2u

∂x2
+ λu+ f(ut) = 0, t > 0, x ∈ R,

u (s) = ψ (s) , ∀s ∈ [−h, 0].

Here u = (ui)i∈Z ∈ ℓ2, Z denotes the integers set and for a continuous function
u : [−h, T ] → Y (where Y is some space), ut denotes the segment of the solution,
i.e., the element in C ([−h, 0], Y ) defined by ut (s) = u (t+ s), s ∈ [−h, 0].
Problem (1) has been considered in [48] under some kind of Lipschitz assumption
(even under integral formulation). However, those are not stated in a clear way (in
our opinion) and we do not even see how the existence of solution of the lattice
system can be proved using those assumptions, by following the scheme carried out
by the authors. Subsequently, the same kind of assumptions have been used in
other papers (see, e.g. [46], [50], [47]).
In the present paper, we impose some general assumptions (only some continuity
assumptions and growth conditions on the term containing the delay) and prove
the existence of solutions of our problem, and additionally the uniqueness when we
also assume a local one-sided Lipschitz hypothesis. The asymptotic behavior is also
analyzed by proving the existence of a global attractor, even when our problem gen-
erates a set-valued or multi-valued dynamical system due to the lack of uniqueness
of solutions of our model.
To do this, we first prove some general abstract results on the existence of solutions
for a differential equation with delays in a Banach space (see Section 2). We prove
that if the nonlinear function containing the delay is weakly sequentially continuous
in bounded sets, then at least one local solution exists for every initial data in a
suitable space. This result generalizes a previous one [29] for the case of differential
equation in Banach spaces without delay. As far as we know, in other papers (see e.g.
[25], [34], [43]) some extra assumptions are considered (as for example compactness
conditions).
Next, in Section 3 we apply this general theory to our model (1) under rather general
assumptions of the nonlinear term f .
Finally, we analyze in Section 4 the particular case of a lattice dynamical system
with a nonlinear term of the form

fi(uit) = F0,i (ui (t)) + F1,i (ui (t− h1)) +

∫ 0

−h

bi (s, ui (t+ s)) ds,

with 0 < h1 ≤ h. Under some dissipative and sublinear growth conditions, we define
for this problem a multivalued semiflow and prove the existence of a global compact
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attractor. Additionally, with extra Lipschitz conditions we obtain uniqueness of the
Cauchy problem, so that the semiflow is in fact a semigroup of operators.

2. Existence and uniqueness of solutions for differential equations with

delays in Banach spaces. Let E be a real Banach space with its dual E∗ and let
E0 = C([−h, 0], E), with norms ‖·‖, ‖·‖∗ and ‖·‖E0

, respectively, where ‖ϕ‖E0
=

maxt∈[−h,0] ‖ϕ (t)‖. Also,

BX(y0, r) = {y ∈ X : ‖y − y0‖X ≤ r},
where X = E or E0, and (·, ·) will denote pairing between E and E∗.
Let us consider the following Cauchy problem for a functional differential equation
in a Banach space: 




du

dt
= f (t, ut) ,

u0 = ψ ∈ E0,

(2)

where f : [0,∞)×E0 → E. Also, for any u ∈ C([−h,+∞), E), the function ut ∈ E0,
t ≥ 0, is defined by ut (s) = u (t+ s), s ∈ [−h, 0].
Let Ew be the space E endowed with the weak topology. We consider the space
E0,w = C([−h, 0], Ew). We say that un → u ∈ E0,w in E0,w if

un (sn) → u (s) in Ew for all sn → s ∈ [−h, 0].

We will say that the function f is sequentially weakly continuous in bounded sets
if tn → t, un → u in E0,w and ‖un‖E0

≤M, for all n, imply f (tn, un) → f (t, u) in
Ew.
On the other hand, we will say that the function f is bounded if it maps bounded
subsets of [0,∞) × E0 onto bounded subsets of E.

Definition 1. The map u : [−h, T ] → E is called a solution of problem (2) if
u0 = ψ, u (·) is continuous, once weakly continuously differentiable in [0, T ] and
satisfies

u (t) = u (0) +

∫ t

0

f (s, us) ds, for all t ∈ [0, T ].

Remark 2. It follows from this definition that for any solution u of (2), the map
t 7→ ut ∈ E0 is continuous.

Remark 3. We note that if f : [0,∞)×E0 → E is sequentially weakly continuous
in bounded sets and the map t 7→ ut ∈ E0 is continuous, then t 7→ f (t, ut) is weakly
continuous, hence weakly measurable. If E is separable, we obtain that t 7→ f (t, ut)
is strongly measurable. If we assume, moreover, that the map f is bounded, then
we have that f (·, u·) ∈ L1 (0, T ;E) .
If f : [0,∞) × E0 → E and t 7→ ut ∈ E0 are continuous, then the map t 7→ f (t, ut)
is continuous, hence strongly measurable. If we assume, moreover, that the map f
is bounded, then we have that f (·, u·) ∈ L1 (0, T ;E) .

We shall obtain now the existence of solutions for problem (2).

Theorem 4. Assume that E is reflexive and separable. Let f : [0,∞)×E0 → E be
sequentially weakly continuous in bounded sets, and let f be a bounded map. Then,
for each r > 0, there exists a (r) > 0 such that if ψ ∈ E0 and ‖ψ‖E0

≤ r, then
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problem (2) possesses at least one solution defined on [0, a (r)]. Moreover, u (·) is

a.e. differentiable and
du

dt
= f (t, ut) for a.a. t ∈ (0, a(r)) .

If we assume additionally that f : [0,∞) × E0 → E is continuous, then u ∈
C1 ([0, a];E) and the separability of E is not needed.

Proof. Since f is bounded, for any r > 0 there is M (r) such that

‖f (t, v)‖ ≤M for all t ∈ [0, 1], v ∈ BE0
(0, r).

Define a (r) = min{1, r/M (2r)}. For any n we take a partition of the interval [0, a] :

∆n : 0 = tn0 < tn1 < ... < tnN(n) = a,

where

|∆n| = max
1≤k≤N

{
∣∣tnk − tnk−1

∣∣} → 0 as n→ ∞.

For every n we define inductively an approximation sequence by Euler’s method:

un (s) = ψ (s) for s ∈ [−h, 0],

un (t) = un (tnk ) + (t− tnk ) f
(
tnk , u

n
tn
k

)
for tnk ≤ t ≤ tnk+1, 0 ≤ k ≤ N − 1.

Let t, s ∈ [0, tn1 ]. Then

‖un (t) − un (s)‖ = ‖(t− s) f (0, ψ)‖ ≤ |t− s|M (2r) (3)

and, in particular,

‖un (t) − un (0)‖ = ‖tf (0, ψ)‖ ≤ |t|M (2r) ≤ r, (4)

so that

‖un (t)‖ ≤ 2r. (5)

We shall prove (3)-(5) for all t, s ∈ [0, a (r)]. Assume that these properties are
satisfied for t, s ∈ [0, tnk−1]. Then, if t ∈ [tnk−1, t

n
k ], we have

un (t) − un (0) =
(
t− tnk−1

)
f
(
tnk−1, u

n
tn
k−1

)
+

k−2∑

i=0

(
tni+1 − tni

)
f
(
tni , u

n
tn
i

)
,

‖un (t) − un (0)‖ ≤ tM (2r) ≤ r,

so that

‖un (t)‖ ≤ 2r. (6)

Now, for t, s ∈ [tnk−1, t
n
k ], we obtain

‖un (t) − un (s)‖ =
∥∥∥(t− s) f

(
tnk−1, u

n
tn
k−1

)∥∥∥ ≤ |t− s|M (2r) .

Finally, if t ∈ [tnk−1, t
n
k ], s ∈ [0, tnk−1], then

‖un (t) − un (s)‖ =
∥∥∥u
(
tnk−1

)
+
(
t− tnk−1

)
f
(
tnk−1, u

n
tn
k−1

)
− un (s)

∥∥∥

≤
(∣∣t− tnk−1

∣∣+
∣∣tnk−1 − s

∣∣)M (2r) = |t− s|M (2r) . (7)

Hence, the result follows.
Since E is reflexive, from (6) we deduce that every sequence {un (t)} is relatively
compact in Ew. It follows the existence of a continuous function u (·) and a subse-
quence of {un (·)} (denoted again un) such that un (t) → u (t) in Ew for all t ∈ [0, a].
Indeed, using the diagonal method one can choose a subsequence of {un (·)} and a
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function u : Q ∩ [0, a] → E such that un (t) → u (t) in Ew for any rational number
t ∈ Q. Since

‖u (t) − u (s)‖ ≤ lim inf ‖un (t) − un (s)‖ ≤ |t− s|M (2r) , for all t, s ∈ Q ∩ [0, a],

the function u can be extended to a continuous function (denoted again u : [0, a] →
E) such that

‖u (t) − u (s)‖ ≤ |t− s|M (2r) , for all t, s ∈ [0, a]. (8)

We shall prove that un (t0) → u (t0) in Ew. Indeed, for any t0 ∈ [0, a]\Q, v ∈ E∗

we have

(un (t0) − u (t0) , v) = (un (t0) − un (tm) , v) + (un (tm) − u (tm) , v)

+ (u (tm) − u (t0) , v) ,

where tm ∈ Q are such that tm → t0. For any ε > 0 there exist m (ε) and
N (m (ε) , ε) such that

|(un (t0) − un (tm) , v)| ≤ ‖un (t0) − un (tm)‖ ‖v‖ < ε

3
,

|(u (tm) − u (t0) , v)| ≤ ‖u (tm) − u (t0)‖ ‖v‖ <
ε

3
,

|(un (tm) − u (tm) , v)| < ε

3
.

Thus, |(un (t0) − u (t0) , v)| < ε, so that un (t0) → u (t0) in Ew. In fact, we have
that

un (tn) → u (t0) in Ew if tn → t0,

which follows by a similar argument from the equality

(un (tn) − u (t0) , v) = (un (tn) − un (t0) , v) + (un (t0) − u (t0) , v) .

Thus
un

tn
(τn) = un (tn + τn) → u (t+ τ) = ut (τ) ,

for tn → t ∈ [0, a], τn → τ ∈ [−h, 0], implies that

un
tn

→ ut in E0,w if tn → t ∈ [0, a].

It remains to show that u (·) is a solution of (2). For this aim we will pass to the
limit in the integral

un (t) = un (0) +

∫ t

0

f∆n
(τ) dτ, t ∈ [0, a],

where

f∆n
(τ) = f

(
tni , u

n
tn
i

)
for τ ∈ [tni , t

n
i+1), 0 ≤ i ≤ N − 1.

Since f is sequentially weakly continuous in bounded sets, for any τ ∈ [0, t] we have

f∆n
(τ) = f

(
tni , u

n
tn
i

)
→ f (τ, un

τ ) in Ew.

Then by ‖f∆n
(τ)‖ ≤ M (2r) and Lebesgue’s theorem we obtain for any v ∈ E∗

that(∫ t

0

f∆n
(τ) dτ, v

)
=

∫ t

0

(f∆n
(τ) , v) dτ →

∫ t

0

(f (τ, uτ ) , v) dτ =

(∫ t

0

f (τ, uτ ) dτ, v

)
,

and then

(u (t) , v) = (u (0) , v) +

(∫ t

0

f (τ, uτ ) dτ, v

)
,
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where we have used that f (·, u·) ∈ L1 (0, T ;E) (see Remark 3). As v ∈ E∗ is
arbitrary, we get the equality

u (t) = u (0) +

∫ t

0

f (τ, uτ ) dτ for all t ∈ [0, a].

This implies that
du

dt
= f (t, ut)

in the distribution sense, that is, for any φ ∈ C∞
0 (0, a) ,

∫ a

0

u (τ)φ′ (τ) dτ = −
∫ a

0

f (τ, uτ )φ (τ) dτ,

and also that g (t) = f (t, ut) is the weak derivative of u, that is,

d

dt
(u, v) = (g, v) , for all v ∈ E∗,

in the scalar distribution sense on (0, a). Since t 7→ f (t, ut) is weakly continuous, u
is weakly continuously differentiable.

Also, since u is absolutely continuous on [0, a] and
du

dt
∈ L1 (0, a;E) , we obtain that

u is a.e. differentiable and
du

dt
= f (t, ut) for a.a. t ∈ (0, a) .

Finally, if f : [0,∞) × E0 → E is continuous, then t 7→ f (t, ut) is continuous, so
that u ∈ C1 ([−h,∞);E) .

If the space E is not assumed to be reflexive, we need to assume an extra compact-
ness condition on f.

Theorem 5. Assume that E is separable. Let f : [0,∞) × E0 → E be sequentially
weakly continuous in bounded sets. Assume that f ([0, T ]×BE0

(0, r)) is relatively
compact in Ew for any T, r > 0. Then, for each r > 0, there exists a (r) > 0
such that if ψ ∈ E0 and ‖ψ‖E0

≤ r, problem (2) has at least one solution defined

on [0, a (r)]. Moreover, u (·) is a.e. differentiable and
du

dt
= f (t, ut) for a.a. t ∈

(0, a(r)) .
If we additionally assume that f : [0,∞) × E0 → E is continuous, then u ∈
C1 ([0, a];E) and the separability of E is not needed.

Proof. Since f ([0, T ]×BE0
(0, r)) is relatively compact inEw, the map f is bounded.

Then for any R > 0 there is M (R) such that

‖f (t, v)‖ ≤M for all t ∈ [0, 1], v ∈ BE0
(0, R).

We define a (r) = min{1, r/M (2r)} and exactly the same approximation sequence
{un} as in the proof of Theorem 4, which satisfies (6), (7). Also, we have that

un (t) − u (0)

t
= f (0, ψ) if t ∈ (0, tn1 ],

un (t) − u (0)

t
=
t− tnk
t

f
(
tnk , u

n
tn
k

)
+
∑k−1

i=0

tni+1 − tni
t

f
(
tni , u

n
tn
i

)
if t ∈ [tnk , t

n
k+1], k ≥ 1.

Hence, using (6) we have
un (t) − u (0)

t
∈ co(f ([0, a] ×BE0

(0, 2r)), where co (B) is

the convex hull of the setB. By the Krein-Smulian theorem co(f ([0, a] ×BE0
(0, 2r))
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is relatively compact in Ew. Hence, the sequence

{
un (t) − u (0)

t

}
contains a sub-

sequence converging in Ew, and then the same convergence property is satisfied
by {un (t)}. Arguing as in the proof of Theorem 4 we obtain the existence of
a continuous function u (·) satisfying (8) and a subsequence of {un (·)} such that
un (tn) → u (t0) in Ew if tn → t0. Also, exactly in the same way it is proved that
u (·) is a solution of (2), and the additional regularity properties, as well.

Theorem 6. Assume either the conditions of Theorem 4 or 5. If a solution u (·)
of (2) has a maximal interval of existence [0, b) and there exists K > 0 such that
‖u (t)‖ ≤ K, for all t ∈ [0, b), then b = +∞, that is, u (·) is a globally defined
solution.

Proof. Since the map f is bounded, from the definition of solution it follows that the
function u (·) is uniformly continuous on [0, b). Hence, the limit limt→b− u (t) = u∗

exists. Then, using the initial condition

ψ∗ (s) =

{
u∗ if s = 0,

u (s+ b) if s ∈ [−h, 0),

and either Theorem 4 or 5 we obtain that the solution u (·) can be extended to the
interval [0, b+ α), α > 0, which is a contradiction.

Let J : E → 2E∗

be the duality map, i.e. J(y) = {ξ ∈ E∗ | (y, ξ) = ‖y‖2
=

‖ξ‖2
∗}, ∀y ∈ E. We will prove two results concerning uniqueness of solutions.

Theorem 7. Assume either the conditions of Theorem 4 or 5. Also, suppose that

(f (t, v) − f (t, w) , j) ≤ β (t) ‖v − w‖2
E0
,

for all j ∈ J (v (0) − w (0)), v, w ∈ E0 and a.a. t ∈ (0,∞), where β ∈ L1
loc (0,∞),

β (t) ≥ 0. Then, for every ψ ∈ E0, problem (2) possesses a unique solution u (·)
defined on [0,∞).

Proof. By either Theorem 4 or 5 there exists at least one solution defined in some
maximal interval [0, α). We will show that for this solution α = ∞.

Since
du

dt
exists for a.a. t ∈ (0, α), Lemma 1.2 in [4, p.100] implies that

‖u (t)‖ d

dt
‖u (t)‖ =

(
d

dt
u (t) , j

)
= (f (t, ut) , j) for all j ∈ J (u (t)) and a.a. t.

Hence,

1

2

d

dt
‖u (t)‖2

= ‖u (t)‖ d

dt
‖u (t)‖ = (f(t, ut) − f(t, 0), j) + (f (t, 0) , j)

≤ β (t) ‖ut‖2
E0

+
1

4
‖f (t, 0)‖2

+ ‖u (t)‖2

≤ (β (t) + 1) ‖ut‖2
E0

+
1

4
‖f (t, 0)‖2

.

Thus,

‖u (t)‖2 ≤ ‖u (0)‖2 +

∫ t

0

1

2
‖f (s, 0)‖2 ds+ 2

∫ t

0

(β (s) + 1) ‖us‖2
E0
ds,
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and

‖ut‖2
E0

≤ ‖ψ‖2
E0

+

∫ t

0

1

2
‖f (s, 0)‖2

ds+ 2

∫ t

0

(β (s) + 1) ‖us‖2
E0
ds.

Denote C (t) = ‖ψ‖2
E0

+
∫ t

0
1
2 ‖f (s, 0)‖2

ds, γ (t) = 2(β (t)+1). By Gronwall’s lemma,

‖ut‖2
E0

≤ C (t) +

∫ t

0

γ (s)C (s) e
R

t

s
γ(s)dsds ≤ K for all t ∈ [0, α).

Therefore, Theorem 6 implies that α = +∞.
We shall prove that this solution is unique. If u (·) , v (·) are two solutions with the
initial data ψ, then

1

2

d

dt
‖u (t) − v (t)‖2 = ‖u (t) − v (t)‖ d

dt
‖u (t) − v (t)‖

= (f (t, ut) − f(t, vt), j) ≤ β (t) ‖ut − vt‖2
E0
,

where j ∈ J (u (t) − v (t)). Thus,

‖u (t) − v (t)‖2 ≤
∫ t

0

2β (s) ‖us − vs‖2
E0
ds,

and then

‖ut − vt‖2
E0

≤
∫ t

0

2β (s) ‖us − vs‖2
E0
ds for all t ≥ 0.

Again by Gronwall’s lemma we have that u ≡ v.

Theorem 8. Assume either the hypotheses of Theorem 4 or 5. Also, suppose that,
for any M > 0, there exists β (·,M) ∈ L1

loc (0,∞) such that β(t,M) ≥ 0 for a.a.
t ∈ (0,∞), and the following inequality holds:

(f (t, v) − f (t, w) , j) ≤ β (t,M) ‖v − w‖2
E0
, (9)

for all j ∈ J (v (0) − w (0)), and all v, w ∈ E0 with ‖v‖E0
, ‖u‖E0

≤ M , and a.a.

t ∈ (0,∞). Then, for each r > 0, there exists a (r) > 0 such that if ψ ∈ E0 and
‖ψ‖E0

≤ r, problem (2) has a unique solution defined on [0, a (r)].

Proof. We know by Theorems 4 or 5 that there exists at least one solution defined
in [0, a (r)]. Suppose that we have two different solutions u, v defined in [0, a (r)].
Then, arguing as in the proof of the previous theorem, we have

1

2

d

dt
‖u (t) − v (t)‖2 ≤ β (t,M) ‖ut − vt‖2

E0
, (10)

where M > 0 is such that ‖ut‖E0
, ‖vt‖E0

≤ M for all t ∈ [0, a(r)]. Then, using
Gronwall’s lemma we obtain that u ≡ v.
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3. Lattice dynamical systems with delay: setting of the problem. Consider
the following first order lattice dynamical system with finite delay





dui

dt
− (ui−1 − 2ui + ui+1) + λui + fi (uit) = 0, t > 0, i ∈ Z,

ui (s) = ψi (s) , ∀s ∈ [−h, 0],

(11)

where λ ∈ R, which is the discretization of the following scalar retarded reaction-
diffusion equation:





du

dt
− ∂2u

∂x2
+ λu+ f(ut) = 0, t > 0, x ∈ R,

u (s) = ψ (s) , ∀s ∈ [−h, 0].

We consider the separable Hilbert space ℓ2 = {v = (vi)i∈Z
:
∑

i∈Z
v2

i < ∞} with

norm ‖v‖ =
√∑

i∈Z
v2

i and scalar product (w, v) =
∑

i∈Z
wivi, and also the Banach

space ℓ∞ = {v = (vi)i∈Z
: supi∈Z

|vi| <∞} with norm ‖v‖∞ = supi∈Z
|vi| .

Further, we shall use the notation E = ℓ2, E0 = C
(
[−h, 0], ℓ2

)
, E1 = C([−h, 0],R),

with the norms ‖u‖E0
= maxs∈[−h,0] ‖u (s)‖, ‖u‖E1

= maxs∈[−h,0] |u (s)|. Also, put

E∞ = C ([−h, 0], ℓ∞) with norm ‖u‖E∞

= maxs∈[−h,0] ‖u (s)‖∞. We note that
E0 ⊂ E∞, as

‖u (t) − u (s)‖∞ = sup
i∈Z

|ui (t) − ui (s)| ≤
√∑

i∈Z

|ui (t) − ui (s)|2

= ‖u (t) − u (s)‖ , ∀t, s ∈ [−h, 0],

and

‖u‖E∞

= max
s∈[−h,0]

sup
i∈Z

|ui| ≤ max
s∈[−h,0]

√∑

i∈Z

|ui|2 = ‖u‖E0
.

We consider the following conditions:

(H1) The operator f : E0 → E given by the rule (f (v))i = fi (vi), i ∈ Z, is well
defined and bounded.

(H2) The maps fi : C([−h, 0],R) → R are continuous.

We shall first prove the existence of solutions for problem (11). For this aim we
shall rewrite it in abstract form. We define the operator A : E → E by

(Av)i := −vi−1 + 2vi − vi+1, i ∈ Z.

Also, we define the operators B, B∗ : E → E by

(Bv)i := vi+1 − vi, (B∗v)i := vi−1 − vi.

It is easy to check that

A = B∗B = BB∗,

(B∗w, v) = (w,Bv) .

Then the operator F : E0 → E is defined by

F (v) = −Av (0) − f (v) − λv (0)
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and (11) can be rewritten as





du

dt
= F (ut) , t > 0,

u (s) = ψ (s) , ∀s ∈ [−h, 0].

(12)

Lemma 9. Let (H1)-(H2) hold. Then the map f : E0 → E is sequentially weakly
continuous in bounded sets. Also, the map A : E → E is weakly continuous.

Proof. Let vn → v ∈ E0,w, ‖vn‖E0
≤M1 for all n, and let w ∈ ℓ2 be arbitrary. For

any ε > 0 we take K0 (ε) > 0 such that
∑

|i|≥K0
|wi|2 < ε. Since f is bounded,

there exists M2 > 0 such that ‖f (vn)‖ ≤ M2, ‖f (v)‖ ≤ M2, for all n. Also, as
vn

i → vi in C([−h, 0],R), for all i, (H2) imply the existence of N(K0, ε) such that∑
|i|<K0

|fi (vn
i ) − fi (vi)|2 < ε2 if n ≥ N. Hence,

|(f (vn) − f (v) , w)| ≤
√ ∑

|i|<K0

|fi (vn
i ) − fi (vi)|2 ‖w‖

+ (‖f (v)‖ + ‖f (vn)‖)
√ ∑

|i|≥K0

|wi|2

≤ ε ‖w‖ + 2M2ε.

The result for the operator A can be proved similarly. This completes the proof.

Theorem 10. Let (H1)-(H2) hold. Then for each r > 0 there exists a (r) > 0
such that if ψ ∈ E0 and ‖ψ‖E0

≤ r, then problem (11) has at least one solution

defined on [0, a (r)]. Moreover, u (·) is a.e. differentiable and
du

dt
= F (ut) for a.a.

t ∈ (0, a(r)) .

Proof. Lemma 9 implies that the operator F is sequentially weakly continuous in
bounded sets. Since f is bounded, F is also bounded. The result follows from
Theorem 4.

In order to obtain that the map f is continuous, we need an assumption which is
stronger than (H1).

(H3) The operator f : E0 → E given by the rule (f (v))i = fi (vi), i ∈ Z, is well
defined, and for any v ∈ E0, we have

∑

|i|≥K

|fi (vi)|2 ≤ C
(
‖v‖E0

)


 max
s∈[−h,0]

∑

|i|≥K

v2
i (s) + bK



 , for all K ∈ Z+,

where bK → 0+ as K → ∞, and C (·) ≥ 0 is a continuous non-decreasing
function.

Remark 11. Condition (H3) implies that the map f is bounded.

Lemma 12. Let (H2)-(H3) hold. Then, the map f : E0 → E is continuous.
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Proof. Let vn → v in E0. Then for any ε > 0 there exists K (ε) such that

max
s∈[−h,0]

∑

|i|≥K

|vn
i (s)|2 < ε, max

s∈[−h,0]

∑

|i|≥K

|vi (s)|2 < ε.

Then by (H3) one can choose K1 (ε) ≥ K (ε) such that
∑

|i|≥K

|fi (vn
i )|2 ≤ Rε,

∑

|i|≥K

|fi (vi)|2 ≤ Rε,

for some R > 0. On the other hand, by (H2) we obtain the existence of N (ε,K)
such that ∑

|i|<K1

|fi (vn
i ) − fi (vi)|2 < ε if n ≥ N.

Thus,
∑

i∈Z

|fi (vn
i ) − fi (vi)|2 ≤

∑

|i|<K1

|fi (vn
i ) − fi (vi)|2

+ 2
∑

|i|≥K1

|fi (vn
i )|2 + 2

∑

|i|≥K1

|fi (vi)|2

≤ ε+ 2Rε, if n ≥ N.

Corollary 13. Under conditions (H2)-(H3) the solution given in Theorem 10 be-
longs to the space C1 ([0, a];E) .

In order to obtain the uniqueness of solutions we need an additional Lipschitz
assumption.

(H4) For any M > 0 there exists β (M) ≥ 0 such that

(f (z) − f (v) , z(0)− v(0)) ≥ −β (M) ‖z − v‖2
E0
,

if ‖z‖E0
, ‖v‖E0

≤M .

Theorem 14. Assume (H1)-(H2) and (H4). Then the solution given in Theorem
10 is unique.

Proof. Let z, v ∈ E0, ‖z‖E0
, ‖v‖E0

≤ M, and w = z − v. It follows from (H4) and

(Aw(0), w(0)) = (Bw(0), Bw(0)) ≥ 0 that

(F (z) − F (v) , z(0) − v(0)) = − (Aw(0), w(0)) − λ ‖w‖E0
− (f (z) − f (v) , w(0))

≤ β (M) ‖w‖E0
.

Then the result follows from Theorem 8.

We now aim to study the asymptotic behaviour of solutions for problem (11). In
particular, we will show the existence of a global attractor.
When conditions (H1)-(H2), (H4) hold, if we assume that every solution is global
(this is true if we obtain an estimate of the solutions by Theorem 6), then we can
define a semigroup of operators S : R+ × E0 → E0 by

S (t, ψ) = ut,

where u (·) is the unique solution to (11) with u0 = ψ. Moreover, it is easy to prove
using (10) and Gronwall’s lemma that the map S is continuous with respect to the
initial data u0.
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On the other hand, if we assume only (H1)-(H2) and that every solution is global,
then we can define a multivalued semiflow by G : R+ ×E0 → P (E0) (P (E0) is the
set of all non-empty subsets of E0) by

G (t, ψ) = {ut : u (·) is a solution of (11) with u0 = ψ}. (13)

Since we do not have uniqueness of the Cauchy problem, this map is in general
multivalued. In a standard way (see [38, Lemma 13]) one can prove that it is a
multivalued semiflow, that is:

1. G (0, ·) = Id (the identity map);
2. G (t+ s, u0) ⊂ G (t, G (s, u0)) for all u0 ∈ E0, t, s ∈ R+.

Moreover, it is strict, that is, G (t+ s, u0) = G (t, G (s, u0)) for all u0 ∈ E0, t, s ∈
R+.
In the following sections we will show, for more particular cases of the map f, the
existence of global attractors for (11). For this aim, we recall now some well known
results of the general theory of attractors for semigroups and multivalued semiflows.
Let S : R+ × X → X (G : R+ × X → P (X)) be a semigroup (a multivalued
semiflow) in the complete metric space X . The set B0 is called absorbing for the
semigroup S (the semiflow G) if for any bounded set B there is a time T (B) such
that S (t, B) ⊂ B0 (G (t, B) ⊂ B0) for any t ≥ T.
The semigroup S (the semiflow G) is asymptotically compact if for any bounded
set B such that ∪t≥T (B)S(t, B) (∪t≥T (B)G(t, B)) is bounded for some T (B), any
arbitrary sequence yn ∈ S (tn, B) (yn ∈ G (tn, B)), where tn → ∞, is relatively
compact.
Recall that dist(A,B) = supx∈A infy∈B ‖x− y‖ is the Hausdorff semi-distance from
the set A to the set B.
The set A is called a global attractor of S if it is invariant (S(t,A) = A for any
t ≥ 0) and attracts any bounded set B, that is, dist (S(t, B),A) → 0 as t → ∞.
The set A is called a global attractor ofG if it is negatively semi-invariant (A ⊂G(t,A)
for any t ≥ 0) and attracts any bounded set B, that is, dist (G(t, B),A) → 0 as
t→ ∞. It is invariant if A =G(t,A) for any t ≥ 0.
We state two well–known results about the existence of global attractors.

Theorem 15. ([32] and [24]) Let x 7→ S(t, x) be continuous for any t ≥ 0. Assume
that S is asymptotically compact and possesses a bounded absorbing set B0. Then
there exists a global compact attractor A, which is the minimal closed set attracting
any bounded set. If, moreover, the space X is connected and the map t 7→ S (t, x)
is continuous for any x ∈ X, then the set A is connected.

We recall that the map x 7→ G(t, x) is called upper semicontinous if for any neigh-
borhood O of G (t, x) there exists δ > 0 such that if ‖y − x‖ < δ, then G(t, y) ⊂ O.

Theorem 16. ([37]) Assume that G is asymptotically compact and has a bounded
absorbing set B0. Also, let the map x 7→ G(t, x) be upper semicontinuous and have
closed values. Then there exists a global compact attractor A, which is the minimal
closed set attracting any bounded set. If, moreover, the semiflow G is strict, then
A is invariant.

4. A lattice system with sublinear retarded terms. We shall consider a func-
tion f : E0 → E given by the rule (f (v))i = fi (vi) and

fi (vi) = F0,i (vi (0)) + F1,i (vi (−h1)) +

∫ 0

−h

bi (s, vi (s)) ds,
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where h ≥ h1 > 0, that is, putting v = ut = u (t+ ·), problem (11) can be rewritten
as






dui

dt
− (ui−1 − 2ui + ui+1) + λui + F0,i (ui (t)) + F1,i (ui (t− h1))

+
∫ 0

−h
bi (s, ui (t+ s)) ds = 0, t > 0, i ∈ Z,

ui (s) = ψi (s) , ∀s ∈ [−h, 0].

(14)

We consider the following conditions:

(C1) λ > 0.
(C2) F0,i are continuous and satisfy that F0,i (x) x ≥ −C0,i, C0 ∈ ℓ1.
(C3) |F0,i (x)| ≤ H (|x|) |x| + C1,i, for all x ∈ R, where C1 ∈ ℓ2, and H (·) ≥ 0 is a

continuous and non-decreasing function.
(C4) F1,i are continuous and verify that |F1,i (x)| ≤ K1 |x| + C2,i, for all x ∈ R,

where C2 ∈ ℓ2, K1 > 0.
(C5) |bi (s, x)| ≤ m0,i (s) +m1,i (s) |x| , for all x ∈ R and a.a. s ∈ (−h, 0), where bi

are Caratheodory, that is, measurable in s and continuous in x.
Also, m0,i (·) , m1,i (·) ∈ L1 (−h, 0), m0,i (s) ,m1,i (s) ≥ 0 and defining

M0i =
∫ 0

−h
m0,i (s) ds and M1i =

∫ 0

−h
m1,i (s) ds we assume that

M2
r :=

∑
i∈Z

M2
ri <∞, r = 0, 1.

Let us check conditions (H1)-(H3). First, in order to obtain (H1) we prove that f
is well defined and bounded. We note that

|fi (vi)| ≤ |F0,i (vi (0))| + |F1,i (vi (−h1))| +
∫ 0

−h

|bi (s, vi (s))| ds. (15)

For the first term by (C3) we have

|F0,i (vi (0))|2 ≤ 2
(
H2 (|vi (0)|) |vi (0)|2 + C2

1,i

)
≤ 2χ(‖v‖E0

) |vi (0)|2 +2C2
1,i, (16)

where χ(‖v‖E0
) = maxi∈Z

(
H2 (|vi (0)|)

)
, which exists becauseH (·) is non-decreasing

and v ∈ E0. Then,
∑

i∈Z

|F0,i (vi (0))|2 ≤ 2χ(‖v‖E0
) ‖v‖2

E0
+ 2 ‖C1‖2 . (17)

For the second term, by (C4), we obtain
∑

i∈Z

|F1,i (vi (−h1))|2 ≤ 2K2
1

∑

i∈Z

|vi (−h1)|2 +2 ‖C2‖2 ≤ 2K2
1 ‖v‖

2
E0

+2 ‖C2‖2
. (18)

Now, for the term with the integral delay, by (C5), we proceed as follows:
∫ 0

−h

|bi (s, vi (s))| ds ≤
∫ 0

−h

(m0,i (s) +m1,i (s) |vi (s)|) ds ≤M0,i + ‖v‖E∞

M1,i.

Then

∑

i∈Z

(∫ 0

−h

|bi (s, vi (s))| ds
)2

≤ 2
∑

i∈Z

M2
0,i + 2 ‖v‖2

E∞

∑

i∈Z

M2
1,i ≤ 2M2

0 + 2 ‖v‖2
E0
M2

1 .

(19)
Then, using (17)-(19) in (15) we obtain that f is well defined and bounded.
Now, we check (H2), i.e., that the maps fi : C([−h, 0],R) → R are continuous.
We consider {vn}n∈N

⊂ C([−h, 0],R) and v0 ∈ C([−h, 0],R) such that vn → v0 in



14 TOMÁS CARABALLO, FRANCISCO MORILLAS AND JOSÉ VALERO

C([−h, 0],R). Now, we take
∣∣fi (vn) − fi

(
v0
)∣∣ ≤

∣∣F0,i (vn (0)) − F0,i

(
v0 (0)

)∣∣+
∣∣F1,i (vn (−h1)) − F1,i

(
v0 (−h1)

)∣∣

+

∣∣∣∣
∫ 0

−h

bi (s, vn (s)) ds−
∫ 0

−h

bi
(
s, v0 (s)

)
ds

∣∣∣∣ .

From (C2) and (C4), F0,i and F1,i are continuous functions. Also, from (C5) and
Lebesgue’s theorem the last term converges to 0. Thus, the continuity of fi follows.
To check (H3) we observe that

∑

|i|≥K

(∫ 0

−h

|bi (s, vi (s))| ds
)2

≤ 2
∑

|i|≥K

(∫ 0

−h

m0,i (s) ds

)2

+ 2
∑

|i|≥K

(∫ 0

−h

m1,i (s) |vi (s)| ds
)2

≤ 2
∑

|i|≥K

M2
0,i + 2 ‖v‖2

E0

∑

|i|≥K

M2
1,i

Also, by (15), (16) and (C4) we have

∑

|i|≥K

|fi (vi)|2 ≤ R



χ(‖v‖E0
)
∑

|i|≥K

|vi (0)|2 +
∑

|i|≥K

C2
1,i +K2

1

∑

|i|≥K

|vi (−h1)|2

+
∑

|i|≥K

C2
2,i +

∑

|i|≥K

M2
0,i + ‖v‖2

E0

∑

|i|≥K

M2
1,i





≤ C
(
‖v‖E0

)

 max

s∈[−h,0]

∑

|i|≥K

v2
i (s) + bK


 ,

where bK → 0+ as K → ∞, and C (·) ≥ 0 is a continuous non-decreasing function.
Thus, (H3) holds.
Then Theorem 10 and Corollary 13 imply that for any ψ ∈ E0 there exists, at least,
one solution u (·) ∈ C1 ([0, α), E) in a maximal interval [0, α). In order to obtain
that every solution is globally defined we need to get some estimates. This will be
done in the next section.

4.1. Estimate of solutions. Now, we shall obtain some estimates of solutions.
Such estimates will imply that the solutions are bounded uniformly with respect to
bounded sets of initial conditions and positive values of time. This result allows us
to define also a bounded absorbing set.

Proposition 17. Assume (C1)-(C5). Also, let

2M1eh < 1, (20)

K2
1 < e−ηhλ (λ− η) , (21)

where η ∈ (η0, η1) and ηj are the two solutions of the equation ηe−ηh = 2M1.
Then, every solution u (·) with u0 = ψ ∈ E0 verifies

‖ut‖2
E0

≤ R1e
−(η−L)t ‖ψ‖2

E0
+R2, ∀t ∈ [0, T ∗), (22)

where T ∗ is the maximal time of existence, L = 2M1e
ηh and Rj > 0 are some

constants depending on the parameters of the problem.
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Remark 18. We note that (20) implies that ηe−ηh > 2M1 if η ∈ (η0, η1), so that
η > L. Also, (21) implies that λ > η.

Proof. We multiply (14) by u = (ui)i∈Z
in ℓ2. Then

1

2

d

dt
‖u‖2

+ (Au, u) + λ ‖u (t)‖2

= −
∑

i∈Z

F0,i (ui (t)) ui (t) −
∑

i∈Z

F1,i (ui (t− h1)) ui (t)

−
∑

i∈Z

∫ 0

−h

bi (s, ui (t+ s)) ds ui (t) . (23)

Multiplying (23) by eηt, and using (Au, u) = ‖Bu‖2
and (C1)-(C4), we have, for

any ǫ > 0 to be determined later on,

d

dt

(
eηt ‖u (t)‖2

)
≤ (η − 2λ+ ǫ) eηt ‖u (t)‖2

+ 2eηt ‖C0‖ℓ1

+ 2
eηt

ǫ

(
K2

1 ‖u (t− h1)‖2
+ ‖C2‖2

)

− 2eηt
∑

i∈Z

∫ 0

−h

bi (s, ui (t+ s)) ds ui (t) . (24)

Now, integrating the last inequality over [0, t] we obtain

eηt ‖u (t)‖2 ≤ ‖u (0)‖2
+ (η − 2λ+ ǫ)

∫ t

0

eηs ‖u (s)‖2
ds+

2

η
‖C0‖ℓ1

(
eηt − 1

)

+
2

ǫη
‖C2‖2 (

eηt − 1
)

+
2K2

1

ǫ

∫ t

0

eηs ‖u (s− h1)‖2
ds

− 2

∫ t

0

eηs

(
∑

i∈Z

∫ 0

−h

bi (r, ui (s+ r)) dr ui (s)

)
ds. (25)

We proceed to estimate the two last terms in (25). First,
∫ t

0

eηs ‖u (s− h1)‖2 ds =

∫ t−h1

−h1

eη(l+h1) ‖u (l)‖2 dl

≤ eηh1

∫ 0

−h

eηl ‖u (l)‖2
dl + eηh1

∫ t

0

eηl ‖u (l)‖2
dl

≤ eηh

η
‖ψ‖2

E0

(
1 − e−ηh

)
+ eηh

∫ t

0

eηl ‖u (l)‖2
dl. (26)

Next, we analyze the last term in (25). By (C5),
∣∣∣∣∣
∑

i∈Z

∫ 0

−h

bi (s, ui (t+ s)) ds ui (t)

∣∣∣∣∣ ≤
∑

i∈Z

∫ 0

−h

(m0,i (s) |ui (t)|) ds (27)

+
∑

i∈Z

∫ 0

−h

(m1,i (s) |ui (t+ s)| |ui (t)|) ds.

Now, we estimate the two terms in (27) separately. On the one hand,

∑

i∈Z

∫ 0

−h

(m0,i (s) |ui (t)|) ds =
∑

i∈Z

M0,i |ui (t)| ≤ ‖u (t)‖M0. (28)
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On the other,

∑

i∈Z

∫ 0

−h

(m1,i (s) |ui (t+ s)| |ui (t)|) ds ≤ ‖ut‖E∞

∑

i∈Z

(∫ 0

−h

(m1,i (s)) ds

)
|ui (t)|

≤ ‖ut‖E∞

M1 ‖u (t)‖
≤ ‖ut‖2

E0
M1. (29)

Now, using (28) and (29) in (27), we have

∣∣∣∣∣2
∫ t

0

eηs

(
∑

i∈Z

∫ 0

−h

bi (r, ui (s+ r)) dr ui (s)

)∣∣∣∣∣ ds

≤ 2

∫ t

0

eηs
(
‖u (s)‖M0 + ‖us‖2

E0
M1

)
ds

≤ ǫ̂

∫ t

0

eηs ‖u (s)‖2
ds+

M2
0

ǫ̂η

(
eηt − 1

)
+ 2M1

∫ t

0

eηs ‖us‖2
E0
ds, (30)

with ǫ̂ > 0 arbitrary.
Using (26) and (30) in (25) we obtain

eηt ‖u (t)‖2 ≤ ‖u (0)‖2
+
(
η − 2λ+ ǫ+ ǫ̂+

2K2

1
eηh

ǫ

) ∫ t

0 e
ηs ‖u (s)‖2

ds

+
(

2‖C2‖
2

E

ǫη
+

M2

0

ǫ̂η
+ 2

η
‖C0‖ℓ1

)
(eηt − 1)

+
2K2

1
eηh

ǫη
‖ψ‖2

E0

(
1 − e−ηh

)
+ 2M1

∫ t

0
eηs ‖us‖2

E0
ds.

Taking ǫ = λ, condition (21) implies that η− λ+ ǫ̂+
K2

1
eηh

λ
< 0 for ǫ̂ small enough.

Then

eηt ‖u (t)‖2 ≤ ‖u (0)‖2
+
(

2‖C2‖
2

E

λη
+

M2

0

ǫ̂η
+ 2

η
‖C0‖ℓ1

)
(eηt − 1)

+
2K2

1

λη
‖ψ‖2

E0

(
eηh − 1

)
+ 2M1

∫ t

0
eηs ‖us‖2

E0
ds.

(31)

Let θ ∈ [−h, 0]. Replacing t by t+ θ in (31), using that ‖u (t+ θ)‖ = ‖ψ (t+ θ)‖ ≤
‖ψ‖E0

if t+ θ < 0, and multiplying by e−η(t+θ) we have

‖u (t+ θ)‖2 ≤ e−η(t+θ) ‖ψ‖2
E0

+
(

2‖C2‖
2

E

λη
+

M2

0

ǫ̂η
+ 2

η
‖C0‖ℓ1

) (
1 − e−η(t+θ)

)

+e−η(t+θ) 2K2

1

λη
‖ψ‖2

E0

(
eηh − 1

)
+ 2M1e

−η(t+θ)
∫ t+θ

0
eηs ‖us‖2

E0
ds.

Using that θ ∈ [−h, 0] and neglecting the negative terms we get

eηt ‖ut‖2
E0

≤ eηh ‖ψ‖2
E0

+
(

2‖C2‖
2

E

λη
+

M2

0

ǫ̂η
+ 2

η
‖C0‖ℓ1

)
eηt

+
2K2

1

λη
‖ψ‖2

E0
e2ηh + 2M1e

ηh
∫ t

0 e
ηs ‖us‖2

E0
ds.

We can rewrite this expression as

eηt ‖ut‖2
E0

≤ Ĉ (t) + L

∫ t

0

eηs ‖us‖2
E0
ds, (32)
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where we have used the notation

Ĉ1 :=
2 ‖C2‖2

E

λη
+
M2

0

ǫ̂η
+

2

η
‖C0‖ℓ1 ,

Ĉ2 :=
2K2

1

λη
e2ηh,

L := 2M1e
ηh,

Ĉ (t) :=
(
eηh + Ĉ2

)
‖ψ‖2

E0
+ Ĉ1e

ηt.

Applying Gronwall’s inequality and using η − L > 0 (see Remark 18) yields

eηt ‖ut‖2
E0

≤ Ĉ (t) + L

∫ t

0

Ĉ (s) eL(t−s)ds

= Ĉ (t) + L ‖ψ‖2
E0

(
eηh + Ĉ2

) 1

L

(
eLt − 1

)
+

LĈ1

η − L

(
eηt − eLt

)

≤ Ĉ (t) + ‖ψ‖2
E0

(
eηh + Ĉ2

)
eLt +

LĈ1

η − L
eηt,

and then

‖ut‖2
E0

≤ e−ηt
(
eηh + Ĉ2

)
‖ψ‖2

E0
+ Ĉ1 +‖ψ‖2

E0

(
eηh + Ĉ2

)
e−(η−L)t +

LĈ1

η − L
. (33)

From here (22) follows.

Corollary 19. Assuming the conditions of Proposition 17, Theorem 6 implies that
every local solution of (11) can be defined globally. Also, as shown in Section 3, the
map G defined by (13) is a strict multivalued semiflow.

Corollary 20. The bounded set defined by

B0 :=
{
ψ ∈ E0 : ‖ψ‖E0

≤ R0

}
,

with R0 :=
√

1 +R2, is absorbing for the multivalued semiflow G.

4.2. Estimate of the tails. In order to obtain the existence of a global attractor
we need to use an estimate of the tails of solutions.

Lemma 21. We assume the conditions of Proposition 17. Let B be a bounded set
of E0. Then, for any ǫ > 0 there exist T (ǫ, B), K (ǫ, B) such that

max
s∈[−h,0]

√ ∑

|i|>2K(ǫ,B)

|ui (t+ s)|2 < ǫ, t ≥ T , (34)

for any initial condition ψ ∈ B and any solution u (·) with u0 = ψ.

Proof. Define a smooth function θ satisfying

θ(s) =





0, 0 ≤ s ≤ 1,
0 ≤ θ(s) ≤ 1, 1 ≤ s ≤ 2,
1, s ≥ 2.

Obviously |θ′(s)| ≤ C, for all s ∈ R+. For any solution u (·) , let v (t) := (vi (t))i∈Z

be given by vi (t) = ρK,iui (t) , where ρK,i := θ
(

|i|
K

)
. We multiply (14) by v. We
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note that u (·) ∈ C1 ([0,∞) , E) implies

1

2

d

dt

∑

i∈Z

ρK,i |ui|2 =
∑

i∈Z

dui (t)

dt
vi (t) , ∀t > 0

Following now the arguments in [38, p.571], and thanks to Proposition 17, there
exists another constant C (depending on the bounded subset B and the parameters
of the problem) such that

(Au (t) , v (t)) ≥ −C

K
, ∀t ≥ 0.

Hence,

1

2

d

dt

∑

i∈Z

ρK,i |ui (t)|2 ≤ −λ
∑

i∈Z

ρK,i |ui (t)|2 −
∑

i∈Z

ρK,ifi (uit)ui (t) +
C

K
.

Then, arguing as in the proof of Proposition 17 we have

d

dt

(
eηt
∑

i∈Z

ρK,i |ui (t)|2
)

≤ eηt (η − 2λ+ ǫ)
∑

i∈Z

ρK,i |ui (t)|2 (35)

+ 2eηt
∑

i∈Z

ρK,iC0,i +
2C

K
eηt

+
2

ǫ
eηt
∑

i∈Z

ρK,iC
2
2,i +

2K2
1

ǫ

∑

i∈Z

ρK,i |ui (t− h1)|2

+ 2eηt
∑

i∈Z

ρK,i

∫ 0

−h

|bi (s, ui (t+ s))| ds |ui (t)| .

Integrating over (0, t) we get

eηt

(
∑

i∈Z

ρK,i |ui (t)|2
)

≤
∑

i∈Z

ρK,i |ui (0)|2 (36)

+ (η − 2λ+ ǫ)

∫ t

0

eηs
∑

i∈Z

ρK,i |ui (s)|2 ds

+
2

η

(
eηt − 1

)
(
∑

i∈Z

ρK,iC0,i +
C

K
+

1

ǫ

∑

i∈Z

ρK,iC
2
2,i

)

+
2K2

1

ǫ

∫ t

0

eηs
∑

i∈Z

ρK,i |ui (s− h1)|2 ds

+ 2

∫ t

0

eηs
∑

i∈Z

ρK,i

∫ 0

−h

|bi (r, ui (s+ r))| dr |ui (s)| ds .

Next, we estimate the last two terms in (36). The first one, arguing as in (26), is
estimated by

∫ t

0

eηs
∑

i∈Z

ρK,i |ui (s− h1)|2 ds ≤ eηh

η

∥∥∥ρ
1

2

Kψ
∥∥∥

2

E0

(
1 − e−ηh

)

+eηh

∫ t

0

eηs
∑

i∈Z

ρK,i |ui (s)|2 ds. (37)
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As for the second term, using assumption (C5) and

∫ t

0

eηs
∑

i∈Z

ρK,i |ui (s)|
∫ 0

−h

m0,i (r) dr ds ≤ ǫ̂

2

∫ t

0

eηs
∥∥∥ρ

1

2

Ku (s)
∥∥∥

2

ds

+

∑
i∈Z

ρK,iM
2
0,i

2ǫ̂η

(
eηt − 1

)
,

∫ t

0

eηs
∑

i∈Z

ρK,i |ui (s)|
∫ 0

−h

m1,i (r) |ui (s+ r)| dr ds

≤
∫ t

0

eηs
∥∥∥ρ

1

2

K,ius

∥∥∥
E∞

(
∑

i∈Z

ρ
1

2

K,i |ui (s)|M1,i

)
ds

≤M1

∫ t

0

eηs
∥∥∥ρ

1

2

Kus

∥∥∥
2

E0

ds,

we obtain
∫ t

0

eηs
∑

i∈Z

ρK,i

∫ 0

−h

|bi (r, ui (s+ r))| dr |ui (s)| ds (38)

≤ ǫ̂

2

∫ t

0

eηs
∥∥∥ρ

1

2

Ku (s)
∥∥∥

2

ds+

∑
i∈Z

ρK,iM
2
0,i

2ǫ̂η

(
eηt − 1

)

+M1

∫ t

0

eηs
∥∥∥ρ

1

2

Kus

∥∥∥
2

E0

ds.

Taking into account all these estimates together we obtain

eηt
∑

i∈Z

ρK,i |ui (t)|2

≤
∑

i∈Z

ρK,i |ui (0)|2 +

(
η − 2λ+ ǫ+

2K2
1

ǫ
eηh + ǫ̂

)∫ t

0

eηs
∑

i∈Z

ρK,i |ui (s)|2 ds

+
2

η

(
eηt − 1

)
(
∑

i∈Z

ρK,iC0,i +
C

K
+

1

ǫ

∑

i∈Z

ρK,iC
2
2,i +

∑
i∈Z

ρK,iM
2
0,i

2ǫ̂

)

+
2K2

1

ǫ

eηh

η

∥∥∥ρ
1

2

Kψ
∥∥∥

2

E0

(
1 − e−ηh

)
+ 2M1

∫ t

0

eηs
∥∥∥ρ

1

2

Kus

∥∥∥
2

E0

ds.

In a similar way as in Proposition 17 we have

eηt
∑

i∈Z

ρK,i |ui (t)|2

≤
∑

i∈Z

ρK,i |ui (0)|2

+
2

η

(
eηt − 1

)
(
∑

i∈Z

ρK,iC0,i +
C

K
+

1

λ

∑

i∈Z

ρK,iC
2
2,i +

∑
i∈Z

ρK,iM
2
0,i

2ǫ̂

)

+
2K2

1

λ

eηh

η

∥∥∥ρ
1

2

Kψ
∥∥∥

2

E0

(
1 − e−ηh

)
+ 2M1

∫ t

0

eηs
∥∥∥ρ

1

2

Kus

∥∥∥
2

E0

ds
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and

eηt
∥∥∥ρ

1

2

Kut

∥∥∥
2

E0

≤
(
eηh +

2K2
1

λη
e2ηh

)∥∥∥ρ
1

2

Kψ
∥∥∥

2

E0

+
2

η
eηt

(
∑

i∈Z

ρK,iC0,i +
C

K
+

1

λ

∑

i∈Z

ρK,iC
2
2,i +

∑
i∈Z

ρK,iM
2
0,i

2ǫ̂

)

+ 2M1e
ηh

∫ t

0

eηs
∥∥∥ρ

1

2

Kus

∥∥∥
2

E0

ds.

We can rewrite this expression as

eηt
∥∥∥ρ

1

2

Kut

∥∥∥
2

E0

≤ C̃ (t) + L̃

∫ t

0

eηs
∥∥∥ρ

1

2

Kus

∥∥∥
2

E0

ds, (39)

where we have used the notation

C̃1 :=
2

η

(
∑

i∈Z

ρK,iC0,i +
C

K
+

1

λ

∑

i∈Z

ρK,iC
2
2,i +

∑
i∈Z

ρK,iM
2
0,i

2ǫ̂

)
,

C̃2 :=
2K2

1

λη
e2ηh,

L̃ := 2M1e
ηh,

C̃ (t) :=
(
eηh + C̃2

) ∥∥∥ρ
1

2

Kψ
∥∥∥

2

E0

+ C̃1e
ηt.

Applying Gronwall’s inequality and using η − L > 0 (see Remark 18) we obtain

eηt
∥∥∥ρ

1

2

Kut

∥∥∥
2

E0

≤ C̃ (t) +
∥∥∥ρ

1

2

Kψ
∥∥∥

2

E0

(
eηh + C̃2

)
e

eLt +
L̃C̃1

η − L̃
eηt,

and then
∥∥∥ρ

1

2

Kut

∥∥∥
2

E0

≤
{(
eηh + C̃2

)
e−ηt +

(
eηh + C̃2

)
e−(η−eL)t

}∥∥∥ρ
1

2

Kψ
∥∥∥

2

E0

+

(
η

η − L̃

)
C̃1. (40)

Thus, there exist K (ǫ, B), T (ǫ, B) such that

max
s∈[−h,0]

√ ∑

|i|≥2K

(ui (t+ s))
2 ≤ max

s∈[−h,0]

√∑

i∈Z

ρK,i (ui (t+ s))
2

=
∥∥∥ρ

1

2

Kut

∥∥∥
E0

≤ ǫ, if t ≥ T.

4.3. Existence of the global attractor: general case. We know from Corollary
19 that under the assumptions of Proposition 17, the map G given by (13) is a strict
multivalued semiflow. For any initial data ψ ∈ E0 we denote

D (ψ) = {u (·) is a global solution of (14) with initial data ψ} .
In view of Theorem 16 we need to prove that G is asymptotically compact, upper
semicontinuous with respect to the initial data and that has closed values.
For this end, we will need the following auxiliary lemma.
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Lemma 22. Let ψn → ψ in E0. Then:

1. For arbitrary ǫ, T > 0 there exists K (ǫ, T ) such that for any solution un (·) ∈
D (ψn) ,

max
s∈[−h,0]

√ ∑

|i|≥2K

|un
i (t+ s)|2 ≤ ǫ, ∀t ∈ [0, T ] . (41)

2. Also, there exists u (·) ∈ D (ψ) and a subsequence {unk} of {un} so that

unk → u in C ([0, T ] , E) . (42)

Proof. It is not difficult to see that there exists K1 (ǫ) > 0 such that
∑

i∈Z

ρK,i |ψn
i (s)|2 < ǫ, ∀n, s ∈ [−h, 0]

∑

i∈Z

ρK,i

∣∣ψ0
i (s)

∣∣2 < ǫ, ∀s ∈ [−h, 0] ,

if K ≥ K1. Now, from (40) we obtain the existence of K (ǫ, T ) ≥ K1 such that

∥∥∥ρ
1

2

Ku
n
t

∥∥∥
2

E0

≤
{
e−ηt

(
eηh + C̃2

)
+
(
eηh + C̃2

)
e−(η−eL)t

}∥∥∥ρ
1

2

Kψ
n
∥∥∥

2

E0

+

(
η

η − L̃

)
C̃1 ≤ ǫ.

Therefore,

max
s∈[−h,0]

√ ∑

|i|≥2K

(un
i (t+ s))

2 ≤ max
s∈[−h,0]

√∑

i∈Z

ρK,i (un
i (t+ s))

2
=
∥∥∥ρ

1

2

Ku
n
t

∥∥∥
E0

≤ ǫ,

proving (41).
Next, from Proposition 17 we have that ‖un (t)‖ ≤ ‖un

t ‖E0
≤ C. Fix t ∈ [0, T ].

Then we can find ω and a subsequence verifying

unk (t) → ω in Ew.

In fact, the convergence is strong, which follows from (41). Indeed, for any µ > 0

there exist K2 (µ) and N (µ) such that
∑

|i|>K2
|un

i (t)|2 < µ,
∑

|i|>K2
|ωi|2 < µ and

∑
|i|≤K2

|un
i (t) − ωi|2 < µ if n ≥ N , so that

‖un (t) − ω‖2 ≤
∑

|i|≤K2

|un
i (t) − ωi|2 +

∑

|i|>K2

|un
i (t) − ωi|2 < 5µ. (43)

Thus, {un (t)} is precompact in E for any t ∈ [0, T ].
Since F is a bounded map, Proposition 17 and the integral representation of solu-
tions imply that

‖un (t) − un (s)‖ ≤
∫ t

s

‖F (un
τ )‖ dτ ≤ K (t− s) , if 0 ≤ s < t ≤ T, (44)

so that the sequence {un (·)} is equicontinuous in [0, T ]. Then, we can apply the
Ascoli-Arzelà theorem to obtain a subsequence (denoted again as un) such that

un (·) → u (·) in C ([0, T ] , E) .
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Now, we need to prove that u (·) ∈ D (ψ). It is clear that u0 = ψ. Since the map
F is sequentially weakly continuous in bounded sets (see Lemma 9), arguing as in
the proof of Theorem 4 we obtain that

u (t) = u (0) +

∫ t

0

F (us) ds,

and then u (·) ∈ D (ψ).

Corollary 23. Assume the conditions of Proposition 17. Then, the multivalued
map ψ 7→ G (t, ψ) has closed graph and is upper semicontinous. Moreover, it has
compact values.

Proof. The facts that the map ψ 7→ G (t, ψ) has closed graph and compact values
follow easily from Lemma 22 (see similar results in [38] for more details). In order to
prove the upper semicontinuity we proceed by contradiction. Let t ≥ 0. Consider
ψ ∈ E0, a neighborhood O of G (t, ψ) and a sequence ξn ∈ G (t, ψn) , ψn → ψ
in E0, such that ξn /∈ O. We take un (·) ∈ D (ψn) such that un

t = ξn. Using
(42), there exists u (·) ∈ D (ψ) such that (up to a subsequence) un (·) → u (·) in
C ([0, T ] , E). Also, un (·) → u (·) in C ([t− h, t] , E), so that ξn → ξ = ut in E0.
Then, ξn → ξ ∈ G(t, ψ), a contradiction.

Lemma 24. Assume the conditions of Proposition 17. Then, the multivalued map
G is asymptotically compact.

Proof. We consider ξn = un
tn

∈ G(tn, ψ
n), where un (·) ∈ D (ψn) , ψn ∈ B (a

bounded set in E0). From (33) we have
∥∥un

tn
(s)
∥∥ ≤ C, ∀s ∈ [−h, 0] , ∀n,

for some C > 0. For fixed s ∈ [−h, 0] we can find a subsequence (denoted again as
un) such that

un (tn + s) → ωs in Ew.

Using a similar argument as in (43) (with the help of Lemma 21) we obtain that
un (tn + s) → ωs in E. From here, we obtain that

{
un

tn
(s)
}

is a precompact se-
quence for any s ∈ [−h, 0]. In order to apply the Ascoli-Arzelà theorem, we need to
obtain the equicontinuity property. To do this, in a similar as in Lemma 22, using
Proposition 17 we can obtain that

‖un (tn + t) − un (tn + s)‖ ≤
∫ t

s

∥∥F
(
un

tn+τ

)∥∥ dτ ≤ K (t− s) , if − h ≤ s < t ≤ 0.

Then, the Ascoli-Arzelà theorem implies that ξn is relatively compact in E0.

In view of Proposition 17, Lemma, 24, Corollaries 20, 23 and Theorem 16 we obtain:

Theorem 25. Assume the conditions of Proposition 17. Then, the multivalued
semiflow G possesses a global compact invariant attractor A.

We can obtain the same result by changing slightly conditions (20)-(21).
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Theorem 26. Assume conditions (C1)-(C5) and let

2eh(M1 +
K2

1

λ
) < 1, (45)

λ− η > 0 (46)

where η ∈ (η0, η1) and ηj are the two solutions of the equation ηe−ηh = 2M1+
2K2

1

λ
.

Then, the multivalued semiflow G possesses a global compact invariant attractor A.

Proof. The only difference in the proof is how to obtain (22) and (34). Indeed, in
the proof of Proposition 17 we change (26) by

∫ t

0

eηs ‖u (s− h1)‖2
ds ≤

∫ t

0

eηs ‖us‖2
E0
ds.

Then, arguing in the same way as in Lemma 17 we obtain the inequality

eηt ‖ut‖2
E0

≤ eηh ‖ψ‖2
E0

+
(

2‖C2‖
2

E

λη
+

M2

0

ǫ̂η
+ 2

η
‖C0‖ℓ1

)
eηt

+(2M1 +
2K2

1

λ
)eηh

∫ t

0 e
ηs ‖us‖2

E0
ds

and by Gronwall’s lemma we have

‖ut‖2
E0

≤ e−ηteηh ‖ψ‖2
E0

+ Ĉ1 + ‖ψ‖2
E0
eηhe−(η−L)t +

LĈ1

η − L
,

where

Ĉ1 :=
2 ‖C2‖2

E

λη
+
M2

0

ǫ̂η
+

2

η
‖C0‖ℓ1 ,

L := (2M1 +
2K2

1

λ
)eηh,

Ĉ (t) := eηh ‖ψ‖2
E0

+ Ĉ1e
ηt.

Similar changes have to be done in order to prove (34).
With these estimates the proof of the result is exactly the same as for Theorem
25.

4.4. Existence of the global attractor: case of uniqueness. We can prove
uniqueness of the Cauchy problem (14) if we assume the following extra assumption:

(C6) For any x, y ∈ R and s ∈ [−h, 0] we have

|F0,i (x) − F0,i (y)| ≤ C1 (|x| , |y|) |x− y| ,

|F1,i (x) − F1,i (y)| ≤ C2 (|x| , |y|) |x− y| ,

|bi (s, x) − bi (s, y)| ≤ k (s)C3 (|x| , |y|) |x− y| ,
where Cj (·, ·) ≥ 0 are continuous and non-decreasing functions in both vari-
ables and k (·) ∈ L2 (−h, 0).

Lemma 27. If (C6) holds, the map f : E0 → E is Lipschitz on bounded subsets of
E0.
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Proof. Let v, w ∈ E0 be such that ‖v‖E0
, ‖w‖E0

≤ R. Then

‖f (v) − f (w)‖2 ≤ 3
∑

i∈Z

|F0,i (vi (0)) − F0,i (wi (0))|2

+ 3
∑

i∈Z

|F0,i (vi (−h1)) − F0,i (wi (−h1))|2

+ 3
∑

i∈Z

(∫ 0

−h

|bi (s, vi (s)) − bi (s, wi (s))| ds
)2

.

We have that

∑

i∈Z

|F0,i (vi (0)) − F0,i (wi (0))|2 ≤
(

max
i∈Z

(C1 (|vi (0)| , |wi (0)|))
)2∑

i∈Z

|vi (0) − wi (0)|2

≤ χ2
1

(
‖v‖E0

, ‖w‖E0

)
‖v − w‖2

E0
,

∑

i∈Z

|F0,i (vi (−h1)) − F0,i (wi (−h1))|2

≤
(

max
i∈Z

(C2 (|vi (−h1)| , |wi (−h1)|))
)2∑

i∈Z

|vi (−h1) − wi (−h1)|2

≤ χ2
2

(
‖v‖E0

, ‖w‖E0

)
‖v − w‖2

E0
,

where χj

(
‖v‖E0

, ‖w‖E0

)
= maxi∈Z,s∈[−h,0](Cj (|vi (s)| , |wi (s)|)). Also,

∑

i∈Z

(∫ 0

−h

|bi (s, vi (s)) − bi (s, wi (s))| ds
)2

≤
(

max
i∈Z,s∈[−h,0]

(C3 (|vi (s)| , |wi (s)|))
)2∑

i∈Z

(∫ 0

−h

k (s) |vi (s) − wi (s)| ds
)2

≤ χ2
3

(
‖v‖E0

, ‖w‖E0

)∑

i∈Z

∫ 0

−h

k2 (s) ds

∫ 0

−h

|vi (s) − wi (s)|2 ds

= χ2
3

(
‖v‖E0

, ‖w‖E0

) ∫ 0

−h

k2 (s) ds

∫ 0

−h

∑

i∈Z

|vi (s) − wi (s)|2 ds

≤ χ2
3

(
‖v‖E0

, ‖w‖E0

)
h

∫ 0

−h

k2 (s) ds ‖v − w‖2
E0
,

where χ3

(
‖v‖E0

, ‖w‖E0

)
= maxi∈Z,s∈[−h,0](C3 (|vi (s)| , |wi (s)|)). The fact that the

summatory and the integral can be exchanged can be shown easily using Lebesgue’s
theorem.
Thus, there exists K (R) such that

‖f (v) − f (w)‖ ≤ K (R) ‖v − w‖E0
,

proving the result.

Corollary 28. If (C6) holds, the map F : E0 → E is Lipschitz on bounded subsets
of E0.
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Corollary 28 implies that (H4) is satisfied. Then, if we assume conditions (C1)-(C6)
and (20)-(21), Theorems 6, 10, 14, Corollary 13 and Proposition 17 imply that for
any ψ ∈ E0 there exists a unique global solution u (·) ∈ C1 ([0,∞), E).
Hence, as shown in Section 3, we can define a semigroup of operators S : R+×E0 →
E0 by putting

S (t, u0) = ut,

where u (·) is the unique solution to (14) with ψ = u0. Moreover, this map is
continuous with respect to the initial data ψ.
We obtain for it the existence of a global compact attractor.

Theorem 29. Assume conditions (C1)-(C6) and (20)-(21). Then, the semigroup
S possesses a global compact connected attractor A.

Proof. Proposition 17, Lemma 24, Corollary 20 and Theorem 15 imply the existence
of a global compact attractor A. Since the space E0 is connected and the map
t 7→ S (t, ψ) is continuous, Theorem 15 implies that the set A is connected.

Also, in the same way as in Theorem 26 we can change (20)-(21) by (45)-(46).

Theorem 30. Assume conditions (C1)-(C6) and (45)-(46). Then, the semigroup
S possesses a global compact connected attractor A.
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