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Abstract. The so called Lorenz-84 model has been used in climatological

studies, for example by coupling it with a low-dimensional model for ocean
dynamics. The behaviour of this model has been studied extensively since

its introduction by Lorenz in 1984. In this paper we study the asymptotic

behaviour of a non-autonomous Lorenz-84 version with several types of non-
autonomous features. We prove the existence of pullback and uniform attrac-

tors for the process associated to this model. In particular we consider that the
non-autonomous forcing terms are more general than almost periodic. Finally,

we estimate the Hausdorff dimension of the pullback attractor. We illustrate

some examples of pullback attractors by numerical simulations.

1. Introduction and setting of the problem. Weather and climate prediction are difficult

tasks, because of the complexity of the atmospheric evolution. Most of the real world models
concerning the atmosphere involve a large number of variables and parameters. Therefore, it

is practically impossible to perform detailed studies of their dynamical properties. There is ex-

perimental evidence [31] that low-dimensional attractors appear in some hydrodynamical flows
just after the onset of turbulence. As a consequence, low-dimensional models have attracted the

attention of meteorologists, mathematicians and physicists over the last decades.
In recent years, a great deal of interest has been focused on studying the complexity of nonlinear

dynamical systems. The Lorenz classical model for thermal convection in the atmosphere [23] was

the first chaotic system discovered and has been one of the most extensively investigated. As a

modification of this model of turbulence generation, in [24] Lorenz derived a simple but powerful
model based on the ‘general circulation” of the atmosphere. This model proposed by Lorenz in

1984 is a Galerkin truncation of the Navier-Stokes equations and gives the simplest approximation
to the general atmospheric circulation at midlatitude.

Lorenz-84 model has been used in climatological studies and its behaviour has been studied

extensively. In this paper we analyze the non-autonomous Lorenz-84 model with non-autonomous
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forcing terms. The model is defined by the following three ordinary differential equations

x′ = −ax− y2 − z2 + aF (t),

y′ = −y + xy − bxz +G(t),

z′ = −z + bxy + xz,

9>>>=>>>; (1)

with initial condition

x(t0) = x0, y(t0) = y0, z(t0) = z0, (2)

where t0 ∈ R, a > 0, b ∈ R and F,G : R 7→ R are continuous functions such that satisfyZ t

−∞
elsF 2(s)ds < +∞,

Z t

−∞
elsG2(s)ds < +∞ ∀t ∈ R, (3)

where l := min{a, 1}.
F and G represent thermal forcings: F is meant to be the symmetric cross-latitude external-

heating contrast and G the asymmetric heating contrast between oceans and continents, and a
and b are positive parameters (a < 1 and b > 1). Conventionally a = 1

4
and b = 4. The

variable x represents the intensity of the symmetric globe-encircling westerly wind current and
also the poleward temperature gradient which is assumed to be in permanent equilibrium with it.

The variables y and z represent the cosine and sine phases of a chain of superposed large-scale

eddies, which transport heat poleward at a rate proportional to the square of their amplitude, and
transport no angular momentum at all.

In [24], some early ideas concerning the general circulation of the atmosphere are reviewed.

Moreover, Lorenz proved that for different intensities of the axially symmetric and asymmetric
thermal forcing, Lorenz-84 model may possess one or two stable steady-state solutions, one or two

stable periodic solutions, or irregular (aperiodic) solutions. Numerical and analytical explorations

of model introduced by Lorenz in 1984 can be found for instance in [26], [27] and [30], and the
bifurcation diagram of this model has been analysed in [29]. In [25], Lorenz pointed out that F and

G should be allowed to vary periodically during a year. In particular, F should be larger in winter

than in summer. However, in his numerical study he kept G fixed, identifying (F,G) = (6, 1), and
(F,G) = (8, 1), with summer, respectively winter, conditions. He introduced a periodical variation

of the parameter F between summer and winter conditions. In [3] the authors considered that the
differential equations of Lorenz-84 model are subject to periodic forcing term, where the period

is one year and different types of strange attractors are found in four regions (chaotic ranges).

Moreover the related routes to chaos are discussed.
There are basically two ways to define attraction of a compact and invariant non–autonomous

set for a process on a metric space. The first, and perhaps more obvious, corresponds to the

attraction in the sense of Lyapunov stability, which is called forward attraction, and involves
a moving target, while the second, called pullback attraction, involves a fixed target set with

progressively earlier starting time. In general, these two types of attraction are independent

concepts, while for the autonomous case, they are equivalent. Physically, the pullback attractor
provides a way to assess an asymptotic regime at time t (the time at which we observe the system)
for a system starting to evolve from the remote past. The pullback dynamics contains interesting

dynamical properties, which allow us to understand the forward attraction. We would like to
emphasize, for instance, Theorem 3.20 in [14], which provides some information about a form

of forwards convergence of the cocycle mapping, which is different from that in the definition of

a forward attractor. In this theorem, within the framework of cocycle dynamical systems, it is
proved that the closure of the union of the fibers of the pullback attractor is forward attracting
under the assumption that there exists a compact pullback absorbing set B for the skew product
flow such that the cocycle mapping on B is contained in B (see [7], [14] for more details). The first
aim of this paper is to show the existence of a pullback and a uniform attractor for the process

associated to (1)-(2). The fact that F and G are non-autonomous are the main novelties of our
problem.

The dynamics induced by the class of periodic, almost periodic or almost automorphic continu-
ous functions is not robust to small changes in the forcing term in the sense that a bounded entire
solution corresponding to a perturbed forcing term may not belong to this class. Then, Kloeden
and Rodrigues presented in [15] an alternative extension of periodic and almost periodic functions.

Namely, the introduce the class of functions consisting of uniformly continuous functions, defined
on the real line and taking values in a Banach space, with the property that a bounded entire
solution of a non autonomous ODE belongs to this class when the forcing term does.



ASYMPTOTIC BEHAVIOUR OF A NON-AUTONOMOUS LORENZ-84 SYSTEM 3

The fact that the forcing term belongs to the class more general than almost periodic in a non-
autonomous systems means that the external force of the phenomena modeled possesses different

types of intensity along time. For example, a tornado is a meteorological problem which can have

different steps: initially, the intensity of the external force can be periodic for a certain period
of time, then the type of intensity may change and can become constant for another period of

time, later on, it may become periodic again but with a different period than the first one, and
continue in this way recursively. Then, this phenomena can be modeled by a non–autonomous

system where the forcing term belongs to this class more general than almost periodic. For this

reason, we also consider that (1) includes forcing terms which belong to this class of functions
introduced by Kloeden and Rodrigues in [15] .

On the other hand, the theory of topological dimension [13], developed in the first half of

the 20th century, is of little use in giving the scale of dimensional characteristics of attractors.
The point is that the topological dimension can take integer values only. Hence the scale of

dimensional characteristics compiled in this manner turns out to be quite poor. For investigating

attractors, the Hausdorff dimension of a set is much better. This dimensional characteristic can
take any nonnegative value. In [1], a simple estimate for the dimension of attractors of Lorenz

system has been obtain. In [19] the authors interpret the Hausdorff measure as an analogue of a

Lyapunov function, and they estimate the Hausdorff dimension of strange attractors, particularly
the (generalized) Lorenz systems. Recently in [22] Lyapunov-type functions are introduced into

upper estimates for the Hausdorff dimension of negatively invariant sets of cocycles. For this
purpose, the methods proposed in [2, 19, 20, 21] are further developed. The second aim of this

paper is to estimate the Hausdorff dimension of the pullback attractor of (1)-(2) using the recent

method proposed by Leonov et al. in [22].
The structure of the paper is as follows. In Section 2 we briefly recall some abstract results

about the theory of pullback and uniform attractors. Some sufficient conditions ensuring the

existence of such type of attractors for (1)-(2) are collected in Section 3. We consider that the
differential equations of non-autonomous Lorenz-84 model are subjected to periodic forcing terms

in Section 4. In Section 5 we consider that (1) includes forcing terms which belong to a class

of functions more general than almost periodic. We use recent results proposed by Kloeden and
Rodrigues [15] to prove that the solution of (1)-(2) belongs to this class when the forcing terms

do. Finally, in Section 6 we estimate the Hausdorff dimension of the pullback attractor associated

to (1)-(2). We obtain estimates that are similar to those for the autonomous case (cf. [19]) and
illustrate these results with some numerical simulations.

2. Abstract results on Pullback and Uniform Attractors. In this section we recall some

abstract results on the theory of pullback attractors (see [5, 6, 7]) and we establish some results
on the theory of uniform attractors (see [7, 10]).

2.1. Processes and attractors. Let (X, dX) be a metric space, and let us denote R2
d = {(t, t0) ∈

R2 : t0 ≤ t}.
A process onX is a mapping U such that R2

d×X 3 (t, t0, x) 7→ U(t, t0)x ∈ X with U(t0, t0)x = x
for any (t0, x) ∈ R×X, and U(t, r)(U(r, t0)x) = U(t, t0)x for any t0 ≤ r ≤ t and all x ∈ X.

Definition 1. Let U be a process on X. U is said to be continuous if for any pair t0 ≤ t, the
mapping U(t, t0) : X → X is continuous.

Let us denote P(X) the family of all nonempty subsets of X, and consider a family of nonempty

sets bD = {D(t) : t ∈ R} ⊂ P(X). Let D be a nonempty set of parameterized families of nonempty

bounded sets bD = {D(t) = D : t ∈ R} ⊂ P(X), where D ⊂ X is a bounded set. In what

follows, we will consider a fixed universe of attraction D and throughout our analysis the concepts
of absorption and attraction will be referred to this fixed universe.

Definition 2. It is said that bD0 ⊂ P(X) is pullback absorbing for the process U on X if for any

t ∈ R and any bD ∈ D, there exists a bt0(t, bD) ≤ t such that

U(t, t0)D(t0) ⊂ D0(t) for all t0 ≤ bt0(t, bD).

We denote by distX(O1,O2) the Hausdorff semi-distance in X between two sets O1 and O2,
defined as

distX(O1,O2) = sup
x∈O1

inf
y∈O2

dX(x, y) for O1, O2 ⊂ X.
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Definition 3. It is said that bD0 ⊂ P(X) is pullback attracting if

lim
t0→−∞

distX(U(t, t0)D(t0), D0(t)) = 0 for all bD ∈ D, t ∈ R.

There exists now a wide literature on pullback attractors (see, e.g., [16, 17, 28]), but we would

like to emphasize that these notions take the final time as fixed and moves the initial time back-

wards towards −∞. Note that this does not mean that we are moving backwards in time, but we
consider the state of the system at time t that had begun in earlier and earlier initial instants t0,

i.e., t0 → −∞.

Definition 4. Let bD0(t) ⊂ P(X). This family is said to be invariant with respect to the process

U if

U(t, t0)D0(t0) = D0(t) for all t0 ≤ t.

Denote the omega-limit set of bD by

Λ( bD, t) :=
\
s≤t

[
t0≤s

U(t, t0)D(t0)
X

for all t ∈ R, (4)

where {· · · }X is the closure in X.

Definition 5. The family of compact sets {A(t)}t∈R is said to be a pullback attractor associated
to the continuous process U if is invariant, attracts every {D(t)} ∈ D and minimal in the sense

that if {C(t)}t∈R is another family of closed attracting sets, then A(t) ⊂ C(t) for all t ∈ R.

The general result on the existence of pullback attractor is a generalization of the abstract
theory for autonomous dynamical systems [32]:

Theorem 6. [Crauel et al. [11], Schmalfuss [28]] Assume that there exists a family of compact

pullback absorbing sets {B(t)}t∈R. Then, the family {A(t)}t∈R defined by

A(t) =
[

bD∈D
Λ
“ bD, t”X , (5)

is the pullback attractor, where Λ
“ bD, t” is the omega-limit set at time t of bD ∈ D, where D is

the universe of fixed nonempty bounded subsets of X.

Another approach to the asymptotic dynamics of non-autonomous equations, the uniform at-
tractor, has been developed by Chepyzhov and Vishik [10]. The theory of uniform attractors can

be developed for a single non-autonomous process (see [9, 10]).

Definition 7. A set K ⊆ X is said to be uniformly (with respect to t0 ∈ R) attracting for the

process {U(t, t0)} on X if for all t0 ∈ R and for any bounded set B ⊂ X,

lim
T→+∞

 
sup
t0∈R

distX(U(T + t0, t0)B,K)

!
= 0. (6)

Respectively, the process {U(t, t0)} is said to be uniformly asymptotically compact (with respect

to t0 ∈ R) if there exists a compact uniformly (with respect to t0 ∈ R) attracting set of {U(t, t0)}.

Definition 8. A closed set A1 ⊆ X is said to be a uniform (with respect to t0 ∈ R) attractor for
a process {U(t, t0)} if it is the minimal closed uniformly (with respect to t0 ∈ R) attracting set for

this process. Minimality is meant in the sense that any closed attracting set is contained in A1.

Theorem 9. [Chepyzhov and Vishik [8, 10], Haraux [12]] If a process {U(t, t0)} is uniformly

asymptotically (with respect to t0 ∈ R) compact, then it has the uniform (with respect to t0 ∈ R)
attractor A1. The set A1 is compact in X.

To describe the structures of uniform attractors and to perform a comparison with the pullback

attractor we introduce the notions of complete trajectory of a process, kernel of a process and kernel

section (the terminology is due to Chepyzhov and Vishik [9, 10]).

Definition 10. A map u : R→ X is called a complete trajectory of a process U(t, t0) if

U(t, t0)u(t0) = u(t) for all t ≥ t0, t, t0 ∈ R.
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Definition 11. The kernel K of a process U(t, t0) consists of all of its bounded complete trajec-
tories of the process U(t, t0).

Definition 12. The set

K(s) = {u(s) : u(·) ∈ K}
is said to be the kernel section at a time moment t = s, s ∈ R.

These kernel sections are, essentially, the fibres of the pullback attractor: if U(·, ·) is a process
that has a pullback attractor A, then any backwards bounded trajectory is contained in A(t),

and we can deduce that if A(·) is bounded then A(t) = K(t) (see for instance [7]). Observe that

Theorem 9 implies the existence of a (fixed) compact attracting set K for U(·, ·), so that, from
(6) and Theorem 3.11 in [7] it also implies the existence of a pullback attractor, which is then

uniformly included in K. Just as A(t) must contain K(t) for each t, the uniform attractor must

contain the union of all the kernel sections (see [7]).

Lemma 13. If U(·, ·) has a uniform attractor A1, then[
t∈R
K(t) ⊆ A1.

2.2. The structures of attractors for periodic processes. In this subsection we investigate

attractors for periodic processes. Let {U(t, t0)} be a periodic process, and let T be its period, i.e.,

U(t+ T, t0 + T ) = U(t, t0) ∀t ≥ t0, t0 ∈ R.
We can now state a theorem about attractors of periodic processes.

Theorem 14. [Chepyzhov and Vishik [9]] Let {U(t, t0)} be a periodic uniformly (with respect to

t0 ∈ R) asymptotic compact and (X × T1)−continuous process, where T1 = R (mod T ). Then,

the process {U(t, t0)} has a uniform (with respect to t0 ∈ R) attractor, A1, and is given by

A1 =
[

σ∈[0,T )

K(σ),

where K(σ) is the kernel section of the process {U(t, t0)} at time t = σ.

3. Pullback and uniform attractors. Since the functions on the right hand side of (1) are

locally Lipschitz with respect to x, y, and z, then for any t0 ∈ R and any (x0, y0, z0) ∈ R3 there
exists a unique local solution of the model (1)-(2), denoted by u(t; t0, u0) := (x(t; t0, (x0, y0, z0)),

y(t; t0, (x0, y0, z0)), z(t; t0, (x0, y0, z0))), and this solution is a global solution one (8) is proved.

3.1. Pullback Attractor. In this section, we will show the existence of a pullback attractor in

R3 of our problem (1)-(2). First, thanks to the uniqueness of solution of (1)-(2), we can define a
process {U(t, t0), t0 ≤ t} in R3, by

U(t, t0)u0 = u(t; t0, u0) ∀u0 ∈ R3. (7)

The process defined by (7) is continuous in R3.

Proposition 15. Assume that a > 0 and b ∈ R. Then for any initial condition u0 ∈ R3, the
solution u of (1)-(2) satisfies

|u(t; t0, u0)|2 ≤ e−l(t−t0) |u0|2 + ae−lt
Z t

−∞
elsF 2(s)ds+ e−lt

Z t

−∞
elsG2(s)ds, (8)

for all t ≥ t0, where l := min{a, 1}.

Proof. We deduce that

d

dt
|u(t)|2 = −2(ax2 + y2 + z2) + 2axF (t) + 2yG(t).

We have

2axF (t) ≤ ax2 + aF 2(t),

and

2yG(t) ≤ y2 +G2(t).

Then, we can deduce
d

dt
|u(t)|2 + l |u(t)|2 ≤ aF 2(t) +G2(t), (9)

where l := min{a, 1}.
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Multiplying (9) by elt, we obtain that

d

dt

“
elt |u(t)|2

”
≤ aeltF 2(t) + eltG2(t).

Integrating between t0 and t

elt |u(t)|2 ≤ elt0 |u0|2 + a

Z t

t0

elsF 2(s)ds+

Z t

t0

elsG2(s)ds (10)

≤ elt0 |u0|2 + a

Z t

−∞
elsF 2(s)ds+

Z t

−∞
elsG2(s)ds,

whence (8) follows.

We consider the universe of fixed nonempty bounded subsets of R3. Now, we prove that there
exists a pullback absorbing family for the process U(t, t0) defined by (7).

Proposition 16. Assume that a > 0 and b ∈ R. Let F,G satisfy (3). Then, the family bD0 =

{D0(t) : t ∈ R} defined by D0(t) = BR3 (0, ρl(t)), where ρl(t) is the nonnegative number given by

ρ2l (t) = 1 + ae−lt
Z t

−∞
elsF 2(s)ds+ e−lt

Z t

−∞
elsG2(s)ds, ∀t ∈ R, (11)

is pullback absorbing family for the process U defined by (7).

Proof. Let D ⊂ R3 be bounded. Then, there exists d > 0 such that |u0| ≤ d for all u0 ∈ D.
Thanks to Proposition 15, we deduce that for every t0 ≤ t and any u0 ∈ D,

|U(t, t0)u0|2 ≤ e−ltelt0 |u0|2 + ae−lt
Z t

−∞
elsF 2(s)ds+ e−lt

Z t

−∞
elsG2(s)ds

≤ e−ltelt0d2 + ae−lt
Z t

−∞
elsF 2(s)ds+ e−lt

Z t

−∞
elsG2(s)ds.

If we consider T (t,D) := l−1 log(eltd−2), we have

|U(t, t0)u0|2 ≤ 1 + ae−lt
Z t

−∞
elsF 2(s)ds+ e−lt

Z t

−∞
elsG2(s)ds,

for all t0 ≤ T (t,D) and for all u0 ∈ D.

Consequently the family bD0 = {D0(t) : t ∈ R} defined by D0(t) =

BR3 (0, ρl(t)) is pullback absorbing for the process U defined by (7).

Now, as a direct consequence of the preceding results and Theorem 6, we have the existence of

the pullback attractor for the process U defined by (7).

Theorem 17. Under the assumptions in Proposition 16, the process U defined by (7) possesses

a pullback attractor A, which is given by

A(t) =
[

bD∈D
Λ
“ bD, t”. (12)

3.2. Uniform Attractor. Now, we suppose that F and G are translations bounded in L2
loc(R; R),

i.e.,

sup
t∈R

Z t+1

t
F 2(s)ds <∞, sup

t∈R

Z t+1

t
G2(s)ds <∞ . (13)

In this subsection, using Theorem 9, we will prove that, under the assumption (13), the process
{U(t, t0)} has a uniform (with respect to t0 ∈ R) attractor.

Remark 18. Observe that assumption (13) implies (3).

Proposition 19. Assume that a > 0 and b ∈ R. Let F , G satisfy (13). Then, the process U

defined by (7) is uniformly (with respect to t0 ∈ R) asymptotically compact.
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Proof. Let D ⊂ R3 be bounded, and as in the proof of Proposition 16, let d > 0 such that |u0| ≤ d
for all u0 ∈ D. Using (10), we have for any u0 ∈ D

|u(t; t0, u0)|2 ≤ e−l(t−t0) |u0|2 + a

Z t

t0

e−l(t−s)F 2(s)ds+

Z t

t0

e−l(t−s)G2(s)ds

≤ e−l(t−t0)d2 + a

Z t

t0

e−l(t−s)F 2(s)ds+

Z t

t0

e−l(t−s)G2(s)ds, (14)

for all t ≥ t0. We estimate the integrals on the right-hand side of (14), taking into account (13),Z t

t0

e−l(t−s)F 2(s)ds ≤
Z t

−∞
e−l(t−s)F 2(s)ds ≤

X
n≥0

Z t−n

t−(n+1)
e−l(t−s)F 2(s)ds

≤
X
n≥0

e−nl
Z t−n

t−(n+1)
F 2(s)ds = C1(1− e−l)−1,

where C1 := supt∈R
R t+1
t F 2(s)ds <∞. Similarly, we haveZ t

t0

e−l(t−s)G2(s)ds ≤ C2(1− e−l)−1,

where C2 := supt∈R
R t+1
t G2(s)ds <∞.

Then, we can deduce that there exists a positive constant Cl such that

|u(t; t0, u0)|2 ≤ e−l(t−t0)d2 + Cl.

Replacing t by t+ t0, we have

|u(t+ t0; t0, u0)|2 ≤ e−ltd2 + Cl,

and if we consider t ≥ T (D) := log d2

l
, we obtain

|u(t+ t0; t0, u0)|2 ≤ 1 + Cl,

for all t0 and for all u0 ∈ D.

Then, the set B0 := BR3 (0, 1 + Cl) is compact and uniformly (with respect to t0 ∈ R) at-

tracting for the process U defined by (7). Therefore, the process U is uniformly (with respect to
t0 ∈ R) asymptotically compact.

We can now state a theorem about the existence of a uniform attractor of (1)-(2). Taking into

account Theorem 9 and Lemma 13, we can deduce the following result.

Theorem 20. Under the assumptions in Proposition 19, the process U defined by (7) has a

uniform attractor A1, which is compact in R3. Moreover, we have the following relation:[
t∈R
A(t) ⊆ A1, (15)

where A(t) is given by (12).

Remark 21. Note that if b depends continuously on time, the previous results also hold true.

4. Attractors for Periodic Equations. We consider (1)-(2) with a > 0, b ∈ R and T -periodic
continuous functions F,G : R 7→ R.

4.1. Pullback Attractor. In this subsection we show that when we have periodic nonlinear
terms we obtain that the pullback attractor is a periodic pullback attractor. We observe that F

and G satisfy (3). In fact F and G satisfy (13).

Then, under the assumptions in Proposition 16, the process defined by (7) has a pullback
attractor A which is given by (12).

Corollary 22. Assume that F and G are T -periodic continuous functions. Then the process U
defined by (7) is periodic with period T , that is

U(t, t0)u0 = U(t+ T, t0 + T )u0,

for all t0, t ∈ R, and the pullback attractor A(·) is also periodic with period T .
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Proof. We can deduce that (X(·; t0, u0), Y (·; t0, u0), Z(·; t0, u0)) := (x(·+T ; t0+T, u0), y(·+T ; t0+
T, u0), z(·+ T ; t0 + T, u0)) is the unique solution of (1) with initial value u0 at t = t0 because

dX

dt
(t) =

dx

dt
(t+ T ) =

dx

dτ
(τ) = −ax(τ)− y2(τ)− z2(τ) + aF (τ) where τ = t+ T

= −aX(t)− Y 2(t)− Z2(t) + aF (t),

by T -periodicity of F ,

dY

dt
(t) =

dy

dt
(t+ T ) =

dy

dτ
(τ) = −y(τ) + x(τ)y(τ)− bx(τ)z(τ) +G(τ) where τ = t+ T

= −Y (t) +X(t)Y (t)− bX(t)Z(t) +G(t),

by T -periodicity of G, and

dZ

dt
(t) =

dz

dt
(t+ T ) =

dz

dτ
(τ) = −z(τ) + bx(τ)y(τ) + x(τ)z(τ) where τ = t+ T

= −Z(t) + bX(t)Y (t) +X(t)Z(t).

Hence, we have

U(t, t0)u0 = U(t+ T, t0 + T )u0,

for all t ≥ t0.

Replacing t0 by t0 − t, where t ≥ 0, and t by t0, we thus have

U(t0, t0 − t)u0 = U(t0 + T, t0 + T − t)u0,

so, by (4),

Λ( bD, t0) :=
\
s≤t0

[
t0−t≤s

U(t0, t0 − t)D(t0 − t)

=
\
s≤t0

[
t0−t≤s

U(t0 + T, t0 + T − t)D(t0 − t) = Λ( bD, t0 + T ),

and then

A(t0) =
[

bD∈D
Λ
“ bD, t0” =

[
bD∈D

Λ
“ bD, t0 + T

”
= A(t0 + T ).

Hence, A(·) is also T -periodic.

In Figure 1 we exhibit a simulation showing the pullback attractor for (1)-(2) with F and G
periodic functions. In this simulation, we used the following parameters and initial conditions

values: a = 1
4

, b = 4, F (t) = cos(t), G(t) = cos(t), x(−2000) = 0, y(−2000) = −0.2 and

z(−2000) = 0.5.

Figure 1. Numerical solution (x(t), y(t), z(t))
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Remark 23. Note that if b is a T -periodic continuous function b : R 7→ R, the previous results
also hold. In Figure 2 we present a simulation showing the pullback attractor for (1)-(2) with

b, F and G periodic functions. We used the following parameters and initial conditions values:

a = 1
4

, b(t) = 4 + 0.5cos(t), F (t) = cos(t), G(t) = cos(t), x(−2000) = 0, y(−2000) = −0.2 and

z(−2000) = 0.5.

Figure 2. Numerical solution (x(t), y(t), z(t))

Now, we consider that F and G have different periods. For a = 1
4

and b = 4, we have the

following simulations:

• In Figure 3 we present a simulation showing the pullback attractor for (1)-(2) where we used

the following non-autonomous forcing terms and initial conditions values: F (t) = cos(t),

G(t) = cos(2t), x(−2000) = 0, y(−2000) = −0.2 and z(−2000) = 0.5.
• In Figure 4 we consider F (t) = cos(t), G(t) = cos(t/2) and the following initial conditions

values: x(−3000) = 0, y(−3000) = −0.2 and z(−3000) = 0.5.

• In Figure 5 we consider F (t) = cos(t), G(t) = cos(
√

2t) and the following initial conditions

values: x(−500) = 0, y(−500) = −0.2 and z(−500) = 0.5.

Figure 3. Numerical solution (x(t), y(t), z(t))
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Figure 4. Numerical solution (x(t), y(t), z(t))

Figure 5. Numerical solution (x(t), y(t), z(t))

4.2. Uniform Attractor. In this subsection we show that when we have periodic terms we obtain

a relation between the uniform attractor and the pullback attractor.

Proposition 24. The process U defined by (7) is (R3 × T1,R3)- continuous.

Proof. We have to prove that for all fixed t0 ∈ R, t ≥ t0, the mapping (u, t) 7→ U(t, t0)u is

continuous from R3 × T1 into R3. By the continuous dependence of solutions of (1)-(2) on initial
values, we have that as the coefficients of (1) are locally Lipschitz, then the process U defined by
(7) is (R3 × T1,R3)- continuous.

We can now state a theorem about the existence of a uniform attractor of (1)-(2). Taking into
account Theorem 14, we can deduce the following result.

Theorem 25. Assume that a > 0, b ∈ R and F , G are T -periodic continuous functions. Then,
the set

A1 =
[

σ∈[0,T )

A(σ),

is a uniform (with respect to t0 ∈ R) attractor for the process U defined by (7), where {A(σ)}σ∈R
is the pullback attractor of the process U defined by (7).
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5. Pullback attractors for a class of ODEs more general than almost periodic. In this
section we use a new class of functions and we generalize some results about periodic solutions

of (1)-(2). We use recent results due to Kloeden and Rodrigues [15], where the authors intro-

duced a class of functions which has the property that a bounded temporally global solution of
a nonautonomous ordinary differential equation belongs to this class when the forcing terms do.

Let BUC(R,R3) denotes the space of bounded and uniformly continuous functions f : R → R3,
with the supremum norm. We consider as in [15] the following class of functions,

F := {f ∈ BUC(R,R3) : f has precompact range R(f)}.
The class F includes periodic functions. We now consider the class FODE defined by

FODE := {f : R× R3 → R3; is uniformly continuous in t ∈ R, uniformly in (x, y, z)

in compact subsets C ⊂ R3,with precompact range RC(f)},

where

RC(f) :=
[

(x,y,x)∈C
{f(t, x, y, z), t ∈ R}.

Functions in the class F belong trivially to the class FODE . For our problem, we consider

f1(t, x, y, z) := −ax− y2 − z2 + aF (t), (16)

f2(t, x, y, z) := −y + xy − bxz +G(t), (17)

f3(t, x, y, z) := −z + bxy + xz, (18)

and we suppose that

F,G ∈ BUC(R,R). (19)

Proposition 26. Under assumption (19), f1, f2 and f3 defined by (16)-(18) belong to the class

FODE .

Proof. We prove that f1 ∈ FODE . For f2 the proof is similar and f3 trivially belongs to FODE
since it does not depend on t.

We have that

|f1(t1, x, y, z)− f1(t2, x, y, z)| ≤ a |F (t1)− F (t2)| .
Thus, using (19), we deduce that given ε > 0 there exists δ(ε) > 0 such that if |t1 − t2| ≤ δ(ε)

then

|f1(t1, x, y, z)− f1(t2, x, y, z)| ≤ ε,
therefore f1 is uniformly continuous in t ∈ R.

Finally, thanks to (19), in particular we have that F and G are bounded functions in t ∈ R,

and we can deduce that RC(f1) is precompact, where C ⊂ R3 is a compact subset. Therefore,
f1 ∈ FODE .

Then, we can write (1) as
du

dt
= f(t, u), t ∈ R, (20)

with initial condition

u(t0) = u0, (21)

where u(t; t0, u0) := (x(t; t0, (x0, y0, z0)), y(t; t0, (x0, y0, z0)), z(t; t0, (x0, y0, z0))), t0 ∈ R and
f(t, u) := (f1(t, x, y, z), f2(t, x, y, z), f3(t, x, y, z)) belongs to the class FODE .

Thanks to Lemma 8 in [15], on account of the following Proposition, the components sets of
the pullback attractor and its entire solutions are in fact uniformly continuous.

Proposition 27. Under assumption (19), problem (20)-(21) generates a process which possesses
a pullback attractor A = {A(t) : t ∈ R} such that

S
t∈RA(t) is precompact.

Proof. Taking into account (19) we deduce that F , G satisfy (3) and (13). Then, thanks to

Theorem 17, there exists the pullback attractor for the process defined by (7). On the other hand,
using Theorem 20, we have (15). Therefore,

S
t∈RA(t) is bounded and therefore

S
t∈RA(t) is

precompact.

Lemma 28. Under the assumptions in Proposition 27 we have that (φ1, φ2, φ3) belongs to the

class F for every entire solution (φ1, φ2, φ3) of the problem (20)-(21) taking values in the pullback
attractor.
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In Figure 6 we present a simulation showing the pullback attractor for (20)-(21) where F and

G satisfy (19). We used the following parameters and initial conditions values: a = 1
4

, b = 4,

F (t) = 1 + e−|t|, G(t) = cos(t), x(−2000) = 0, y(−2000) = −0.2 and z(−2000) = 0.5.

Figure 6. Numerical solution (x(t), y(t), z(t))

Remark 29. Due to the uniformity properties imposed of the forcing terms, one may expect

that the pullback attractor might also be forward attracting. This is what happens in the example

exhibited in the paper [15], where each fiber of the pullback attractor is formed by a single point.
However, the techniques used in our case to prove the existence of the pullback attractor do not

allow us to state that it is also true here, and a more sophisticated analysis may be necessary.

6. Upper Estimates for the Hausdorff Dimension of the Pullback Attractor. In this

section we obtain an upper bound for the Hausdorff dimension of the pullback attractor of the
process defined by (7). For this purpose, we use a method proposed by Leonov et al. in [22] in

the framework of cocycle dynamical systems.

Assume that F,G ∈ BUC(R,R) and satisfy the following additional conditions:

(H1) Boundedness in time, i.e., there exist nonnegative constants F0 and G0 such that

|F (t)| ≤ F0, |G(t)| ≤ G0, for all t ∈ R. (22)

(H2) The hull of the function f denoting the right-hand side of (1), is a compact metric space,

i.e., H(f) = {f(t+ ·, ·) : t ∈ R} is a compact metric space.

Notice that if F and G are almost periodic functions, then F and G satisfy (22) and the hull
H(f) is a compact metric space where the closure is taken in the uniform convergence topology

(see [10, 14] for more details).
In Section 3 we have proved that the solution mapping of (1)-(2) defines a process given by (7)

which has a pullback attractor {A(t)}t∈R ⊂ R3 defined by (12).
Also we can obtain a cocycle by considering

v′ = F(σtp, v),

v(0) = v0 ∈ R3,

9=; (23)

where p ∈ H(f), F(p, v) := p(0, v) and σ is defined as the shift mapping σt : H(f) 7→ H(f) given
by

σt ef := ef(·+ t, ·),

for t ∈ R and ef ∈ H(f).
Then, the cocycle generated by (23) is given by

ϕ(t, p)v0 = v(t; p, v0),
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where v(t; p, v0) denotes the solution of (23) with initial value v0 at t = 0. If we take p = f ∈ H(f),
then

ϕ(t, f)v0 = v(t; f, v0),

and (23) becomes

v′ = σtf(0, v),

v(0) = v0 ∈ R3,

9=; (24)

i.e.,

v′ = f(t, v),

v(0) = v0 ∈ R3,

9=; (25)

and we have

ϕ(t, f)v0 = U(t, 0)v0.

Then, our problem (1)-(2) generates a cocycle ({ϕ(t, p)·}p∈H(f),t∈R,R3) over the base flow

({σt}t∈R,H(f)), where

ϕ(t, σsf)v0 = U(t+ s, s)v0. (26)

Now, to estimate the Hausdorff dimension of the pullback attractor associated to the process
defined by (7), we will use Theorem 2 in [22], which is stated in the framework of cocycle dynamical

systems. Then, for the cocycle generated by our system, we need to verify:

i) There exists a family of compact sets { eA(p)}p∈H(f) which is negatively invariant for the

cocycle defined by (26), i.e.eA(σtp) ⊂ ϕ(t, p) eA(p), for all p ∈ H(f), t ≥ 0.

ii) There exists a compact set eK ⊂ R3 such that[
p∈H(f)

eA(p) ⊂ eK.
iii) There exists a continuous function V : H(f)×R3 → R with derivatives d

dt
V (σtp, ϕ(t, p)u0)

along a given trajectory such that

λ1(σtp, ϕ(t, p)u0) + λ2(σtp, ϕ(t, p)u0) + sλ3(σtp, ϕ(t, p)u0) +
d

dt
V (σtp, ϕ(t, p)u0) < 0, (27)

for all t ∈ R, u0 ∈ eK, p ∈ H(f) and s ∈ (0, 1], where λi with i = 1, 2, 3 are the eigenvalues

of the symmetrized Jacobian matrix of the right-hand side of (1) arranged in nonincreasing

order λ1 ≥ λ2 ≥ λ3.

Using the pullback attractor, {A(t)}t∈R, associated to the process defined by (7), we define the

family { eA(p)}p∈H(f) by

eA(p) =


A(s) if p = σsf,

{x ∈ R3 : x = limtn→+∞ xtn , xtn ∈ A(tn)} if p 6= σsf,
(28)

where s ∈ R and p ∈ H(f).

The set eA(p) is compact for any p ∈ H(f). Moreover, the family { eA(p)}p∈H(f) is negatively

invariant. Indeed, if p = σsf , taking into account (26) and the fact that {A(t)}t∈R is invariant for

the process U defined by (7), we obtain that ϕ(t, p) eA(p) = eA(σtp) for all t ≥ 0. If p 6= σsf , then

p = limtn→+∞ σtnf and it is easy to see that ϕ(t, p) eA(p) ⊇ eA(σtp).
On the other hand, we can consider the following compact seteK :=

[
t∈R
A(t) ⊂ R3, (29)

and we have that [
p∈H(f)

eA(p) ⊂ eK,
and, consequently, condition i)-ii) hold.

We can now establish our result on the estimate of the Haussdorff dimension of the pullback
attractor for our model. We denote by dimHK the Hausdorff dimension of K.
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Theorem 30. Assume that a > 0 and b ∈ R, and that F,G ∈ BUC(R,R) satisfy (H1)-(H2).
Then the pullback attractor of the process U defined by (7) satisfies

dimHA(t) ≤ 3−
2(a+ 2− F0)

a+ 1 + F0 +m
, (30)

for all t ∈ R, where m is a positive number given by

m :=

s
(a− 1)2 +

[2(1− a) + F0(1 + ab2 + a)]2

4a(b2 + 1)
+

1

4
G2

0a(
1

a
+ b2 + 1)2.

Proof. We need to verify iii).
It is easy to see that the eigenvalues of the symmetrized Jacobian matrix of the right-hand side

of (1) are

x− 1,
1

2


x− 1− a±

q
(1− x− a)2 + (b2 + 1)(y2 + z2)

ff
.

Hence, condition (27) can be written in the form

x(3 + s)− 2− (1 + a)(1 + s)

+ (1− s)
q

(1− x− a)2 + (b2 + 1)(y2 + z2) + 2
d

dt
Vp(t, x, y, z) < 0, (31)

for all t ∈ R, (x, y, z) ∈ eK and p ∈ H(f). Here,

Vp(t, x, y, z) ≡ V (σtp, ϕ(t, p)(x, y, z))

is a function defined for (x, y, z) ∈ eK, p ∈ H(f), and t ∈ R by the relation

V (σtp, x, y, z) :=
k

4
(1− s)(x2 + y2 + z2) +

1

2a
(3 + s)x,

where k is a varied parameter. Then

d

dt
Vp =

k

2
(1− s)(−ax2 + axF (t)− y2 + yG(t)− z2)

+
1

2a
(3 + s)(−ax− y2 − z2 + aF (t)),

and inequality (31) is equivalent to the following

−2− (1 + a)(1 + s) + (1− s)ϑ(t, x, y, z) + (3 + s)F (t) < 0, (32)

where

ϑ(t, x, y, z; k) :=
q

(1− x− a)2 + (b2 + 1)(y2 + z2)

+ k(−ax2 + axF (t)− y2 + yG(t)− z2).

Let us denote

m := inf
k

max
t,x,y,z

ϑ(t, x, y, z; k).

Using (22) we have iii) from (32), and due to Theorem 2 in [22] we obtain

dimH eA(p) ≤ 2 +
m+ 3F0 − a− 3

a+ 1 + F0 +m
= 3−

2(a+ 2− F0)

a+ 1 + F0 +m
, (33)

for all p ∈ H(f).

We have

ϑ(t, x, y, z; k) =−
„
γ
q

(1− x− a)2 + (b2 + 1)(y2 + z2)−
1

2γ

«2

+ γ2
ˆ
(1− x− a)2 + (b2 + 1)(y2 + z2)

˜
+

1

4γ2

+ k(−ax2 − y2 − z2 + axF (t) + yG(t)),
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where γ 6= 0 is a varied parameter. Further,

ϑ(t, x, y, z; k) ≤γ2(a− 1)2 +
1

4γ2
− (ka− γ2)x2 − (2γ2(1− a)− kaF (t))x

− (k − (b2 + 1)γ2)y2 − (−kG(t))y − (k − (b2 + 1)γ2)z2

= −(ka− γ2)

»
x+

2γ2(1− a)− kaF (t)

2(ka− γ2)

–2
+

ˆ
2γ2(1− a)− kaF (t)

˜2
4(ka− γ2)

− (k − (b2 + 1)γ2)

»
y +

−kG(t)

2(k − (b2 + 1)γ2)

–2
+

[−kG(t)]2

4(k − (b2 + 1)γ2)

− (k − (b2 + 1)γ2)z2 + γ2(a− 1)2 +
1

4γ2
.

If we take the varied parameters k and γ such that ka− γ2 > 0 and k − (b2 + 1)γ2 > 0, then

ϑ(t, x, y, z; k) ≤
ˆ
2γ2(1− a)− kaF (t)

˜2
4(ka− γ2)

+
[−kG(t)]2

4(k − (b2 + 1)γ2)
+ γ2(a− 1)2 +

1

4γ2
.

Let us take

k = γ2(
1

a
+ b2 + 1), γ2 =

1

2

r
(a− 1)2 +

[2(1−a)+F0(1+ab2+a)]2

4a(b2+1)
+
aG2

0(1/a+b2+1)2

4

.

Then, taking into account (22) we have

ϑ(t, x, y, z; k) ≤

s
(a− 1)2 +

[2(1− a) + F0(1 + ab2 + a)]2

4a(b2 + 1)
+

1

4
G2

0a(
1

a
+ b2 + 1)2,

and (28) and (33) imply (30).

Remark 31. For a = 1
4

, b = 4, F (t) = cos(t) and G(t) = cos(t), from the estimate (30), we

obtain dimHA(t) ≤ 2.68 for all t ∈ R.
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