An exponential growth condition in H^{2} for the pullback attractor of a non-autonomous reaction-diffusion equation

M. Anguiano, T. Caraballo, \& J. Real
Dpto. de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo. de Correos 1160, 41080 Sevilla, Spain

Abstract

Some exponential growth results for the pullback attractor of a reaction-diffusion when time goes to $-\infty$ are proved in this paper. First, a general result about $L^{p} \cap H_{0}^{1}$ exponential growth is established. Then, under additional assumptions, an exponential growth condition in H^{2} for the pullback attractor of the non-autonomous reaction-diffusion equation is also deduced.

Key words: reaction-diffusion equations, non-autonomous (pullback) attractors, invariant sets, H^{2}-exponential growth.
Mathematics Subject Classifications (2000): 35B41, 35Q35

1 Introduction and setting of the problem

Let us consider the following problem for a non-autonomous reaction-diffusion equation:

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}-\triangle u=f(u)+h(t) \text { in } \Omega \times(\tau,+\infty) \tag{1}\\
u=0 \text { on } \partial \Omega \times(\tau,+\infty) \\
u(x, \tau)=u_{\tau}(x), \quad x \in \Omega
\end{array}\right.
$$

[^0]where $\Omega \subset \mathbb{R}^{N}$ is a bounded open set, $\tau \in \mathbb{R}, u_{\tau} \in L^{2}(\Omega), f \in C^{1}(\mathbb{R})$ and $h \in L_{l o c}^{2}\left(\mathbb{R} ; L^{2}(\Omega)\right)$. We assume that there exist positive constants $\alpha_{1}, \alpha_{2}, k$, l, and $p>2$ such that
\[

$$
\begin{gather*}
-k-\alpha_{1}|s|^{p} \leq f(s) s \leq k-\alpha_{2}|s|^{p}, \quad \forall s \in \mathbb{R} \tag{2}\\
f^{\prime}(s) \leq l, \quad \forall s \in \mathbb{R} \tag{3}
\end{gather*}
$$
\]

Let us denote

$$
\mathcal{F}(s):=\int_{0}^{s} f(r) d r
$$

Then, there exist positive constants $\widetilde{\alpha}_{1}, \widetilde{\alpha}_{2}$ and \widetilde{k} such that

$$
\begin{equation*}
-\widetilde{k}-\widetilde{\alpha}_{1}|s|^{p} \leq \mathcal{F}(s) \leq \widetilde{k}-\widetilde{\alpha}_{2}|s|^{p}, \quad \forall s \in \mathbb{R} \tag{4}
\end{equation*}
$$

It is well-known (see, e.g. [8] or [11]) that under the conditions above, for any initial condition $u_{\tau} \in L^{2}(\Omega)$, there exists a unique solution $u(\cdot)=u\left(\cdot ; \tau, u_{\tau}\right)$ of (1), i.e., a unique function $u \in L^{2}\left(\tau, T ; H_{0}^{1}(\Omega)\right) \cap L^{p}\left(\tau, T ; L^{p}(\Omega)\right) \cap C^{0}\left([\tau, T] ; L^{2}(\Omega)\right)$ for all $T>\tau$, such that

$$
u(t)-\int_{\tau}^{t} \Delta u(s) d s=u_{\tau}+\int_{\tau}^{t}(f(u(s))+h(s)) d s \quad \forall t \geq \tau
$$

where the equality must be understood in the sense of the dual of $H_{0}^{1}(\Omega) \cap$ $L^{p}(\Omega)$.

Therefore, we can define a process $U=\{U(t, \tau), \tau \leq t\}$ in $L^{2}(\Omega)$ as

$$
\begin{equation*}
U(t, \tau) u_{\tau}=u\left(t ; \tau, u_{\tau}\right) \quad \forall u_{\tau} \in L^{2}(\Omega), \quad \forall \tau \leq t \tag{5}
\end{equation*}
$$

A pullback attractor for the process U defined by (5) (cf. [3], [4], [5]) is a family $\mathcal{A}=\{\mathcal{A}(t): t \in \mathbb{R}\}$ of compact subsets of $L^{2}(\Omega)$ such that
a) $U(t, \tau) \mathcal{A}(\tau)=\mathcal{A}(t)$ for all $\tau \leq t$, (invariance property),
b) $\lim _{\tau \rightarrow-\infty} \sup _{u_{\tau} \in B} \inf _{v \in \mathcal{A}(t)}\left|U(t, \tau) u_{\tau}-v\right|=0$, for all $t \in \mathbb{R}$, for any bounded subset $B \subset L^{2}(\Omega),($ pullback attraction $)$,
where $|\cdot|$ denotes the norm in $L^{2}(\Omega)$.
It can be proved (see, for instance, [2] and [7]) that, under the above conditions, if in addition h satisfies

$$
\begin{equation*}
\int_{-\infty}^{t} e^{\lambda_{1} s}|h(s)|^{2} d s<+\infty \quad \forall t \in \mathbb{R} \tag{6}
\end{equation*}
$$

where λ_{1} denotes the first eigenvalue of $-\Delta$ with zero Dirichlet boundary condition in Ω, then there exists a pullback attractor for the process U defined
by (5), and satisfying

$$
\begin{equation*}
\lim _{\tau \rightarrow-\infty}\left(e^{\lambda_{1} \tau} \sup _{v \in \mathcal{A}(\tau)}|v|^{2}\right)=0 \tag{7}
\end{equation*}
$$

Several studies on this model have already been published (see, for example, [1], [6], [9], [10], [12]).

More precisely, we proved in [1] that, under the above conditions, if Ω is regular enough, then for any $\tau \in \mathbb{R}$ the set $\mathcal{A}(\tau)$ is a bounded subset of $L^{p}(\Omega) \cap H_{0}^{1}(\Omega)$, and if moreover $h \in W_{l o c}^{1,2}\left(\mathbb{R} ; L^{2}(\Omega)\right)$, then $\mathcal{A}(\tau)$ is also a bounded subset of $H^{2}(\Omega)$. Therefore, the aim of this paper is to continue with the analysis of this model in the sense of proving that the family $\mathcal{A}(\tau)$ satisfies also an exponential growth condition on the space $L^{p}(\Omega) \cap H_{0}^{1}(\Omega)$, and finally in $H^{2}(\Omega)$ provided some additional assumptions are fulfilled.

This will be carried out in the next section where we first prove an exponential growth condition for the attractor $\mathcal{A}(\tau)$ in $L^{p}(\Omega) \cap H_{0}^{1}(\Omega)$ when $\tau \rightarrow-\infty$. We also prove, under appropriate additional assumptions, an exponential growth condition in $H^{2}(\Omega)$ for $\mathcal{A}(\tau)$.

2 An exponential growth condition for the pullback attractor.

First, we recall a lemma (see [8]) which is necessary for the proof of our results.
Lemma 2.1 Let X, Y be Banach spaces such that X is reflexive, and the inclusion $X \subset Y$ is continuous. Assume that $\left\{u_{n}\right\}$ is a bounded sequence in $L^{\infty}\left(t_{0}, T ; X\right)$ such that $u_{n} \rightharpoonup u$ weakly in $L^{q}\left(t_{0}, T ; X\right)$ for some $q \in[1,+\infty)$ and $u \in C^{0}\left(\left[t_{0}, T\right] ; Y\right)$.

Then, $u(t) \in X$ for all $t \in\left[t_{0}, T\right]$ and

$$
\|u(t)\|_{X} \leq \sup _{n \geq 1}\left\|u_{n}\right\|_{L^{\infty}\left(t_{0}, T ; X\right)} \quad \forall t \in\left[t_{0}, T\right]
$$

We will denote by (\cdot, \cdot) the scalar product in $L^{2}(\Omega)$, by $\|\cdot\|=|\nabla \cdot|$ the norm in $H_{0}^{1}(\Omega)$, by $\|\cdot\|_{H^{2}(\Omega)}$ the norm in $H^{2}(\Omega)$, and by $\|\cdot\|_{L^{p}(\Omega)}$ the norm in $L^{p}(\Omega)$. We will use $\langle\cdot, \cdot\rangle$ to denote either the duality product between $H^{-1}(\Omega)$ and $H_{0}^{1}(\Omega)$ or between $L^{p^{\prime}}(\Omega)$ and $L^{p}(\Omega)$.

For each integer $n \geq 1$, we denote by $u_{n}(t)=u_{n}\left(t ; \tau, u_{\tau}\right)$ the Galerkin approximation of the solution $u\left(t ; \tau, u_{\tau}\right)$ of (1), which is given by

$$
\begin{equation*}
u_{n}(t)=\sum_{j=1}^{n} \gamma_{n j}(t) w_{j} \tag{8}
\end{equation*}
$$

and is the solution of

$$
\left\{\begin{array}{l}
\frac{d}{d t}\left(u_{n}(t), w_{j}\right)=\left\langle\Delta u_{n}(t), w_{j}\right\rangle+\left(f\left(u_{n}(t)\right), w_{j}\right)+\left(h(t), w_{j}\right) \tag{9}\\
\left(u_{n}(\tau), w_{j}\right)=\left(u_{\tau}, w_{j}\right) \quad j=1, . ., n
\end{array}\right.
$$

where $\left\{w_{j}: j \geq 1\right\}$ is the Hilbert basis of $L^{2}(\Omega)$ formed by the eigenfunctions associated to $-\Delta$ in $H_{0}^{1}(\Omega)$.

We prove the following result.
Theorem 1 Assume that $f \in C^{1}(\mathbb{R})$ satisfies (2) and (3). Suppose moreover that $\Omega \subset \mathbb{R}^{N}$ is a bounded C^{κ} domain, with $\kappa \geq \max (2, N(p-2) / 2 p), h \in$ $L_{\text {loc }}^{2}\left(\mathbb{R} ; L^{2}(\Omega)\right)$, and condition (6) holds. Then $\mathcal{A}(\tau)$ satisfies

$$
\begin{equation*}
\lim _{\tau \rightarrow-\infty}\left\{e^{\lambda_{1} \tau}\left(\sup _{v \in \mathcal{A}(\tau)}\|v\|^{2}+\sup _{v \in \mathcal{A}(\tau)}\|v\|_{L^{p}(\Omega)}^{p}\right)\right\}=0 \tag{10}
\end{equation*}
$$

PROOF. From the inequality (9) of [1], for any $t \geq \tau$ we have

$$
\begin{align*}
\left|u_{n}(r)\right|^{2} & +\int_{\tau}^{r}\left\|u_{n}(s)\right\|^{2} d s+\int_{\tau}^{r}\left\|u_{n}(s)\right\|_{L^{p}(\Omega)}^{p} d s \tag{11}\\
& \leq C_{1}\left(\left|u_{\tau}\right|^{2}+\int_{\tau}^{t}|h(s)|^{2} d s+(t-\tau)\right)
\end{align*}
$$

for all $r \in[\tau, t]$, and all $n \geq 1$, where $C_{1}:=\frac{\max \left\{1, \lambda_{1}^{-1}, 2 k|\Omega|\right\}}{\min \left\{1,2 \alpha_{2}\right\}}$.
Also, integrating inequality (10) of [1] with respect to s from τ to r, we obtain

$$
\begin{align*}
(r-\tau) & \left(\left\|u_{n}(r)\right\|^{2}+\left\|u_{n}(r)\right\|_{L^{p}(\Omega)}^{p}\right) \tag{12}\\
\leq & C_{2}\left(\int_{\tau}^{r}\left\|u_{n}(s)\right\|^{2} d s+\int_{\tau}^{r}\left\|u_{n}(s)\right\|_{L^{p}(\Omega)}^{p} d s\right) \\
& +\frac{(t-\tau)}{\min \left\{1,2 \widetilde{\alpha}_{2}\right\}} \int_{\tau}^{t}|h(s)|^{2} d s \\
& +\frac{4 \widetilde{k}}{\min \left\{1,2 \widetilde{\alpha}_{2}\right\}}|\Omega|(t-\tau),
\end{align*}
$$

for any $t \geq \tau$, all $r \in[\tau, t]$, and all $n \geq 1$, where $C_{2}:=\frac{\max \left\{1,2 \widetilde{\alpha}_{1}\right\}}{\min \left\{1,2 \widetilde{\alpha}_{2}\right\}}$.

From (11) and (12) we now obtain that

$$
\begin{align*}
(r-\tau)\left(\left\|u_{n}(r)\right\|^{2}+\left\|u_{n}(r)\right\|_{L^{p}(\Omega)}^{p}\right) & \leq C_{1} C_{2}\left(\left|u_{\tau}\right|^{2}+\int_{\tau}^{t}|h(s)|^{2} d s+(t-\tau)\right) \\
& +\frac{(t-\tau)}{\min \left\{1,2 \widetilde{\alpha}_{2}\right\}} \int_{\tau}^{t}|h(s)|^{2} d s \\
& +\frac{4 \widetilde{k}}{\min \left\{1,2 \widetilde{\alpha}_{2}\right\}}|\Omega|(t-\tau) \tag{13}
\end{align*}
$$

for any $t \geq \tau$, all $r \in[\tau, t]$, and all $n \geq 1$.
In particular, from (13) we deduce

$$
\begin{equation*}
\left\|u_{n}(r)\right\|^{2}+\left\|u_{n}(r)\right\|_{L^{p}(\Omega)}^{p} \leq C_{3}\left(\left|u_{\tau}\right|^{2}+\int_{\tau}^{\tau+2}|h(s)|^{2} d s+1\right) \tag{14}
\end{equation*}
$$

for all $r \in[\tau+1, \tau+2]$, and any $n \geq 1$, where

$$
C_{3}:=\max \left\{C_{1} C_{2}+\frac{2}{\min \left\{1,2 \widetilde{\alpha}_{2}\right\}}, 2 C_{1} C_{2}+\frac{8 \widetilde{k}}{\min \left\{1,2 \widetilde{\alpha}_{2}\right\}}|\Omega|\right\}
$$

It is well known (see [8] or [11]) that $u_{n}(\cdot)=u_{n}\left(\cdot ; \tau, u_{\tau}\right)$ converges weakly to $u(\cdot)=u\left(\cdot ; \tau, u_{\tau}\right)$ in $L^{2}\left(\tau, t ; H_{0}^{1}(\Omega)\right) \cap L^{p}\left(\tau, t ; L^{p}(\Omega)\right)$, for all $t>\tau$. Thus, from (14) and Lemma 2.1, we in particular obtain

$$
\|u(\tau+1)\|^{2}+\|u(\tau+1)\|_{L^{p}(\Omega)}^{p} \leq C_{3}\left(\left|u_{\tau}\right|^{2}+\int_{\tau}^{\tau+2}|h(s)|^{2} d s+1\right)
$$

Multiplying this inequality by $e^{\lambda_{1}(\tau+1)}$ and using (5), we have

$$
\begin{align*}
& e^{\lambda_{1}(\tau+1)}\left(\left\|U(\tau+1, \tau) u_{\tau}\right\|^{2}+\left\|U(\tau+1, \tau) u_{\tau}\right\|_{L^{p}(\Omega)}^{p}\right) \tag{15}\\
& \leq C_{3} e^{\lambda_{1}}\left(e^{\lambda_{1} \tau}\left|u_{\tau}\right|^{2}+\int_{\tau}^{\tau+2} e^{\lambda_{1} s}|h(s)|^{2} d s+e^{\lambda_{1} \tau}\right)
\end{align*}
$$

for all $\tau \in \mathbb{R}$, and all $u_{\tau} \in L^{2}(\Omega)$.
As $\mathcal{A}(\tau+1)=U(\tau+1, \tau) \mathcal{A}(\tau)$, it follows from (15) that

$$
\begin{aligned}
& e^{\lambda_{1}(\tau+1)}\left(\|v\|^{2}+\|v\|_{L^{p}(\Omega)}^{p}\right) \\
& \leq C_{3} e^{\lambda_{1}}\left(e^{\lambda_{1} \tau} \sup _{w \in \mathcal{A}(\tau)}|w|^{2}+\int_{\tau}^{\tau+2} e^{\lambda_{1} s}|h(s)|^{2} d s+e^{\lambda_{1} \tau}\right)
\end{aligned}
$$

for all $v \in \mathcal{A}(\tau+1)$, and any $\tau \in \mathbb{R}$.

Finally, this inequality implies

$$
\begin{align*}
& e^{\lambda_{1} \tau}\left(\|v\|^{2}+\|v\|_{L^{p}(\Omega)}^{p}\right) \tag{16}\\
& \leq C_{3} e^{\lambda_{1}}\left(e^{\lambda_{1}(\tau-1)} \sup _{w \in \mathcal{A}(\tau-1)}|w|^{2}+\int_{\tau-1}^{\tau+1} e^{\lambda_{1} s}|h(s)|^{2} d s+e^{\lambda_{1}(\tau-1)}\right)
\end{align*}
$$

for all $v \in \mathcal{A}(\tau)$, and any $\tau \in \mathbb{R}$. Taking into account (6) and (7), from (16) we obtain (10).

Theorem 2 In addition to the assumptions in Theorem 1, assume moreover that $h \in W_{\text {loc }}^{1,2}\left(\mathbb{R} ; L^{2}(\Omega)\right)$, and satisfies

$$
\begin{equation*}
\lim _{\tau \rightarrow-\infty} e^{\lambda_{1} \tau} \int_{\tau}^{\tau+1}\left|h^{\prime}(s)\right|^{2} d s=0 \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{\tau \rightarrow-\infty} e^{\lambda_{1} \tau}|h(\tau)|^{2}=0 \tag{18}
\end{equation*}
$$

Then $\mathcal{A}(\tau)$ satisfies that

$$
\begin{equation*}
\lim _{\tau \rightarrow-\infty}\left(e^{\lambda_{1} \tau} \sup _{v \in \mathcal{A}(\tau)}\|v\|_{H^{2}(\Omega)}^{2}\right)=0 \tag{19}
\end{equation*}
$$

PROOF. From inequality (11) in [1], taking $t=\tau+3$ and $\varepsilon=2$, we have

$$
\begin{align*}
\left|u_{n}^{\prime}(r)\right|^{2} & \leq(4 l+3) \int_{\tau+1}^{\tau+3}\left|u_{n}^{\prime}(s)\right|^{2} d s \tag{20}\\
& +\int_{\tau+1}^{\tau+3}\left|h^{\prime}(s)\right|^{2} d s
\end{align*}
$$

for all $r \in[\tau+2, \tau+3]$, and any $n \geq 1$.
Analogously, and if we take $s=\tau+1$ and $r=t=\tau+3$ in inequality (10) of [1], we have

$$
\begin{align*}
& \int_{\tau+1}^{\tau+3}\left|u_{n}^{\prime}(s)\right|^{2} d s+\left\|u_{n}(\tau+3)\right\|^{2}+2 \widetilde{\alpha}_{2}\left\|u_{n}(\tau+3)\right\|_{L^{p}(\Omega)}^{p} \tag{21}\\
& \quad \leq\left\|u_{n}(\tau+1)\right\|^{2}+\int_{\tau}^{\tau+3}|h(s)|^{2} d s+4 \widetilde{k}|\Omega|+2 \widetilde{\alpha}_{1}\left\|u_{n}(\tau+1)\right\|_{L^{p}(\Omega)}^{p}
\end{align*}
$$

for all $n \geq 1$.

From (21) and (20), we obtain

$$
\begin{aligned}
\left|u_{n}^{\prime}(r)\right|^{2} & \leq(4 l+3)\left(\left\|u_{n}(\tau+1)\right\|^{2}+2 \widetilde{\alpha}_{1}\left\|u_{n}(\tau+1)\right\|_{L^{p}(\Omega)}^{p}\right) \\
& +(4 l+3)\left(\int_{\tau}^{\tau+3}|h(s)|^{2} d s+4 \widetilde{k}|\Omega|\right) \\
& +\int_{\tau+1}^{\tau+3}\left|h^{\prime}(s)\right|^{2} d s
\end{aligned}
$$

for all $r \in[\tau+2, \tau+3]$, and any $n \geq 1$.
Owing to this inequality and (14), there exists a constant $\widetilde{C}_{1}>0$ such that

$$
\begin{equation*}
\left|u_{n}^{\prime}(r)\right|^{2} \leq \widetilde{C}_{1}\left(\left|u_{\tau}\right|^{2}+\int_{\tau}^{\tau+3}\left(|h(s)|^{2}+\left|h^{\prime}(s)\right|^{2}\right) d s+1\right) \tag{22}
\end{equation*}
$$

for all $r \in[\tau+2, \tau+3]$, and any $n \geq 1$.
From inequality (13) of [1], and thanks to (22), we have

$$
\begin{aligned}
\left|\Delta u_{n}(r)\right|^{2} & \leq 8 \widetilde{C}_{1}\left(\left|u_{\tau}\right|^{2}+\int_{\tau}^{\tau+3}\left(|h(s)|^{2}+\left|h^{\prime}(s)\right|^{2}\right) d s+1\right)+8|h(r)|^{2} \\
& +4 l^{2}\left|u_{n}(r)\right|^{2}+4(f(0))^{2}|\Omega|
\end{aligned}
$$

for all $r \in[\tau+2, \tau+3]$, and any $n \geq 1$, and therefore, by (11) we obtain that there exists a constant $\widetilde{C}_{2}>0$ such that

$$
\begin{align*}
& \left|\Delta u_{n}(r)\right|^{2} \tag{23}\\
& \leq \widetilde{C}_{2}\left(\left|u_{\tau}\right|^{2}+\int_{\tau}^{\tau+3}\left(|h(s)|^{2}+\left|h^{\prime}(s)\right|^{2}\right) d s+1+\sup _{r \in[\tau+2, \tau+3]}|h(r)|^{2}\right),
\end{align*}
$$

for all $r \in[\tau+2, \tau+3]$, and any $n \geq 1$.
It is well known that, in particular, $u_{n}(\cdot)=u_{n}\left(\cdot ; \tau, u_{\tau}\right)$ converges weakly to $u(\cdot)=u\left(\cdot ; \tau, u_{\tau}\right)$ in $L^{2}\left(\tau+2, \tau+3 ; H_{0}^{1}(\Omega)\right)$ and $u\left(\cdot ; \tau, u_{\tau}\right) \in C^{0}\left([\tau+2, \tau+3] ; H_{0}^{1}(\Omega)\right)$. Then, by Lemma 2.1, inequality (23) and the equivalence of the norms $|\Delta v|$ and $\|v\|_{H^{2}(\Omega)}$, we have that there exists a constant $\widetilde{C}_{3}>0$ such that

$$
\begin{align*}
& \left\|u\left(r ; \tau, u_{\tau}\right)\right\|_{H^{2}(\Omega)}^{2} \tag{24}\\
& \leq \widetilde{C}_{3}\left(\left|u_{\tau}\right|^{2}+\int_{\tau}^{\tau+3}\left(|h(s)|^{2}+\left|h^{\prime}(s)\right|^{2}\right) d s+1+\sup _{r \in[\tau+2, \tau+3]}|h(r)|^{2}\right),
\end{align*}
$$

for all $r \in[\tau+2, \tau+3]$, any $\tau \in \mathbb{R}$, and $u_{\tau} \in L^{2}(\Omega)$.
Now, observe that by Cauchy inequality,

$$
|h(r)| \leq|h(\tau+2)|+\left(\int_{\tau+2}^{\tau+3}\left|h^{\prime}(s)\right|^{2} d s\right)^{1 / 2}
$$

for all $r \in[\tau+2, \tau+3]$. Thus, from (24), and using (5), we deduce that there exists a constant $\widetilde{C}_{4}>0$ such that

$$
\left\|U(\tau+2, \tau) u_{\tau}\right\|_{H^{2}(\Omega)}^{2} \leq \widetilde{C}_{4}\left(\left|u_{\tau}\right|^{2}+\int_{\tau}^{\tau+3}\left(|h(s)|^{2}+\left|h^{\prime}(s)\right|^{2}\right) d s+|h(\tau+2)|^{2}+1\right)
$$

for all $\tau \in \mathbb{R}, u_{\tau} \in L^{2}(\Omega)$.
From this inequality, and the fact that $\mathcal{A}(\tau)=U(\tau, \tau-2) \mathcal{A}(\tau-2)$, we obtain

$$
\begin{equation*}
\|v\|_{H^{2}(\Omega)}^{2} \leq \widetilde{C}_{4}\left(\sup _{w \in \mathcal{A}(\tau-2)}|w|^{2}+\int_{\tau-2}^{\tau+1}\left(|h(s)|^{2}+\left|h^{\prime}(s)\right|^{2}\right) d s+|h(\tau)|^{2}+1\right) \tag{25}
\end{equation*}
$$

for all $v \in \mathcal{A}(\tau)$, and any $\tau \in \mathbb{R}$.
Now, thanks to (6), (7), (17) and (18), we obtain (19) from (25).
Remark 3 In theorems 1 and 2, the pullback attraction property is not needed. In fact, both theorems are also valid for any family $\{\mathcal{A}(\tau): \tau \in \mathbb{R}\}$ of nonempty subsets of $L^{2}(\Omega)$ satisfying (7) and the semi-invariance property

$$
\mathcal{A}(\tau+n) \subset U(\tau+n, \tau) \mathcal{A}(\tau)
$$

for all $\tau \in \mathbb{R}$ and any integer $n \geq 1$.
Acknowledgements. We would like to thank one of the referees of our previous paper [1] for having suggested us to investigate the problem in this paper.

References

[1] M. Anguiano, T. Caraballo \& J. Real, H^{2}-boundedness of the pullback attractor for a non-autonomous reaction-diffusion equation, Nonlinear Analysis (2009), doi:10.1016/j.na.2009.07.027.
[2] M. Anguiano, T. Caraballo, J. Real \& J. Valero, Pullback attractors for reactiondifussion equations in some unbounded domains with a continuous nonlinearity and non-autonomous forcing term with values in H^{-1}, submitted (2009).
[3] T. Caraballo, G. Lukaszewicz \& J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Analysis TMA 64 (2006), 484-498.
[4] T. Caraballo, G. Lukaszewicz \& J. Real, Pullback attractors for nonautonomous 2D Navier-Stokes equations in unbounded domains, Comptes rendus Mathématique 342 (2006), 263-268.
[5] P.E. Kloeden, Pullback attractors of nonautonomous semidynamical systems, Stoch. Dyn. 3 (2003), no. 1, 101-112.
[6] Y. Li \& C.K. Zhong, Pullback attractors for the norm-to-weak continuous process and application to the nonautonomous reaction-diffusion equations, Applied Mathematics and Computation 190 (2007) 1020-1029.
[7] P. Marín-Rubio \& J. Real, On the relation between two different concepts of pullback attractors for non-autonomous dynamical systems, Nonlinear Analysis TMA 71(2009), 3956-3963.
[8] J.C. Robinson, Infinite-dimensional dynamical systems, Cambridge University Press, 2001.
[9] H. Song \& H. Wu, Pullback attractors of nonautonomous reaction-diffusion equations, J. Math. Anal. Appl. Vol. 325 (2007), 1200-1215.
[10] H. Song \& C. Zhong, Attractors of non-autonomous reaction-diffusion equations in L^{p}, Nonlinear Analysis 68 (2008), 1890-1897.
[11] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, Second Edition, 1997.
[12] Y. Wang \& C. Zhong, On the existence of pullback attractors for nonautonomous reaction-difusion equations, Dynamical Systems, Vol 23, No. 1, March 2008, 1-16.

[^0]: * Corresponding author: T. Caraballo

 This work has been partially supported by Ministerio de Ciencia e Innovación (Spain) under project MTM2008-00088, and Junta de Andalucía grant P07-FQM02468.

 Email addresses: anguiano@us.es (M. Anguiano), caraball@us.es (T. Caraballo), jreal@us.es (J. Real).

