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Abstract. The global attractor of a gradient-like semigroup has a Morse decomposition.

Associated to this Morse decomposition there is a Lyapunov function (differentiable along

solutions)-defined on the whole phase space- which proves relevant information on the struc-

ture of the attractor. In this paper we prove the continuity of these Lyapunov functions

under perturbation. On the other hand, the attractor of a gradient-like semigroup also has

an energy level decomposition which is again a Morse decomposition but with a total order

between any two components. We claim that, from a dynamical point of view, this is the

optimal decomposition of a global attractor; that is, if we start from the finest Morse de-

composition, the energy level decomposition is the coarsest Morse decomposition that still

produces a Lyapunov function which gives the same information about the structure of the

attractor. We also establish sufficient conditions which ensure the stability of this kind of

decomposition under perturbation. In particular, if connections between different isolated

invariant sets inside the attractor remain under perturbation, we show the continuity of the

energy level Morse decomposition. The class of Morse-Smale systems illustrates our results.

1. Introduction

Qualitative properties of infinite-dimensional dynamical systems has been receiving very

much attention throughout the last four decades (see, for instance, [5], [9], [14] or [2]). The

analysis of compact attracting invariant sets has developed a profound area of research, pro-

viding crucial information for an increasing number of models for phenomena from Physics,

Biology, Economics, Engineering and others.

The asymptotic behaviour of a dissipative system can be described by a study of its

associated global attractor. Moreover, a careful study of the geometrical structure -and

its stability under perturbations- of the global attractor leads to the understanding of its

internal dynamics, which, essentially, describes the long time behaviour of the whole system.
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The most general result in this line follows from [4], which describes any flow on a compact

metric space as a decomposition of chain recurrent isolated invariant sets and connections

between them. In the terminology of [4], this is called a Morse decomposition of a compact

invariant set (see Definition 2.10 below), and has been considered in different frameworks,

as in the case of flows ([4]) and semiflows on compact spaces ([13]), or even compact and

non-compact topological spaces ([8, 11, 12]).

Recently, it has been introduced in [3] the so-called gradient-like semigroups with respect

to a disjoint family of isolated invariant sets Ξ = (Ξ1, · · · ,Ξn) on the global attractor (see

Definition 2.8 below) in Banach spaces, as an intermediate concept between gradient semi-

groups (i.e., those possessing a Lyapunov function) and semigroups possessing a gradient-like

attractor (that is, an attractor that is characterized as the union of the unstable sets of as-

sociated isolated invariant sets).

In [1], given a gradient-like semigroup in a general metric space, we construct a differen-

tiable (along solutions) generalized Lyapunov function proving that gradient-like semigroups

are in fact gradient semigroups. This function is not only constant on each isolated invariant

set as in the classical theory of [4], but it also detects the points in the phase space with

orbits having a single value of this function, a crucial property of Lyapunov functions (see,

for instance, [5]). Indeed, we will say that a semigroup {T (t) : t ≥ 0} with a global attractor

A and a disjoint family of isolated invariant sets Ξ = {Ξ1, · · · ,Ξn} is a generalized gradient

semigroup with respect to Ξ if there exists a continuous function V : X → R such that, V

is constant in each in each Ξi, 1 ≤ i ≤ n, [0,∞) 3 t 7→ V (T (t)x) ∈ R is decreasing for each

x ∈ X, and V (T (t)x) = V (x) for all t ≥ 0 if and only if x ∈
⋃n
i=1 Ξi. For the construction of

the Lyapunov function, it is proved in [1] that the disjoint family of isolated invariant sets of

a gradient-like semigroup on a general metric space can be reordered in such a way that it

becomes a Morse decomposition for the global attractor. A refinement of the results from [4]

leads to define a generalized Lyapunov function, not only on the attractor but on the whole

phase space. In addition, the Lyapunov function V : X → R of a generalized gradient-like

semigroup can be chosen in such a way that V (Ξj) = j.

Moreover, as gradient-like semigroups are stable under perturbation (see [3]), we conclude

that gradient semigroups are stable under perturbation. In other words, the existence of a

continuous Lyapunov function is robust under perturbation. In this paper, we are able to

go further in this direction, i.e., we provide conditions for which not only a perturbation

of a gradient semigroup is still gradient, but also the associated Lyapunov functions move

continuously under the perturbation. A careful study of the upper and lower semicontinuity

of local attractors and repellers will be crucial in our argument.

On the other hand, observe that any Morse decomposition Ξ = (Ξ1, · · · ,Ξn) of a compact

invariant set A leads to a partial order among the isolated invariant sets Ξi; that is, we

can define an order between two isolated invariant sets Ξi and Ξj if there is a chain of

global solutions {ξ`, 1 ≤ ` ≤ j − i}, with limt→∞ ξ`(t) = Ξi+`−1 and limt→−∞ ξ`(t) = Ξi+`,
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1 ≤ ` ≤ j−i. This defines a partial order and some of the isolated invariant sets in Ξ may not

be comparable. In Section 4 we rewrite and expand the construction in [1] of a new Morse

decomposition of the attractor for a generalized gradient-like semigroup which improves

the construction and dynamical properties of its associated Lyapunov function. Indeed, we

show that, given any generalized gradient-like semigroup with respect to the disjoint family

of isolated invariant sets Ξ = (Ξ1, · · · ,Ξn), there exists another Morse decomposition given

by the so-called energy levels N = (N1,N2, · · · ,Np), p ≤ n, which can be totally ordered by

the flow. Each of the levels Ni, 1 ≤ i ≤ p is made of a finite union of the isolated invariant

sets in Ξ and N is totally ordered. The associated Lyapunov function takes different values

in any two different sets of N and any two elements of Ξ which are contained in the same

element of N (same energy level) are not connected.

Because of this energy level decomposition can be made from any gradient-like semigroup

(i.e., for any Morse decomposition with a finite number of components), when we start form

the finest Morse decomposition of an invariant set in the sense of [12], we claim that our new

dynamical decomposition is optimal, since its associated Lyapunov function is the simplest

one in order to describe connected isolated invariant sets inside the global attractor.

We recall that, given a Morse decomposition of an attractor, it can be continuous under

perturbation even if the connections between sets are destroyed (see figures in Section 3).

This is saying that when we describe the geometric structure of the attractor using the

associated isolated invariant subsets it may, under perturbation, change drastically the way

these isolated invariant subsets are connected. In Section 5 we prove that, if connections are

kept under perturbation, then the energy level decomposition is stable under perturbation.

There exists a general class of semigroups satisfying this last property, being Morse-Smale

systems ([7], [6]) the prototype of them.

2. Morse decomposition of global attractors for generalized

gradient-like semigroups

Let X be a metric space with metric d : X×X → R+, where R+ = [0,∞). Given a subset

A ⊂ X, the ε−neighborhood of A is the set Oε(A) = {x ∈ X : d(x, a) < ε for some a ∈ A}

Definition 2.1. A family of mappings {T (t) : t ≥ 0} is a semigroup in X if

• T (0) = IX , with IX being the identity map in X,

• T (t+ s) = T (t)T (s), for all t, s ∈ R+ and

• R+ ×X 3 (t, x) 7→ T (t)x ∈ X is continuous.

The notion of invariance plays a fundamental role in the study of the asymptotic behavior

of semigroups

Definition 2.2. A subset A of X is said invariant under the action semigroup {T (t) : t ≥ 0}
if T (t)A = A for all t ≥ 0.
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Given A,B ⊂ X, the Hausdorff semidistance between A and B is given by

dist(A,B) = sup
a∈A

inf
b∈B

d(a, b),

and the Hausdorff distance by

dH (A,B) := dist (A,B) + dist (B,A) .

For any subsets A,B and C in X it holds

dist (A,C) ≤ dist (A,B) + dist (B,C) .

Definition 2.3. Given two subsets A,B of X we say that A attracts B under the action of

the semigroup {T (t) : t ≥ 0} if dist(T (t)B,A)
t→∞−→ 0 and we say that A absorbs B under the

action of {T (t) : t ≥ 0} if there is a tB > 0 such that T (t)B ⊂ A for all t ≥ tB.

With this we are in condition to define global attractors.

Definition 2.4. A subset A of X is a global attractor for a semigroup {T (t) : t ≥ 0} if it

is compact, invariant under the action of {T (t) : t ≥ 0} and for every bounded subset B of

X we have that A attracts B under the action of {T (t) : t ≥ 0}.

2.1. Gradient-like semigroups and Morse decomposition of attractors. Next we

seek to introduce the notion of generalized gradient-like semigroups (see [3]). To that end

we first need the definition of isolated invariant set.

Definition 2.5. Let {T (t) : t ≥ 0} be a semigroup. We say that an invariant set Ξ ⊂ X for

the semigroup {T (t) : t ≥ 0} is an isolated invariant set if there is an ε > 0 such that Ξ is

the maximal invariant subset of Oε(Ξ).

A disjoint family of isolated invariant sets is a family {Ξ1, · · · ,Ξn} of isolated invariant

sets with the property that, for some ε > 0,

Oε(Ξi) ∩ Oε(Ξj) = ∅, 1 ≤ i < j ≤ n.

Definition 2.6. A global solution for a semigroup {T (t) : t ≥ 0} is a continuous function

ξ : R → X with the property that T (t)ξ(s) = ξ(t + s) for all s ∈ R and for all t ∈ R+. We

say that ξ : R→ X is a global solution through x ∈ X if it is a global solution and ξ(0) = x.

Definition 2.7. Let {T (t) : t ≥ 0} be a semigroup which has a disjoint family of iso-

lated invariant sets Ξ = {Ξ1, · · · ,Ξn}. A homoclinic structure associated to Ξ is a subset

{Ξk1 , · · · ,Ξkp} of Ξ (p ≤ n) together with a set of global solutions {ξ1, · · · , ξp} such that

Ξkj
t→−∞←− ξj(t)

t→∞−→ Ξkj+1
, 1 ≤ j ≤ p

where Ξkp+1 := Ξk1.

We are now ready to define generalized gradient-like semigroups ([3])
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Definition 2.8. Let {T (t) : t ≥ 0} be a semigroup with a global attractor A and a dis-

joint family of isolated invariant sets Ξ = {Ξ1, · · · ,Ξn}. We say that {T (t) : t ≥ 0} is a

generalized gradient-like semigroup associated to Ξ if

• For any global solution ξ : R→ A there are 1 ≤ i, j ≤ n such that

Ξi
t→−∞←− ξ(t)

t→∞−→ Ξj.

• There is no homoclinic structure associated to Ξ.

Now we will introduce the notion of a Morse decomposition for an attractorA of a gradient-

like semigroup {T (t) : t ≥ 0}. We start with the notion of attractor-repeller pairs.

Definition 2.9. Let {T (t) : t ≥ 0} be a semigroup with a global attractor A. We say that a

non-empty subset A of A is a local attractor if there is an ε > 0 such that ω(Oε(A)) = A.

The repeller A∗ associated to a local attractor A is the set defined by

A∗ = {x ∈ A : ω(x) ∩ A = ∅}.

The pair (A,A∗) is called attractor-repeller pair for {T (t) : t ≥ 0}.

Note that if A is a local attractor, then A∗ is closed and invariant.

Definition 2.10. Given an increasing family ∅ = A0 ⊂ A1 ⊂ · · · ⊂ An = A, of local

attractors, define Ξj := Aj ∩ A∗j−1, 1 ≤ j ≤ n. The ordered n-upla Ξ := (Ξ1,Ξ2, · · · ,Ξn) is

called a Morse decomposition on A.

Remark 2.11. Observe that Ξ is a local attractor if and only if it is compact, invariant and

attracts Oε(Ξ) for some ε > 0. We observe that the above definition differs slightly from the

usual definition since the local attractor is required to attract a neighborhood of Ξ in X and

not in A as in [4, 13].

The following results are proved in Aragão-Costa et al. [1]:

Lemma 2.12. Let {T (t) : t ≥ 0} be a semigroup in X with a global attractor A and an

attractor-repeller (A,A∗). A global solution ξ : R → X of {T (t) : t ≥ 0} with the property

that ξ(t) ∈ Oδ(A∗) for all t ≤ 0 for some δ > 0 such that Oδ(A∗) ∩ A = ∅ must satisfy

d(ξ(t), A∗)
t→−∞−→ 0.

Lemma 2.13. Let {T (t) : t ≥ 0} be a semigroup in X with a global attractor A and (A,A∗)

an attractor-repeller for {T (t) : t ≥ 0}. If ξ : R → X is a global bounded solution for

{T (t) : t ≥ 0} through x /∈ A ∪ A∗, then ξ(t)
t→∞−→ A and ξ(t)

t→−∞−→ A∗. Furthermore, if

x ∈ X\A then, T (t)x
t→∞−→ A ∪ A∗.

Corollary 2.14. If {T (t) : t ≥ 0} is a semigroup in X with a global attractor A and

(A,A∗) is an attractor-repeller pair for {T (t) : t ≥ 0}, then {T (t) : t ≥ 0} is a generalized

gradient-like semigroup associated to the disjoint family of isolated invariant sets {A,A∗}.
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In [1] we describe the construction of a Morse decomposition of the attractor of a gradient-

like semigroup associated to the disjoint family of isolated invariant sets {Ξ1, · · · ,Ξn} and of

the associated collection of increasing local attractors starting from the collection of isolated

invariant sets {Ξ1, · · · ,Ξn}. For the sake of completeness, we recall such a construction here.

Let {T (t) : t ≥ 0} be a generalized gradient-like semigroup with associated family of

isolated invariant sets Ξ = {Ξ1, · · · ,Ξn}. If (after possible reordering) Ξ1 is a local attractor

for {T (t) : t ≥ 0} and

Ξ∗1 = {a ∈ A : ω(a) ∩ Ξ1 = ∅}
each Ξi, i > 1 is contained in Ξ∗1 and that for any a /∈ A\{Ξ1 ∪ Ξ∗1} and global solution

φ : R→ A with φ(0) = a we have that

Ξ∗1
t→−∞←− φj(t)

t→∞−→ Ξ1.

Considering the restriction T1(t) of T (t) to Ξ∗1 we have that T1(t) is a generalized gradient-

like semigroup in Ξ∗1 =: Ξ1,0 with isolated invariant sets {Ξ2, · · · ,Ξn} and we may assume

without loss of generality that Ξ2 is a local attractor for the semigroup {T1(t) : t ≥ 0} in

Ξ∗1. If Ξ∗2,1 is the repeller associated to the isolated invariant set Ξ2 for {T1(t) : t ≥ 0} in Ξ∗1
we may proceed and consider the restriction {T2(t) : t ≥ 0} of the semigroup {T1(t) : t ≥ 0}
to Ξ∗2,1 and {T2(t) : t ≥ 0} is a generalized gradient-like semigroup in Ξ∗2,1 with associated

isolated invariant sets {Ξ3, · · · ,Ξn}.
Proceeding with this until all isolated invariant sets are exhausted we obtain a reordering

of {Ξ1, · · · ,Ξn} in such a way that Ξj is a local attractor for the restriction of {T (t) : t ≥ 0}
to Ξ∗j−1,j−2 (Ξ∗0,−1 := A).

Definition 2.15. Let {T (t) : t ≥ 0} be a semigroup. The unstable set of an invariant set Ξ

is defined by

W u(Ξ) = { z ∈ X : there is a global solution ξ : R→ X

such that ξ(0) = z and lim
t→−∞

dist(ξ(t),Ξ) = 0}.

Define A0 = ∅, A1 = Ξ1 and for j = 2, 3, · · · , n

Aj = Aj−1 ∪W u(Ξj) =

j⋃
i=1

W u(Ξi). (2.1)

It is clear that An = A.

Theorem 2.16. (Aragão-Costa et al. [1]) Let {T (t) : t ≥ 0} be a generalized gradient-like

semigroup with associated family of isolated invariant sets Ξ = {Ξ1, · · · ,Ξn} reordered in

such a way that Ξj is an attractor for the restriction of {T (t) : t ≥ 0} to Ξ∗j−1,j−2. Then Aj
defined in (2.1) is a local attractor for {T (t) : t ≥ 0} in X, and

Ξj = Aj ∩ A∗j−1, 1 ≤ j ≤ n.

As a consequence, Ξ defines a Morse decomposition on A.
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2.2. A Lyapunov function for a generalized gradient-like semigroup. Let us now

recall some definitions and results from [1].

Definition 2.17. We say that a semigroup {T (t) : t ≥ 0} with a global attractor A and a

disjoint family of isolated invariant sets Ξ = {Ξ1, · · · ,Ξn} is a generalized gradient semigroup

with respect to Ξ if there is a continuous function V : X → R such that, V is constant in

Ξi, for each 1 ≤ i ≤ n, [0,∞) 3 t 7→ V (T (t)x) ∈ R is decreasing for each x ∈ X and

V (T (t)x) = V (x) for all t ≥ 0 if and only if x ∈
⋃n
i=1 Ξi. A function V with the properties

above is called a Lyapunov function for the generalized gradient semigroup {T (t) : t ≥ 0}
with respect to Ξ.

Proposition 2.18. Let {T (t) : t ≥ 0} be a semigroup in a metric space (X, d) with global

attractor A, and let (A,A∗) be an attractor-repeller pair in A. Then, there exists a function

f : X → R satisfying the following:

(i) f : X → R is continuous in X.

(ii) f : X → R is non-increasing along solutions.

(iii) f−1(0) = A and f−1(1) ∩ A = A∗.

(iv) Given z ∈ X, if f(T (t)z) = f(z) for all t ≥ 0, then z ∈ (A ∪ A∗).

Theorem 2.19. (Aragao-Costa et al. [1]) Let {T (t) : t ≥ 0} be a semigroup with global

attractor A and a disjoint family of isolated invariant sets Ξ = {Ξ1, · · · ,Ξn}. Then, {T (t) :

t ≥ 0} is a generalized gradient semigroup with respect to Ξ if and only if it is a generalized

gradient-like semigroup with respect to Ξ. Moreover, [0,∞) 3 t 7→ V (T (t)z) is differentiable

for all z ∈ X. Finally, the Lyapunov function V : X → R of a generalized gradient-like

semigroup may be chosen in such a way that V (Ξk) = k, k = 1, · · · , n.

2.3. Stability under perturbations of generalized gradient semigroups. We intro-

duce the notions of continuity and asymptotic compactness for a parameter dependent family.

We start with the notion of continuity for a family of semigroups.

Definition 2.20. A family of semigroups {Tη(t) : t ≥ 0}η∈[0,1] is said to be continuous at

η = 0 if Tη(t)x
η→0−→ T0(t)x uniformly for (t, x) in compact subsets of R+ ×X.

Definition 2.21. A family of semigroups {Tη(t) : t ≥ 0}η∈[0,1] is said to be collectively

asymptotically compact at η = 0 if, given a sequence (ηk)k∈N with ηk
k→∞−→ 0, a bounded

sequence (xk)k∈N in X and a sequence (tk)k∈N in R+ with tk
k→∞−→ ∞, then (Tηk(tk)xk) is

relatively compact.

We are now ready to state the following result from [3].

Theorem 2.22 (Carvalho-Langa). Let {Tη(t) : t ≥ 0}η∈[0,1] be a collectively compact family

of semigroups which is continuous at η = 0. Assume that
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a) {Tη(t) : t ≥ 0} possesses a global attractor Aη for each η ∈ [0, 1] and ∪η∈[0,1]Aη is

bounded.

b) There exists n ∈ N such that Aη has n isolated invariant sets Ξη = {Ξ1,η, · · · ,Ξn,η}
for all η ∈ [0, 1], and sup16i6n dH(Ξi,η,Ξi,0)

η→0−→ 0.

c) {T0(t) : t ≥ 0} is a generalized gradient-like semigroup.

Then, there exists η0 > 0 such that, for all η 6 η0, {Tη(t) : t ≥ 0} is a generalized

gradient-like semigroup associated to Ξη and consequently

Aη = ∪ni=1W
u(Ξi,η), ∀η ∈ [0, η0].

As an immediate consequence of this result and the ones in Section 2.2 we have the

following result.

Corollary 2.23. Under the assumption of Theorem 2.22, there exists η0 > 0 such that, for

all η 6 η0, {Tη(t) : t ≥ 0} is a generalized gradient semigroup.

Corollary 2.24. Under the assumption of Theorem 2.22, suppose there exists n ∈ N such

that Aη has n stationary solutions Sη={ξ1,η, · · ·, ξn,η} for all η ∈ [0, 1] and sup16i6n d(ξi,η, ξi,0)
η→0−→ 0. Then, there exists η0 > 0 such that, for all η 6 η0, {Tη(t) : t ≥ 0} is a gradient

semigroup in the sense of [5].

Remark 2.25. The previous theorem supposes the continuity of the isolated invariant sets

in order to prove the stability of the generalized gradient-like semigroups under perturbation.

Note (cf. [3]) that from a perturbation of a gradient-like semigroup it could emerge a gradient-

like semigroup with a different collection of isolated invariant sets.

On the other hand, for a generalized gradient-like semigroup, even when the isolated sets

behave continuously under perturbation, some of the connections between them may change.

So the dynamics under perturbation could suffer drastic changes. This fact allows that the

Lyapunov functions that we have constructed behave discontinuously under perturbation.

3. Continuity of the Lyapunov function under perturbation

Now, we will analyze the continuity of the Lyapunov function under suitable perturbations.

Definition 3.1. Let (Aη)η∈[0,1] be a family of sets in a metric space X with distance d :

X ×X → R+. We say that this family is upper semicontinuous (u.s.c.) at η = 0 if

lim
η→0+

dist (Aη, A0) = 0.

We say that this family is lower semicontinuous (l.s.c.) at η = 0 if

lim
η→0+

dist (A0, Aη) = 0.
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Finally, the family is said to be continuous at η = 0 if it is upper and lower semicontinuous,

i.e., when it holds

lim
η→0+

dH (Aη, A0) = 0.

Lemma 3.2. Let {Tη (t) : t ≥ 0}η∈[0,1] be a family of collectively asymptotically compact semi-

groups in a metric space X which is continuous at η = 0 (see Definition 2.20). Assume

that each {Tη (t) : t ≥ 0} has a global attractor Aη and that
⋃

η∈[0,1]

Aη is bounded in X. Let

(Aη)η∈[0,1] be a family of subsets in X such that Aη ⊂ Aη and A0 is a local attractor for

{T0 (t) : t ≥ 0} with ω (Oε (A0)) = A0, for some ε > 0.

Then, if (Aη)η∈[0,1] is continuous at η = 0, given δ ∈ (0, ε) there exist δ′ ∈ (0, δ) and η0 > 0

such that for all η ∈ [0, η0] it holds

γ+
η (Oδ′ (Aη)) ⊂ Oδ (Aη) ,

where γ+
η (Oδ′ (Aη)) denotes the positive orbit of the set Oδ′ (Aη) associated to {Tη (t) : t ≥ 0} .

Proof. Suppose not, then there exist δ ∈ (0, ε) and sequences (zj)j∈N in X, (ηj)j∈N in [0, 1]

and (tj)j∈N in R such that ηj
j→∞→ 0+, tj

j→∞→ ∞, dist
(
zj, Aηj

)
< 1

j
for all j,

dist
(
Tηj (t) zj, Aηj

)
< δ for all t ∈ [0, tj) and all j ∈ N

and

dist
(
Tηj (tj) zj, Aηj

)
= δ for all j ∈ N.

If, for each j, we now define ξj : [−tj,∞) → X by ξj (t) := Tηj (t+ tj) zj, then, by the

collective asymptotic compactness and the uniform convergence in compact sets, it is not

difficult to see that there exist a bounded global solution ξ0 : R→ X for {T0 (t) : t ≥ 0} and

a subsequence for (ξj)j∈N , denoted the same, such that for all t, ξ0 (t) = lim
j→∞

ξj (t) .

On the other hand, given t < 0, for all j big enough it holds

dist (ξj (t) , A0) ≤ dist
(
ξj (t) , Aηj

)
+ dist

(
Aηj , A0

)
,

from where, by the u.s.c. of (Aη)η∈[0,1] , we obtain that for all t < 0

dist (ξ0 (t) , A0) ≤ δ,

and from δ = dist
(
ξj (0) , Aηj

)
≤ dist (ξj (0) , A0) + dist

(
A0, Aηj

)
, by the l.s.c. of (Aη)η∈[0,1],

it follows that dist (ξ0 (0) , A0) = δ.

But, as δ < ε, then A0 attracts K = {ξ0 (t) : t ≤ 0} , which contradicts the fact that

dist (ξ0 (0) , A0) = δ. �

We also have the following lemma:
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Lemma 3.3. Let {Tη(t) : t ≥ 0}η∈[0,1] be a family of collectively asymptotically com-

pact semigroups in the metric space X which is continuous at η = 0. Assume that each

{Tη (t) : t ≥ 0} possesses a global attractor Aη, that
⋃

η∈[0,1]

Aη is relatively compact in X and

that limη→0 dist(Aη,A) = 0. Let also (Aη)η∈[0,1] be subsets of X such that each Aη is a local

attractor for {Tη(t) : t ≥ 0} and let
(
A∗η
)
η∈[0,1]

be the family of associated repellers.

Suppose there exist a positive number µ and an index η̃ > 0 such that

inf
aη∈Aη

inf
a∗η∈A∗η

d(aη, a
∗
η) ≥ µ

if η ∈ [0, η̃]. If (Aη)η∈[0,1] is lower semicontinuous at η = 0, then
(
A∗η
)
η∈[0,1]

is upper semi-

continuous at η = 0.

Proof. Suppose that lim
η→0+

dist (A0, Aη) = 0, but it is not true that lim
η→0+

dist
(
A∗η, A

∗
0

)
= 0.

Then, there exist ε > 0 and a sequence (ηj)j∈N in [0, 1] with ηj
j→∞→ 0+ such that

dist
(
A∗ηj , A

∗
0

)
≥ ε for all j ∈ N.

Thus, there exists a sequence (zj)j∈N in X with zj ∈ A∗ηj ⊂ Aηj and dist (zj, A
∗
0) > ε

2
for all

j. By the upper semicontinuity of the global attractors, we can suppose that zj
j→∞→ z0 for

some z0 ∈ A0, so that we have dist (z0, A
∗
0) ≥ ε

2
, and, therefore, ω (z0) ⊂ A0.

On the one hand, for 0 < δ < µ
2
, by Lemma 3.2, choose δ′ ∈ (0, δ) and η0 ∈ (0, η̃] such

that

γ+
η (Oδ′ (Aη)) ⊂ Oδ (Aη) , (3.1)

if η ∈ [0, η0] .

As ω (z0) ⊂ A0, there exists t0 > 0 such that T0 (t0) z0 ∈ O δ′
3

(A0) .

On the other hand, by the lower semicontinuity of (Aη)η∈[0,1] we get the existence of

η1 ∈ (0, η0] such that for all η ∈ [0, η1] it holds

A0 ⊂ O δ′
2

(Aη) . (3.2)

But, by the continuity of {Tη(t) : t ≥ 0}η∈[0,1] at η = 0, there exists η2 ∈ (0, η1] for which

Tηj (t0) zj ∈ O δ′
2

(A0) for all j with ηj ∈ [0, η2] . Now, by (3.2) it holds that O δ′
2

(A0) ⊂
Oδ′ (Aη) if η ∈ [0, η2] , and so Tηj (t0) zj ∈ Oδ′

(
Aηj
)

if ηj ∈ [0, η2] .

Now (3.1) implies that if ηj ∈ [0, η2] we have that γ+
ηj

(
Tηj (t0) zj

)
⊂ Oδ

(
Aηj
)
, and so

ωηj (zj) ⊂ Oδ
(
Aηj
)

when ηj ∈ [0, η2] , but, by the invariance of A∗ηj for
{
Tηj (t) : t ≥ 0

}
, it

holds that ωηj (zj) ⊂ A∗ηj which is a contradiction as δ < µ
2
. �

The main result of this section is the following:
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Proposition 3.4. Let {Tη (t) : t ≥ 0}η∈[0,1] be a family of asymptotically collectively compact

semigroups in a metric space X which is continuous at η = 0 and such that, for each

η ∈ [0, 1], {Tη (t) : t ≥ 0}, it has a global attractor Aη. Suppose
⋃

η∈[0,1]

Aη is relatively compact

in X. Let (Aη)η∈[0,1] be a family of local attractors for {Tη (t) : t ≥ 0} in X and
(
A∗η
)
η∈[0,1]

the associated family of repellers.

Suppose that the family of local attractors (Aη)η∈[0,1], the corresponding family of repellers(
A∗η
)
η∈[0,1]

, and the family of global attractors (Aη)η∈[0,1] are continuous at η = 0.

Finally, for each η ∈ [0, 1], let fη : X → R be the Lyapunov function associated to the pair(
Aη, A

∗
η

)
which is defined by

fη (z) := hη (z) + kη (z) ,

where, for each z ∈ X
hη (z) := sup

t≥0
dist (Tη (t) z,Aη) and,

kη (z) := sup
t≥0

lη (Tη (t) z) with lη (z) :=
dist (z, Aη)

dist (z, Aη) + dist
(
z, A∗η

) .
Then, fη

η→0+→ f0 uniformly in compact sets of de X.

Proof. We split the proof into three steps:

Step 1: lη
η→0+→ l0 uniformly in X.

Indeed, by the triangle inequality for the Hausdorff semidistance we have that, for all

η ∈ [0, 1] and all z ∈ X, it holds

|dist (z, Aη)− dist (z, A0)| ≤ dH (Aη, A0)

and ∣∣dist
(
z, A∗η

)
− dist (z, A∗0)

∣∣ ≤ dH

(
A∗η, A

∗
0

)
.

Now, given η ∈ [0, 1] and z ∈ X we have

lη (z)− l0 (z) =
dist (z, Aη)

dist (z, Aη) + dist
(
z, A∗η

) − dist (z, A0)

dist (z, A0) + dist (z, A∗0)

=
dist (z, Aη) dist (z, A∗0)− dist (z, A0) dist

(
z, A∗η

)[
dist (z, Aη) + dist

(
z, A∗η

)]
[dist (z, A0) + dist (z, A∗0)]

,

and now, by adding and substracting dist (z, A0) dist (z, A∗0) ,

lη (z)− l0 (z) =
[dist (z, Aη)− dist (z, A0)] dist (z, A∗0) + dist (z, A0)

[
d (z, A∗0)− dist

(
z, A∗η

)][
dist (z, Aη) + dist

(
z, A∗η

)]
[dist (z, A0) + dist (z, A∗0)]

.

Since infa0∈A0 infa∗0∈A∗0 d(a0, a
∗
0) > µ for some µ > 0, the continuity of the families of local

attractors and their corresponding repellers ensure the existence of η̃ ∈ (0, 1] such that, for
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all η ∈ [0, η̃], it follows that dist
(
Aη, A

∗
η

)
> µ. Consequently, for all z ∈ X and η ∈ [0, η̃] we

have

|lη (z)− l0 (z)| ≤ 1

dist (z, Aη) + dist
(
z, A∗η

) [dH (Aη, A0) + dH

(
A∗η, A

∗
0

)]
≤ 1

µ

[
dH (Aη, A0) + dH

(
A∗η, A

∗
0

)]
,

so that, for all z ∈ X and all η ∈ [0, η̃] we have

|lη (z)− l0 (z)| ≤ 1

µ

[
dH (Aη, A0) + dH

(
A∗η, A

∗
0

)]
and hence, we obtain the uniform convergence (in X) of lη

η→0+→ l0, from the continuity of

the local attractors and their associated repellers.

Step 2: kη
η→0+→ k0 uniformly in compact sets of X.

Given z ∈ X consider the following three cases

Case 1: T0 (t) z
t→∞→ A0 with l0 (z) > 0.

Choose 0 < θ < θ+ < l0 (z). By the continuity of l0 : X → R, let σ1 > 0 such that

l0 (Oσ1 (z)) ⊂ (θ+, 1] and, by Step 1, η0 ∈ (0, 1] such that lη (Oσ1 (z)) ⊂ (θ, 1] for all η ∈
[0, η0] .

On the one hand, by the continuity of l0 : X → R, given 0 < α < θ
2
, let δ > 0 such that

l0 (Oδ (A0)) ⊂ [0, α).

On the other hand, by Lemma 3.2, let δ′ ∈
(
0, δ

2

)
and η1 ∈ (0, η0] such that for each

η ∈ [0, η1] we have

γ+
η (Oδ′ (Aη)) ⊂ O δ

2
(Aη) . (3.3)

Now, by the lower semicontinuity of (Aη)η∈[0,1] at η = 0, let η2 ∈ (0, η1] such that for each

η ∈ [0, η2] it holds

A0 ⊂ O δ′
2

(Aη) . (3.4)

From the fact that T0 (t) z
t→∞→ A0, let also t0 > 0 such that T0 (t0) z ∈ O δ′

4
(A0) and by

the continuity of T0 (t0) : X → X choose σ2 ∈ (0, σ1] such that T0 (t0) (Oσ2 (z)) ⊂ O δ′
4

(A0).

From the continuity of {Tη(t) : t ≥ 0}η∈[0,1] at η = 0, we can find σ3 ∈ (0, σ2] and η3 ∈ (0, η2]

such that for all η ∈ [0, η3] we have Tη (t0) (Oσ3 (z)) ⊂ O δ′
2

(A0) , from where, by (3.4) , we

obtain that Tη (t0) (Oσ3 (z)) ⊂ Oδ′ (Aη) if η ∈ [0, η3] , and from (3.3) we conclude that

γ+
η (Tη (t0) (Oσ3 (z))) ⊂ O δ

2
(Aη) for all η ∈ [0, η3] . (3.5)

Now observe that, from the uniform convergence of lη
η→0+→ l0 in X, we obtain η4 ∈ (0, η3]

so that, for each η ∈ [0, η4] , it holds lη (Oδ (A0)) ⊂ [0, 2α), and from the upper semicontinuity

of (Aη)η∈[0,1] in η = 0 we deduce the existence of η5 ∈ (0, η4] such that, if η ∈ [0, η5] , then

Aη ⊂ O δ
2

(A0) , and, therefore, O δ
2

(Aη) ⊂ Oδ (A0) for all η ∈ [0, η5] , so that lη

(
O δ

2
(Aη)

)
⊂
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[0, 2α) for all η ∈ [0, η5] . Thus, from (3.5) we have that for each η ∈ [0, η5] and each

w ∈ Oσ3 (z) ⊂ Oσ1 (z) it holds

sup
t≥t0

lη (Tη (t)w) ≤ 2α < θ < lη (w) ≤ kη (w) ,

so that kη (w) = sup
0≤t≤t0

lη (Tη (t)w) for all η ∈ [0, η5] and all w ∈ Oσ3 (z).

Finally, given ε > 0, by the conclusion in Step 1, there exists η6 ∈ (0, η5] such that for all

w ∈ X
|lη (w)− l0 (w)| < ε

2
for all η ∈ [0, η6] .

by the uniform continuity of the function l0 : X → R, consider β > 0 such that if w,w′ ∈ X
satisfy d (w,w′) < β then |l0 (w)− l0 (w′)| < ε

2
so that, from the continuity of {Tη(t) : t ≥

0}η∈[0,1] at η = 0, we can choose η′ ∈ (0, η6] and σ4 ∈ (0, σ3] such that

sup
w∈Oσ4 (z)

sup
0≤t≤t0

d (Tη (t)w, T0 (t)w) < β.

Thus, for all w ∈ Oσ4 (z) , all t ∈ [0, t0] and all η ∈ [0, η′]

|lη (Tη (t)w)− l0 (T0 (t)w)| ≤ |lη (Tη (t)w)− l0 (Tη (t)w)|+ |l0 (Tη (t)w)− l0 (T0 (t)w)| < ε,

from which

sup
w∈Oσ4 (z)

|kη (w)− k0 (w)| ≤ ε for all η ∈ [0, η′] , (3.6)

where σ4 > 0 and η′ > 0 depends only on z ∈ X and ε > 0.

Case 2: l0 (z) = 0.

Under these conditions, note that z ∈ A0 and, consequently, k0 (z) = 0.

Given ε > 0, by the continuity of l0 : X → R, take δ > 0 such that l0 (Oδ (A0)) ⊂ [0, ε
4
).

Now, the uniform convergence of (lη)η∈[0,1] to l0 in X implies the existence of η0 ∈ (0, 1]

such that

lη (Oδ (A0)) ⊂ [0,
ε

2
) for each η ∈ [0, η0] . (3.7)

By the upper semicontinuity of (Aη)η∈[0,1] at η = 0 we have the existence of η1 ∈ (0, η0] such

that for all η ∈ [0, η1] we have Aη ⊂ O δ
2

(A0) , from which O δ
2

(Aη) ⊂ Oδ (A0) if η ∈ [0, η1] .

And from (3.7) we conclude that for all η ∈ [0, η1]

lη

(
O δ

2
(Aη)

)
⊂ [0,

ε

2
). (3.8)

Let also η2 ∈ (0, η1] and δ′ ∈ (0, δ
2
), by Lemma 3.2, such that

γ+
η (Oδ′ (Aη)) ⊂ O δ

2
(Aη) for all η ∈ [0, η2] . (3.9)

Finally, consider the lower semicontinuity of (Aη)η∈[0,1] at η = 0. Let η3 ∈ (0, η2] such that

A0 ⊂ O δ′
2

(Aη) for all η ∈ [0, η3] . (3.10)
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Thus, (3.10) holds and, from (3.9) , for η ∈ [0, η3], for all t ≥ 0 and all w ∈ O δ′
2

(A0) ⊂
O
δ′

(Aη) that Tη (t)w ∈ O δ
2

(Aη) and by (3.8) , we obtain that for all η ∈ [0, η3] and all

w ∈ O δ′
2

(A0) it holds

kη (w) = sup
t≥0

lη (Tη (t)w) ≤ ε

2
,

so that, in particular,

sup
w∈O δ′

2
(A0)

|kη (w)− k0 (w)| ≤ ε for all η ∈ [0, η3] , (3.11)

where δ′ > 0 and η3 > 0 that depends only on ε > 0 and A0.

Case 3: T0 (t) z
t→∞→ A∗0.

In this case k0 (z) = 1. By the continuity of l0 : X → R, given ε > 0, let δ > 0 such that

l0 (Oδ (A∗0)) ⊂ (1− ε

4
, 1]

and, by the uniform convergence lη
η→0+→ l0 in X, take η0 ∈ (0, 1] such that

lη (Oδ (A∗0)) ⊂ (1− ε

2
, 1] for all η ∈ [0, η0] . (3.12)

On the other hand, consider t0 > 0 such that T0 (t0) z ∈ O δ
2

(A∗0) and, by the continuity

of T0 (t0) : X → X, take σ1 > 0 such that T0 (t0) (Oσ1 (z)) ⊂ O δ
2

(A∗0). From the continuity

of {Tη(t) : t ≥ 0}η∈[0,1] at η = 0, let η1 ∈ (0, η0] and σ2 ∈ (0, σ1] such that Tη (t0) (Oσ2 (z)) ⊂
Oδ (A∗0) for all η ∈ [0, η1] .

Finally, from (3.12) we deduce that lη (Tη (t0) (Oσ2 (z))) ⊂ (1− ε
2
, 1] for all η ∈ [0, η1] , so

that, for all w ∈ Oσ2 (z) and all η ∈ [0, η1] , we have that 1− ε
2
< lη (Tη (t0)w) ≤ kη (w) ≤ 1,

from which |kη (w)− k0 (w)| ≤ ε for η ∈ [0, η1] and w ∈ Oσ2 (z) . Thus

sup
w∈Oσ2 (z)

|kη (w)− k0 (w)| ≤ ε for η ∈ [0, η1] , (3.13)

where σ2 > 0 and η1 that depends only on z and ε > 0.

Now, from cases 1, 2 and 3 we obtain that:

Given a compact subset K ⊂ X, and ε > 0, by (3.6) , (3.11) and (3.13), there exist an

open subset U = U (ε,K) ⊂ X with K ⊂ U , and an index η′ = η′ (ε,K) > 0 such that

sup
w∈U
|kη (w)− k0 (w)| ≤ ε for all η ∈ [0, η′] ,

and then lim
η→0+

sup
w∈K
|kη (w)− k0 (w)| = 0.

Step 3 : hη
η→0+→ h0 uniformly in compact subsets of X.

Indeed, given z ∈ X consider now two cases:

Case 1: dist (z,A0) > 0.
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Given α > 0 with 0 < α < dist (z,A0) , let, by Lemma 3.2, α′ ∈ (0, α) and η0 ∈ (0, 1] such

that for all η ∈ [0, η0]

γ+
η (Oα′ (Aη)) ⊂ Oα (Aη) . (3.14)

Choose t0 > 0 such that T0 (t0) z ∈ Oα′
4

(A0) and by continuity of T0 (t0) : X → X let

σ1 > 0 such that T0 (t0) (Oσ1 (z)) ⊂ Oα′
4

(A0) .

Now, from the continuity of {Tη(t) : t ≥ 0}η∈[0,1] at η = 0, let η1 ∈ (0, η0] and σ2 ∈ (0, σ1]

such that Tη (t0) (Oσ2 (z)) ⊂ Oα′
2

(A0) for each η ∈ [0, η1] , and, by the lower semicontinuity

of (Aη)η∈[0,1] at η = 0, let η2 ∈ (0, η1] such that A0 ⊂ Oα′
2

(Aη) for all η ∈ [0, η2] , so that

Oα′
2

(A0) ⊂ Oα′ (Aη) if η ∈ [0, η2] . Thus, for all η ∈ [0, η2] we have that Tη (t0) (Oσ2 (z)) ⊂
Oα′ (Aη) and from (3.14) we obtain that γ+

η (Tη (t0) (Oσ2 (z))) ⊂ Oα (Aη) for all η ∈ [0, η2] .

Thus

sup
t≥t0

dist (Tη (t)w,Aη) ≤ α for all η ∈ [0, η2] and all w ∈ Oσ2 (z) . (3.15)

On the other hand, for all w ∈ X and all η ∈ [0, 1] we have

|dist (w,Aη)− dist (w,A0)| ≤ dH (Aη,A0) . (3.16)

Then, we can choose η3 ∈ (0, η2] and σ3 ∈ (0, σ2] such that dist (w,Aη) > α for all η ∈ [0, η3]

and all w ∈ Oσ3 (z), from which, by (3.15) , it follows

sup
t≥t0

dist (Tη (t)w,Aη) ≤ α < dist (w,Aη) for all η ∈ [0, η3] and all w ∈ Oσ3 (z) ,

so that hη (w) = sup
0≤t≤t0

dist (Tη (t)w,Aη) for each η ∈ [0, η3] and each w ∈ Oσ3 (z) .

Note that, for all w ∈ X, all η ∈ [0, 1] and all t ≥ 0 we have that

|dist (Tη (t)w,Aη)− dist (T0 (t)w,A0)| ≤ dH (Aη,A0) + d (Tη (t)w, T0 (t)w) ,

so that, for all η ∈ [0, η3]

sup
w∈Oσ3 (z)

|hη (w)− h0 (w)| ≤ dH (Aη,A0) + sup
w∈Oσ3 (z)

sup
0≤t≤t0

d (Tη (t)w, T0 (t)w) ,

and so, it is easy to see that, given ε > 0 there exist σ ∈ (0, σ3] and η4 ∈ (0, η3], depending

only on z and ε > 0, such that

sup
w∈Oσ(z)

|hη (w)− h0 (w)| ≤ ε for all η ∈ [0, η4] .

Case 2: dist (z,A0) = 0, i.e, z ∈ A0.

In this case, given ε > 0, by Lemma 3.2, let ε′ ∈
(
0, ε

2

)
and η0 ∈ (0, 1] such that, for all

η ∈ [0, η0] ,

γ+
η (Oε′ (Aη)) ⊂ O ε

2
(Aη) . (3.17)
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On the other hand, by the lower semicontinuity of (Aη)η∈[0,1] at η = 0, let η1 ∈ (0, η0] such

that A0 ⊂ O ε′
2

(Aη) if η ∈ [0, η1] , and then, O ε′
2

(A0) ⊂ Oε′ (Aη) if η ∈ [0, η1] , and thus

(3.17) implies that

γ+
η

(
O ε′

2
(A0)

)
⊂ O ε

2
(Aη) if η ∈ [0, η1] ,

from which hη (w) = sup
t≥0

dist (Tη (t)w,Aη) ≤ ε
2

for all η ∈ [0, η1] and w ∈ O ε′
2

(A0), so that

we conclude

sup
w∈O ε′

2
(A0)

|hη (w)− h0 (w)| ≤ ε for all η ∈ [0, η1] .

In these conditions, given ε > 0, each z ∈ X possesses a neighbourhood Oσ (z) , with

σ = σ (ε, z) > 0, and there exists an index η′ = η′ (ε, z) > 0 such that

sup
w∈Oσ(z)

|hη (w)− h0 (w)| ≤ ε if η ∈ [0, η′] ,

so that we conclude the convergence of hη
η→0+→ h0 uniformly in compact sets of X by a

similar argument to the one in Step 2. This completes the proof. �

Remark 3.5. Let {Tη(t) : t ≥ 0}η∈[0,1] be a family of semigroups in a metric space X

satisfying hypotheses of Theorem 2.22 with isolated invariant sets Ξη := {Ξ1,η, · · · ,Ξn,η}
reordered in such a way that Ξj is a local attractor for the restriction of {Tη(t) : t ≥ 0} to

(Ξη)
∗
j−1,j−2. For suitably small η, {Tη (t) : t ≥ 0} is a gradient-like semigroup associated to

Ξη, and such that Ξη is a Morse decomposition with associated local attractors

A0,η := ∅ and for each j = 1, 2, · · · , n

Aj,η :=

j⋃
i=1

W u
η (Ξi,η) .

Then, the repellers are given by:

A∗n,η := ∅ and for each j = 0, 1, · · · , n− 1

A∗j,η :=
n⋃

i=j+1

W s
η (Ξi,η) ,

where, for each η ∈ [0, 1] and all i = 1, 2, · · · , n

W s
η (Ξi,η) :=

{
z ∈ Aη : Tη (t) z

t→∞→ Ξi,η

}
and W s

loc,η (Ξi,η) or W u
loc,η (Ξi,η) (in the context of generalized gradient-like semigroups) is the

intersection of W s
η (Ξi,η) or W u

η (Ξi,η) with a neighborhood of Ξi,η.

Thus, we must look for sufficient conditions to obtain continuity of stable (restricted to the

attractors) and unstable manifolds in order to obtain the continuity of Lyapunov functions.

This last remark leads us to the following result:
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Corollary 3.6. Let {Tη (t) : t ≥ 0}η∈[0,1] be a family of semigroups in a metric space (X, d)

satisfying the hypotheses of Theorem 2.22 with isolated invariant sets Ξη := {Ξ1,η, · · · ,Ξn,η}.
If the stable

(
W s
η (Ξj,η)

)
η∈[0,1]

and unstable
(
W u
η (Ξj,η)

)
η∈[0,1]

manifolds are continuous at

η = 0, for all j = 1, 2, · · · , n, then the Lyapunov functions associated to {Tη (t) : t ≥ 0},
given with the aid of Proposition 3.4, for η small enough behave continuously at η = 0.

4. Energy level decomposition of a generalized gradient-like semigroup

We now give a dynamical description of a generalized gradient-like semigroup by reordering

and regrouping the corresponding isolated invariant subsets to obtain a totally ordered family

of isolated invariant sets that we will refer to as energy levels. This new family of isolated

invariant sets is a Morse decomposition of A with fewer invariant sets but in such a way that

it still gives us a Lyapunov function that is constant only in the solutions lying in the original

isolated invariant sets. In a certain sense, this decomposition is the coarsest decomposition

which still gives us a Lyapunov function which is constant only in the solutions lying in the

original isolated invariant sets.

Assume that {T (t) : t ≥ 0} is a generalized gradient-like semigroup with respect to the

disjoint family of isolated invariant sets Ξ = {Ξ1,Ξ2, · · · ,Ξn}.
(a) Given Ξl1 and Ξl2 ∈ Ξ, we say that Ξl1 precedes Ξl2 (we write Ξl1 ≺ Ξl2), if there

exists a global solution ξ : R→ X of {T (t) : t ≥ 0} such that ξ(R) * Ξl1 ∪ Ξl2 and

lim
t→−∞

d(ξ(t),Ξl2) = 0 and lim
t→∞

d(ξ(t),Ξl1) = 0.

(b) Let us consider

M1 := {Ξ` ∈ Ξ : there is no element Ξ ∈ Ξ that preceeds Ξ`}

and, for any integer k ≥ 2

Mk := {Ξ` ∈ Ξ : if Ξ ∈ Ξ and Ξ ≺ Ξ` then Ξ ∈Mk−1}.

Note that, by definition, Mk ⊂Mk+1.

(c) We now define the sets

N1 :=
⋃

Ξ∈M1

Ξ, and Nk :=
⋃

Ξ∈Mk\Mk−1

Ξ, for all k ≥ 2.

Since Ξ is finite, there exists a positive integer q such that Mk = Mq for each

k > q, so that, Nk = ∅ for all k > q. Thus, let N1,N2, · · · ,Np, the level sets with

p := min{q ∈ N :Mk =Mq for each k > q}.
We have the following first result related to this family of sets:
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Lemma 4.1. (see [1]) Let {T (t) : t ≥ 0} be a semigroup with global attractor A. Assume

that {T (t) : t ≥ 0} is a generalized gradient-like semigroup with respect to the disjoint family

of isolated invariant sets Ξ = {Ξ1,Ξ2, · · · ,Ξn}. Then each element of Ξ is contained in Nk,

for some k ≤ p.

The following result will show that N = (N1,N2, · · · ,Np) is a Morse decomposition for

A.

Theorem 4.2. Let {T (t) : t ≥ 0} be a semigroup with global attractor A. If {T (t) :

t ≥ 0} is a generalized gradient-like semigroup with respect to Ξ = {Ξ1,Ξ2, · · · ,Ξn}, then

(N1,N2, · · · ,Np) is a Morse decomposition for A.

Proof. Clearly {T (t) : t ≥ 0} is a generalized gradient-like semigroup with respect to N .

The proof of the result now follows from Theorem 2.16 (see [1]). �

In order to see that the continuity of local unstable manifolds is not sufficient to obtain

the continuity of Lyapunov functions one may consider the example in the following picture
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Note that, in both cases the semigroup associated are gradient-like. Also, the semigroup

associated to Figure 01 has energy levels N1 = {a}, N2 = {b}, N3 = {c}, N4 = {d1, d2},
while the semigroup associated to Figure 02 has energy levels N1 = {a}, N2 = {b1, b2},
N3 = {c1, c2}. This clearly shows that, even if all equilibria are hyperbolic, if the connections

between them are not stable under perturbations, the level sets may be discontinuous.
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Remark 4.3. All the concepts and results in the previous section can be written in the

particular case in which we have a finite set of equilibria. Indeed, let {T (t) : t ≥ 0} be a

gradient-like semigroup in X with global attractor A with equilibrium points E = {ζ1, · · · , ζn}.
Then, there exists an energy level decomposition in A made of equilibrium points.

5. Energy levels for a generalized gradient-like semigroup under

perturbation

Again, for each η ∈ [0, 1], let {Tη (t) : t ≥ 0} a semigroup on a metric space X, with global

attractor Aη, and a finite family of isolated bounded sets Ξη = {Ξ1,η,Ξ2,η, · · · ,Ξp,η} , such

that each {Tη (t) : t ≥ 0} is a generalized gradient-like semigroup with respect to Ξη. We

suppose

sup
1≤i≤p

dH (Ξi,η,Ξi,0)
η→0+→ 0.

Under these conditions, we give sufficient conditions so that the energy levels are continuous

under perturbation.

Lemma 5.1. For each η ∈ [0, 1], let {Tη (t) : t ≥ 0} be a semigroup on a metric space X, with

global attractor Aη and a finite family of isolated bounded sets Ξη = {Ξ1,η,Ξ2,η, · · · ,Ξn,η} ,
such that each {Tη (t) : t ≥ 0} is a generalized gradient-like semigroup with respect to Ξη, and

let Nη = (N1,η, ...,Np(η),η) be the corresponding Morse decomposition formed by the energy

levels. Assume the hypotheses of Theorem 2.22. Let Ξ0 ∈ N1,0 and (Ξη)η∈(0,1], with Ξη ∈ Ξη

for each η ∈ (0, 1], the unique family such that dH (Ξη,Ξ0)
η→0+→ 0.

Then there exist δ > 0 and η1 ∈ (0, 1] such that, for any η ∈ (0, η1], if z ∈ X is such that

dist (z,Ξη) < δ then dist (Tη (t) z,Ξη)
t→∞→ 0. Moreover, for i ≥ 2 if Ξ0 ∈ Ni,0 and (Ξη)η∈(0,1],

with Ξη ∈ Ξη for each η ∈ (0, 1], is the unique family such that dH (Ξη,Ξ0)
η→0+→ 0, then there

exist δ > 0 and ηi ∈ (0, 1] such that for any η ∈ (0, ηi], if z ∈ X satisfies dist (z,Ξη) < δ, then,

either dist (Tη (t) z,Ξη)
t→∞→ 0, or dist

(
Tη (t) z,M(i−1),η

) t→∞→ , where M(i−1),η :=
i−1⋃
j=1

Nj,η, in

particular dist(Tη(t)z,Mi,η)
t→0−→ 0.

Proof. For the case Ξ0 ∈ N1,0, suppose not. Then, there exist ηk → 0+ in (0, 1], (zk)k∈N in

X and (Ξηk)k∈N subfamily of (Ξη)η∈(0,1] with d (zk,Ξηk) <
1
k

such that Tηk (t) zk does not

converge to Ξηk when t → ∞, for all k. Fix δ0 > 0 such that Oδ0 (Ξi,η) ∩ Oδ0 (Ξj,η) = ∅
for i 6= j and η small enough. Then, as each {Tηk (t) : t ≥ 0} is a generalized gradient-like

semigroup with respect to Ξηk , so that, for each k, dist
(
Tηk (t) zk,Ξ

(k)
ηk

)
t→∞→ 0 for some

Ξ
(k)
ηk ∈ Ξηk\ {Ξηk} and so for k big enough, we can find τk > 0 such that

dist (Tηk (t) zk,Ξηk) < δ0 for t ∈ [0, τk) and (5.1)

dist (Tηk (τk) zk,Ξηk) = δ0. (5.2)
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By the uniform convergence Tη
η→0+→ T0 on compacts of [0,∞)×X, from dH (Ξηk ,Ξ0)

k→∞→ 0

and by (5.2) we have that τk
k→∞→ ∞. Thus, consider, for each k big enough, the map ξk :

[−τk,∞)→ X given by ξk (t) := Tηk (t+ τk) zk t ∈ [−τk,∞). By the collective compactness

and from (5.1) there exists a global bounded solution ξ0 : R → X for {T0 (t) : t ≥ 0} such

that lim
k→∞

ξk (t) = ξ0 (t) for all t ∈ R and lim
t→−∞

dist (ξ0 (t) ,Ξ0) = 0. But, as Ξ0 in N1,0 with

{T0 (t) : t ≥ 0} generalized gradient-like, we have ξ0 (t) ∈ Ξ0 for all t ∈ R, which contradicts

d (ξ0 (0) ,Ξ0) = δ0, which comes from (5.2) as k →∞.
For i = 2, we also argue by contradiction. Then we obtain ηk → 0+ in (0, 1], (zk)k∈N in

X and (Ξηk)k∈N subfamily of (Ξη)η∈(0,1] with dist (zk,Ξηk) <
1
k

such that Tηk (t) zk does not

converge to Ξηk when t → ∞ and Tηk (t) zk does not converge to N1,ηk when t → ∞. Now,

let δ > 0 such that the conclusion of the previous case is satisfied in Oδ (N1,ηk) for all k big

enough and with Oδ (Ξi,η) ∩ Oδ (Ξj,η) = ∅ for i 6= j and η small enough.

Thus, for all t ≥ 0 and k we have

dist (Tηk (t) zk,N1,ηk) ≥ δ. (5.3)

On the other hand, as each {Tηk (t) : t ≥ 0} is a generalized gradient-like semigroup, for

each k we have that dist
(
Tηk (t) z,Ξ

(k)
ηk

)
t→∞→ 0 for some Ξ

(k)
ηk ∈ Ξηk\ {Ξηk} and, consequently,

for each k large enough, there exists τk > 0 satisfying

dist (Tηk (t) zk,Ξηk) < δ for t ∈ [0, τk) and (5.4)

dist (Tηk (τk) zk,Ξηk) = δ. (5.5)

Again, by (5.5) , it holds τk
k→∞→ ∞ and then, if we define ξk : [−τk,∞) → X given

by ξk (t) := Tηk (t+ τk) zk t ∈ [−τk,∞), from the collective compactness and (5.4) , we

obtain the existence of a global bounded solution for {T0 (t) : t ≥ 0}, ξ0 : R → X, such

that lim
k→∞

ξk (t) = ξ0 (t) for all t ∈ R with lim
t→−∞

d (ξ0 (t) ,Ξ0) = 0. Since {T0 (t) : t ≥ 0}
is a generalized gradient-like semigroup with respect to Ξ0, there exists Ξl1 ∈ Ξ0 with

lim
t→∞

dist (ξ0 (t) ,Ξl1) = 0. As Ξ0 ∈ N2,0, it holds that Ξl1 ∈ N1,0, from where, for τ > 0 with

dist (ξ0 (τ) ,Ξl1) <
δ
2
, we deduce, for k big enough, dist (Tηk (τ + τk) zk,N1,ηk) <

δ
2
, which

contradicts (5.3). A similar argument for the remaining cases finishes the proof. �

Theorem 5.2. Suppose the hypotheses of the previous lemma. Let N1,η, · · · ,Np(η),η the

energy levels associated to the family Ξη = {Ξ1,η, · · · ,Ξn,η} for η ∈ (0, 1], and suppose that,

(H) if (ηk)k∈N is a sequence in (0, 1] with ηk
k→∞→ 0+ and (Ξηk)k∈N satisfy that, for some

i ∈
⋂
k∈N
{1, 2, · · · , p(ηk)}, Ξηk ∈ Ni,ηk and dH (Ξηk ,Ξ0)

k→∞→ 0 then Ξ0 ∈ Ni,0.

Then, if p denotes the number of energy levels for {T0(t) : t ≥ 0} , written as N1,0, · · ·,Np,0,

there exists η∗ ∈ (0, 1] such that for all η ∈ (0, η∗] the semigroup {Tη (t) : t ≥ 0} possesses
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also p energy levels, N1,η, · · · ,Np,η (i.e., p (η) = p for all η ∈ (0, η∗]), and

dH (Ni,η,Ni,0)
η→0+→ 0 for all i = 1, 2, · · · , p.

Proof. Let us write the energy levels for the limit case.

For i = 1, 2, · · · , p, Ni,0 =
{

Ξ
(i)
l1,0
, · · · ,Ξ(i)

lk(i),0

}
.

If we define, for each η ∈ (0, 1] and i = 1, 2, · · · , p the sets Hi,η :=
{

Ξ
(i)
l1,η
, · · · ,Ξ(i)

lk(i),η

}
and

H′i,η :=
k(i)⋃
j=1

Ξ
(i)
lj ,η
, then, Theorem 2.22 implies dH

(
H′i,η,Ni,0

) η→0+→ 0, for all i = 1, 2, · · · , p.

The sets Hi,η’s are the natural candidates to be the energy levels for Tη (·) . Indeed,

let us prove that it holds that Hi,η = Ni,η, for i = 1, 2, · · · , p and η small enough, i.e.,

H1,η,H2,η, · · · ,Hp,η are the energy levels of {Tη (t) : t ≥ 0} for η small enough.

For i = 1 let
(

Ξ
(1)
l1,η

)
η∈(0,1]

be the family within the set H1,η. Then, there exists θ1 ∈ (0, 1]

such that Ξ
(1)
l1,η
∈ N1,η for all η ∈ (0, θ1]. Indeed, if not, we can find a sequence ηk → 0+ and

global solutions ξk : R → X for {Tηk (t) : t ≥ 0} such that lim
t→−∞

dist
(
ξk (t) ,Ξ

(1)
lj ,ηk

)
= 0 and

lim
t→∞

dist (ξk (t) ,Ξηk) = 0, for some isolated invariant set Ξηk ∈ Ξηk , but with Ξηk 6= Ξ
(1)
l1,ηk

for

all k.

Choose now, for each k big enough, τk such that dist
(
ξk (t) ,Ξ

(1)
lj ,ηk

)
< δ0 for all t < τk and

dist
(
ξk (τk) ,Ξ

(1)
l1,ηk

)
= δ0, (5.6)

where δ0 > 0 satisfies Oδ0 (Ξi,η) ∩ Oδ0 (Ξj,η) = ∅ for i 6= j and η small enough.

If we define for k big enough, ζk : R→ X by ζk (t) := ξk (t+ τk) t ∈ R, we get ζ0 : R→ X

a global solution of {T0 (t) : t ≥ 0} and a subsequence of (ζk)k∈N , written the same, satisfying

lim
k→∞

dist (ζk (t) , ζ0 (t)) = 0 for all t ∈ R, with lim
t→−∞

dist
(
ζ0 (t) ,Ξ

(1)
l1,0

)
= 0. Since Ξ

(1)
l1,0
∈ N1,0,

from the definition of N1,0 it follows that ζ0 (t) ∈ Ξ
(1)
l1,0

for all t ∈ R. But this fact contradicts

that dist
(
ζ0 (0) ,Ξ

(1)
l1,0

)
= δ0, which comes from (5.6) as k → ∞. The same argument for

j = 2, · · · , k (1) leads to η1 ∈ (0, 1] such that Ξ
(1)
lj ,η
∈ N1,η for j = 1, · · · , k (1) y η ∈ (0, η1],

that is, H1,η ⊂ N1,η for all η ∈ (0, η1].

On the other hand, there exists η′1 ∈ (0, η1] such that N1,η ⊂ H1,η when η ∈ (0, η′1]. If not,

there exist a sequence ηk → 0+ and, for each k, an isolated invariant set Ξηk ∈ N1,ηk\H1,ηk

such that the sequence (Ξηk)k∈N satisfies dH (Ξηk ,Ξ0)
k→∞→ 0. However, from (H), we have

Ξ0 ∈ N1,0, which contradicts that Ξηk /∈ H1,ηk for any k. Thus, we conclude that H1,η = N1,η

for η ∈ (0, η′1].

We now show that there exists η2 ∈ (0, η′1] such that H2,η ⊂M2,η if η ∈ (0, η2]. Note that,

if this claim holds, from the proof of the above case we have that H2,η ⊂M2,η\N1,η = N2,η,

once H2,η is disjoint of H1,η = N1,η for all η ∈ (0, η2].
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To get the existence of η2, take the family
(

Ξ
(2)
l1,η

)
η∈(0,η1]

of the elements in H2,η’s. Then

there exists θ2 ∈ (0, η1] such that Ξ
(2)
l1,η
∈M2,η for all η ∈ (0, θ2]. If not, by the same argument

above, we get a subsequence ηk → 0+ and corresponding global solutions ξk : R → X for

{Tηk (t) : t ≥ 0} such that lim
t→−∞

dist
(
ξk (t) ,Ξ

(2)
l1,ηk

)
= 0 and lim

t→∞
d (ξk (t) ,Ξηk) = 0, for some

isolated invariant sets Ξηk ∈ Ξηk with Ξηk /∈ M1,ηk = N1,ηk and Ξηk 6= Ξ
(2)
l1,ηk

for all k. As

above and for the same δ0 let, for each k, τk ∈ R such that dist
(
ξk (t) ,Ξ

(2)
l1,ηk

)
< δ0 for all

t < τk and dist
(
ξk (τk) ,Ξ

(2)
l1,ηk

)
= δ0.

From lemma 5.1, let δ > 0 and η̄1 ∈ (0, η′1] such that the asymptotic stability of the

elements in N1,η are satisfied in Oδ (N1,η) if η ∈ [0, η̄1] . Then,

dist (ξk (t) ,N1,ηk) ≥ δ, for all t ∈ R and all k ∈ N. (5.7)

If we define the solutions of ζk : R → X by ζk (t) = ξk (t+ τk) t ∈ R, we get again a

global solution ζ0 : R→ X de {T0 (t) : t ≥ 0} such that lim
k→∞

ζk (t) = ζ0 (t) for all t ∈ R with

lim dist
t→−∞

(
ζ0 (t) ,Ξ

(2)
l1,0

)
= 0. As {T0 (t) : t ≥ 0} is a generalized gradient-like semigroup, there

exists Ξ0 ∈ Ξ0 such that lim dist
t→∞

(ζ0 (t) ,Ξ0) = 0 and since Ξ
(2)
l1,0
∈ N2,0 we get Ξ0 ∈ N1,0.

Thus, let τ > 0 such that dist (ζ0 (τ) ,Ξ0) < δ
2
, from which it follows the existence of k0 ∈ N

such that dist (ξk (τ + τk) ,N1,ηk) < δ for all k ≥ k0, which contradicts (5.7) .

The same argument can be used for all j = 2, · · · , k (2) and so we obtain η2 ∈ (0, 1] such

that H2,η ⊂M2,η if η ∈ (0, η2].

Again, we get η′2 ∈ (0, η2] such that N2,η ⊂ H2,η if η ∈ (0, η′2], from which we conclude

that H2,η = N2,η for all η ∈ (0, η′2].

Finally, repeating the reasoning for i = 3, · · · , p and recalling that Ξη = H1,η ∪ · · · ∪ Hp,η

for each η, the proof is completed. �

In the following theorem we state a sufficient condition for the hypotheses in the previous

result. In particular, we prove that the stability of connecting orbits under perturbation

gives the desired result on the continuity of the energy level sets.

Consider {Tη (t) : t ≥ 0}η∈[0,1] a family of generalized gradient-like semigroups with respect

to Ξη = {Ξ1,η, · · · ,Ξn,η} for each η ∈ [0, 1]. Suppose that:

(HG) For each Ξl1,0,Ξl2,0 ∈ Ξ0 such that Ξl1,0 ≺ Ξl2,0, if Ξl1,η,Ξl2,η are in Ξη for η ∈ (0, 1]

and satisfy dH (Ξl1,η,Ξl1,0)
η→0+→ 0 and dH (Ξl2,η,Ξl2,0)

η→0+→ 0, then Ξl1,η ≺ Ξl2,η for all η small

enough.

Theorem 5.3. Suppose hypotheses in Theorem 2.22, and that (HG) is satisfied for {Tη (t) :

t ≥ 0}η∈[0,1].
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Then, if (ηk)k∈N is a sequence in (0, 1] with ηk
k→∞→ 0+ and for some i ∈

⋂
k∈N
{1, 2, · · · , p(ηk)}

(Ξηk)k∈N is a sequence with Ξηk ∈ Ni,ηk for all k and dH(Ξηk ,Ξ0)
η→0+→ 0 for some Ξ0 ∈ Ξ0,

then Ξ0 ∈ Ni,0.

Proof. Indeed, if for i = 1 and Ξ0 does not belong to N1,0 there exits Ξl1 ∈ Ξ0 with Ξl1 ≺ Ξ0

but with Ξl1 6= Ξ0. Then, let
(
Ξl1,ηk

)
k∈N the sequence with Ξl1,ηk ∈ Ξηk , for all k, such that

dH (Ξl1,η,Ξl1)
η→0+→ 0. By (HG) we have Ξl1,ηk ≺ Ξηk for all k big enough, which contradicts

that Ξηk ∈ N1,ηk . Thus the result is true for i = 1 and from it and the first part of the proof

in Theorem 5.2, we get η1 ∈ (0, 1] such that H1,η, are N1,η for η ∈ (0, η1].

For i = 2, if Ξ0 does not belong to N2,0 =M2,0\N1,0 we have, on the one hand, that Ξ0 is

not inN1,0, since if Ξ0 ∈ N1,0, as we have seen aboveN1,η = H1,η and so dH (N1,η,N1,0)
η→0+→ 0,

so that Ξηk ∈ N1,ηk for all k big enough, which contradicts that Ξηk ∈ N2,ηk for all k.

Thus, Ξ0 ∈ N3,0 ∪ N4,0 ∪ · · · ∪ Nn,0 and so we can find Ξl1 ∈ Ξ0 with Ξl1 ≺ Ξ0 such

that Ξl1 is not in N1,0. Let (Ξl1,ηk)k∈N the sequence with Ξl1,ηk ∈ Ξηk , for all k, such that

dH (Ξl1,ηk ,Ξl1)
k→∞→ 0. By (HG) we have Ξl1,ηk ≺ Ξηk for all k big enough, but, as Ξηk ∈ N2,ηk

for each k, then Ξl1,ηk ∈ N1,ηk for each k, but then we get that Ξl1 ∈ N1,0, which is a

contradiction, so that the case i = 2 is also proved.

Thus, by the second part in the proof of Theorem 5.2 we get η2 ∈ (0, η1] such that the

sets H2,η, defined as in the previous theorem, are the sets N2,η for η ∈ (0, η1], from which, in

particular, dH (N2,η,N2,0)
η→0+→ 0.

For i = 3, suppose Ξ0 /∈ N3,0. Again, we then have that Ξ0 /∈ N1,0 ∪N2,0 =M2,0, since as

dH (Ni,η,Ni,0)
η→0+→ 0 for i = 1 and 2, if Ξ0 ∈ N1,0∪N2,0 we would have that Ξηk ∈ N1,ηk∪N2,ηk

for all k big enough, which contradicts that Ξηk ∈ N3,ηk for all k.

Thus, Ξ0 ∈ N4,0 ∪ · · · ∪ Nn,0 and then we can find Ξl1 ∈ Ξ0 with Ξl1 ≺ Ξ0 such that

Ξl1 /∈ M2,0. As in the above cases, let (Ξl1,ηk)k∈N the sequence with Ξl1,ηk ∈ Ξ0, for all k,

such that dH (Ξl1,ηk ,Ξl1)
k→∞→ 0. From (HG) we have that Ξl1,ηk ≺ Ξηk for all k big enough,

but since Ξηk ∈ N3,ηk for each k, then Ξl1,ηk ∈ M2,ηk for each k, but then Ξl1 must be in

N1,0 ∪N2,0 =M2,0, which contradicts the way it was chosen.

The argument must stop in a finite number of steps and so the proof is finished. �
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