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Universidad de Sevilla. Apartado de Correos 1160.

41080–SEVILLA (Spain)
e–mail: caraball@numer.us.es

Kai Liu
Department of Statistics and Modelling Science

University of Strathclyde
Glasgow G1 1XH, Scotland, UK

e–mail: kai@stams.strath.ac.uk

Abstract
A semilinear stochastic partial differential equation with variable delays is

considered. Sufficient conditions for the exponential stability in the p–th mean
of mild solutions are obtained. Also, pathwise exponential stability is proved.
Since the technique of Lyapunov functions is not suitable for delayed equations,
the results have been proved by using the properties of the stochastic convolu-
tion. As the sufficient conditions obtained are also valid for the case without
delays, one can ensure exponential stability of mild solution in some cases where
the sufficient conditions in Ichikawa [11] do not give any answer. The results
are illustrated with some examples.

1 INTRODUCTION

The qualitative properties of solutions of stochastic differential equations in infinite
dimensions have been investigated by many authors (see, for example, Ichikawa [11],
Haussmann [10], Curtain [6], Chow [5], Mao [15], Zabczyk [17, 18], Caraballo [1, 2],
Caraballo and Real [3, 4],..., among others) because of the importance in applica-
tions. Some of such researches have considered delayed equations (see Real [16],
Caraballo [1, 2], Caraballo and Real [3], Mao [15], Ladde et al. [14],...)

As it is well known, in the case without delays, Lyapunov’s technique is avail-
able to obtain sufficient conditions for the stability of solutions. However, in the



case of differential equations with retarded arguments, even with constant delays,
Lyapunov’s method is not suitable as Krasovskii [12] pointed out for the ordinary
differential equations, and Kushner [13] and El’sgol’ts and Norkin [9] (among oth-
ers) also did for the stochastic differential equations, since the history of the process
must be taken into account. For this reason, it is developed in [2] a technique in
order to obtain sufficient conditions for the exponential stability of the strong so-
lutions of a linear stochastic partial differential equation with delays. Nevertheless,
this method can not be used to analyze the stability of mild solutions since it re-
quires Ito’s formula and this does not hold for mild solutions. Ichikawa in [11] solved
this problem, for a semilinear stochastic evolution equation, by introducing approx-
imating systems with strong solutions and using a limiting argument. He obtained
sufficient conditions for the stability of moments and sample paths in terms of sim-
ilar functions to Lyapunov ones. But, unfortunately, when we consider a version of
the semilinear stochastic equation in [11] with deviating arguments, we encounter
a difficulty in order to construct Lyapunov functions which enable us to ensure the
exponential stability of mild solutions. However, we have solved this problem by
using some properties of the stochastic convolution (see Da Prato and Zabczyk [7]).

In this paper, we consider a semilinear stochastic evolution equation with delays
{

dx(t) = [Ax(t) + B(x(ρ(t)))] dt + C(x(τ(t))) dw(t)
x(t) = ψ(t), t ∈ [−h, 0]

(1)

where A is a closed linear operator generating the strongly continuous semigroup St

on the separable Hilbert space H, w(t) is a Wiener process on the separable Hilbert
space U with covariance operator Q ∈ L(U,U), B: H → H and C:H → L(U,H) are
Lipschitz continuous, ρ, τ : [0,+∞) → [−h,∞) (h ≥ 0) are suitable delay functions
(see Section 2 for details), and ψ: [−h, 0]× Ω → H is the initial datum.

Once the existence of mild solutions of (1) is guaranteed, we shall establish the
exponential asymptotic stability in the p–th mean of the mild solutions. Futhermore,
by discussing almost sure estimates of any mild solution of (1), we shall consider
almost sure asymptotic behavior of any mild solution.

The results we prove in this paper allow us to ensure exponential stability of
moments and paths in some cases where Ichikawa’s ones do not give any answer,
since our results can also be applied in the case without delays. Finally, we illustrate
our theory with two examples.

2 PRELIMINARIES

Let U and H be separable Hilbert spaces and let L(U,H) be the space of all
bounded linear operators from U to H . We denote the norms of elements in
H , U and L(U,H) by symbols ‖ · ‖H , ‖ · ‖U and ‖ · ‖L(U,H) respectively. But, we
will use ‖ · ‖ when there is no doubt about the space. We are given a Q–Wiener



process in the complete probability space (Ω,F , P, {Ft}t≥0) and having values in
U , i.e. (see [7]) w(t) is defined as

w(t) =
∞∑

n=1

√
λnβn(t)en , t ≥ 0 , (2)

where βn(t) (n = 1, 2, 3, . . .) is a sequence of real valued standard Brownian motions
mutually independent on (Ω,F , P, {Ft}t≥0) , λn ≥ 0 (n = 1, 2, 3, . . .) are nonneg-
ative real numbers such that

∑
n≥1 λn < ∞ , {en}n≥1 is a complete orthonormal

basis in U , and Q ∈ L(U,U) is the incremental covariance operator of the process
w(t) , which is a symmetric nonnegative trace class operator defined by

Qen = λnen , n = 1, 2, 3, . . . (3)

Now, we need the definition of the H–valued stochastic integral with respecto to the
U–valued Q–Wiener process w(t) . In the construction of such integral an important
rôle will be played by the space of all Hilbert–Schmidt operators L0

2 = L2(U0,H)
from U0 = Q1/2(U) into H which is a separable Hilbert space, equipped with the
norm

‖Ψ‖2
2 = Tr (ΨQΨ∗). (4)

Let Φ: (0,∞) → L0
2 be a predictable, Ft–adapted process such that

∫ t

0
E‖Φ(s)‖2

2 ds < ∞, ∀t > 0, (5)

then, we can define the H–valued stochastic integral
∫ t

0
Φ(s) dw(s) (6)

which will be a continuous square integrable martingale. For that construction, see
Da Prato and Zabczyk [7].

In order to set our problem, we consider a linear closed operator A generating
a strongly continuous semigroup St on H and such that

‖St‖ ≤ Me−γt ∀t ≥ 0, where M ≥ 1 and γ > 0. (7)

Let B:H → H and C:H → L(U,H) be Lipschitz continuous, i.e. there exist
positive constants L1, L2 such that for any x, y ∈ H the following conditions are
satisfied

‖B(x)−B(y)‖H ≤ L1‖x− y‖H (8)
‖C(x)− C(y)‖2 ≤ L2‖x− y‖H (9)



We are given two continuously differentiable functions of delay ρ, τ : [0,∞) → [−h,∞)
where h > 0 and we assume that

ρ′(t) ≥ 1, τ ′(t) ≥ 1,−h ≤ ρ(t) ≤ t,−h ≤ τ(t) ≤ t ∀t ≥ 0 (10)

(Note that the functions ρ(t) = t − h1, τ(t) = t − h2 with h1, h2 > 0 satisfy the
precedent hypotheses by setting h = max{h1, h2} ).

Remark. We observe that there exists a constant k ≥ 0 such that

ρ−1(t) ≤ t + k , τ−1(t) ≤ t + k , ∀t ≥ −h. (11)

And finally, we consider an initial datum ψ: [−h, 0] × Ω → H such that ψ(t) is
F0–measurable for all t ∈ [−h, 0] , E‖ψ(0)‖2 < ∞ and

∫ 0
−h E‖ψ(s)‖2 ds < ∞ .

Since we are mainly interested in the stability properties of mild solutions, we
will consider the following equation instead of (1)

x(t) = Stψ(0) +
∫ t

0
St−sB(x(ρ(s))) ds +

∫ t

0
St−sC(x(τ(s))) dw(s), t ≥ 0 (12)

x(t) = ψ(t), t ∈ [−h, 0], (13)

and we will assume that for each initial value ψ and each T > 0 there exists a
unique mild solution of (1), i.e. there exists a process xψ(t) (t ∈ [−h, T ]) which
is H–valued, Ft–adapted (with Ft = F0 for t ∈ [−h, 0] ) and predictable with∫ T
−h ‖xψ(t)‖2 dt < ∞ w.p.1, and satisfies (12) and (13) w.p.1. (A result about the

existence and uniqueness of mild solutions is sketched in the Appendix).

Definition 2.1 Let p ≥ 2 be an integer. The mild solution xψ(t) of (1) (with
E‖ψ(0)‖p < ∞ and

∫ 0
−h E‖ψ(s)‖p ds < ∞ ) is said to be globally exponentially

asymptotically stable in the p–th mean if there exist a > 0 and L ≥ 1 such
that, for any mild solution of (1) xφ(t) corresponding to an initial value φ with
E‖φ(0)‖p < ∞ ,

∫ 0
−h E‖φ(s)‖p ds < ∞ , the following inequality is satisfied:

E‖xψ(t)− xφ(t)‖p
H ≤ Le−at‖ψ − φ‖p

1, t ≥ 0,

where ‖ψ − φ‖p
1 = max{E‖ψ(0)− φ(0)‖p,

∫ 0
−h E‖ψ(s)− φ(s)‖p ds} .

3 EXPONENTIAL STABILITY IN THE p–TH MEAN

In this section we shall discuss the exponential asymptotic stability in the p–th mean
of mild solutions to (1).

Theorem 3.1 Let p ≥ 2 be an integer and let x(t) = xψ(t) and y(t) = xφ(t)
be solutions of (12),(13) with initial values ψ and φ respectively. Assume that
conditions (7), (8), (9) and (10) are satisfied. Then, the following inequality holds:

E‖x(t)− y(t)‖p
H ≤ β‖ψ − φ‖p

1e
−(γ−α)t, t ≥ 0, (14)



where α = 3p−1Mp(σ1 + σ2) , β = 3p−1Mp(1 + σ1 + σ2) , σ1 = γ1−pLp
1e

γk ,
σ2 = cpL

p
2e

γk(2γ(p− 1)/(p− 2))1−p/2 and cp = (p(p− 1)/2)p/2 .

Proof. Since x(t) and y(t) are two solutions of (12), we have

x(t) = Stψ(0) +
∫ t

0
St−sB(x(ρ(s))) ds +

∫ t

0
St−sC(x(τ(s))) dw(s), t ≥ 0

y(t) = Stφ(0) +
∫ t

0
St−sB(y(ρ(s))) ds +

∫ t

0
St−sC(y(τ(s))) dw(s), t ≥ 0.

Thus, it follows that

E‖x(t)− y(t)‖p ≤ 3p−1E‖St(ψ(0)− φ(0))‖p
H

+3p−1E

∥∥∥∥
∫ t

0
St−s(B(x(ρ(t)))−B(y(ρ(t)))) ds

∥∥∥∥
p

H

+3p−1E

∥∥∥∥
∫ t

0
St−s(C(x(τ(t)))− C(y(τ(t)))) dw(s)

∥∥∥∥
p

H
. (15)

Now, we estimate the terms on the right–hand side of (15).
Firstly, by condition (7), we obtain

E‖St(ψ(0)− φ(0))‖p
H ≤ Mpe−pγtE‖ψ(0)− φ(0)‖p

H ≤ Mpe−pγt‖ψ − φ‖p
1 (16)

Secondly, Holder’s inequality, conditions (8), (7) and the change of variables u =
ρ(s) yield

E

∥∥∥∥
∫ t

0
St−s(B(x(ρ(s)))−B(y(ρ(s)))) ds

∥∥∥∥
p

H

≤ E

[∫ t

0
‖St−s‖‖B(x(ρ(s)))−B(y(ρ(s)))‖H ds

]p

≤ E

[∫ t

0
Me−γ(t−s)‖B(x(ρ(s)))−B(y(ρ(s)))‖H ds

]p

≤ MpE

[∫ t

0
e−(γ(p−1)/p)(t−s)e−(γ/p)(t−s)‖B(x(ρ(s)))−B(y(ρ(s)))‖H ds

]p

≤ Mp
[∫ t

0
e−γ(t−s) ds

]p−1 ∫ t

0
e−γ(t−s)E‖B(x(ρ(s)))−B(y(ρ(s)))‖p

H ds

≤ Mp(1/γ)p−1Lp
1

∫ t

0
e−γ(t−s)E‖x(ρ(s))− y(ρ(s))‖p

H ds

≤ Mp(1/γ)p−1Lp
1

∫ ρ(t)

ρ(0)
e−γ(t−ρ−1(u))E‖x(u)− y(u)‖p

H

du

ρ′(ρ−1(u))

≤ Mp(1/γ)p−1Lp
1

∫ t

−h
e−γ(t−u−k)E‖x(u)− y(u)‖p

H du



≤ Mp(1/γ)p−1Lp
1e

γk
∫ 0

−h
e−γ(t−u)E‖x(u)− y(u)‖p

H du

+Mp(1/γ)p−1Lp
1e

γk
∫ t

0
e−γ(t−u)E‖x(u)− y(u)‖p

H du

≤ Mp(1/γ)p−1Lp
1e

γk
∫ 0

−h
e−γ(t−u)E‖ψ(u)− φ(u)‖p

H du

+Mp(1/γ)p−1Lp
1e

γk
∫ t

0
e−γ(t−u)E‖x(u)− y(u)‖p

H du

≤ Mp(1/γ)p−1Lp
1e

γke−γt‖ψ − φ‖p
1

+Mp(1/γ)p−1Lp
1e

γk
∫ t

0
e−γ(t−s)E‖x(s)− y(s)‖p

H ds

≤ Mpσ1e
−γt‖ψ − φ‖p

1

+Mpσ1

∫ t

0
e−γ(t−s)E‖x(s)− y(s)‖p

H ds, (17)

where σ1 = γ1−pLp
1e

γk .
As for the third term on the right–hand side of (15), and in addition to Holder’s
inequality, conditions (9), (7) and the change of variables u = τ(s) , the following
inequality (see Lemma 7.7 from [7]) will be used:

E

∥∥∥∥
∫ t

0
Φ(s) dw(s)

∥∥∥∥
p

H
≤ cp

(∫ t

0
(E‖Φ(s)‖p

2)
2/p

ds

)p/2

, (18)

for an arbitrary L0
2–predictable process Φ and p ≥ 2 , where cp = (p(p− 1)/2)p/2 .

So, if p > 2 we can deduce

E

∥∥∥∥
∫ t

0
St−s(C(x(τ(s)))− C(y(τ(s)))) dw(s)

∥∥∥∥
p

H

≤ cpM
p
{∫ t

0
(e−γp(t−s)E‖C(x(τ(s)))− C(y(τ(s)))‖p

2)
2/p ds

}p/2

≤ cpM
pLp

2

{∫ t

0
(e−γp(t−s)E‖x(τ(s))− y(τ(s))‖p

H)2/p ds

}p/2

≤ cpM
pLp

2

{∫ t

0
(e−γ(p−1)(t−s)e−γ(t−s)E‖x(τ(s))− y(τ(s))‖p

H)2/p ds

}p/2

≤ cpM
pLp

2

{∫ t

0
e
−[

2(p−1)
p−2

]γ(t−s)
ds

} p
2
−1 ∫ t

0
e−γ(t−s)E‖x(τ(s))− y(τ(s))‖p

H ds

≤ cpM
pLp

2(2γ(p− 1)/(p− 2))1−p/2
∫ t

0
e−γ(t−s)E‖x(τ(s))− y(τ(s))‖p

H ds. (19)



We remark that if p = 2 , then inequality (19) also holds with 00 := 1 . Consequently,
proceeding as we did previously, we can obtain for p ≥ 2 ,

E

∥∥∥∥
∫ t

0
St−s(C(x(τ(s)))− C(y(τ(s)))) dw(s)

∥∥∥∥
p

H

≤ cpM
pLp

2(2γ(p− 1)/(p− 2))1−p/2
∫ t

0
e−γ(t−s)E‖x(τ(s))− y(τ(s))‖p

H ds

≤ Mpσ2

[
e−γt‖ψ − φ‖p

1 +
∫ t

0
e−γ(t−s)E‖x(s)− y(s)‖p

H ds

]
, (20)

where σ2 = cpL
p
2e

γk(2γ(p− 1)/(p− 2))1−p/2 .
¿From (15)–(20), it follows

E‖x(t)− y(t)‖p

≤ 3p−1Mp(1 + σ1 + σ2)‖ψ − φ‖p
1e
−γt

+3p−1Mp(σ1 + σ2)
∫ t

0
e−γ(t−s)E‖x(s)− y(s)‖p

H ds ∀t ≥ 0 ,

and,

eγtE‖x(t)− y(t)‖p ≤ 3p−1Mp(1 + σ1 + σ2)‖ψ − φ‖p
1

+3p−1Mp(σ1 + σ2)
∫ t

0
eγsE‖x(s)− y(s)‖p

H ds. (21)

Finally, Gronwall’s inequality yields

eγtE‖x(t)− y(t)‖p ≤ 3p−1Mp(1 + σ1 + σ2)‖ψ − φ‖p
1e

3p−1Mp(σ1+σ2)t, (22)

E‖x(t)− y(t)‖p ≤ 3p−1Mp(1 + σ1 + σ2)‖ψ − φ‖p
1e
−(γ−α)t, ∀t ≥ 0, (23)

where α = 3p−1Mp(σ1 + σ2) , which completes the proof.
Remark. Observe that the constant α in Theorem 3.1 depends on M, γ, L1, L2

and k. Therefore, if the problem we are dealing with is such that α(M, γ, L1, L2, k) <
γ, then we can assure that all mild solutions to this problem are exponentially
asymptotically stable in the p-th mean. But, what does α < γ mean? Let us look
at the following cases:

• Case 1: We note that problem (1) can be interpreted as a perturbed problem
of the following linear one:

{
dx(t) = Ax(t) dt, t > 0,
x(t) = ψ(t), t ∈ [−h, 0]

(24)

Of course, hypothesis (7) tells us that solutions to (24) are exponentially
asymptotically stable. Consequently, what it is proved in the previous the-
orem is the following:



If the unperturbed (linear) problem (24) is exponentially asymptotically stable
and the perturbations appearing in (1) are small enough (in the sense that α <
γ), then all mild solutions to the perturbed problem (1) are also exponentially
asymptotically stable in the p-th mean (that is, a first approximation result
on exponential stability holds).

Thus, given the linear problem (24) where the semigroup is exponentially stable
(i.e. hypothesis (7) is satisfied), condition α < γ represents how large B and
C can be (or what it is the same, how large L1 and L2 are permitted to be)
so that the mild solutions to the perturbed problem (1) remain exponentially
stable in the p-th mean.

In addition to this, note that condition α < γ means

Lp
1

31−pM−pe−γkγp
+

Lp
2

31−pM−pe−γk(p− 2/p− 1)p/2−1c−1
p γp/2

< 1 . (25)

Therefore, if the delayed Lipschitz perturbations are such that (L1, L2) is inside
the region in the X1X2-plane delimited by the positive semi-axes and the curve
given by (25) (replacing L1 and L2 by the coordinates x1 and x2 and < by =),
then the exponential stability of mild solutions follows. Observe that, when
p = 2, such a curve is an ellipse whose semi-axes only depend on the semigroup
constants M and γ, and on k (the constant related to the delay functions),
and are given by

3−1/2M−1e−γk/2γ , 3−1/2M−1e−γk/2γ1/2 .

• Case 2: Another question we can consider is the following: What is the
minimum value of γ which guarantees exponential stability of mild solutions?
In other words, what is the minimum value of γ satisfying α < γ? As we shall
illustrate immediately, this value can exist or not depending on the smallness
of the Lipschitz constants.

Assume, for simplicity, p = 2,M = 1, k = 1. Now, condition α < γ turns to

3eγ

(
L2

1

γ2
+

L2
2

γ

)
< 1 .

So, if we want to find the minimum value of γ such that the last inequality
holds, we must look for the minimum positive value of γ, denoted γ∗, such
that f(γ) < 0, where f is the real function given by

f(γ) = 3eγ

(
L2

1

γ2
+

L2
2

γ

)
− 1.

By studying this function, we obtain the following:



a) There exists a unique absolute minimum of f in the interval (0,+∞), de-
noted by γ+;

b) f is strictly decreasing in the interval (0, γ+) and strictly increasing in
(γ+, +∞), where γ+ is now given by

γ+ =
L2

2 − L2
1 +

√
L4

1 + L4
2 + 6L2

1L
2
2

2L2
2

(L2 6= 0).

So, there are two possibilities:

Possibility 1: f(γ+) ≥ 0, which implies that γ∗ does not exist.

Possibility 2: f(γ+) < 0, and then γ∗ is the unique zero of f in (0, γ+).

But, in order to ensure that possibility 2 holds, the constants L1 and L2 must
be small enough. Indeed, if we assume for simplicity that L1 = L2 = a, we get
that γ+ =

√
2. So, f(

√
2) < 0 means

a2 < 2(1 +
√

2)−13−
√

2.

Consequently, we can state the following theorem as a corollary of Theorem 3.1

Theorem 3.2 Assume the hypotheses of Theorem 3.1 with γ > α . Then, all mild
solutions of (1) are globally exponentially asymptotically stable in the p–th mean.

4 ALMOST SURE ASYMPTOTIC BEHAVIOUR

In this section, we state the pathwise asymptotic stability for the mild solutions
of (1) by using a technique close to Haussmann’s [10](see also [11], [2]). We shall
split our study in two cases because of the properties of the stochastic convolution.
Firstly, we recall two useful lemmas on such convolution which were proved by Da
Prato and Zabczyk.

Lemma 4.1 (See Da Prato and Zabczyk [8], p.144) Let ‖St‖ ≤ M for all t ≥ 0 and
let Φ: [0,∞) → L0

2 be a predictable, Ft–adapted process with
∫ t
0 E‖Φ(s)‖p

2 ds < ∞
for some integer p > 2 and any t ≥ 0 . Then there exists a constant kp > 0 such
that for any natural number N

E

{
sup

N≤t≤N+1

∥∥∥∥
∫ t

N
St−sΦ(s) dw(s)

∥∥∥∥
p

H

}
≤ kp

∫ N+1

N
E‖Φ(s)‖p

2 ds.

Lemma 4.2 (See Da Prato and Zabczyk [7], p.160) Assume that A generates a
strongly continuous contraction semigroup. Let Φ: [0,∞) → L0

2 be a predictable,



Ft–adapted process such that
∫ t
0 E‖Φ(s)‖2

2 ds < ∞ for any t ≥ 0 . Then there exists
a constant k2 > 0 such that for any natural number N

E

{
sup

N≤t≤N+1

∥∥∥∥
∫ t

N
St−sΦ(s) dw(s)

∥∥∥∥
2

H

}
≤ k2

∫ N+1

N
E‖Φ(s)‖2

2 ds.

Now, we can consider almost sure asymptotic behavior of solutions.

Theorem 4.1 Suppose that all conditions of Theorem 3.1 hold with p > 2 , and let
x(t) and y(t) be solutions of (12), (13) with initial data ψ and φ respectively. If
γ > α , then there exists T (ω) > 0 such that for all t ≥ T (ω)

‖x(t)− y(t)‖p
H ≤ δ‖ψ − φ‖p

1e
−(γ−α)t/2 w.p.1, (26)

where δ = e(γ−α)/2 .

Proof. Let N0 be an integer such that ρ(N0) ≥ 0 , τ(N0) ≥ 0 . Since ρ′ ≥ 1, τ ′ ≥ 1 ,
it follows that ρ(N) > 0 and τ(N) > 0 for all natural number N > N0 . Let
N > N0 and let IN denote the interval [N, N + 1] . Then, for t ∈ IN , we have

x(t) = St−Nx(N) +
∫ t

N
St−sB(x(ρ(s))) ds +

∫ t

N
St−sC(x(τ(s))) dw(s)

y(t) = St−Ny(N) +
∫ t

N
St−sB(y(ρ(s))) ds +

∫ t

N
St−sC(y(τ(s))) dw(s)

and, so

‖x(t)− y(t)‖H ≤ ‖St−N (x(N)− y(N))‖H

+
∥∥∥∥
∫ t

N
St−s(B(x(ρ(s)))−B(y(ρ(s)))) ds

∥∥∥∥
H

+
∥∥∥∥
∫ t

N
St−s(C(x(τ(s)))− C(y(τ(s)))) dw(s)

∥∥∥∥
H

Thus, for any fixed ε > 0 , we obtain

P

[
sup
t∈IN

‖x(t)− y(t)‖H > ε

]

≤ P

[
sup
t∈IN

‖St−N (x(N)− y(N))‖H > ε/3

]

+P

[
sup
t∈IN

∥∥∥∥
∫ t

N
St−s(B(x(ρ(s)))−B(y(ρ(s)))) ds

∥∥∥∥
H

> ε/3

]

+P

[
sup
t∈IN

∥∥∥∥
∫ t

N
St−s(C(x(τ(s)))− C(y(τ(s)))) dw(s)

∥∥∥∥
H

> ε/3

]



≤ (3/ε)pE

[
sup
t∈IN

‖St−N (x(N)− y(N))‖p
H

]

+(3/ε)pE

[
sup
t∈IN

∥∥∥∥
∫ t

N
St−s(B(x(ρ(s)))−B(y(ρ(s)))) ds

∥∥∥∥
p

H

]

+(3/ε)pE

[
sup
t∈IN

∥∥∥∥
∫ t

N
St−s(C(x(τ(s)))− C(y(τ(s)))) dw(s)

∥∥∥∥
p

H

]

= T1 + T2 + T3.

Now, Theorem 3.1 and Holder’s inequality yield

T1 = (3/ε)pE

[
sup
t∈IN

‖St−N (x(N)− y(N))‖p
H

]

≤ (3M/ε)pE

[
sup
t∈IN

e−pγ(t−N)‖x(N)− y(N)‖p
H

]

≤ (3M/ε)pE [‖x(N)− y(N)‖p
H ]

≤ (3M/ε)pβ‖ψ − φ‖p
1e
−(γ−α)N .

T2 = (3/ε)pE

[
sup
t∈IN

∥∥∥∥
∫ t

N
St−s(B(x(ρ(s)))−B(y(ρ(s)))) ds

∥∥∥∥
p

H

]

≤ (3/ε)pE

[
sup
t∈IN

(∫ t

N
‖St−s‖‖B(x(ρ(s)))−B(y(ρ(s)))‖H ds

)p
]

≤ (3ML1/ε)pE

[
sup
t∈IN

∫ t

N
‖x(ρ(s))− y(ρ(s))‖p

H ds

]

≤ (3ML1/ε)p
∫ N+1

N
E‖x(ρ(s))− y(ρ(s))‖p

H ds

≤ (3ML1/ε)p
∫ ρ(N+1)

ρ(N)
E‖x(s)− y(s)‖p

H ds

≤ (3ML1/ε)pβ‖ψ − φ‖p
1

∫ ρ(N+1)

ρ(N)
e−(γ−α)s ds

≤ (3ML1/ε)p(β/(γ − α))‖ψ − φ‖p
1e
−(γ−α)ρ(N)

≤ (3ML1/ε)p(β/(γ − α))‖ψ − φ‖p
1e
−(γ−α)(N−h)

≤ (3ML1/ε)p(β/(γ − α))e(γ−α)h‖ψ − φ‖p
1e
−(γ−α)N .

Analogously, by using Lemma 4.1

T3 = (3/ε)pE

[
sup
t∈IN

∥∥∥∥
∫ t

N
St−s(C(x(τ(s)))− C(y(τ(s)))) dw(s)

∥∥∥∥
p

H

]

≤ (3L2/ε)pkp

∫ N+1

N
E‖x(τ(s))− y(τ(s))‖p

H ds



≤ (3L2/ε)p(βkp/(γ − α))e(γ−α)h‖ψ − φ‖p
1e
−(γ−α)N .

Consequently,

P

[
sup
t∈IN

‖x(t)− y(t)‖H > ε

]
≤ (m/εp)‖ψ − φ‖p

1e
−(γ−α)N ,

where m = β
(
(3M)p(1 + (Lp

1/(γ − α))e(γ−α)h + (3L2)p(kp/(γ − α))e(γ−α)h
)

.

For each integer N ≥ N0, we set εN = ‖ψ − φ‖1e
−(γ−α)N/(2p). Then, it follows

P

{
sup
t∈IN

‖x(t)− y(t)‖H > ‖ψ − φ‖1e
−(γ−α)N/(2p)

}
≤ me−(γ−α)N/2.

Therefore, Borel–Cantelli’s lemma implies that there exists T (ω) > 0 such that for
all t > T (ω)

‖x(t)− y(t)‖p
H ≤ δ‖ψ − φ‖p

1e
−(γ−α)t/2 w.p.1

where δ = e(γ−α)/2 .
Next, in a similar way, we can establish the result in the case p = 2.

Theorem 4.2 Assume A generates a strongly continuous contraction semigroup.
Under the hypotheses of Theorem 3.2 for p = 2, the same conclusion of Theorem
4.1 holds for p = 2.

Proof. We proceed as in Theorem 4.1 using Lemma 4.2 instead of Lemma 4.1.

5 EXAMPLES

In this section, we are going to show a couple of examples in order to illustrate our
theory.

Example 1. Consider a one–dimensional rod of length π whose ends are main-
tained at 0◦ and whose sides are insulated. Suppose there is an exothermic reaction
taking place inside the rod with heat being produced proportionally to the temper-
ature at a previous time t− h (for the sake of simplicity, we assume the delay h ≥ 0
is constant). Consequently, the temperature in the rod may be modeled to satisfy





∂u(t, x)
∂t

=
∂2u(t, x)

∂x2
+ ru(t− h, x) , 0 < x < π , t > 0

u(t, 0) = u(t, π) = 0 , t > 0 ,
u(t, x) = ψ(t, x) , t ∈ [−h, 0] , x ∈ [0, π] ,

(27)

where r depends on the rate of reaction and ψ : [−h, 0] × [0, π] → R is a given
function.



We observe that, when there is no heat production (i.e. r = 0), the problem (27)
is exponentially stable since, in this case, the solutions are given by

u(t, x) =
∞∑

n=1

ane−n2t sinnx ,

where h = 0 and ψ(0, x) =
∑∞

n=1 an sinnx .
If we assume r = r0 =constant, then it is not difficult to prove that the solutions

to (27) remain exponentially stable provided r2
0 < 1 (see Caraballo [1]). We note

that, in this example, γ = M = 1, C = 0, Bu = r0u, ρ(t) = t− h, L1 = r0, L2 = 0
and k = h. So, condition r2

0 < 1 is similar to the one in the Remark preceding
Theorem 3.2. Also, we can interpret the result as follows:

Being the solutions to (27) with r0 = 0 exponentially stable, we can assure that
the solutions remain exponentially stable if the heat production is small enough (i.e.
if r2

0 < 1).
However, it often occurs that the exothermic reaction can be random. In some

cases, this can be modelled by writing the term ru(t − h, x) in the form (r0 +
r1β̇(t))u(t− h, x) , where β(t) is a real standard Brownian motion (so, Q = 1, λ1 =
1, λn = 0 , ∀n ≥ 2 ).

Thus, (27) can be written as:




∂u(t, x)
∂t

=
∂2u(t, x)

∂x2
+ r0u(t− h, x) + r1u(t− h, x)β̇(t), 0 < x < π, t > 0

u(t, 0) = u(t, π) = 0 , t > 0 ,
u(t, x) = ψ(t, x) , t ∈ [−h, 0] , x ∈ [0, π] ,

(28)

and setting H = L2(0, π) , U = R , A the operator A = d2/dx2 with domain

D(A) = {y ∈ H :
dy

dx
,
d2y

dx2
∈ H, y(0) = y(π) = 0 },

B(u) = r0u , C(u) = r1u , ρ(t) = τ(t) = t− h , the problem can be reformulated as
{

du(t) = (Au(t) + B(u(ρ(t)))) dt + C(u(τ(t))) dβ(t) , t > 0
u(t) = ψ(t) , t ∈ [−h, 0] ,

(29)

and, in order to apply theorems 3.2, 4.1 and 4.2 we need to check that α < γ .
But, as one can compute immediately, γ = M = 1 (i.e., A generates a strongly
continuous contraction semigroup), L1 = r0 , L2 = r1 , k = h and, consequently, the
hypothesis α < γ turns to the following in the case p = 2:

3eh(r2
0 + r2

1) < 1.

Therefore, if B and C are sufficiently small (i.e., for instance, 3eh(r2
0 + r2

1) < 1), the
mild solutions to (29) are exponentially asymptotically stable in mean square (by



theorem 3.2) and, by the virtue of theorem 4.2, pathwise exponential stability also
holds.

Finally, observe that the same result follows if B and C are assumed to be
Lipschitz continuous (with constants L1 and L2 respectively) instead of linear.

Example 2. Now, we consider the semilinear stochastic heat equation with delays




dy(x, t) =

[
∂2y(x, t)

∂x2
− y(x, ρ(t))

1 + |y(x, ρ(t))|

]
dt +

σy(x, τ(t))
1 + |y(x, τ(t))| dβ(t)

y(0, t) = y(1, t) = 0 ∀t ≥ −h , y(x, t) = ψ(x, t) , t ∈ [−h, 0] , x ∈ [0, 1],

where β(t) is a real standard Wiener process (as in the previous example) and σ is a
real number. We take H = L2(0, 1) , U = R , ρ , τ and ψ satisfying the hypotheses
from Section 2, B and C defined as

B(y) = − y

1 + |y| , C(y) =
σy

1 + |y| ,

and A the operator A = d2/dx2 with domain

D(A) = {y ∈ H :
dy

dx
,
d2y

dx2
∈ H, y(0) = y(1) = 0 }.

Then, it is well known that the strongly continuous semigroup St generated by
A satisfies

‖St‖ ≤ e−π2t , ∀t ≥ 0 .

Therefore, M = 1 , γ = π2 in (7), L1 = 1 , L2 = σ , σ1 = (1/π2)p−1eπ2k ,
σ2 = cpσ

p(2π2(p− 1)/(p− 2))1−p/2eπ2k , cp = (p(p− 1)/2)p/2 , α = 3p−1(σ1 + σ2) .
Consequently, if we take σ and p such that 3p−1(σ1 + σ2) < π2 , we get that

all mild solutions to our problem are globally exponentially asymptotically stable in
the p–th mean, and theorem 4.1 (or theorem 4.2) also holds.

Now, assume that ρ(t) = t = τ(t) , t ≥ 0 , that is, we consider the problem
without delays. In this case, we have h = 0 , k = 0 , σ1 = π−2 , σ2 = σ2 and,
we can get exponential stability in mean square (p = 2), and pathwise exponential
stability, when 3(π−2 + σ2) < π2 or, in other words, if σ is such that σ2 < σ2

0 =
(π2/3)− (1/π2) ' 3.1885 .

However, applying the results from Ichikawa [11] (see Example 2 from [11] for a
similar problem), we could obtain exponential asymptotic stability in the p–th mean
if

p < 1 +
2
σ2

,

i.e., if σ2 < 2/(p − 1) . Therefore, if 2 ≤ σ2 < σ2
0 , Ichikawa’s results do not even

guarantee exponential stability in mean square (p = 2).



APPENDIX

Now, we shall prove that there exists a unique mild solution to (1) under the hy-
potheses made in Section 2, although one can extend the result to a more general
situation. We need the following additional assumption:

There exists a positive constant D such that

‖B(x)‖2
H + ‖C(x)‖2

2 ≤ D2(1 + ‖x‖2
H) ∀x ∈ H. (30)

Theorem 1 In addition to (30), assume hypotheses in Section 2. Then, for each
initial datum ψ and every T > 0 , there exists a unique H–valued, Ft–adapted (with
Ft = F0 for t < 0 ) and predictable process x(t) (t ∈ [−h, T ]) satisfying (12)–(13)
and

∫ T
−h ‖x(t)‖2

H dt < ∞ w.p.1.

Proof. We first prove uniqueness. We show that if x1(t) , x2(t) are two processes
satisfying (12)–(13) then, for arbitrary t ∈ [−h, T ] , it follows that x1(t) = x2(t)
w.p.1.

Set x(t) = x1(t)− x2(t) , then

x(t) =
∫ t

0
St−s(B(x1(ρ(s)))−B(x2(ρ(s)))) ds

+
∫ t

0
St−s(C(x1(τ(s)))− C(x2(τ(s)))) dw(s).

Define, for i = 1, 2 and N ≥ 0,

xN
i (t) =





ψ(t) if t < 0
xi(t) if

∫ t
0 ‖x(s)‖2 ds ≤ N

0 if
∫ t
0 ‖x(s)‖2 ds > N

and let xN (t) = xN
1 (t)−xN

2 (t). Since ρ(t) ≤ t and τ(t) ≤ t , we get that xN
i (ρ(t)) =

xi(ρ(t) and xN
i (τ(t)) = xi(τ(t) i = 1, 2, if

∫ t
0 ‖x(s)‖2 ds ≤ N .

Therefore, for t ≥ 0

‖xN (t)‖2 ≤ 2
∥∥∥∥
∫ t

0
St−s(B(xN

1 (ρ(s)))−B(xN
2 (ρ(s)))) ds

∥∥∥∥
2

H

+2
∥∥∥∥
∫ t

0
St−s(C(xN

1 (τ(s)))− C(xN
2 (τ(s)))) dw(s)

∥∥∥∥
2

H

and,

E‖xN (t)‖2 ≤ 2E

∥∥∥∥
∫ t

0
St−s(B(xN

1 (ρ(s)))− (B(xN
2 (ρ(s)))) ds

∥∥∥∥
2

H

+2E

∥∥∥∥
∫ t

0
St−s(C(xN

1 (τ(s)))− (C(xN
2 (τ(s)))) dW (s)

∥∥∥∥
2

H

= 2I1 + 2I2.



Next, we estimate I1 and I2 by using (18) for p = 2:

I1 ≤ E

[∫ t

0
‖St−s‖‖B(xN

1 (ρ(s)))−B(xN
2 (ρ(s)))‖ ds

]2

≤ M2E

[
T

∫ t

0
‖B(xN

1 (ρ(s)))−B(xN
2 (ρ(s)))‖2 ds

]

≤ M2TL2
1

∫ t

0
E‖xN

1 (ρ(s))− xN
2 (ρ(s))‖2 ds

≤ M2TL2
1

∫ ρ(t)

ρ(0)
E‖xN

1 (u)− xN
2 (u)‖2 du

≤ M2TL2
1

∫ t

0
E‖xN (s)‖2 ds,

I2 ≤ M2
∫ t

0
E‖C(xN

1 (τ(s)))− C(xN
2 (τ(s)))‖2

2 ds

≤ M2L2
2

∫ t

0
E‖xN (s)‖2 ds.

Hence,

E‖xN (t)‖2 ≤ 2M2(TL2
1 + L2

2)
∫ t

0
E‖xN (s)‖2 ds.

Gronwall’s inequality implies that E‖xN (t)‖2 = 0 for all t. Thus xN (t) = 0 . Since
xN

i (t) → xi(t) w.p.1, xN (t) → x(t) w.p.1, from which follows x(t) = 0 w.p.1.
Finally, we prove existence. As ρ′(t) ≥ 1 and ρ(t) ≤ t , then ρ(t)− t is nonde-

creasing and nonpositive, so there exist only three posibilities:

(ρ.1) limt→∞(ρ(t)− t) = −ρ∗ < 0 , which implies ρ(t) < t− ρ∗ for 0 ≤ t ≤ ρ∗ .

(ρ.2) limt→∞(ρ(t)− t) = 0 , but ρ(t) < t for any t ≥ 0 , which allows us to take an
increasing sequence {tk}k≥0 such that t0 = 0 , tk ↑ ∞ and ρ(tk+1) ≤ tk.

(ρ.3) There exists Tρ > 0 such that ρ(t) < t for t < Tρ , but ρ(t) = t for t ≥ Tρ .

But, as τ(t) satisfies the same hypotheses, we have analogous posibilities (τ.1), (τ.2), (τ.3).
Therefore, combining these, we consider the following six different cases:

i) Assume (ρ.1), (τ.1). Let δ = min{ρ∗, τ∗} and consider the problem on [0, δ].
Since ρ(t) ≤ t− δ and τ(t) ≤ t− δ ,

x(t) = Stψ(0) +
∫ t

0
St−sB(ψ(ρ(s))) ds +

∫ t

0
St−sC(ψ(τ(s))) dw(s)

is the mild solution to (1) on the interval [0, δ] . By induction, our problem can
be solved on [kδ, (k + 1)δ] for all k ≥ 0 and therefore on [0,∞) .



ii) Assume (ρ.2), (τ.2). In this case, we can choose an increasing sequence {tk}k≥0

such that t0 = 0 , tk ↑ ∞ and ρ(tk+1) ≤ tk, τ(tk+1) ≤ tk. So, we can construct
the mild solution on [tk, tk+1] for all k ≥ 0 as in Case i).

iii) Assume (ρ.3), (τ.3). If Tρ 6= Tτ , suppose Tρ < Tτ . Then we proceed on
[0, Tρ) in the same way as Case ii). Since it is not difficult to show that x(t)
converges to x(Tρ) in mean square (when t → Tρ ), the problem on [Tρ, Tτ )
can be equivalently stated as

x(t) = St−Tρx(Tρ) +
∫ t

Tρ

St−sB(x(s)) ds +
∫ t

Tρ

St−sC(x(τ(s))) dw(s)

and the existence of mild solution is guaranteed by using the results on exis-
tence of mild solution for the nondelayed equation (see Da Prato and Zabczyk [7],
for instance) and the method of Case ii). Next, on [Tτ ,∞) the equation for
mild solutions is

x(t) = St−Tτ x(Tτ ) +
∫ t

Tτ

St−sB(x(s)) ds +
∫ t

Tτ

St−sC(x(s)) dw(s)

which is an equation without delays and, consequently, the existence of solution
is well known.

iv) Assume (ρ.1), (τ.2). Then, we have that ρ(t) < t− ρ∗ and τ(t) < t for all t.
Denoting by n0 the natural number such that tn0 ≤ ρ∗ ≤ tn0+1, we solve the
equation on [0, ρ∗] as in Case ii), and by induction, on [kρ∗, (k + 1)ρ∗] for all
k ≥ 0 .

v) Assume (ρ.1), (τ.3). In this case, ρ(t) < t − ρ∗ and τ(t) < t for t < Tτ and
τ(t) = t for all tτ . Thus, on the interval [0, Tτ ) we can argue as in Case iv)
and, on [Tτ ,∞) as in Case i) but, with only one delayed term (see Case iii),
for a similar situation).

vi) Assume (ρ.2), (τ.3). It follows that ρ(t) < t for all t , and τ(t) < t for all
t < Tτ , τ(t) = t for all t ≥ Tτ . The existence of the mild solution on [0, Tτ )
is showed as in Case ii). On [Tτ ,∞) , the arguments of Case ii) for the equation

x(t) = St−Tτ x(Tτ ) +
∫ t

Tτ

St−sB(x(ρ(s))) ds +
∫ t

Tτ

St−sC(x(s)) dw(s)

can be used.
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